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Abstract. We explicitly construct nondegenerate braided Z2-crossed tensor
categories of the form VectΓ ⊕ VectΓ/2Γ. They are Z2-crossed extensions, in
the sense of [ENO10], of the braided tensor category VectΓ with Z2-action
given by −id on the finite, abelian group Γ. Thus, we obtain generalisations
of the Tambara-Yamagami categories [TY98, Gal22], where now the abelian
group Γ may have even order and the nontrivial sector VectΓ/2Γ more than
one simple object.

The idea for this construction comes from a physically motivated approach
in [GLM24] to construct Z2-crossed extensions of VectΓ for any Γ from an
infinite Tambara-Yamagami category VectRd ⊕ Vect, which itself is not fully
rigorously defined, and then using condensation from VectRd to VectΓ, which
we prove commutes with crossed extensions.

The Z2-equivariantisation of VectΓ ⊕ VectΓ/2Γ yields new modular tensor
categories, which correspond to the orbifold of an arbitrary lattice vertex op-
erator algebra under a lift of −id, as discussed in [GLM24].
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1. Introduction

Braided tensor categories and their specialisations, such as modular tensor cat-
egories, have emerged as important structures in low-dimensional physics, in par-
ticular 2-dimensional conformal field theories (e.g., in the form of vertex operator
algebras or conformal nets) and topological phases of matter. In the presence of
an action of a finite group G, this notion is naturally modified to that of a braided
G-crossed tensor category in the sense of [Tur00].

At the centre of this article is the notion of a braided G-crossed extension,
i.e. a braided G-crossed tensor category extending a given braided tensor category
[ENO10]. More precisely, given a braided tensor category B together with an action
of a finite group G by braided tensor autoequivalences, a braided G-crossed exten-
sion C ⊃ B is a G-graded tensor category C =

⊕
g∈G Cg equipped with a G-action
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satisfying g∗Ch = Cghg−1 and with a G-crossed braiding Cg ⊗ Ch → Cghg−1 ⊗ Cg such
that the identity component is C1 = B with the given braiding and G-action.

For a braided G-crossed extension B ⊂ C, the G-equivariantisation C//G, also
referred to as gauging of B by G, is a braided tensor category extending B//G.

Braided G-crossed extensions are essential for understanding representation cat-
egories of (suitably regular) vertex operator algebras [McR21], as we discuss in more
detail in [GLM24]. See, e.g., [GJ19, DNR21, GR24] for some applications.

In this article, we study braided G-crossed extensions of pointed braided fusion
categories B [JS93, EGNO15]. The latter have the defining property that all their
simple objects are invertible, i.e. they are of the form B = VectQ

Γ for some finite,
abelian group Γ and a quadratic form Q on Γ determining the braiding and associ-
ator. In the context of lattices, such pairs (Γ, Q) appear as discriminant forms, for
which Q nondegenerate.

Perhaps the easiest nontrivial examples are the Tambara-Yamagami categories,
which provide G-crossed extensions of VectQ

Γ for G = Z2 acting on Γ by multiplica-
tion with −1. Indeed, in [TY98], Tambara and Yamagami classified the Z2-graded
fusion categories C with exactly one noninvertible simple object in the graded com-
ponent of nontrivial degree g ∈ Z2, i.e. of the form

C = C1 ⊕ Cg = VectQ
Γ ⊕ Vect .

In general, this fusion category does not admit a braiding, but with the G-action
above, there exist G-crossed braidings, which were classified in [Gal22]. This pro-
duces two explicit Z2-crossed extensions C = VectQ

Γ [Z2, ε], ε ∈ {±1}, of B = VectQ
Γ ,

see Corollary 4.8. Finding precisely two G-crossed extensions of the given B with
the given categorical action of G on B matches the general classification result for
braided G-crossed extensions in [ENO10, DN21]; see Theorem 3.11.

One is especially interested in cases where the Z2-crossed braiding, and thus in
particular the given braiding on VectΓ, i.e. the quadratic form Q, is nondegener-
ate. In this case, the Z2-equivariantisation C//Z2 is a modular tensor category (see
Proposition 4.7), which was described in [GNN09]. The definition of the Tambara-
Yamagami category requires that on VectQ

Γ the associator is trivial and the qua-
dratic form Q admits a quadratic form q with Q = q2, which appears in the braiding
and associator involving the g-graded component. In the nondegenerate case, this
necessarily means that the group Γ has odd order or, equivalently, that G acts on
Γ with the only fixed point 0.

In this article, we generalise the results in [TY98, Gal22] by constructing braided
Z2-crossed extensions C of B = VectQ

Γ with the quadratic form Q nondegenerate
and the finite, abelian group Γ of arbitrary order where G ∼= Z2 still acts (as a
certain categorical action, cf. Remark 5.13) by multiplication with −1 on Γ.

Theorem 5.12. For ε ∈ {±1}, the data given in Section 5.2 define a Z2-crossed
ribbon fusion category

C = VectQ
Γ [Z2, ε] = VectQ

Γ ⊕ VectΓ/2Γ,

which is a braided Z2-crossed extension of VectQ
Γ for a discriminant form (Γ, Q) with

the above categorical Z2-action. It is equipped with a natural choice of Z2-ribbon
structure for which all quantum dimensions are positive.

The definition of the Z2-crossed braiding on C again depends on a (special) choice
of square root q of the quadratic form Q on Γ (see Proposition 5.8).

By the classification of braided G-crossed extensions [ENO10, DN21], for each ε,
there is a unique braided Z2-crossed extension VectQ

Γ [Z2, ε] of VectQ
Γ with the given

Z2-action. Can we verify this directly from our construction (see Problem 1)?
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We also compute the Z2-equivariantisation C//Z2, which is again a modular ten-
sor category (see Proposition 5.14). In particular, we determine the simple objects,
fusion rules and modular data of C//Z2 (see Proposition 5.15, Proposition 5.16,
Proposition 5.18).

The input data for the construction of the above braided Z2-crossed categories
are taken from [GLM24], where they are produced by using the idea that braided G-
crossed extensions commute in a certain sense with condensations by commutative,
associative algebra objects. Concretely, this idea is applied to the situation

VectQ̄
Rd VectQ̄

Rd ⊕ Vect

VectQ
Γ VectQ

Γ [Z2, ε]

cond.

Z2-crossed ext.

cond.
Z2-crossed ext.

where (Γ, Q) is realised as an isotropic subgroup (meaning an even lattice L)
of the quadratic space (Rd, Q̄). While the infinite Tambara-Yamagami category
VectQ̄

Rd ⊕ Vect is not fully rigorous, we can still use the data obtained in [GLM24]
as the data that should define VectQ

Γ [Z2, ε] and then verify the coherence conditions
explicitly (see Section 6). This yields the rigorous (but without [GLM24] ad hoc
seeming) definition of the braided Z2-crossed extension VectQ

Γ [Z2, ε] of VectQ
Γ given

in this paper.

Outline. In Section 2, we briefly recall discriminant forms and lattices.
In Section 3, we recall braided G-crossed tensor categories. We also introduce

G-ribbon structures and discuss pseudo-unitarity in that context.
As a first example, in Section 4, we describe Tambara-Yamagami categories as

braided Z2-crossed extensions of pointed braided fusion categories.
Then, in Section 5.2, we define the generalisations of the Tambara-Yamagami

categories where the abelian group Γ describing the underlying pointed braided
fusion category may be of even order. The necessary input data are defined in
Section 5.1. In Section 5.3, we describe the equivariantisations. In Section 5.4 we
describe these categories explicitly in terms of lattice data. The proof of the main
theorem, Theorem 5.12, is given in Section 6.

Notation. Unless stated otherwise, all vector spaces will be over the base field C.
Categories will be enriched over Vect = VectC, but we could equally well take any
algebraically closed field of characteristic zero. By Zn we shall always mean the
cyclic group Z/nZ. We write e(x) = e2πix.

Throughout the text, we denote by G a (usually finite) group, written multi-
plicatively, with g denoting an arbitrary element of G. However, in the special case
of G = ⟨g⟩ ∼= Z2, we denote by g the nontrivial element of G. By contrast, Γ always
denotes an abelian group, which we write additively. Quadratic forms on Γ are
usually written multiplicatively with values in C×; they are related to the usual
notion of quadratic forms with values in Q/Z or R/Z via e(·).
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2. Lattices and Discriminant Forms

By a (rational) lattice, we mean a free abelian group L of finite rank equipped
with a nondegenerate bilinear form ⟨·, ·⟩ : L×L → Q. The lattice L is called integral
if ⟨v, w⟩ ∈ Z for all v, w ∈ L. If ⟨v, v⟩ ∈ 2Z for all v ∈ L, then L is called even.
An integral lattice that is not even is called odd. Given a lattice L, we denote by
L∗ = {v ∈ L ⊗ZQ | ⟨v, w⟩ ∈ Z for all w ∈ L} the dual of L, embedded via ⟨·, ·⟩ into
the ambient space of L.

If L is even, then L ⊂ L∗ and the quotient L∗/L is a finite, abelian group endowed
with a nondegenerate quadratic form Q : L∗/L → C× given by Q(v+L) = e(⟨v, v⟩/2)
for all v ∈ L∗. In that situation, we call L∗/L the discriminant form of L.

More generally, we call any pair (Γ, Q) of a finite, abelian group Γ together with
a nondegenerate quadratic form Q : Γ → C× a discriminant form (sometimes called
metric group). The function Q being quadratic means that Q(na) = Q(a)n2 for all
a ∈ Γ and n ∈ Z and that BQ : Γ×Γ → C× with BQ(a, b) := Q(a+b)Q(a)−1Q(b)−1

for a, b ∈ Γ is bimultiplicative (and nondegenerate). We call BQ the associated
bimultiplicative form. Any discriminant form (Γ, Q) can be realised as dual quotient
L∗/L for some even lattice L [Nik80].

Given two discriminant forms (Γ1, Q1) and (Γ2, Q2), we denote their (orthogonal)
direct sum by (Γ1 ⊕ Γ2, Q1 ⊕ Q2), which represents the group Γ1 ⊕ Γ2 with the
quadratic form Q1 ⊕ Q2 defined by (Q1 ⊕ Q2)((a1, a2)) = Q1(a1)Q2(a2).

A discriminant form is called indecomposable if it cannot be written as an or-
thogonal direct sum of two nonzero discriminant forms. Such discriminant forms
are also referred to as indecomposable Jordan components. Table 1 describes the
indecomposable Jordan blocks (see, e.g., [CS99, Sch09]). Here, k ∈ Z>0, p is an
odd prime and

( ·
·
)

denotes the Kronecker symbol.

Table 1. Indecomposable Discriminant Forms

Symbol Group Quadratic Form
(pk)±1 Zpk = ⟨x⟩ Q(x) = e(p−ku) for some u ∈ Z with

(u, p) = 1 and
( 2u

p

)
= ±1.

(2k)±1
t Z2k = ⟨x⟩ Q(x) = e(2−k−1t) for some t ∈ Z8 with(

t
2
)
= ±1

(2k)+2
II Z2k × Z2k = ⟨x, y⟩ Q(x) = Q(y) = 1 and BQ(x, y) = e(2−k)

(2k)−2
II Z2k × Z2k = ⟨x, y⟩ Q(x) = Q(y) = BQ(x, y) = e(2−k)

3. Braided G-Crossed Tensor Categories

In this section, we introduce the main categorical notions relevant for this text,
in particular braided G-crossed tensor categories and braided G-crossed extensions.
We also state the results from [ENO10, DN21] on the classification of the latter.
Then, we describe G-ribbon structures, pseudo-unitarity and their relation to the
G-equivariantisation.
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3.1. Tensor Categories and G-Actions. In this text, tensor categories are C-
linear abelian monoidal categories, similar to [DGNO10]. Moreover, we consider
braided tensor categories, rigid tensor categories and ribbon categories. A fusion
category is a tensor category that is finite, semisimple, rigid and has a simple tensor
unit 1, as in [EGNO15]. A modular tensor category is a ribbon fusion category with
nondegenerate braiding.

A rigid tensor category is called pointed if every simple object is invertible (or
a simple current). In the following, we consider the typical description of pointed
(braided) fusion categories associated with finite (abelian) groups and some coho-
mological data (see, e.g., [JS93, EGNO15]).

Example 3.1 (Pointed Fusion Categories). Suppose that G is a finite group and
ω ∈ Z3(G,C×) a 3-cocycle. Consider the pointed fusion category Vectω

G of G-graded
vector spaces, where the simple objects are Cg, g ∈ G, and the tensor product is
given by Cg ⊗ Ch = Cgh with associator

(Cg ⊗ Ch) ⊗ Ck
ω(g,h,k)−→ Cg ⊗ (Ch ⊗ Ck)

for all g, h, k ∈ G. The pentagon identity for the associator holds precisely because
ω is a 3-cocycle.

Example 3.2 (Pointed Braided Fusion Categories). Let Γ be a finite, abelian
group and (σ, ω) ∈ Z3

ab(Γ,C×) an abelian 3-cocycle on it [EM50]. We denote by
Vectσ,ω

Γ the pointed braided fusion category given by the above fusion category
Vectω

Γ equipped with the braiding

Ca ⊗ Cb
σ(a,b)−→ Cb ⊗ Ca

for a, b ∈ Γ. The hexagon identity for the braiding corresponds exactly to the
defining property of an abelian 3-cocycle, i.e.

(1) ω(b, a, c)
ω(a, b, c)ω(b, c, a) = σ(a, b + c)

σ(a, b)σ(a, c) ,
ω(a, b, c)ω(c, a, b)

ω(a, c, b) = σ(a + b, c)
σ(a, c)σ(b, c)

for a, b, c ∈ Γ, in addition to the 3-cocycle property of ω. If ω = 1, (1) states that
σ is bimultiplicative; else, ω measures its deviation from bimultiplicativity.

Abelian 3-coboundaries are of the form (σκ, dκ) with σκ(a, b) := κ(a, b)κ(b, a)−1

for any function κ : Γ×Γ → C×, and they correspond to braided tensor equivalences
Vectσ,ω

Γ
∼= Vectσσκ,ωdκ

Γ that map each object Ca to itself but with a possibly non-
trivial tensor structure given by κ. Hence, cohomology classes of abelian 3-cocycles
on Γ correspond to equivalence classes of braided tensor categories on the abelian
category VectΓ with the given tensor product.

The abelian 3-cocycles (σ, ω), up to coboundaries, correspond bijectively to qua-
dratic forms Q : Γ → C×, as shown in [EM50]. Recall that BQ : Γ × Γ → C× with
BQ(a, b) = Q(a + b)Q(a)−1Q(b)−1 for a, b ∈ Γ denotes the associated bimultiplica-
tive form. In this correspondence, BQ(a, b) = σ(a, b)σ(b, a) is the double-braiding
and Q(a) = σ(a, a) the self-braiding. If the quadratic form Q is nondegenerate,
meaning that BQ is, then the braiding is nondegenerate. We denote by VectQ

Γ the
equivalence class of braided tensor categories corresponding to a cohomology class
of abelian 3-cocycles defined by the quadratic form Q on Γ.

There is a rigid structure C∗
a = C−a, a ∈ Γ, with the obvious evaluation and

coevaluation. There is also a canonical choice of a ribbon structure θCa
= Q(a). As

we shall discuss in Section 3.4 and Section 3.5, this is the unique choice of ribbon
structure for which all simple objects Ca have quantum dimension 1, thus coinciding
with the Frobenius-Perron dimension. This is known as the pseudo-unitary choice.
All possible ribbon structures differ from this by a homomorphism Γ → {±1}.



6 CÉSAR GALINDO, SIMON LENTNER AND SVEN MÖLLER

If |Γ| is odd, then the cohomology class associated with the quadratic form Q
on Γ can be represented by a distinguished abelian 3-cocycle (σ, ω) with ω = 1 and
σ(a, b) = B

1/2
Q (a, b) for a, b ∈ Γ. Here, we recall that when the abelian group Γ has

odd order, every bimultiplicative map B : Γ×Γ → C× has a unique bimultiplicative
square root B1/2; an analogous statements holds for quadratic forms.

We describe group actions on tensor categories:

Definition 3.3. Let C be a tensor category with the associativity constraint given
by (X ⊗Y )⊗Z

α→ X ⊗(Y ⊗Z) and G a finite group. Then a G-action on C consists
of the following data:

(i) For every element g ∈ G, a functor
g∗ : C → C.

We denote the image of an object X ∈ C by g∗(X) and that of a morphism
f by g∗(f).

(ii) For every pair of elements g, h ∈ G, a natural isomorphism

T g,h
2 (X) : (gh)∗(X) → g∗(h∗(X))

such that associativity holds: for all g, h, l ∈ G,

T g,h
2 (l∗(X)) ◦ T gh,l

2 (X) = g∗(T h,l
2 (X)) ◦ T g,hl

2 .

(iii) A tensor structure τg on each functor g∗, i.e. for every g ∈ G and every
pair of objects X, Y ∈ C, a natural isomorphism

τg
X,Y : g∗(X ⊗ Y ) → g∗(X) ⊗ g∗(Y )

such that the diagrams

g∗((X⊗Y )⊗Z) g∗(X⊗Y )⊗g∗(Z) (g∗(X)⊗g∗(Y ))⊗g∗(Z)

g∗(X⊗(Y ⊗Z)) g∗(X)⊗g∗(Y ⊗Z) g∗(X)⊗(g∗(Y )⊗g∗(Z))

τg

g∗(α)

τg

α

τg τg

and

(gh)∗(X ⊗ Y ) (gh)∗(X) ⊗ (gh)∗(Y )

g∗(h∗(X ⊗ Y )) g∗(h∗(X)) ⊗ g∗(h∗(Y ))

τgh

T g,h
2 (X⊗Y ) T g,h

2 (X)⊗T g,h
2 (Y )

τgτh

commute for all g, h ∈ G.
A G-action is called strict if all the monoidal functors (g∗, τg) are strict and the
natural transformations T2 are equalities.

Remark 3.4. The data of an action of G on C is equivalent to a tensor functor
from the discrete tensor category G, where the set G serves as objects and the
tensor product is defined by the multiplication in G, to the tensor category of
tensor functors Aut⊗(C) along with monoidal natural isomorphisms.

Given a G-action on a tensor category, we can define the following category,
whose objects arise from G-invariant objects of the original tensor category.

Definition 3.5. Let C be a tensor category and G a finite group acting on C. The
G-equivariantisation of C, denoted by C//G, is the tensor category with objects the
pairs (X, φ) where X ∈ C and φ is a family of isomorphisms, φg : g∗(X) → X for
each g ∈ G, satisfying

φgh = φg ◦ g∗(φh) ◦ T g,h
2
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for g, h ∈ G. Morphisms f : (X, φ) → (Y, φ′) in C//G satisfy
φ′

g ◦ g∗(f) = f ◦ φg.

The tensor product is (X, φ) ⊗ (Y, φ′) = (X ⊗ Y, φ′′) with
φ′′

g = φg ⊗ φ′
g ◦ τg

X,Y ,

and the tensor unit is (1, id1).

We describe the simple objects of C//G. The group G acts on the set Irr(C) of
equivalence classes of simple objects. Fixing a representative Xi for every orbit and
denoting the corresponding stabiliser subgroup by Gi, we can choose isomorphisms
tg : g∗(Xi) → Xi. The action restricted to Gi defines a 2-cocycle χi ∈ Z2(Gi,C×),

(2) χi(g, h) idXi = t−1
gh ◦ tg ◦ g∗(th) ◦ T g,h

2 .

The cohomology class of χi does not depend on the choice of {tg | g ∈ Gi}. The
simple objects of C//G, up to isomorphism, are in bijection with isomorphism classes
of irreducible χi-projective representations of Gi for every i. For more details on
the correspondence, see [BN13].

Example 3.6. Let G = ⟨g⟩ ∼= Z2 be a cyclic group of order 2 acting on a tensor
category C. In this case, the classification of simple objects of C//G is straightfor-
ward. If a simple object X has a trivial stabiliser, then Xg := X ⊕ g∗(X) is an
equivariant object with φg = idg∗(X) ⊕T g,g

2 (X). If the stabiliser is G, then take
tg : g∗(X) → X and, using the equation (2), define γ = χ(g, g)−1/2. The isomor-
phisms φ

(±)
g = ±γtg : g∗(X) → X endow X with two nonisomorphic equivariant

structures.

3.2. Braided G-Crossed Tensor Categories. We now endow the categories
from the previous section with the additional structure of a braiding. The so
obtained braided G-crossed tensor categories (see, e.g., [Tur00, EGNO15]) are the
central objects in this text.

For a tensor category C and a group G, a (faithful) G-grading on C is a decom-
position C =

⊕
g∈G Cg such that the tensor product ⊗ maps Cg × Ch to Cgh, the

unit object is in C1 and Cg ̸= 0 for all g ∈ G.

Definition 3.7. A braided G-crossed tensor category is a tensor category C endowed
with the following structures:

(i) an action of G on C,
(ii) a faithful G-grading C = ⊕g∈GCg,
(iii) isomorphisms, called the G-braiding,

cX,Y : X ⊗ Y → g∗(Y ) ⊗ X

for g ∈ G, X ∈ Cg, Y ∈ C, natural in X and Y .
These structures are subject to the following conditions, where we omit the asso-
ciativity constraints in the diagrams for better readability:

(a) g∗(Ch) ⊂ Cghg−1 for all g, h ∈ G.
(b) The diagrams

g∗(X ⊗ Y ) g∗(h∗(Y ) ⊗ X)

g∗(X) ⊗ g∗(Y ) (ghg−1)∗g∗(Y ) ⊗ g∗(X)

τg
X,Y

g∗(cX,Y )

T ghg−1,h
2 (T g,h

2 )−1τg
h∗Y,X

cg∗(X),g∗(Y )

commute for all g, h ∈ G, X ∈ Ch, Y ∈ C.
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(c) The diagrams

X ⊗ Y ⊗ Z g∗(Y ⊗ Z) ⊗ X

g∗(Y ) ⊗ X ⊗ Z g∗(Y ) ⊗ g∗(Z) ⊗ X

cX,Y ⊗Z

cX,Y ⊗idZ τg
Y,Z

idg∗(Y ) ⊗cX,Z

commute for all g ∈ G, X ∈ Cg, Y, Z ∈ C and the diagrams

X ⊗ Y ⊗ Z (gh)∗(Z) ⊗ X ⊗ Y

X ⊗ h∗(Z) ⊗ Y g∗h∗(Z) ⊗ X ⊗ Y

cX⊗Y,Z

idX ⊗cY,Z T g,h
2

cX,h∗(Z)⊗idY

commute for all g, h ∈ G, X ∈ Cg, Y ∈ Ch, Z ∈ C.

The definition of equivalence of braided G-crossed tensor categories is given in
[Gal17], Section 5.2.

We call C as in the definition a braided G-crossed extension of a braided tensor
category B if C1 = B.

An important application of braided G-crossed tensor categories is the following,
related to the equivariantisation, which can be found in the present context in
[Tur10] (appendix by Michael Müger):

Proposition 3.8 ([DGNO10]). Let C be a braided G-crossed tensor category. The
equivariantisation C//G is a braided tensor category that contains a fusion subcat-
egory braided equivalent to the symmetric category Rep(G). This corresponds to
those equivariant objects (V, (φg)g∈G) where V is in the tensor subcategory gener-
ated by the unit object of C.

Conversely, for every braided tensor category D containing the symmetric fusion
category Rep(G) with trivial braiding, we can define a braided G-crossed tensor
category C := DG as the de-equivariantisation by G. This is the tensor category
of modules over CG, the algebra of functions on G, which is an algebra object in
Rep(G) and thus in D.

Remark 3.9. The equivariantisation of a braided G-crossed tensor category C is a
nondegenerate braided tensor category if and only if the neutral component C1 is a
nondegenerate braided tensor category. For the existence of a ribbon element, see
Section 3.4.

We discuss some examples of braided G-crossed tensor categories and their equi-
variantisations.

Example 3.10.

(1) The archetypal example of a braided G-crossed tensor category is VectG, the
pointed fusion category of G-graded vector spaces with the obvious G-grading. Up
to equivalence, it has a unique braided G-crossed structure where the G-action is
strict and given by g∗(Ch) = Cghg−1 for g, h ∈ G, with the G-braiding being the
identity.

In this case, the equivariantisation VectG//G is canonically braided equivalent to
Z(VectG), the Drinfeld centre of VectG. See [NNW09] for more details.

(2) For an arbitrary G-graded extension of Vect, we need to twist the previous
example and consider the braided G-crossed tensor category Vectω

G for a 3-cocycle
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ω ∈ Z3(G,C×), as in Example 3.1. Given g, h ∈ G, define the maps

γg,h(x) := ω(g, h, x)ω(ghx(gh)−1, g, h)
ω(g, hxh−1, h) ,

µg(x, y) := ω(gxg−1, g, y)
ω(gxg−1, gy, g)ω(g, x, y)

(3)

for x, y ∈ G. The G-action on Vectω
G on objects is the same as before, and the

G-braiding is again the identity. However, the action now is nonstrict. Indeed, for
each g ∈ G, the constraints are

τg
x,y = µg(x, y) idg∗(Cxy), T g,h

2 (Cx) = γg,h(x) idg∗(h∗(Cx)) .

The equivariantisation Vectω
G//G is canonically braided equivalent to the twisted

Drinfeld centre Z(Vectω
G). Again, see [NNW09] for more details.

(3) Now, assume that G is abelian. Hence the G-action is trivial on objects. In
this case, µa ∈ Z2(G,C×) is a 2-cocycle for each a ∈ G. The cohomologies µa for all
a ∈ G measure whether the category Vectω

G//G is pointed or not. If γa = δ(la) for
some la ∈ C1(G,C×), then the simple objects of Vectω

G//G correspond to elements in
G × Ĝ. Specifically, the pair (a, γ) corresponds to the object Ca with the equivariant
structure φb = γ(b)la(b) idCa

. The tensor product is determined by the extension
of G by Ĝ given by the 2-cocycle γa,b

lab

lalb
∈ Z2(G, Ĝ). See [GJ16] for details.

3.3. Classification of Braided G-Crossed Extensions. We briefly recall the
important result from [ENO10], Theorem 7.12, the classification of all braided G-
crossed fusion categories C for a given braided fusion category C1 equipped with an
action of a finite group G. This is also thoroughly treated in [DN21], where the
assumption of semisimplicity and rigidity is dropped, but finiteness in the sense
of [EGNO15] is retained (that is, they are working in the setting of finite braided
tensor categories). A more detailed discussion of this result, in the form presented
below, is given in Section 2.3 of [GLM24].

Theorem 3.11 ([DN21], Section 8.3; [ENO10], Theorem 7.12). Let B be a finite
tensor category with nondegenerate braiding, with an action of a finite group G on B
by braided autoequivalences. Then, there is a certain obstruction O4 ∈ H4(G,C×),
and if and only if this obstruction vanishes, there exists a braided G-crossed ten-
sor category C, where C1 = B as a braided tensor category with G-action. The
equivalence classes of extensions associated with the G-action form a torsor over
ω ∈ H3(G,C×); see Remark 3.12.

Remark 3.12.
(1) For a braided G-crossed tensor category C, we can define for ω ∈ Z3(G,C×)

a twisted Cω by modifying the associativity constraint with ω and twisting the
G-action by multiplying with the scalars in equation (3). See Proposition 2.2 in
[EG18] for details.

(2) The braided G-crossed extensions and their G-equivariantisations of the triv-
ial modular tensor category B = Vect correspond to Vectω

G and its Drinfeld centre,
respectively; see Example 3.10.

We remark that the main assertion in this work on the existence of certain
braided G-crossed extensions (see Theorem 5.12) do not make use of Theorem 3.11.
Nonetheless, it would be interesting to match our constructions to the work of
[ENO10] (see Problem 1).

3.4. G-Ribbon Structure. We also consider a G-crossed version of ribbon cat-
egories. The following definition is adapted from Lemma 2.3 in [Kir04]; see also
Section 4.5 of [Gal22].
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Definition 3.13. A G-twist θ for a braided G-crossed tensor category
⊕

g∈G Cg is
a natural isomorphism θXg

: Xg → g∗(Xg) for Xg ∈ Cg such that θ1 = id1 and the
diagrams

(4)

Xg ⊗ Yh (gh)∗(Xg ⊗ Yh)

g∗(Yh) ⊗ Xg (gh)∗(Xg) ⊗ (gh)∗(Yh)

(ghg−1)∗(Xg) ⊗ g∗(Yh) (ghg−1)∗(g∗(Xg)) ⊗ g∗(h∗(Yh))

θXg⊗Yh

cXg,Yh τgh
Xg,Yh

cg∗(Yh),Xg T ghg−1,g
2 (Xg)⊗T g,h

2 (Yh)

(ghg−1)∗(θXg )
⊗g∗(θYh

)

and

(5)
g∗(Yh) g∗(h∗(Yh))

(ghg−1)∗(g∗(Yh)) (gh)∗(Yh)

θg∗(Yh)

g∗(θYh
)

T g,h
2 (Yh)

T ghg−1,g
2 (Yh)

commute for all g, h ∈ G, Xg ∈ Cg and Yh ∈ Ch.
A G-twist in a rigid braided G-crossed tensor category is called a G-ribbon if the

following diagram commutes for all g ∈ G and X ∈ Cg:

(6)
1 X ⊗ X∗ g−1

∗ (g∗(X) ⊗ X∗)

X ⊗ X∗ X ⊗ g−1(X∗) g−1
∗ g∗(X) ⊗ g−1

∗ (X∗)

evX

evX

g−1
∗ (θX ⊗idX∗ )

τg−1
g∗(X),X∗

idX ⊗θX∗
T g−1,g

2 (X)⊗id

Remark 3.14. In the definition of a G-ribbon, if we take G to be the trivial group,
the condition in diagram (6) reduces to (idX ⊗θX∗)◦evX = (θX ⊗ idX∗)◦evX . This
condition is equivalent to the more common requirement θX∗ = (θX)∗.

In the following, we show that G-twist and G-ribbon on a braided G-crossed
tensor category descend to the usual notions of twist and ribbon, respectively, on
the equivariantisation.

Lemma 3.15. Let C be a braided G-crossed tensor category. If θXg
: Xg → g∗Xg for

Xg ∈ Cg is a natural isomorphism that satisfies the commutativity of diagram (5),
then for any equivariant object (X, φ) ∈ C//G, the isomorphism

ω(X,φ) : X =
⊕
h∈G

Xh

⊕h∈GθXh−→
⊕
h∈G

h∗(Xh)
⊕h∈Gφ

(h)
h−→

⊕
h∈G

Xh = X

is a natural isomorphism of the identity in C//G, where φ
(h)
h : h∗(Xh) → Xh is the

restriction of φh to Xh ⊂ X.

Proof. In order to verify that ω(X,φ) is a morphism in C//G, we need to check that
φgg∗(ω) = ωφg for all g ∈ G. Since φgg∗(ω) = ωφg is an equality of morphisms in
C =

⊕
h Ch, it is enough to check the equality in the components. Hence, denoting

φg =
⊕
h∈G

φ(ghg−1)
g and ω =

⊕
h∈G

ω(h),

where φ
(ghg−1)
g : g∗(Xh) → Xghg−1 and ω(h) = φ

(h)
h θXh

: Xh → Xh, we need to check
for all g, h ∈ G that

φ(ghg−1)
g g∗(ω(h)) = ω(ghg−1)φ(ghg−1)

g .
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We shall assume, without loss of generality, that the G-action on C is strict.
Thus, diagram (5) simply becomes
(7) g∗(θX) = θg∗X

for every object X and g ∈ G. Now, we can check the equality:

φ(ghg−1)
g g∗(ω(h)) = φ(ghg−1)

g g∗(φ(h)
h )g∗(θh)

= φgh ◦ θg∗(Xh)

= φ
(ghg−1)
ghg−1 (ghg−1)∗(φg) ◦ θg∗(Xh)

= φ
(ghg−1)
ghg−1 θXghg−1 φghg−1

g

= ω(ghg−1)φ(ghg−1)
g ,

where in the second equality we have used the G-equivariance of φ and (7), in the
third the G-equivariance of φ again and in the fourth the naturality of θ.

Finally, if f : (X, φ) → (Y, φ′) is a morphism in C//G, then φ′
gg∗(f) = fφg for all

g ∈ G by definition. Taking the g-component of f , we get φ′(g)
g g∗(f (g)) = f (g)φ

(g)
g .

Using the naturality of θ and the previous equation, we obtain for all g ∈ G:

ω
(g)
(Y,φ′)f

(g) = φ′(g)
g θYg

f (g)

= φ′(g)
g g∗(f (g))θXg

= f (g)φ
(g)
h θXg

= f (g)ω
(g)
(X,φ).

Therefore, ω(Y,φ′)f = fω(X,φ), i.e. ω is a natural isomorphism of the identity. □

Recall that if B is a braided tensor category, with braiding c, then a twist is a
natural isomorphism of the identity ωX : X → X such that ω1 = id1 and
(8) ωX⊗Y = (ωX ⊗ ωY )cY,XcX,Y

for all X, Y ∈ B. If B is left rigid and additionally ωX∗ = (ωX)∗ for all X, then ω
is called a ribbon.

Proposition 3.16. Let C =
⊕

g∈G Cg be a braided G-crossed tensor category and θ
a G-twist. Then the natural isomorphism ω(X,φ) of the identity from Lemma 3.15
defines a twist for C//G. If θ is a G-ribbon, then ω(X,φ) is a ribbon.

Proof. The braiding of C//G is given by c(X,φ),(Y,γ) =
⊕

g∈G cXg,Y , where

cXg,Y : Xg ⊗ Y g∗(Y ) ⊗ Xg Y ⊗ Xg.
cXg,Y γg⊗idXg

Lemma 3.15 states that ω is indeed a natural isomorphism of the identity. Then,
equality (8) follows, assuming without loss of generality that the G-action is strict,
using the naturality of θ and diagram (4).

Now, if C is rigid, then so is C//G. Indeed, if (X, φ) ∈ C//G and (X∗, evX , coevX)
is a dual of X as an object in C, then (X∗, (φ∗)−1) ∈ C//G and (evX , coevX) define
a dual in C//G. Now, it is again straightforward to verify, assuming the G-action is
strict, that diagram 6 implies that ω is a ribbon. □

For a tensor category C, we shall denote by Aut⊗(idC) the abelian group of tensor
automorphisms of the identity. If a group G acts on C, it induces a G-action on
Aut⊗(idC) by group automorphisms. We define

AutG
⊗(idC) = {γ ∈ Aut⊗(idC) | g∗(γX) = γg∗(X) for all X ∈ C, g ∈ G},

AutG,∗
⊗ (idC) = {γ ∈ AutG

⊗(idC) | γ∗
X = γg−1(X) for all Xg ∈ C, g ∈ G}.
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Proposition 3.17. Let C be a braided G-crossed tensor category. The set of all
G-twists is a torsor over the abelian group AutG

⊗(idC). The set of all G-ribbons is
a torsor over AutG,∗

⊗ (idC).

Proof. We shall assume without loss of generality that C is a strict braided G-
crossed tensor category; see Theorem 5.6 in [Gal17]. The commutativity of dia-
gram (4) corresponds to the equation

θX⊗Y = (ghg−1)∗(θX) ⊗ g∗(θY ) ◦ cg∗Y,X ◦ cX,Y

for X ∈ Cg, Y ∈ Ch. Now, using the naturality of the G-braiding, we also obtain
θX⊗Y = cgh∗Y,g∗X ◦ cg∗X,h∗Y ◦ (θX ⊗ θY ).

Let θ and θ′ be G-twists of C. We shall prove that γX := θ−1
Xg

θ′
Xg

: Xg → Xg is a
natural isomorphism in AutG

⊗(idC). We observe that
γX⊗Y = θ−1

X⊗Y ◦ θ′
X⊗Y

=
(
(ghg−1)∗(θX) ⊗ g∗(θY ) ◦ cg∗Y,X ◦ cX,Y

)−1

◦
(
cgh∗Y,g∗X ◦ cg∗X,h∗Y ◦ (θ′

X ⊗ θ′
Y )

)
= c−1

X,Y ◦ c−1
g∗Y,X ◦ (ghg−1)∗(θX)−1 ⊗ g∗(θY )−1

◦ cgh∗Y,g∗X ◦ cg∗X,h∗Y ◦ (θ′
X ⊗ θ′

Y )
= c−1

X,Y ◦ g(θY )−1 ⊗ θ−1
X ◦ cg∗X,h∗Y ◦ (θ′

X ⊗ θ′
Y )

= (θ−1
X ⊗ θ−1

Y ) ◦ (θ′
X ⊗ θ′

Y ) = (θ−1
X θ′

X) ⊗ (θ−1
Y θ′

Y )
= γX ⊗ γY ,

where we have used
c−1

g∗Y,X ◦ (ghg−1)∗(θX)−1 ⊗ g∗(θY )−1 ◦ cgh∗Y,g∗X = g∗(θY )−1 ⊗ θ−1
X

and
θ−1

X ⊗ θ−1
Y = c−1

X,Y ◦ (g∗(θY )−1 ⊗ θ−1
X ) ◦ cg∗X,h∗Y

in the penultimate and last equality, respectively. These equations follow directly
from the naturality of the G-braiding. Now, for all g ∈ G,

g∗(γX) = g∗(θ−1
X θ′

X) = g∗(θ−1
X )g∗(θ′

X) = θ−1
g∗(X)θ

′
g∗(X) = γg∗(X)

for all X ∈ Ch and h ∈ G.
Conversely, given γ ∈ AutG

⊗(idC) and a G-twist θ, it is straightforward to check
that γθ is a new twist. Then the group AutG

⊗(idC) acts freely and transitively on
the set of G-twists.

Finally, if θ and θ′ are G-ribbons, then
γX∗ = θ−1

X∗θ′
X∗

= g−1
∗ (θX)−1g−1

∗ (θ′
X)

= g−1
∗ (θ−1

X θ′
X)

= g−1
∗ (γX)

= γg−1(X)

for all X ∈ C and g ∈ G. It is easy to verify that, given γ ∈ AutG,∗
⊗ (idC) and a

G-twist θ, the natural isomorphism γθ is a new G-ribbon. □

We define a group homomorphism
Ω: AutG

⊗(idC) → Aut⊗(idC//G),
Ω(γ)(X,φ) = γX .
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The group homomorphism Ω restricted to AutG,∗
⊗ (idC) takes values in Aut∗

⊗(idC//G),
the abelian group of tensor isomorphisms of the identity such that γX∗ = γ∗

X .
Corollary 3.18. Let C be a braided G-crossed tensor category. Two G-twists θ, θ′

(respectively G-ribbons) produce the same twist (respectively ribbon) on C//G if and
only if Ω(θ−1θ′) = id.

Remark 3.19. If C is fusion, then Aut⊗(idC) is canonically isomorphic to Û(C),
the character group of U(C), called the universal grading group; see [GN08]. The
subgroup Aut∗

⊗(idC) consists of elements of order 2, i.e. it is in particular an ele-
mentary abelian 2-group. Now, in the case of a braided G-crossed fusion category,
AutG

⊗(idC) = Aut⊗(idC) and AutG,∗
⊗ (idC) = Aut∗

⊗(idC). In particular, in the fu-
sion category case, the number of pivotal and spherical structures corresponds to
G-twists and G-ribbons, respectively.
Example 3.20. Consider the braided G-crossed tensor category Vectω

G from Ex-
ample 3.10. This category has a canonical G-ribbon given by the identity functor.
Hence, it follows from Proposition 3.17 that the G-twist structures of Vectω

G are
in bijective correspondence with the linear characters Ĝ, and the set of G-ribbon
structures with Ĝ2, the linear characters taking values in {±1}.
3.5. Pseudo-Unitary Fusion Categories and G-Graded Extensions. Finally,
we also study the notion of pseudo-unitarity in the context of G-graded fusion cate-
gories. This will later allow us to single out a particular choice of G-ribbon structure
(see Proposition 4.6 and Theorem 5.12).

The global dimension, denoted by dim(C), is defined for any fusion category C in,
e.g., Definition 2.2 of [ENO10]. This definition is intrinsic to C. Another dimension
of a fusion category C is the Frobenius-Perron dimension FPdim(C) ∈ R>0, which
only depends on the Grothendieck ring K0(C) of C; see Section 8 of [ENO10].

We are interested in the relationship between the global dimension and the
Frobenius-Perron dimension of fusion categories, as it relates to the existence of
spherical structures for which the associated dimension function coincides with the
Frobenius-Perron dimensions, as indicated by the following result; see Proposi-
tion 8.23 in [ENO05].
Proposition 3.21. Let C be a fusion category (over C). Then C admits a spherical
structure whose quantum (or categorical) dimensions match the Frobenius-Perron
dimensions if and only if FPdim(C) = dim(C). Moreover, this spherical structure
is unique.

The above property naturally leads to the following definition (see, e.g., Sec-
tion 8.4 of [ENO10]).
Definition 3.22. Let C be a fusion category (over C). The category C is called
pseudo-unitary if FPdim(C) = dim(C), or equivalently, by Proposition 3.21, if there
exists a spherical structure with respect to which the dimension of every simple
object is positive (and equal to the Frobenius-Perron dimension).

The following result is an analogue of Proposition 8.20 in [ENO05], focusing on
the global dimension rather than the Frobenius-Perron dimension.
Proposition 3.23. Let G be a finite group and C =

⊕
g∈G Cg a faithfully G-graded

fusion category. Then dim(C1) = dim(Cg) for all g ∈ G, and the global dimension
of C is given by dim(C) = |G| dim(C1).
Proof. Consider the C1-module category

⊕
g∈G Cg and the connected multi-fusion

category

FunC1

( ⊕
x∈G

Cx,
⊕
y∈G

Cy

)
=

⊕
x,y

HomC1(Cx, Cy).
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Now, each Cx is an invertible C1-bimodule; see Theorem 6.1 of [ENO10]. There-
fore, HomC1(Cx, Cx) ∼= C1 as fusion categories, and Cy−1x = HomC1(Cy, Cx) as a C1-
bimodule category. It then follows from Proposition 2.17 in [ENO10] that the global
dimension of each Cx is dim(C1). Therefore,

dim(C) =
∑
g∈G

dim(Cg) = |G| dim(C1). □

We now relate the pseudo-unitarity of a (braided) G-graded (G-crossed) fusion
category to that of its neutral component and that of its equivariantisation.

Corollary 3.24. Let G be a finite group.
(1) Let C be a faithfully G-graded fusion category. Then C is pseudo-unitary if

and only if the neutral component C1 is pseudo-unitary.
(2) Suppose that C is a fusion category with a G-action. Then the equivarianti-

sation satisfies dim(C//G) = |G| dim(C). Hence, C//G is pseudo-unitary if and only
if C is pseudo-unitary.

(3) Let B be a nondegenerate braided fusion category with a G-action by braided
tensor autoequivalences. Then the associated (in the sense of Theorem 3.11) non-
degenerate braided fusion categories C//G are pseudo-unitary if and only if B = C1
is pseudo-unitary.

Proof. (1) Proposition 8.20 in [ENO05] implies FPdim(C) = |G| FPdim(C1).
Then, by Proposition 3.23, FPdim(C) = dim(C) if and only if FPdim(C1) = dim(C1).

(2) If G acts on C, the semidirect-product fusion category C ⋊ G is G-graded
and Morita equivalent to C//G (see [Nik08], Proposition 3.2). Since Frobenius-
Perron dimension and global dimension are invariant under Morita equivalence
(see Proposition 2.15 and Proposition 8.12 in [ENO10], respectively), it follows
that dim(C//G) = |G| dim(C) and FPdim(C ⋊ G) = |G| FPdim(C).

(3) This follows directly from the previous items. □

Remark 3.25. It follows from [ENO05], Proposition 8.23, that each pseudo-
unitary fusion category admits a unique spherical structure with an associated
dimension equal to the Frobenius-Perron dimension. In particular, it follows that
any gauging of a pseudo-unitary fusion category is pseudo-unitary. In this paper,
we are primarily interested in gauging pointed braided fusion categories, which are,
in particular, pseudo-unitary.

Below, we construct certain braided G-crossed extensions and also write down
a pseudo-unitary G-ribbon element, which we then know is unique. More system-
atic would be a version of the above classification statement, Theorem 3.11, that
inherently uses the setting of a ribbon category with ribbon autoequivalences (see
Problem 5 in [GLM24]).

4. Z2-Crossed Extensions of Tambara-Yamagami Type

We give a first nontrivial example of a braided G-crossed extension, namely one
for which the monoidal structure is of Tambara-Yamagami type. The example is
also studied in greater detail in Section 3 of [GLM24]. In Section 5, we shall then
generalise this to allow for more than one simple object in the nontrivial graded
component.

From now on, let G = ⟨g⟩ ∼= Z2. Tambara and Yamagami classified all Z2-graded
fusion categories in which all but one of the simple objects are invertible [TY98].
The braided G-crossed structures on these were classified in [Gal22].
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Definition 4.1. Let Γ be a finite, abelian group, σ : Γ × Γ → C× a symmetric,
nondegenerate bimultiplicative form and ε ∈ {±1} a sign choice. The Tambara-
Yamagami category T Y(Γ, σ, ε) is the semisimple Z2-graded tensor category

T Y(Γ, σ, ε) = VectΓ ⊕ Vect
with simple objects Ca, a ∈ Γ, and X, fusion rules

Ca ⊗ Cb = Ca+b, Ca ⊗ X = X ⊗ Ca = X, X ⊗ X =
⊕
t∈Γ

Ct

for a, b ∈ Γ and the following nontrivial associators

(Ca ⊗ X) ⊗ Cb = X
σ(a,b)

−−−−−−−−−−−−−−−→ X = Ca ⊗ (X ⊗ Cb),

(X ⊗ Ca) ⊗ X =
⊕
t∈Γ

Ct

σ(a,t)
−−−−−−−−→

⊕
t∈Γ

Ct = X ⊗ (Ca ⊗ X),

(X ⊗ X) ⊗ X =
⊕
t∈Γ

X
ε|Γ|−1/2σ(t,r)−1

−−−−−−−−−→
⊕
r∈Γ

X = X ⊗ (X ⊗ X).

There is a rigid structure on T Y(Γ, σ, ε) with (left) dual objects C∗
a = C−a and

X∗ = X, and coevX = ιC0 and evX = ε|Γ|1/2πC0 , where ιCt
and πCt

are the canonical
embeddings and projections, respectively, for the direct sum X ⊗X =

⊕
t∈Γ Ct, and

otherwise the obvious choices. The two zigzag identities relating evX and coevX hold
as both the associator and inverse associator on X ⊗ X ⊗ X at t = 0 are ε|Γ|−1/2.

We then upgrade the above categories to braided Z2-crossed tensor categories.
To this end, we first need to introduce the following Gauss sum. Given a finite,
abelian group Γ and a nondegenerate quadratic form q : Γ → C×, we define

(9) G(Γ, q−1) := |Γ|−1/2
∑
a∈Γ

q(a)−1 = e(sign(Γ, q−1)/8) = e(− sign(Γ, q)/8),

where sign denotes the signature (a number in Z8) of a discriminant form.
Theorem 4.2 ([Gal22], Lemma 4.8, Theorem 4.9, Proposition 4.12). Consider the
Tambara-Yamagami category T Y(Γ, σ, ε) and G = ⟨g⟩ ∼= Z2.

(1) There are two actions of G on T Y(Γ, σ, ε) such that the action on VectΓ
is g∗Ca = C−a with trivial tensor structure τg

Ca,Cb
= id and trivial compo-

sition T g,g
2 (Ca) = id, a, b ∈ Γ. Namely, the actions g∗X = X with trivial

tensor structures τg
Ca,X = τg

X,Ca
= τg

X,X = id and with composition structures
T g,g

2 (Ca) = id and T g,g
2 (X) = ± id.

(2) The nonstrict action T g,g
2 (X) = − id does not admit a Z2-braiding.

(3) For the strict Z2-action, the Z2-braidings are in bijection with pairs (q, α) of
a nondegenerate quadratic form q : Γ → C× with associated bimultiplicative
form σ(a, b) = q(a + b)q(a)−1q(b)−1 and a choice α of square root of

α2 = ε G(Γ, q−1).
Then the Z2-braiding is, for a, b ∈ Γ,

Ca ⊗ Cb = Ca+b

σ(a,b)
−−−−−−→ Ca+b = Ca ⊗ Cb,

Ca ⊗ X = X
q(a)−1

−−−−−−−−−−−−→ X = X ⊗ Ca,

X ⊗ Ca = X
q(a)−1

−−−−−−−−−−−−→ X = C−a ⊗ X,

X ⊗ X =
⊕
t∈Γ

Ct

α q(t)
−−−−→

⊕
t∈Γ

Ct = X ⊗ X.
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(4) The Z2-ribbon structures for a given (q, α) are in correspondence with a
choice of β = ±α−1. Then the ribbon twist is, for a ∈ Γ,

Ca

q(a)2

−−−−−→ Ca and X
β

−−−−−→ X.

We denote by T Y(Γ, σ, ε | q, α, β) the Z2-crossed ribbon Tambara-Yamagami cate-
gory associated with these data.

Note that because α2 = ε e(− sign(Γ, q)/8) by equation (9), it follows that α and
β are 16-th roots of unity, and in particular |α| = |β| = 1. Moreover, αβ ∈ {±1}
by definition.

Remark 4.3. As we explain in more detail in Remark 3.4 of [GLM24], the two
choices of α yield equivalent G-crossed ribbon categories T Y(Γ, σ, ε | q, α, β).

Remark 4.4. T Y(Γ, σ, ε | q, α, β) is a braided Z2-crossed extension of the braided
tensor category Vectq2

Γ
∼= Vectσ,1

Γ (with σ symmetric) discussed in Example 3.2,
with ribbon structure given by θCa = q(a)2. In other words, in order to define a
braided Z2-crossed extension of Tambara-Yamagami type, we need to, among other
things, choose a square root of a quadratic form. (But note that the quadratic form
q2 on Γ may be degenerate if |Γ| is even.)

Remark 4.5. A symmetric, nondegenerate bimultiplicative form σ : Γ × Γ → C×

admits |Γ/2Γ| many choices of quadratic form q : Γ → C× with associated bimulti-
plicative form σ.

There is a somewhat natural choice of the sign αβ. Indeed, the following assertion
is not difficult to verify, but see Proposition 3.7 in [GLM24] for a proof.

Proposition 4.6. The quantum dimensions of the above Z2-crossed ribbon fusion
category T Y(Γ, σ, ε | q, α, β) coincide with the Frobenius-Perron dimensions if and
only if αβ = ε.

By the definition of α and β, the condition αβ = ε is equivalent to the equation
β/α = e(sign(Γ, q)/8).

Proposition 4.7 ([GNN09], Proposition 5.1). The equivariantisation of the braided
Z2-crossed tensor category T Y(Γ, σ, ε | q, α, β)//Z2 has a nondegenerate braiding and
is hence a modular tensor category if and only if |Γ| is odd.

Because it is often natural to demand that the equivariantisation of a braided G-
crossed tensor category be modular, e.g. in the context of vertex operator algebras
(cf. [GLM24]), the special case of Γ of odd order is the most interesting one.

Assume in the following that |Γ| is odd. Then, as explained in Example 3.2, for
any nondegenerate quadratic form Q on Γ, the equivalence class VectQ

Γ has a distin-
guished representative Vectσ,1

Γ , for which the representing abelian 3-cocycle (σ, ω)
has trivial associator ω = 1 and braiding given by the symmetric bimultiplicative
form σ = B

1/2
Q .

Hence, by Remark 4.4, the Tambara-Yamagami categories T Y(Γ, σ, ε | q, α, β) are
braided Z2-crossed extensions of VectQ

Γ , concretely represented by Vectσ,1
Γ . Since Γ

is of odd order, there is a unique quadratic form q with associated bimultiplicative
form Bq = σ (see Remark 4.5), and this quadratic form must coincide with the
unique square root of Q, i.e. q = Q1/2.

Also since |Γ| is odd, VectQ
Γ has a unique ribbon structure (cf. Section 3.4).

The ribbon twist is given by θCa
= Q(a) = q(a)2 for a ∈ Γ, and with this ribbon

structure the quantum dimensions agree with the Frobenius-Perron dimensions; in
particular, VectQ

Γ is pseudo-unitary. Hence, the Z2-crossed ribbon structure on
T Y(Γ, σ, ε | q, α, β) is an extension of the ribbon structure on VectQ

Γ , and yields
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coinciding quantum and Frobenius-Perron dimensions if and only if β = ε/α by
Proposition 4.6.

Summarising the above considerations, we obtain the following statement:

Corollary 4.8. Suppose |Γ| is odd. The modular tensor category VectQ
Γ with strict

Z2-action g∗Ca = C−a has two braided Z2-crossed extensions with positive quantum
dimensions, namely, for ε = ±1,

VectQ
Γ [Z2, ε] := T Y(Γ, B

1/2
Q , ε | Q1/2, α, ε/α).

Here, α is one of the solutions of α2 = ε G(Γ, q−1) = ε e(− sign(Γ, q)/8), which
both give equivalent extensions. The equivariantisations VectQ

Γ [Z2, ε]//Z2 are again
modular.

Comparing this with the results from [ENO10], Theorem 3.11, we conclude that
these are the unique two braided Z2-crossed extensions of VectQ

Γ .
The equivariantisation VectQ

Γ [Z2, ε]//Z2 was described in detail in [GNN09] and
will be recovered as a special case of our generalisation in Section 5.3.

Remark 4.9. If |Γ| is odd, the Gauss sum G(Γ, q−1) over q−1 = Q−1/2 can be ex-
pressed in a simple way in terms of the signature of the discriminant form sign(Γ, Q)
(see, e.g., [Sch09]):

G(Γ, q−1) = |Γ|−1/2
∑
a∈Γ

q(a)−1 = e(sign(Γ, q−1)/8)

=
(

2
|Γ|

)
G(Γ, Q−1) =

(
2

|Γ|

)
e(− sign(Γ, Q)/8),

where ( ·
· ) is the Kronecker symbol, and for n odd ( 2

n ) = ( n
2 ) = (−1)(n2−1)/8. With

the above formula, the ribbon twist eigenvalue on X, up to an irrelevant sign, is

θX = β = ε/α = ±
(

ε

(
2

|Γ|

)
e(sign(Γ, Q)/8)

)1/2
.

5. Z2-Crossed Extensions for Even Groups

In this section, as the main result of this work, we construct for G = ⟨g⟩ ∼= Z2
explicitly the braided G-crossed extension

VectQ
Γ [Z2, ε] = VectΓ ⊕ VectΓ/2Γ

of the (nondegenerate) braided fusion category VectQ
Γ for a discriminant form (Γ, Q)

with a Z2-action given by −id on Γ. This includes, in particular, a description of
the associators, Z2-braiding and Z2-ribbon structure.

Here, in contrast to the previously known results in Section 4, the finite, abelian
group Γ may have even order, leading to new examples of braided Z2-crossed ten-
sor categories. Through the process of equivariantisation, these also provide new
examples of modular tensor categories (see Section 5.3).

As discussed in Theorem 8.1 of [GLM24], these categories correspond to the rep-
resentation categories of orbifolds of lattice vertex operator algebras under reflection
automorphisms, whose Grothendieck rings were described in [ADL05].

The input data for the construction of these braided G-crossed categories are pro-
duced in Section 6.2 of [GLM24] by using the idea that braided G-crossed extensions
commute in a certain sense with condensations (i.e. going to the local modules over
a commutative, associative algebra object in a braided tensor category in the sense



18 CÉSAR GALINDO, SIMON LENTNER AND SVEN MÖLLER

of [Par95, KO02]). Concretely, this idea is applied to the situation

VectQ̄
Rd VectQ̄

Rd ⊕ Vect

VectQ
Γ VectQ

Γ [Z2, ε]

cond.

Z2-crossed ext.

cond.
Z2-crossed ext.

where (Γ, Q) corresponds to an isotropic subgroup (meaning an even lattice L) in
(Rd, Q̄), in order to produce the braided Z2-crossed tensor category VectQ

Γ [Z2, ε]
with all structures.

In principle, for this we need an infinite version of a Tambara-Yamagami category
associated with the infinite, abelian group Rd with automorphism −id, which should
be VectQ̄

Rd⊕Vect as abelian category, but for which we cannot define a tensor product
in the usual sense.

Nonetheless, we use this approach in [GLM24] to very explicitly determine the
data that should define VectQ

Γ [Z2, ε]. We then use this in Section 5.2 as input for a
rigorous (but without [GLM24] ad hoc seeming) definition of a braided Z2-crossed
tensor category GLM(Γ, σ, ω, δ, ε | q, α, β). We prove that this is indeed a braided
Z2-crossed extension of VectQ

Γ and hence must coincide with VectQ
Γ [Z2, ε].

Finally, in Section 5.4 we realise the discriminant form (Γ, Q) explicitly as dual
quotient Γ = L∗/L of some even lattice L. That is, we view VectQ

Γ = Vect(σ,ω)
Γ

concretely as the condensation

VectQ̄
Rd = Vect(σ̄,ω̄)

Rd ⇝ VectQ
Γ = Vect(σ,ω)

Γ

of the infinite pointed braided fusion category VectQ̄
Rd by the even lattice L, as

discussed in detail in Section 4.3 of [GLM24]. Then, we discuss how these lat-
tice data produce the data used to define the braided Z2-crossed tensor category
GLM(Γ, σ, ω, δ, ε | q, α, β). If L is positive-definite, the braided Z2-crossed tensor
category will in this way appear for the Z2-orbifold of the corresponding lattice
vertex operator algebra, which we discuss in [GLM24].

5.1. Special Abelian Cocycles. Recall from Example 3.2 that for a quadratic
form Q over a finite, abelian group Γ (i.e. a discriminant form if Q is nondegenerate),
we can consider a representing abelian 3-cocycle (σ, ω) on Γ, namely such that
σ(a, a) = Q(a) for all a ∈ Γ. In the following, we aim to show that every pair
(Γ, Q) has a special representing abelian 3-cocycle that is particularly suited for
the purposes of this text.

For the following discussion, we sometimes refer to the orthogonal decomposition
of a discriminant form into its (indecomposable) Jordan components. For notation
and further details, we refer the reader to Table 1 and [CS99, Sch09].

Definition 5.1. Let Γ be an abelian group. A normalised symmetric 2-cochain
σ : Γ × Γ → C× is called abelian if ∂(σ)(a; b, c) := σ(a, b)σ(a, c)σ(a, b + c)−1 ∈ {±1}
for a, b, c ∈ Γ and the map

(10) ∂(σ)(−; b, c) : Γ → {±1}, a 7→ ∂(σ)(a; b, c),

is a group homomorphism for every pair b, c ∈ Γ. The subset of all abelian sym-
metric 2-cochains is an abelian subgroup of the 2-cochains and will be denoted by
C2

sym(Γ,C×).

Note that ∂(σ) is by definition symmetric in the last two arguments.
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Lemma 5.2. If σ ∈ C2
sym(Γ,C×), then the pair (σ, ∂(σ)) is an abelian 3-cocycle.

The map C2
sym(Γ,C×) → Z3

ab(Γ,C×), σ 7→ (σ, ∂(σ)) is a group homomorphism that
induces a well-defined homomorphism

∂ : C2
sym(Γ,C×) → H3

ab(Γ,C×)

with kernel ker(∂) = {σ ∈ C2
sym(Γ,C×) | σ(a, a) = 1 for all a ∈ Γ}.

Proof. By equation (10), the map ∂ can be viewed as a group homomorphism

C2
sym(Γ,C×) → Z2(Γ, Γ̂), σ 7→ ∂(σ).

It can be readily verified that, in general, for each α ∈ Z2(Γ, Γ̂), the function
α(a; b, c) defines a 3-cocycle in Z3(Γ,C×).

Moreover, since ∂(σ)(a; b, c) = ∂(σ)(a; c, b), the abelian (or hexagon) condition
in equation (1) for ω = ∂(σ) is given by

∂(σ)(a; b, c)−1 = ∂(σ)(a; b, c)−1, ∂(σ)(c; a, b) = ∂(σ)(c; a, b)−1

for a, b, c ∈ Γ. Since ∂(σ)(a, b, c) ∈ {±1}, these conditions are satisfied. Altogether,
(σ, ∂(σ)) lies in Z3

ab(Γ,C×) for σ ∈ C2
sym(Γ,C×).

Finally, an arbitrary abelian 3-cocycle (σ, ω) ∈ Z3
ab(Γ,C×) is cohomologous to

the trivial cocycle if and only if σ(a, a) = 1 for all a ∈ Γ. In particular, the same
holds for (σ, ∂(σ)). □

We shall show that every quadratic form has an associated abelian 3-cocycle that
comes from an abelian symmetric 2-cochain. To do this, and to present concrete
nontrivial examples, we need to construct an abelian symmetric 2-cochain for two
families of discriminant forms (cf. Table 1).

Example 5.3. Let Γ = Zn be a cyclic group of even order. We represent the
elements in Zn by integers 0 ≤ x < n. A generator of the abelian group of quadratic
forms over Γ is given by

Q0
2n(x) := e

(
x2

2n

)
, 0 ≤ x < n,

that is, any other quadratic form over Γ is obtained as a power of Q0
2n. (In the

special case where n = 2k, k ≥ 1, is a power of 2, this discriminant form is inde-
composable and denoted by the Jordan symbol n+1

1 , see Table 1. The other Jordan
symbols n±1

t are realised by raising Q0
2n to the power of t.)

An abelian symmetric 2-cochain associated with Q0
2n is given by

σ0
2n(x, y) := e

(xy

2n

)
, 0 ≤ x, y < n.

The associated 3-cocycle, measuring the failure of σ0
2n to be bimultiplicative, is

∂(σ0
2n)(a; x, y) = (−1)aρ(x,y)

where

(11) ρ(x, y) :=
{

1 if x + y ≥ n,

0 otherwise

for 0 ≤ x, y < 0.

Example 5.4. Let Γk = Z2k ⊕Z2k for any k ≥ 1, with representatives (x1, x2) for
0 ≤ x1, x2 < 2k. We endow Γk with the nondegenerate quadratic forms

Q+
k (x1, x2) := e

(x1x2

2k

)
, Q−

k (x1, x2) := e
(

x2
1 + x1x2 + x2

2
2k

)
,

where 0 ≤ x1, x2 < 2k.



20 CÉSAR GALINDO, SIMON LENTNER AND SVEN MÖLLER

The discriminant form (Γk, Q+
k ) corresponds to the Drinfeld centre of the pointed

category VectZ2k
, while (Γk, Q−

k ) is a generalisation of the 3-fermion, in the sense
that it is anisotropic. Both discriminant forms are indecomposable and their Jordan
symbols are (2k)+2

II and (2k)−2
II , respectively (see Table 1).

Abelian symmetric 2-cochains associated with Q±
k are given by

σ+
k ((x1, x2), (y1, y2)) := e

(
x1y2 + x2y1

2k+1

)
,

σ−
k ((x1, x2), (y1, y2)) := e

(
x1y1 + x2y2 + x1y2 + x2y1

2k+1

)
.

where 0 ≤ xi, yi < 2k.
In these cases, the 3-cocycles ∂(σ±

k ) are given by

∂(σ+
k )((a1, a2); (x1, x2), (y1, y2)) = (−1)a1ρ(x2,y2)+a2ρ(x1,y1),

∂(σ−
k )((a1, a2); (x1, x2), (y1, y2)) = (−1)a1(ρ(x1,y1)+ρ(x2,y2))+a2(ρ(x2,y2)+ρ(x1,y1)),

where 0 ≤ xi, yi < 2k, and ρ is defined in equation (11).

Without loss of generality, given a quadratic form Q on Γ, we may assume that
the representing abelian 3-cocycle (σ, ω) has the following nice form, facilitating
the subsequent computations:

Proposition 5.5. For any abelian group Γ, the group homomorphism

∂ : C2
sym(Γ,C×) → H3

ab(Γ,C×)

is surjective. In other words, any (possibly degenerate) quadratic form Q on Γ has
a representing abelian 3-cocycle of the form (σ, ω) = (σ, ∂(σ)) for some abelian
symmetric 2-cochain σ. In particular, these abelian 3-cocycles (σ, ω) satisfy the
following properties:

(1) σ is normalised, i.e. σ(a, 1) = σ(1, a) = 1 for all a ∈ Γ,
(2) σ is symmetric, i.e. σ(a, b) = σ(b, a) for all a, b ∈ Γ,
(3) for fixed b, c ∈ Γ, ω(·, b, c) defines a group homomorphism Γ → C×,
(4) σ(a, b + c)σ(a, b)−1σ(a, c)−1 = ω(a, b, c) for all a, b, c ∈ Γ.

This also entails that σ2 = BQ, the bilinear form associated with Q, and that
ω only takes values in {±1}, such that ω(·, b, c) defines a group homomorphism
Γ/2Γ → C× for all b, c ∈ Γ. Additionally, ω(a, b, c) = ω(a, c, b) for all a, b, c ∈ Γ.

We remark that if |Γ| is odd, then the above properties reduce to the choice of
abelian 3-cocycle (σ, ω) in the second half of Section 4. That is, the only solution
in this case is given by ω = 1 and σ the unique bimultiplicative square root of BQ

(see Example 3.2).

Proof. First, suppose that Γ is odd. For a quadratic form Q on Γ, the symmet-
ric bilinear form σ(a, b) := BQ(a, b)1/2 = (Q(a + b)/(Q(a)Q(b)))1/2 is an abelian
symmetric 2-cochain such that ω := ∂(σ) = 1 and σ(a, a) = Q(a) for all a ∈ Γ.

Now, to the general case. First, we assume that Q is nondegenerate, i.e. that
(Γ, Q) is a discriminant form. Note that it suffices to prove the assertion for the
indecomposable orthogonal components of (Γ, Q). Indeed, all of the assertions are
preserved under taking orthogonal direct sums. As we will see, the decomposition
and Example 5.3 and Example 5.4 provide us with a concrete way to construct
an associated abelian symmetric 2-cochain on Γ. Although the orthogonal decom-
position of Γ is not entirely unique, this does not affect the argument, as we are
primarily asserting an existence statement.
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Without loss of generality, assume now that (Γ, Q) is indecomposable and of
order a power of 2; we have treated the odd case above. The indecomposable dis-
criminant forms are either over cyclic groups of order a power of 2 or the families
constructed in Example 5.4. In both cases, the examples provide specific abelian
symmetric 2-cochains, thus allowing us, via the orthogonal decomposition, to con-
struct a concrete symmetric abelian 2-cochain associated with the nondegenerate
quadratic form Q on Γ.

Finally, if (Γ, Q) is degenerate, we can embed it into a (nondegenerate) discrim-
inant form using the construction of the double:

(Γ, Q) → (Γ ⊕ Γ̂, Q̃), a 7→ (a, 0),

where Q̃(a, γ) = Q(a)γ(a) for a ∈ Γ and γ ∈ Γ̂; see Proposition 5.8 in [DN21]. By
the previous argument, (Γ ⊕ Γ̂, Q̃) has an associated abelian symmetric 2-cochain,
and by restriction, this defines another one over (Γ, Q). □

In Proposition 5.21, we will see how abelian 3-cocycles with the properties de-
scribed in Proposition 5.5 arise naturally in the context of discriminant forms
Γ = L∗/L of even lattices, where the bilinear form ⟨·, ·⟩ takes values in 2Z, i.e.
integral lattices scaled by

√
2.

Remark 5.6. The lattices in Proposition 5.21 provide an alternative way to prove
Proposition 5.5 (in the nondegenerate case). While it is clear that not all discrimi-
nant forms can be realised as dual quotients L∗/L of even lattices L =

√
2K with

K integral, all indecomposable Jordan components do indeed appear in L∗/L for
some lattice L =

√
2K. As explained in the above proof, this is sufficient to prove

the assertion.

We fix further structures on the (Γ, Q). In addition to Proposition 5.5, where
we described a square root of the bimultiplicative form BQ associated with Q, we
now describe a square root of the quadratic form Q itself. Again, we first consider
specific examples, before using these to prove the general case.

Example 5.7.
(1) Consider the discriminant form (Zn, Q0

2n), where n ≥ 2 is even, and the
abelian symmetric 2-cochain σ0

2n on it from Example 5.3. Set

q0
2n(x) := e

(
x2

4n

)
, 0 ≤ x < n.

Then q0
2n(a)2 = Q2n(a), and moreover, with ω := ∂(σ0

2n),

q2n(a + b)
q2n(a)q2n(b) = σ0

2n(a, b)ω(a + b, a, b)ω(δ, a, b)

for all a, b ∈ Zn, where δ = 0 if 4 | n and δ = 1 otherwise.
(2) Consider the discriminant form (Z2k ⊕ Z2k , Q+

k ) for k ≥ 1 and the abelian
symmetric 2-cochain σ+

k from Example 5.4. Define

q+
k (x1, x2) := e

(x1x2

2k+1

)
, 0 ≤ x1, x2 < 2k.

Then q+
k (a1, a2)2 = Q+

k (a1, a2), and moreover, with ω := ∂(σ+
k ),

q+
k (a1 + b1, a2 + b2)

q+
k (a1, a2)q+

k (b1, b2)
= σ+

k ((a1, a2), (b1, b2))ω((a1 + b1, a2 + b2), (a1, a2), (b1, b2))

for all ai, bi ∈ Z2k .
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(3) Consider the discriminant form (Z2k ⊕ Z2k , Q−
k ) for k ≥ 1 and the abelian

symmetric 2-cochain σ−
k from Example 5.4. Define

q−
k (x1, x2) := e

(
x2

1 + x1x2 + x2
2

2k+1

)
,

where 0 ≤ x1, x2 < 2k. It follows that q−
k (a1, a2)2 = Q−

k (a1, a2), and moreover

q−
k (a1 + b1, a2 + b2)

q−
k (a1, a2)q−

k (b1, b2)
= σ−

k ((a1, a2), (b1, b2))ω((a1 + b1, a2 + b2), (a1, a2), (b1, b2))

for all ai, bi ∈ Z2k , with ω := ∂(σ−
k ).

For an abelian group Γ, let Γ2 := {a ∈ Γ | 2a = 1}.

Proposition 5.8. Given a representing abelian 3-cocycle (σ, ω) = (σ, ∂(σ)) for
(Γ, Q) as in Proposition 5.5, there is an element δ ∈ Γ2 and a function q : Γ → C×

such that:
(1) q(a)2 = σ(a, a) = Q(a),
(2) q(a + b)q(a)−1q(b)−1 = σ(a, b)ω(a + b, a, b)ω(δ, a, b)

for all a, b ∈ Γ.

Proof. The proof is similar to the proof of Proposition 5.5. Again, it suffices to
prove the assertion for all indecomposable discriminant forms (Γ, Q).

For odd |Γ|, where σ had to be the unique bimultiplicative square root of BQ and
ω trivial, the unique solution is δ = 0 since Γ/2Γ = {0} and q the unique quadratic
square root of Q.

For the indecomposable 2-adic Jordan components, all verified in Example 5.7,
a choice of q is possible with δ = 0, except for the Jordan components 2±1

t , where
we need to set δ = 1 ∈ Z2. Hence, for any decomposition of (Γ, Q), the element δ
will always lie in Γ2. □

In other words, in the case of a discriminant form (Γ, Q) and fixing a decompo-
sition into indecomposable Jordan blocks, δ ∈ Γ2 is of the form

δ =
∑
D

{
1 ∈ Z2 ∼= D/2D if D ∼= 2±1

t ,

0 ∈ D/2D else,

where the sum runs over the indecomposable Jordan components D of Γ.
Since ω is a homomorphism into {±1} in the first argument, δ is only relevant

modulo 2Γ. Hence, reversely, if we assume, as asserted by Proposition 5.8, that
δ ∈ Γ2, i.e. 2δ = 0, then it is not difficult to see that the quotient Γ2/(2Γ ∩ Γ2)
is nontrivial if and only if Γ2 ̸⊂ 2Γ if and only if Γ splits off (as abelian groups)
direct summands of order 2. In other words, nontrivial contributions to δ can only
come from direct summands of order 2, and this is what we see in the proof of
Proposition 5.8.

In view of Proposition 5.21 we remark that the Jordan components 2±1
t only

appear in the context of even lattices L =
√

2K where K is integral but not even.
On the other hand, all other indecomposable Jordan components already appear
for lattices L =

√
2K where K is even. We observe that the somewhat natural

choice of δ given in Proposition 5.22 for Γ = L∗/L agrees with the above formula
for δ, as it must.

Remark 5.9. Proposition 5.8 can also be proved using the concrete lattice realisa-
tion in Proposition 5.21 because all all indecomposable Jordan components appear
in L∗/L for some lattice L =

√
2K with K integral.
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For instance, if K is even, then it is apparent from the construction there that
δ = 0. On the other hand, for K = Z and L =

√
2Z so that L∗/L ∼= 2+1

1 the
construction there yields δ = 1 ∈ Z2, in agreement with the above claim.

5.2. Braided Z2-Crossed Tensor Category. In the following, we explicitly de-
fine a braided G-crossed extension GLM(Γ, σ, ω, δ, ε | q, α, β) with G = ⟨g⟩ ∼= Z2
of the braided tensor category VectQ

Γ with an action of Z2 by g∗Ca = C−a and a
certain tensor structure τg.

We assume in the following that the representing abelian 3-cocycle (σ, ω) for the
discriminant form (Γ, Q) has the form given in Proposition 5.5. We further fix a
sign ε = ±1. Moreover, let δ ∈ Γ/2Γ be (for now) arbitrary.

Given these data, consider the Z2-graded abelian category

C = C1 ⊕ Cg = VectΓ ⊕ VectΓ/2Γ,

where the simple objects are denoted by Ca for a ∈ Γ and by Xx̄ for x̄ ∈ Γ/2Γ. In
general, we also denote the coset of an element x ∈ Γ by x̄ ∈ Γ/2Γ.

Then we shall prove below (see Section 6) that the following endows C with the
structure of a Z2-graded tensor category GLM(Γ, σ, ω, δ, ε):

Ca ⊗ Cb = Ca+b,

Ca ⊗ Xx̄ = Xā+x̄,

Xx̄ ⊗ Ca = Xx̄+ā,

Xx̄ ⊗ Xȳ =
⊕
t∈Γ

t̄=δ+x̄+ȳ

Ct =
⊕

t∈δ+x̄+ȳ

Ct

for a, b ∈ Γ and x̄, ȳ ∈ Γ/2Γ, where we take the associator to be

(Ca ⊗ Cb) ⊗ Cc

ω(a,b,c)
−−−−−−−−−−→ Ca ⊗ (Cb ⊗ Cc),

(Xx̄ ⊗ Ca) ⊗ Cb

ω(x̄+δ,a,b)
−−−−−−−−−−→ Xx̄ ⊗ (Ca ⊗ Cb),

(Ca ⊗ Xx̄) ⊗ Cb

σ(a,b)
−−−−−−−−−−→ Ca ⊗ (Xx̄ ⊗ Cb),

(Ca ⊗ Cb) ⊗ Xx̄
ω((a+b)+x̄,a,b)

−−−−−−−−−−→ Ca ⊗ (Cb ⊗ Xx̄),

ea+t ∈ (Ca ⊗ Xx̄) ⊗ Xȳ
ω(a+x̄,a,t)

−−−−−−−−−−→ Ca ⊗ (Xx̄ ⊗ Xȳ) ∋ ea ⊗ et,

ea ⊗ et ∈ (Xx̄ ⊗ Xȳ) ⊗ Ca

ω(x̄,t,a)
−−−−−−−−−−→ Xx̄ ⊗ (Xȳ ⊗ Ca) ∋ ea+t,

et ∈ (Xx̄ ⊗ Ca) ⊗ Xȳ
σ(a,t)

−−−−−−−−−−→ Xx̄ ⊗ (Ca ⊗ Xȳ) ∋ et,

vt ∈ (Xx̄ ⊗ Xȳ) ⊗ Xz̄
ε|2Γ|−1/2σ(t,r)−1

−−−−−−−−−−→ Xx̄ ⊗ (Xȳ ⊗ Xz̄) ∋ vr

with the normalisation factor |2Γ| for a, b, c ∈ Γ and x̄, ȳ, z̄ ∈ Γ/2Γ. Here, et ∈ Ct

denotes a vector in the tensor product Xx̄ ⊗ Xȳ =
⊕

t∈δ+x̄+ȳ Ct and vt ∈ Xt̄+z̄ in
the tensor product (Xx̄ ⊗ Xȳ) ⊗ Xz̄ =

⊕
t∈δ+x̄+ȳ Xt̄+z̄.

Similarly to Section 4, there is a rigid structure with dual objects C∗
a = C−a

and (Xx̄)∗ = X−x̄−δ and with coevX = ιC0 and evX = ε|2Γ|1/2πC0 . The two zigzag
identities relating evX, and coevX hold because the associator and also the inverse
associator on X ⊗ X ⊗ X at t = 0 are ε|2Γ|−1/2, by the slightly unusual character
sum in Lemma 6.1 below.
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We shall then show that this tensor category C = GLM(Γ, σ, ω, δ, ε) admits an
action of G = ⟨g⟩ ∼= Z2 defined by

g∗Ca = C−a, g∗Xx̄ = Xx̄

for a ∈ Γ, x̄ ∈ Γ/2Γ, with strict composition and with tensor structures τ given by

g∗(Ca ⊗ Cb)
ω(a,b,−b)

−−−−−−−−−−→ g∗Ca ⊗ g∗Cb,

g∗(Ca ⊗ Xx̄)
ω(a+x̄,a,−a)

−−−−−−−−−−→ g∗Ca ⊗ g∗Xx̄,

g∗(Xx̄ ⊗ Ca)
ω(x̄+δ,a,−a)

−−−−−−−−−−→ g∗Xx̄ ⊗ g∗Ca,

g∗(Xx̄ ⊗ Xȳ)
ω(x̄,t,−t)

−−−−−−−−−−→ g∗Xx̄ ⊗ g∗Xȳ

for a, b ∈ Γ and x̄, ȳ ∈ Γ/2Γ and again with t the summation index appearing in
the tensor product of XX-type.

Now, suppose in addition that δ ∈ Γ/2Γ and q : Γ → C× are given as in Propo-
sition 5.8. Recall that δ must lie in Γ2, i.e. 2δ = 0.

We shall establish that for every choice of q, the Z2-graded tensor category C
above becomes a braided Z2-crossed tensor category GLM(Γ, σ, ω, δ, ε | q, α) with
the following braiding:

Ca ⊗ Cb

σ(a,b)
−−−−−−−−−−−−−−−→ Cb ⊗ Ca,

Ca ⊗ Xx̄
q(a)−1

−−−−−−−−−−−−−−−→ Xx̄ ⊗ Ca,

Xx̄ ⊗ Ca

q(a)−1ω(x̄+a,a,−a)
−−−−−−−−−−−−−−−→ C−a ⊗ Xx̄,

Xx̄ ⊗ Xȳ
α q(t)

−−−−−−−−−−−−−−−→ Xȳ ⊗ Xx̄

for a, b ∈ Γ and x̄, ȳ ∈ Γ/2Γ with a normalisation factor α given by a choice of
square root of

α2 = ε Gδ(Γ, q−1)

with the partial Gauss sum

Gδ(Γ, q−1) := |2Γ|−1/2
∑
a∈δ

q(a)−1.

Here, t is again the summation index in the tensor product Xx̄ ⊗ Xȳ and Xȳ ⊗ Xx̄.
We study the appearing partial Gauss sum Gδ(Γ, q−1) in more detail. Recall

that the sign s = ± (not to be confused with the signature) is well-defined for a
discriminant form as long as the latter does not contain the Jordan component 2±1

t .
Indeed, for the Jordan components q±n (q a power of an odd prime) and q±n

t and
q±n

II (q a power of an even prime) the sign s is nothing but the sign in the exponent,
and then extends to the whole discriminant form multiplicatively, but for q = 2
there are the exceptional isomorphisms 2+1

1
∼= 2−1

5 and 2−1
3

∼= 2+1
7 , meaning that

the sign is in general not well-defined (see also Table 1). Also recall that ( ·
· ) ∈ {±1}

denotes the Kronecker symbol.

Proposition 5.10. Given a discriminant form (Γ, Q) and a choice of representing
abelian 3-cocycle (σ, ω) as in Proposition 5.5, as well as a choice (q, δ) as in Propo-
sition 5.8, the above partial Gauss sum Gδ(Γ, q−1) is well-defined (i.e. independent
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of these choices) if and only if Γ does not contain a Jordan component 2±1
t in its

orthogonal decomposition, in which case δ = 0 ∈ Γ/2Γ and the sum evaluates to

G0(Γ, q−1) = |2Γ|−1/2
∑

a∈2Γ
q(a)−1 = e(− sign(Γ)/8) s(Γev)

(
2

|Γodd|

)
,

where Γ = Γev ⊕ Γodd is the decomposition of Γ into the 2-adic part and the p-adic
part for all odd primes p.

Proposition 5.10 generalises the Gauss sum G(Γ, q−1) in Section 4, see equa-
tion (9) and Remark 4.9.

Proof. A proof is obtained by proving the assertion for all indecomposable Jordan
components. For the p-adic components for odd primes p, the assertion is simply
Remark 4.9. It is not difficult to compute the Gauss sum for the indecomposable
2-adic Jordan components except for 2±1

t and see that the assertion holds. □

For 2+1
1

∼= 2−1
5 with signature 1 (mod 8), the above partial Gauss sum evaluates

to e(7/8) or e(3/8), depending on the choice of q. These are exactly the values one
would obtain from the formula in Proposition 5.10 by inserting either 1 or −1 for
the sign s. Similarly, for 2−1

3
∼= 2+1

7 with signature 7 (mod 8), the partial Gauss
sum yields e(5/8) or e(1/8), again compatible with Proposition 5.10.

Finally, in view of Proposition 5.23, we mention that if Γ = L∗/L comes from an
even lattice L =

√
2K where K is even, then the sign factors in Proposition 5.10

cancel and the partial Gauss sum evaluates exactly to e(− sign(Γ)/8). Moreover,
if L =

√
2K where K is only integral (in which case Jordan components 2±n

t

appear so that the partial Gauss sum is not well-defined), then the choice of q
given in Proposition 5.22 fixes the value of the Gauss sum, which still evaluates to
e(− sign(Γ)/8).

Remark 5.11. Alternatively, in order to prove Proposition 5.10, we note once
again that all indecomposable Jordan components appear in discriminant forms
Γ = L∗/L for even lattices L =

√
2K where K is integral. In fact, since we are

excluding 2±1
t , it suffices to consider L =

√
2K for K even. Then the Gauss sum

G0(Γ, q−1) takes the simple form in Proposition 5.23, allowing us to infer the value
of the Gauss sum for all indecomposable Jordan components.

For example, suppose that q = 2k for k ≥ 2. Then the even lattice
√

q/2A1 has
the discriminant form Γ = q+1

1 , whose signature is 1 (mod 8). By Proposition 5.23,
the Gauss sum equals G0(Γ, q−1) = e(7/8) (cf. Example 5.24).

Finally, we will see that the following Z2-ribbon twist turns C into a Z2-crossed
ribbon fusion category GLM(Γ, σ, ω, δ, ε | q, α, β):

Ca

σ(a,a)
−−−−−−−−−−→ Ca,

Xx̄
β

−−−−−−−−−−→ g∗Xx̄

for a choice β = ±α−1. We point out that the ribbon twist takes the same value
on all the objects Xx̄ for x̄ ∈ Γ/2Γ (cf. Remark 5.13).

Summarising the above, we state the main result of this section (cf. Theorem 4.2,
Proposition 4.6 and Corollary 4.8). The proof is given in Section 6.

Theorem 5.12. Let G = ⟨g⟩ ∼= Z2. The data given above define a braided Z2-
crossed tensor category

GLM(Γ, σ, ω, δ, ε | q, α, β) = VectΓ ⊕ VectΓ/2Γ,
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which is a braided Z2-crossed extension of VectQ
Γ for a discriminant form (Γ, Q)

with representing abelian 3-cocycle satisfying Proposition 5.5, with the categorical
Z2-action being g∗Ca = C−a with tensor structure g∗(Ca ⊗Cb) → g∗Ca ⊗g∗Cb given
by ω(a, b, −b) for a, b ∈ Γ. The ribbon twist defined above yields positive quantum
dimensions if and only if αβ = ε.

Note that if Γ is odd and we choose σ = B1/2, ω = 1 and q = Q1/2, then the
definition exactly reduces to the Tambara-Yamagami category in Section 4.

Problem 1. By the results in [ENO10, DN21], for each ε, there is a unique braided
Z2-crossed extension VectQ

Γ [Z2, ε] of VectQ
Γ (say with a ribbon structure that has

positive quantum dimensions) with the given Z2-action (which depended on ω), i.e.
independent of the choice of (q, δ). Can we verify this directly from the construction
of GLM(Γ, σ, ω, δ, ε | q, α, ε/α)? Cf. Corollary 4.8. The independence of the sign of
α follows as in Remark 4.3.

Remark 5.13. We point out that the braided Z2-crossed extension in Theo-
rem 5.12 corresponds to a certain categorical action of G = ⟨g⟩ ∼= Z2 on VectQ

Γ ,
which in particular permutes the simple objects as g∗Ca = C−a for all a ∈ Γ.

However, not all Z2-actions with the latter property necessarily give the same
extension. Indeed, if we consider the special case of discriminant forms Γ with
2Γ = 1, then Z2 does not permute the objects of VectQ

Γ , which are indexed by Γ,
but the action is not the trivial action, as can be seen by looking at the tensor
structure (see also Example 4.4 in [GLM24]).

The Z2-action from Theorem 5.12 with 2Γ = 1 and the truly trivial Z2-action
both produce braided Z2-crossed extensions of the form C1 ⊕Cg = VectΓ ⊕ VectΓ as
abelian categories, but they differ in other aspects. For instance, for our Z2-action
the ribbon twists are the same for all objects in Cg = VectΓ, while this will not
typically be the case for the trivial Z2-action.

5.3. Equivariantisation. In this section, we consider the equivariantisation
GLM(Γ, σ, ω, δ, ε | q, α, β)//Z2

of the braided Z2-crossed tensor category from Theorem 5.12, which is a modular
tensor category. In particular, we determine the simple objects, the fusion rules
and the modular data, i.e. the S- and T -matrix.

First, similarly to Proposition 4.7, we show:

Proposition 5.14. The equivariantisation GLM(Γ, σ, ω, δ, ε | q, α, β)//Z2 has a non-
degenerate braiding, and hence is a modular tensor category.

Proof. As proved in Proposition 4.56 of [DGNO10], the equivariantisation C//G of
a braided G-crossed tensor category C is nondegenerate if and only if the grading is
faithful and C1 is nondegenerate. Since GLM(Γ, σ, ω, δ, ε | q, α, β) is faithfully graded
and the trivial sector is nondegenerate by construction, its Z2-equivariantisation is
hence nondegenerate. Furthermore, since it has a Z2-ribbon structure, the equi-
variantisation is modular. □

We describe the simple objects of GLM(Γ, σ, ω, δ, ε | q, α, β)//Z2. To this end,
consider the exact sequence 0 → Γ2 → Γ 2→2Γ → 0, where Γ2 = {a ∈ Γ | 2a = 1}.
In particular, 2Γ ∼= Γ/Γ2 and |2Γ||Γ2| = |Γ|.

Proposition 5.15. The simple objects of GLM(Γ, σ, ω, δ, ε | q, α, β)//Z2, up to iso-
morphism, are given by:

(1) 2|Γ2| invertible objects (of quantum dimension 1) indexed by Γ2 × {±1}.
They are given by Xa,s := Ca with equivariant structure φg = s idCa for
a ∈ Γ2 and s ∈ {±1}.
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(2) 1
2 (|Γ| − |Γ2|) = 1

2 |Γ|(1 − 1/|2Γ|) simple objects of quantum dimension 2
indexed by the set of unordered pairs {{a, −a} | a ∈ Γ\Γ2}. They are given
by Y{a,−a} := Ca ⊕C−a for a in Γ \ Γ2, with the equivariant structure given
by interchanging the direct summands.

(3) 2|Γ2| simple objects of quantum dimension (|Γ|/|Γ2|)1/2 = |2Γ|1/2 indexed
by Γ/2Γ × {±1}. They are given by Zx̄,s := Xx̄ with equivariant structure
φg = s idXx̄ for x̄ ∈ Γ/2Γ and s ∈ {±1}.

Proof. The assertion follows directly from an application of Example 3.6. □

Next, we determine the fusion rules among the simple objects of the equivarian-
tisation. We know that σ(a, −b)σ(a, b) = ω(a, b, −b) for a, b ∈ Γ. In particular, for
b ∈ Γ2, ω(a, b, −b) = σ(a, b)2 = BQ(a, b) for a ∈ Γ. Moreover, it defines a group ho-
momorphism ω(·, a, −a) : Γ/2Γ → {±1} for each a ∈ Γ, or BQ(·, a) : Γ/2Γ → {±1}
for a ∈ Γ2.

Proposition 5.16. The fusion rules of GLM(Γ, σ, ω, δ, ε | q, α, β)//Z2 are:

Xa,s ⊗ Xb,t = Xa+b,stω(a,b,−b) = Xa+b,stBQ(a,b),

Xa,s ⊗ Y{b,−b} = Y{a+b,a−b},

Xa,s ⊗ Zx̄,r = Zā+x̄,srω(a+x̄,a,−a) = Zā+x̄,srBQ(a+x̄,a),

Y{a,−a} ⊗ Zx̄,r = Zx+a,1 ⊕ Zx+a,−1,

Y{b,−b}⊗Y{c,−c} =


Xb+c,1⊕Xb+c,−1⊕Xb−c,1⊕Xb−c,−1 if b + c, b − c ∈ Γ2,

Y{b+c,−b−c}⊕Xb−c,1⊕Xb−c,−1 if b + c /∈ Γ2, b − c ∈ Γ2,

Y{b−c,−b+c}⊕Xb+c,1⊕Xb+c,−1 if b + c ∈ Γ2, b − c /∈ Γ2,

Y{b+c,−b−c}⊕Y{b−c,−b+c} if b + c, b − c /∈ Γ2,

Zx̄,r ⊗ Zȳ,s =
⊕
t∈Γ2

t̄=δ+x̄+ȳ

Xt,rsω(x̄,t,−t) ⊕
⊕

t∈(Γ\Γ2)/2
t̄=δ+x̄+ȳ

Y{t,−t}

=
⊕
t∈Γ2

t̄=δ+x̄+ȳ

Xt,rsBQ(x̄,t) ⊕
⊕

t∈(Γ\Γ2)/2
t̄=δ+x̄+ȳ

Y{t,−t}.

Here, (Γ\Γ2)/2 indicates that we select one of t or −t for each pair {t, −t} ⊂ Γ\Γ2.

Remark 5.17. We remark that the fusion rules of GLM(Γ, σ, ω, δ, ε | q, α, β) and
those of its Z2-equivariantisation GLM(Γ, σ, ω, δ, ε | q, α, β)//Z2 do not depend on ε.
This is analogous to Tambara-Yamagami categories: both GLM(Γ, σ, ω, δ, ε | q, α, β)
and GLM(Γ, σ, ω, δ, ε | q, α, β)//Z2 are Z2-graded categories. We can twist the as-
sociativity constraint using the nontrivial 3-cocycle ω ∈ Z3(Z2,C×) defined by
ω(1, 1, 1) = −1. This twist only alters ε to −ε, leaving the fusion rules unaffected.

Finally, we determine the modular data. Recall that, given a ribbon fusion
category B, its modular data are defined as the pair of | Irr(B)| × | Irr(B)|-matrices

SX,Y = tr(cY,X ◦ cX,Y ), TX,Y = δX,Y θ−1
X ,

where X, Y ∈ Irr(B).

Proposition 5.18. The modular data of GLM(Γ, σ, ω, δ, ε | q, α, β)//Z2 are given
by the T -matrix with entries

TXa,s,Xa,s
= Q(a)−1, TY{a,−a},Y{a,−a} = Q(a)−1, TZx̄,s,Zx̄,s

= sβ−1
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and the S-matrix with entries
SXa,s,Xb,t

= BQ(a, b), SXa,s,Y{b,−b} = 2BQ(a, b),

SXa,s,Zx̄,r
= s|2Γ|1/2BQ(x̄, a)Q(a), SY{a,−a},Zx̄,r

= 0,

SY{b,−b},Y{c,−c} = 2
(
BQ(b, c) + BQ(b, c)−1)

,

SZx̄,r,Zȳ,s
= ε rs|2Γ|1/2Gδ(Γ, q−1)Gδ+x̄+ȳ(Γ, Q),

with the Gauss sum Gδ+z̄(Γ, Q) = |2Γ|−1/2 ∑
a∈δ+z̄ Q(a) for z̄ ∈ Γ/2Γ and the

Gauss sum Gδ(Γ, q−1) over q(a)−1 from Proposition 5.10.

Recall that ε ∈ {±1}, that β is a square root of β2 = 1/α2 = ε/Gδ(Γ, q−1) and
that the choice β = ε/α results in positive quantum dimensions. (Note that α itself
does not explicitly appear in the modular data.)

Proof. First, we use Proposition 3.16 to compute the ribbon element of the equi-
variantisation. For simple objects graded only over the neutral component, the
ribbon is simply the Z2-twist of one of the simple constituents. For simple objects
graded only over the nontrivial element g, the ribbon is the Z2-twist of one of the
simple constituents composed with φg. Using the Z2-ribbons in (5.2), we obtain

θXa,s
= Q(a), θY{b,−b} = Q(b), θZx̄,s

= sβ.

The expression for the T -matrix follows.
Then we compute the S-matrix using the fusion rules in Proposition 5.16 and

the following formula, which holds in any modular tensor category B:

SX,Y = θ−1
X θ−1

Y

∑
Z∈Irr(B)

NZ
X,Y θZ dim(Z)

for all X, Y ∈ Irr(B), with the fusion rules written as X ⊗ Y =
⊕

Z∈Irr(B) NZ
X,Y Z

with NZ
X,Y ∈ Z≥0.

(1) Since Xa,s ⊗ Xb,t = Xa+b,stBQ(a,b), it follows

SXa,s,Xb,t
= Q(a)−1Q(b)−1Q(a + b) = BQ(a, b).

(2) Because Xa,s ⊗ Y{b,−b} = Y{a+b,a−b}, we obtain

SXa,s,Y{b,−b} = 2Q(a)−1Q(b)−1Q(a + b) = 2BQ(a, b).

(3) Since Xa,s ⊗ Zx̄,r = Zā+x̄,srBQ(a+x̄,a),

SXa,s,Zx̄,r = |2Γ|1/2Q(a)−1rβ−1rsβBQ(a + x̄, a) = s|2Γ|1/2BQ(x̄, a)Q(a).
(4) The fusion rule Y{a,−a} ⊗ Zx̄,r = Zx+a,1 ⊕ Zx+a,−1 implies

SY{a,−a},Zx̄,r = Q(a)−1rβ−1(
|2Γ|1/2β − |2Γ|1/2β

)
= 0.

(5) From the fusion rule of Y{b,−b} ⊗ Y{c,−c} we obtain

SY{b,−b},Y{c,−c} = Q(b)−1Q(c)−1(
2Q(b + c) + 2Q(b − c)

)
= 2

(
BQ(b, c) + BQ(b, −c)

)
= 2

(
BQ(b, c) + BQ(b, c)−1)

.

(6) Finally, the fusion rule of Zx̄,r ⊗ Zȳ,s implies that

SZx̄,r,Zȳ,s
= rsβ−2

∑
t∈δ+x̄+ȳ

Q(t)

= rsα2|2Γ|1/2Gδ+x̄+ȳ(Γ, Q)

= ε rs|2Γ|1/2Gδ(Γ, q−1)Gδ+x̄+ȳ(Γ, Q). □
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We comment on the product |2Γ|1/2Gδ(Γ, q−1)Gδ+x̄+ȳ(Γ, Q) of the two partial
Gauss sums appearing in the S-matrix entry SZx̄,r,Zȳ,s

. The first Gauss sum is well-
defined only for discriminant forms not containing 2±1

t and evaluated in Proposi-
tion 5.10. The second Gauss sum is always well-defined but takes exceptional values
for 2±1

t , 4±1
t and 2±1

II . For ease of presentation, let us assume that the discriminant
form (Γ, Q) does not contain these Jordan components. Then δ = 0 ∈ Γ/2Γ and

Gδ+x̄+ȳ(Γ, Q) = |Γ/2Γ|1/2 e(sign(Γ, Q)/8)δx̄+ȳ,0.

Hence, the product of the Gauss sums evaluates to

(12) |2Γ|1/2Gδ(Γ, q−1)Gδ+x̄+ȳ(Γ, Q) = |Γ|1/2s(Γev)
(

2
|Γodd|

)
δx̄+ȳ,0

if we exclude the possibility of these exceptional cases. Below, we list also the
(exceptional) S-matrix entry for the discriminant forms 4±1

t .
If C and D are braided Z2-crossed tensor categories, then the tensor category

C ⊠Z2 D = (C1 ⊠D1) ⊕ (Cg ⊠Dg) ⊂ C ⊠D is a braided Z2-crossed tensor category
with the diagonal Z2-action and the obvious Z2-braiding. In particular,

GLM(Γ1, σ1, ω1, δ1, ε1 | q1, α1, β1)⊠Z2 GLM(Γ2, σ2, ω2, δ2, ε2 | q2, α2, β2)
∼= GLM(Γ1 ⊕ Γ2, σ1 ⊕ σ2, ω1 ⊕ ω2, δ1 ⊕ δ2, ε1ε2 | q1 ⊕ q2, α1α2, β1β2).

Hence, it suffices to present concrete examples associated with indecomposable dis-
criminant forms (Γ, Q).

Odd Groups. Let (Γ, Q) be a discriminant form (indecomposable or not) where Γ
is a group of odd order. Then, we already noted that GLM(Γ, σ, ω, δ, ε | q, α, β) re-
duces to the (odd) Tambara-Yamagami category T Y(Γ, σ, ε | q, α, β), as considered
in Section 4. In that case, the equivariantisation was already computed in Section 5
of [GNN09].

Recall that in the odd case, q is the unique quadratic square root of Q, σ is the
unique bimultiplicative square root of BQ and δ = 0 ∈ Γ2. Moreover, |Γ2| = 1 and
2Γ = Γ.

It is not difficult to reduce our formulae for the fusion rules and the modular
data to the special case of odd |Γ|, and we find perfect agreement with [GNN09].
Indeed, the simple objects are then classified as follows:

(1) Two invertible objects Xs (of quantum dimension 1) for s ∈ {±1}.
(2) (|Γ| − 1)/2 simple objects Y{a,−a} of quantum dimension 2 for a ∈ Γ \ {0}.
(3) Two simple objects Zs of quantum dimension |Γ|1/2 for s ∈ {±1}.

We forego an explicit description of the fusion rules; they are readily read off from
Proposition 5.16.

In the odd case, the modular data are given by the T -matrix
TXs,Xs = 1, TY{a,−a},Y{a,−a} = Q(a)−1, TZs,Zs = sβ−1

and the S-matrix
SXs,Xt

= 1, SXs,Y{b,−b} = 2,

SXs,Zr
= s|Γ|1/2, SY{a,−a},Zr

= 0,

SY{b,−b},Y{c,−c} = 2
(
BQ(b, c) + BQ(b, c)−1)

,

SZs,Zr
= ε rs|Γ|1/2G(Γ, q−1)G(Γ, Q) = ε rs|Γ|1/2

(
2

|Γ|

)
.

In the last formula, we used that the product of the two Gauss sums simplifies to
a Kronecker symbol; see equation (12) or Remark 4.9.

Here, ε ∈ {±1} and β is a square root of β2 = 1/α2 = ε
( 2

|Γ|
)

e(sign(Γ, Q)/8).
The choice β = ε/α results in positive quantum dimensions.
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Even Indecomposable Components. As another example, for k ≥ 2 we consider
the indecomposable discriminant form with Jordan symbol (2k)±1

t , i.e. the group
Γ = Z2k with the quadratic form Q(x) = e

(
tx2

2k+1

)
, where 0 ≤ x < 2k and t ∈ Z×

8 (see
Table 1). The sign in the Jordan symbol is s(Γ, Q) =

(
t
2
)
= (−1)(t2−1)/8 = ±1, and

we write (2k)t := (2k)±1
t for short. The signature is e(sign(Γ, Q)/8) = e(t/8)

(
t
2
)k.

Recall that the choice of σ from Example 5.3, the choice q(x) = e
(

tx2

2k+2

)
from

Example 5.7 and δ = 0 ∈ Γ2 satisfy the conditions in Proposition 5.8. To be precise,
there we only considered the case t = 1, while in general we simply raise σ and q
to the power of t.

Moreover, Γ2 = ⟨2k−1⟩ ∼= Z2 (which we write as {0, 1} and not as {0, 2k−1} in
the following) and 2Γ = ⟨2⟩ ∼= Z2k−1 so that Γ/2Γ ∼= Z2 (also represented by {0, 1}).
The simple objects are then classified as follows:

(1) Four invertible objects Xa,s (of quantum dimension 1) for a ∈ {0, 1} and
s ∈ {±1}.

(2) 2k−1 −1 simple objects of quantum dimension 2, denoted by Yn := Y{n,−n},
for 1 ≤ n ≤ 2k−1 − 1.

(3) Four simple objects Zx̄,s of quantum dimension 2(k−1)/2 for x̄ ∈ {0, 1} and
s ∈ {1, −1}.

By Proposition 5.10, the Gauss sum G0(Γ, q−1) takes the values

G0(Γ, q−1) = e(− sign(Γ, Q)/8)
( t

2

)
= e(−t/8)

( t

2

)k( t

2

)
.

On the other hand, it is not difficult to see that

Gx̄(Γ, Q) =
√

2 e(sign(Γ, Q)/8) ·

{
δx̄,1 if k = 2,

δx̄,0 if k ≥ 3.

Hence, we obtain for the product of these Gauss sums

G0(Γ, q−1)Gx̄(Γ, Q) =
√

2
( t

2

)
·

{
δx̄,1 if k = 2,

δx̄,0 if k ≥ 3,

which agrees with (12) but in addition treats the cases 4±1
t . Then, the modular

data for (2k)t with k ≥ 2 and t ∈ Z×
8 are given by the T -matrix with entries

TXa,s,Xa,s
= e(−ta22k−3) =

{
(−1)a if k = 2,

1 if k ≥ 3,

TYn,Yn
= e(−tn2/2k+1), TZx̄,s,Zx̄,s

= sβ−1

and the S-matrix with entries

SXa,s,Xb,t
= 1, SXa,s,Yn

= 2(−1)an,

SXa,s,Zx̄,r = s2(k−1)/2

{
(−1)a(x̄+1) if k = 2,

(−1)ax̄ if k ≥ 3,
SYn,Zx̄,r = 0,

SYm,Yn = 4 cos(tmnπ/2k−1),

SZx̄,r,Zȳ,s
= ε rs2k/2

( t

2

)
·

{
δx̄+ȳ,1 if k = 2,

δx̄+ȳ,0 if k ≥ 3.

Here, ε ∈ {±1} and β is a square root of β2 = 1/α2 = ε/G0(Γ, q−1). The choice
β = ε/α results in positive quantum dimensions.

Example 5.19. We take the discriminant form Γ = (4)1 = (4)+1
1 (for k = 2) with

the choice ε = 1, some choice of α and β = ε/α = 1/α. The Gauss sum is



Z2-CROSSED TAMBARA-YAMAGAMI-LIKE CATEGORIES FOR EVEN GROUPS 31

G0(Γ, q−1) = e(7/8). For definiteness, take α = e(7/16) and so β = ε/α = e(9/16),
recalling that α2 = ε G0(Γ, q−1). Then the modular data are given by

T = diag
(

X0,1 X0,−1 X1,−1 X1,1 Z0,−1 Z1,−1 Z0,1 Z1,1 Y1

1 1 −1 −1 e
( 15

16
)

e
( 15

16
)

e
( 7

16
)

e
( 7

16
)

e
( 7

8
) )

and

S =



X0,1 X0,−1 X1,−1 X1,1 Z0,−1 Z1,−1 Z0,1 Z1,1 Y1

X0,1 1 1 1 1
√

2
√

2
√

2
√

2 2
X0,−1 1 1 1 −

√
2 −

√
2 −

√
2 −

√
2 2

X1,−1 1 1
√

2 −
√

2
√

2 −
√

2 −2
X1,1 1 −

√
2

√
2 −

√
2

√
2 −2

Z0,−1 0 2 0 −2 0
Z1,−1 0 −2 0 0
Z0,1 0 2 0
Z1,1 0 0
Y1 0


.

5.4. Data for Lattices. We now discuss how the data used to define the braided
Z2-crossed tensor category in Section 5.2 can be obtained from lattice data. If the
even lattice is positive-definite, the braided Z2-crossed tensor category will in this
way appear as category of modules of a Z2-orbifold of the corresponding lattice
vertex operator algebra (see Theorem 8.1 in [GLM24]).

Any discriminant form (Γ, Q) can be realised as dual quotient Γ = L∗/L of some
even lattice L = (L, ⟨·, ·⟩) embedded into its ambient quadratic space (Rd, Q̄) with
Q̄(v) = e(⟨v, v⟩/2) for v ∈ Rd [Nik80]. We then recall from Section 4.3 of [GLM24]
that one can realise VectQ

Γ = Vect(σ,ω)
Γ concretely as the condensation

VectQ̄
Rd = Vect(σ̄,ω̄)

Rd ⇝ VectQ
Γ = Vect(σ,ω)

Γ

of the infinite pointed braided fusion category VectQ̄
Rd by an infinite commutative,

associative algebra A = Cϵ[L] associated with the even lattice L ⊆ Rd.
In particular, in [GLM24] we describe how the abelian 3-cocycle (σ̄, ω̄) on the

ambient quadratic space (Rd, Q̄), chosen as, say,

σ̄(u, v) = e(⟨u, v⟩/2), ω̄(u, v, w) = 1

for u, v, w ∈ Rd, induces the abelian 3-cocycle (σ, ω) on (Γ, Q). The latter fur-
ther depends on a choice of 2-cocycle ϵ : L × L → C× whose skew form equals
ϵ(u, v)ϵ(v, u)−1 = σ̄(u, v) for all u, v ∈ L, and further a choice of representatives
â ∈ L∗ for the L-cosets a ∈ Γ and the corresponding 2-cocycle u : Γ × Γ → L.

In this section, we assume for simplicity the following strong evenness condition
for the lattice L:

Assumption 5.20. The lattice L fulfils one of the following equivalent conditions:
(1) ⟨u, v⟩ ∈ 2Z for all u, v ∈ L,
(2) L =

√
2K where K is an integral lattice,

(3) L ⊂ 2L∗,
(4) σ̄(u, v) = e(⟨u, v⟩/2) = 1 for all u, v ∈ L,
(5) The 2-cocycle ϵ on L whose skew form is σ̄|L can be chosen to be trivial,
(6) Γ/2Γ ∼= Zrk(L)

2 .

Proof. All equivalences except the one to item (6) are clear. For an integral lattice
of rank d = rk(L) there is a basis {α1, . . . , αd} of L∗ and integers m1, . . . , md ∈ Z
such that {m1α1, . . . , mrαd} is a basis of L. Then, as abelian group Γ = L∗/L ∼=
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Zm1 × · · · × Zmd
. This implies that Γ/2Γ ∼= Zl

2 for some l ≤ d and moreover that
Γ/2Γ ∼= Zd

2 if and only if all mi are even if and only if L ⊂ 2L∗. □

The assumption is made precisely so that σ̄(u, v) = e(⟨u, v⟩/2) = 1 for u, v ∈ L,
instead of taking values in {±1}, and hence that the 2-cocycle ϵ on L becomes trivial.
The particular representing abelian 3-cocycle (σ, ω) for VectQ

Γ from [GLM24] then
simplifies to

σ(a, b) = σ̄(â, b̂) = e(⟨â, b̂⟩/2),
ω(a, b, c) = σ̄(â, u(b, c)) = e(⟨â, u(b, c)⟩/2)

for a, b, c ∈ Γ and hence obeys the additional conditions in Section 5.2:

Proposition 5.21. For a lattice L fulfilling the stronger evenness condition in
Assumption 5.20, the representing abelian 3-cocycle (σ, ω) for the discriminant form
Γ = L∗/L from Section 4.3 in [GLM24] satisfies the properties in Proposition 5.5.

In particular, this means that σ and ω(a, ·, ·) for fixed a ∈ Γ are symmetric and
ω(·, b, c) factors through a group homomorphism Γ/2Γ → C× for fixed b, c ∈ Γ.

By the definition of the dual lattice, σ̄ restricts to a bimultiplicative pairing
L∗ × L → {±1}. Now, if L satisfies Assumption 5.20, σ̄(â, u) = e(⟨â, u⟩/2) for
u ∈ L does not depend on the choice of coset representative â and thus factors
through a pairing Γ×L → {±1}. Because it only takes values in {±1}, this further
factors through a pairing

p : Γ/2Γ × L/2L → {±1},

which we can show to be a perfect pairing. This pairing p allows us to identify
Γ/2Γ ∼= Hom(L/2L, {±1}).

This also recovers the interpretation (6) of the stronger evenness condition in
Assumption 5.20: the 2-torsion of Γ is as large as possible, namely Γ/2Γ ∼= Zrk(L)

2 ,
noting that for a general even lattice Γ/2Γ ∼= Zl

2 with l ≤ rk(L).

We now fix a class δ ∈ Γ/2Γ and a function q : Γ → C× with the properties in
Proposition 5.8 stated in Section 5.2.

To this end, for an even lattice L, we consider the function v 7→ e(⟨v, v⟩/4) taking
values in {±1}, which is a certain choice of square root of the natural (and trivial)
quadratic form e(⟨v, v⟩/2) = 1 on L. This descends to a function

δ : L/2L → {±1}, δ(v + 2L) := e(⟨v, v⟩/4).

Under the additional evenness condition in Assumption 5.20, i.e. if ⟨u, v⟩ ∈ 2Z for
u, v ∈ L, this function is a group homomorphism δ ∈ Hom(L/2L, {±1}). Via the
pairing p, we may identify this δ with a class δ ∈ Γ/2Γ, and we note that any
representative of δ in Γ is in Γ2 = {a ∈ Γ | 2a = 1} (cf. Proposition 5.8).

On the other hand, we can use the choice of representatives for Γ = L∗/L to
define a function

q : Γ → C×, q(a) := e(⟨â, â⟩/4)

satisfying q(a)2 = σ(a, a) for a ∈ Γ. Under the additional evenness condition in
Assumption 5.20 it satisfies

(13) q(a + b)q(a)−1q(b)−1 = σ(a, b)ω(a + b, a, b)−1δ(u(a, b))

for all a, b ∈ Γ. Identifying δ with its corresponding element in Γ/2Γ via the
pairing p, we may replace δ(u(a, b)) by σ̄(δ, u(a, b)) = ω(δ, a, b) so that we recover
the conditions in Proposition 5.8. Thus, we proved:
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Proposition 5.22. Given a lattice L fulfilling the stronger evenness condition in
Assumption 5.20 and given the representing abelian 3-cocycle for the discriminant
form Γ = L∗/L from Section 4.3 in [GLM24], the above choices of q and δ satisfy
the conditions in Proposition 5.8.

Overall, we have shown how to produce the data used to define the braided Z2-
crossed tensor category in Section 5.2 directly from an even lattice L with Γ = L∗/L.

We finally comment on the partial Gauss sum in Proposition 5.10 with the choices
made for Γ = L∗/L in this section:

Proposition 5.23. In the situation of Proposition 5.22, the partial Gauss sum
Gδ(Γ, q−1) in Proposition 5.10 evaluates to

Gδ(Γ, q−1) = |2Γ|−1/2
∑
a∈δ

q(a)−1 = e(− sign(L)/8) = e(− sign(Γ)/8).

Note that here, in contrast to Proposition 5.10, the value of the partial Gauss sum
is also well-defined for the indecomposable 2-adic Jordan components 2±1

t because
we are making a specific choice of q. For instance, if L =

√
2K where K = Z is the

(odd) standard lattice, then Γ = L∗/L ∼= 2+1
1

∼= 2−1
5 and the Gauss sum takes the

value Gδ(Γ, q−1) = e(− sign(L)/8) = e(7/8), and not e(3/8), as would have been
possible as well. We discuss this example further:

Example 5.24. We consider the Gauss sum Gδ(Γ, q−1), Γ = L∗/L, for the even
lattice L =

√
nZ ∼=

√
n/2A1 where n ∈ 2Z>0. When n = q is a power of 2, this

is already discussed in Remark 5.11. This lattice is of the form L =
√

2K for the
integral lattice K =

√
n/2Z, i.e. L satisfies Assumption 5.20. The dual lattice of

L is L∗ = (1/
√

n)Z so that Γ ∼= Zn, and the signature of L is sign(L) = 1 (mod 8).
Hence, with the choices made for (q, δ) in this section, Proposition 5.23 asserts

that the Gauss sum evaluates to Gδ(Γ, q−1) = e(7/8). Note that if 4 | n, then
already K is even and the Gauss sum will not depend on these choices (cf. the
discussion after Proposition 5.10).

In the following, we compute the Gauss sum for Γ explicitly, and verify Propo-
sition 5.23 for this particular case. We choose the coset representatives â = k/

√
n

with k = 0, . . . , n − 1 for Γ = L∗/L. Then, the function q : Γ → C× is

q(k/
√

n + L) = e(k2/(4n))

for k = 0, . . . , n − 1. Further, L/2L = (
√

nZ)/(2
√

nZ) ∼= Z2 and δ : L/2L → {±1}
is given by

δ(
√

n + 2L) = e(1/(4n))
evaluated at the nontrivial element in L/2L ∼= Z2. Hence, δ is the trivial character
if n = 0 (mod 4) and the nontrivial character if n = 2 (mod 4). That is, viewing
δ ∈ Γ/2Γ ∼= (

√
nZ)/(2

√
nZ), we obtain δ = 2

√
nZ when n = 0 (mod 4) and

δ =
√

n(1 + 2Z) when n = 2 (mod 4). Hence, the Gauss sum is

Gδ(Γ, q−1) =
√

2/n

n−1∑
k=1

k even

e(−k2/(4n)),

Gδ(Γ, q−1) =
√

2/n

n−1∑
k=1

k odd

e(−k2/(4n))

if n = 0 (mod 4) and n = 2 (mod 4), respectively. Finally, an explicit computation
shows that Gδ(Γ, q−1) = e(7/8) in both cases, as asserted by Proposition 5.23.
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6. Proof of Main Theorem

Proof of Theorem 5.12. We prove the theorem by explicitly checking all coherence
conditions in C = GLM(Γ, σ, ω, δ, ε | q, α, β). Recall that G = ⟨g⟩ ∼= Z2.

We shall use without mentioning that σ(·, ·) and ω(a, ·, ·) for any fixed a ∈ Γ
are symmetric and that ω(·, b, c) is multiplicative in the first argument and takes
values in {±1}. We also remark that for the subsequent calculations it is helpful to
initially ignore terms of the form ω(a, b, −b), which appear in several steps of the
computation, and to only cancel them in the very end.
Tensor Structure: We check that the pentagon identities hold in GLM(Γ, σ, ω, δ, ε),
starting with the ones not involving any Xx̄, i.e. the ones in C1 = VectQ

Γ :

((Ca⊗Cb)⊗Cc)⊗Cd

(Ca⊗(Cb⊗Cc))⊗Cd Ca⊗((Cb⊗Cc)⊗Cd))

Ca⊗(Cb⊗(Cc⊗Cd))

(Ca⊗Cb) ⊗ (Cc⊗Cd)

ω(a,b,c)

ω(a,b+c,d)

ω(b,c,d)

ω(a+b,c,d) ω(a,b,c+d)

Of course, this identity is satisfied precisely because ω is a 3-cocycle on Γ, which
was used in the construction of the tensor category Vectω

Γ = C1 in Example 3.1.
We now come to the pentagon relations involving a single Xx̄. First, we consider

((Xx̄⊗Ca)⊗Cb)⊗Cc

(Xx̄⊗(Ca⊗Cb))⊗Cc Xx̄⊗((Ca⊗Cb)⊗Cc))

Xx̄⊗(Ca⊗(Cb⊗Cc))

(Xx̄⊗Ca) ⊗ (Cb⊗Cc)

ω(x̄+δ,a,b)

ω(x̄+δ,a+b,c)

ω(a,b,c)

ω((x̄+a)+δ,b,c) ω(x̄+δ,a,b+c)

which holds because ω(a, b, c) cancels and ω with fixed first argument is a 2-cocycle.
Furthermore,

((Ca⊗Xx̄)⊗Cb)⊗Cc

(Ca⊗(Xx̄⊗Cb))⊗Cc Ca⊗((Xx̄⊗Cb)⊗Cc))

Ca⊗(Xx̄⊗(Cb⊗Cc))

(Ca⊗Xx̄) ⊗ (Cb⊗Cc)

σ(a,b)

σ(a,c)

ω(x̄+δ,b,c)

ω(a+x̄+δ,b,c) σ(a,b+c)

((Ca⊗Cb)⊗Xx̄)⊗Cc

(Ca⊗(Cb⊗Xx̄))⊗Cc Ca⊗((Cb⊗Xx̄)⊗Cc))

Ca⊗(Cb⊗(Xx̄⊗Cc))

(Ca⊗Cb) ⊗ (Xx̄⊗Cc)

ω((a+b)+x̄,a,b)

σ(a,c)

σ(b,c)

σ(a+b,c) ω((a+b)+(x̄+c),a,b)
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The first identity holds because the difference between σ(a, b+c) and σ(a, b)σ(a, c),
which is the coboundary of σ(a, ·), is equal to ω(a, ·, ·). The second identity holds
because σ is symmetric, and so the same formula holds for the coboundary of σ(·, c).
Finally, there is the pentagon identity

((Ca⊗Cb)⊗Cc)⊗Xx̄

(Ca⊗(Cb⊗Cc))⊗Xx̄ Ca⊗((Cb⊗Cc)⊗Xx̄))

Ca⊗(Cb⊗(Cc⊗Xx̄))

(Ca⊗Cb) ⊗ (Cc⊗Xx̄)

ω(a,b,c)

ω((a+(b+c))+x̄,a,b+c)

ω((b+c)+x̄,b,c)

ω(((a+b)+c)+x̄,a+b,c) ω((a+b)+(c+x̄),a,b)

which holds because ω(a + b + c, ·, ·) and ω(x̄, ·, ·) are 2-cocycles.
We then come to the pentagon relations involving Xx̄ and Xȳ:

((Xx̄⊗Xȳ)⊗Ca)⊗Cb

(Xx̄⊗(Xȳ⊗Ca))⊗Cb Xx̄⊗((Xȳ⊗Ca)⊗Cb))

Xx̄⊗(Xȳ⊗(Ca⊗Cb))

(Xx̄⊗Xȳ) ⊗ (Ca⊗Cb)

ω(x̄,t,a)

ω(x̄,t+a,b)

ω(ȳ+δ,a,b)

ω(t,a,b) ω(x̄,t,a+b)

Here, the initial basis vector is (et⊗ea)⊗eb and the final basis vector is et+a+b. This
identity holds because of the condition t̄ = x̄ + ȳ + δ, which we solve for ȳ. Then
the terms ω(x̄, ·, ·) again cancel because of the 2-cocycle condition. Also consider
the pentagon identity

((Xx̄⊗Ca)⊗Xȳ)⊗Cb

(Xx̄⊗(Ca⊗Xȳ))⊗Cb Xx̄⊗((Ca⊗Xȳ)⊗Cb))

Xx̄⊗(Ca⊗(Xȳ⊗Cb))

(Xx̄⊗Ca) ⊗ (Xȳ⊗Cb)

σ(a,t)

ω(x̄,t,b)

σ(a,b)

ω(x̄+a,t,b) σ(a,t+b)

where the initial basis vector is et ⊗ eb and the final one is et+b. This pentagon
identity holds because again the difference between σ(a, t + b) and σ(a, t)σ(a, b) is
caught by ω(a, t, b). Furthermore,

((Xx̄⊗Ca)⊗Cb)⊗Xȳ

(Xx̄⊗(Ca⊗Cb))⊗Xȳ Xx̄⊗((Ca⊗Cb)⊗Xȳ))

Xx̄⊗(Ca⊗(Cb⊗Xȳ))

(Xx̄⊗Ca) ⊗ (Cb⊗Xȳ)

ω(x̄+δ,a,b)

σ(a+b,t)

ω((a+b)+ȳ,a,b)

σ(b,t) σ(a,t)

where the initial and final basis vector is et. The identity holds because of the
condition t̄ = (x̄ + ā + b̄) + ȳ + δ and since again ω(t̄, a, b) catches the difference
between σ(a + b, t) and σ(a, t)σ(b, t). Then, we look at the pentagon identity
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((Ca⊗Xx̄)⊗Xȳ)⊗Cb

(Ca⊗(Xx̄⊗Xȳ))⊗Cb Ca⊗((Xx̄⊗Xȳ)⊗Cb))

Ca⊗(Xx̄⊗(Xȳ⊗Cb))

(Ca⊗Xx̄) ⊗ (Xȳ⊗Cb)

ω(a+x̄,a,t)

ω(a,t,b)

ω(x̄,t,b)

ω(a+x̄,t+a,b) ω(a+x̄,a,t+b)

Here, the initial basis vector is ea+t ⊗ eb and the final basis vector is ea ⊗ eb+t.
This identity is true because the terms involving ω(x̄, ·, ·) and ω(a, ·, ·) individually
cancel due to the 2-cocycle condition. Moreover, consider

((Ca⊗Xx̄)⊗Cb)⊗Xȳ

(Ca⊗(Xx̄⊗Cb))⊗Xȳ Ca⊗((Xx̄⊗Cb)⊗Xȳ))

Ca⊗(Xx̄⊗(Cb⊗Xȳ))

(Ca⊗Xx̄) ⊗ (Cb⊗Xȳ)

σ(a,b)

ω(a+(x̄+b),a,t)

σ(b,t)

σ(b,a+t) ω(a+x̄,a,t)

where the initial basis vector is ea+t and the final basis vector is ea ⊗ et. This
pentagon identity holds as the terms involving ω(x̄, ·, ·) and ω(a, ·, ·) individually
cancel and again the difference between σ(b, t)σ(b, a) and σ(b, a+ t) is compensated
by ω(b, a, t). Finally,

((Ca⊗Cb)⊗Xx̄)⊗Xȳ

(Ca⊗(Cb⊗Xx̄))⊗Xȳ Ca⊗((Cb⊗Xx̄)⊗Xȳ))

Ca⊗(Cb⊗(Xx̄⊗Xȳ))

(Ca⊗Cb) ⊗ (Xx̄⊗Xȳ)

ω((a+b)+x̄,a,b)

ω(a+(b+x̄),a,b+t)

ω(b+x̄,b,t)

ω((a+b)+x̄,a+b,t) ω(a,b,t)

where the initial basis vector is ea+b+t and the final basis vector is ea ⊗ eb ⊗ et.
This identity is true because again the terms ω(x̄, ·, ·), ω(a, ·, ·) and ω(b, ·, ·) cancel
individually due to the 2-cocycle condition.

We now come to the pentagon relations involving Xx̄, Xȳ and Xz̄, starting with:

((Xx̄⊗Xȳ)⊗Xz̄)⊗Ca

(Xx̄⊗(Xȳ⊗Xz̄))⊗Ca Xx̄⊗((Xȳ⊗Xz̄)⊗Ca))

Xx̄⊗(Xȳ⊗(Xz̄⊗Ca))

(Xx̄⊗Xȳ) ⊗ (Xz̄⊗Ca)

ε|2Γ|−1/2σ(t,r)−1

ω(x̄+δ,r,a)

ω(ȳ,r,a)

σ(t,a) ε|2Γ|−1/2σ(t,r+a)−1

Here, the initial basis vector is vt and mapped to vr by the first arrow, the final
basis vector is vr+a. This identity holds because of the condition t̄ = x̄ + ȳ + δ,
because again terms involving ω(x̄, ·, ·) cancel and since the difference between
σ(t, r)σ(t, a) and σ(t, r + a) is caught by ω(t, r, a). The normalisation factor |2Γ|
cancels independently of its value. Then we consider
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((Xx̄⊗Xȳ)⊗Ca)⊗Xz̄

(Xx̄⊗(Xȳ⊗Ca))⊗Xz̄ Xx̄⊗((Xȳ⊗Ca)⊗Xz̄))

Xx̄⊗(Xȳ⊗(Ca⊗Xz̄))

(Xx̄⊗Xȳ) ⊗ (Ca⊗Xz̄)

ω(x̄,t,a)

ε|2Γ|−1/2σ(t+a,r)−1

σ(a,r)

ω((t+a)+z̄,t,a) ε|2Γ|−1/2σ(t,r)−1

where the initial basis vector is vt+a with t̄ = x̄ + ȳ + δ and the final basis vector
is vr with r̄ = ȳ + (a + z̄) + δ. This means that x̄ + z̄ = t̄ + r̄ + ā. This pentagon
identity then holds because ω(r, t, a) = σ(t, r)σ(a, r)σ(t + a, r)−1. Next, we look at

((Xx̄⊗Ca)⊗Xȳ)⊗Xz̄

(Xx̄⊗(Ca⊗Xȳ))⊗Xz̄ Xx̄⊗((Ca⊗Xȳ)⊗Xz̄))

Xx̄⊗(Ca⊗(Xȳ⊗Xz̄))

(Xx̄⊗Ca) ⊗ (Xȳ⊗Xz̄)

σ(a,t)

ε|2Γ|−1/2σ(t,a+r)−1

ω(a+ȳ,a,r)

ε|2Γ|−1/2σ(t,r)−1 ω(x̄+δ,a,r)

Here, the initial basis vector is vt with t̄ = (x̄ + ā) + ȳ + δ. Then this identity holds
like in the previous case. Finally, consider the pentagon identity

((Ca⊗Xx̄)⊗Xȳ)⊗Xz̄

(Ca⊗(Xx̄⊗Xȳ))⊗Xz̄ Ca⊗((Xx̄⊗Xȳ)⊗Xz̄))

Ca⊗(Xx̄⊗(Xȳ⊗Xz̄))

(Ca⊗Xx̄) ⊗ (Xȳ⊗Xz̄)

ω(a+x̄,a,t)

ω((a+t)+z̄,a,t)

ε|2Γ|−1/2σ(t,r)−1

ε|2Γ|−1/2σ(t+a,r)−1 σ(a,r)

where the initial basis vector is vt+a with t + a = (x̄ + ā) + ȳ + δ and the final basis
vector is ea ⊗ vr with r̄ = ȳ + z̄ + δ. Then, this identity holds after substituting
these two expressions like in the previous cases.

We now come to the last type of pentagon relations, involving Xx̄, Xȳ, Xz̄ and Xw̄.
The innermost product Xx̄ ⊗ Xȳ produces, after multiplication with further X, a
basis vector in the multiplicity space denoted by vt, while the outermost product
produces the resulting object Cs with basis vector denoted by es. These bases in
the five products in the above diagram are, from left to right, vt ⊗ es+t, vr ⊗ es+t,
vr ⊗es+t, vl ⊗es+t and for the bottom node vt ⊗es. With these bases, the pentagon
identity reads

((Xx̄⊗Xȳ)⊗Xz̄)⊗Xw̄

(Xx̄⊗(Xȳ⊗Xz̄))⊗Xw̄ Xx̄⊗((Xȳ⊗Xz̄)⊗Xw̄))

Xx̄⊗(Xȳ⊗(Xz̄⊗Xw̄))

(Xx̄⊗Xȳ) ⊗ (Xz̄⊗Xw̄)

ε|2Γ|−1/2σ(t,r)−1

σ(r,s+t)

ε|2Γ|−1/2σ(r,l)−1

ω(t+z̄,t,s) ω(x̄,t,s)
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Again, the conditions t̄ = x̄+ ȳ +δ, r̄ = ȳ + z̄ +δ and s̄ = l̄ = z̄ + w̄ +δ hold. Again,
σ(r, s + t) can be expressed as σ(r, t), which cancels, times σ(r, s) times ω(r, s, t).
Then, after substituting r̄ and t̄, all ω cancel, as does the sign ε. However, the
factor |2Γ|−1/2|2Γ|−1/2 = |2Γ|−1 becomes important. The last pentagon identity
then follows from the following slightly unusual character sum:

Lemma 6.1. For s, l ∈ Γ with s̄ = l̄ ∈ Γ/2Γ and for a coset r̄ ∈ Γ/2Γ,

|2Γ|−1
∑
r∈r̄

σ(r, s)σ(r, l)−1 = δs,l.

Proof. The summand can be rewritten as σ(r, s)σ(r, l)−1 = ω(r, s, l − s)σ(r, l − s).
Let r0 be some fixed coset representative, so that we may write the summation
variable as r = r0 + a with a ∈ 2Γ. Now, the assumption s̄ = l̄ means that
s − l ∈ 2Γ, and so σ(·, l − s) = BQ(·, (l − s)/2) is a character on Γ. Moreover,
ω(r, s, l − s) is always a character as a function of r, and on any fixed 2Γ-coset it is
a constant ω(r̄, s, l − s). Hence, the character sum is

|2Γ|−1
∑

r∈r0+2Γ
σ(r, s)σ(r, l)−1 = |2Γ|−1ω(r̄, s, l − s)σ(r0, l − s)

∑
a∈2Γ

σ(a, l − s).

Since BQ was assumed to be a nondegenerate pairing Γ × Γ → C×, it descends
to a nondegenerate pairing 2Γ × Γ2 with the 2-torsion Γ2 = {a ∈ Γ | 2a = 0}.
A sum of a 1-dimensional characters over a subgroup is zero if and only if the
character restricts to a nontrivial character on the subgroup. Hence, the sum over
the character σ(·, l − s) = BQ(·, (l − s)/2) is zero unless 2 · (l − s)/2 = 0 in Γ,
meaning that l = s. In this case, the factor ω(r̄, s, l − s)σ(r0, l − s) is also 1. □

G-Action: We now discuss the Z2-action on GLM(Γ, σ, ω, δ, ε): the compatibility
between the trivial composition structure and the tensor structure amount to the
fact that all tensor structures are scalars ±1 and hence square to one.

To prove the coherences of the tensor structures, which have to compensate for
the associators not being Z2-invariant, we collect some formulae on σ and ω with
negative entries: by definition,

(14) σ(a, −b) = σ(a, b)−1ω(a, b, −b)−1

and by symmetry

(15) σ(−a, b) = σ(a, b)−1ω(b, a, −a)−1

for a, b ∈ Γ. From this we derive the following additivity property for ω(a, b, −b)
in b, which can be solved to express ω(a, −b, −c):

ω(a, b + c, −b − c)−1 = σ(a, b + c)σ(a, −b − c)(16)
= σ(a, b)σ(a, c)ω(a, b, c)σ(a, −b)σ(a, −c)ω(a, −b, −c)
= ω(a, b, −b)−1ω(a, c, −c)−1ω(a, b, c)ω(a, −b, −c)

for a, b, c ∈ Γ. We also note for later use that from the 2-cocycle condition for
ω(a, ·, ·) it follows immediately that

(17) ω(a, −b, b + c) = ω(a, b, c)−1ω(a, b, −b)

for a, b, c ∈ Γ.
Formula (16) then (re)proves the first of the coherence identities:
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g∗((Ca⊗Cb)⊗Cc) g∗(Ca⊗Cb) ⊗ g∗Cc (g∗Ca⊗g∗Cb) ⊗ g∗Cc

g∗(Ca⊗(Cb⊗Cc)) g∗Ca⊗g∗(Cb⊗Cc) g∗Ca⊗(g∗Cb⊗g∗Cc)

ω(a,b,c) ω(−a,−b,−c)

ω(a+b,c,−c) ω(a,b,−b)

ω(a,b+c,−b−c) ω(b,c,−c)

Similarly, the identities involving a single Xx̄ hold:

g∗((Xx̄⊗Ca)⊗Cb) g∗(Xx̄⊗Ca) ⊗ g∗Cb (g∗Xx̄⊗g∗Ca) ⊗ g∗Cb

g∗(Xx̄⊗(Ca⊗Cb)) g∗Xx̄⊗g∗(Ca⊗Cb) g∗Xx̄⊗(g∗Ca⊗g∗Cb)

ω(x̄+δ,a,b) ω(x̄+δ,−a,−b)

ω((x̄+a)+δ,b,−b) ω(x̄+δ,a,−a)

ω(x̄+δ,a+b,−a−b) ω(a,b,−b)

g∗((Ca⊗Xx̄)⊗Cb) g∗(Ca⊗Xx̄) ⊗ g∗Cb (g∗Ca⊗g∗Xx̄) ⊗ g∗Cb

g∗(Ca⊗(Xx̄⊗Cb)) g∗Ca⊗g∗(Xx̄⊗Cb) g∗Ca⊗(g∗Xx̄⊗g∗Cb)

σ(a,b) σ(−a,−b)

ω((a+x̄)+δ,b,−b) ω(a+x̄,a,−a)

ω(a+(x̄+b),a,−a) ω(x̄+δ,b,−b)

g∗((Ca⊗Cb)⊗Xx̄) g∗(Ca⊗Cb) ⊗ g∗Xx̄ (g∗Ca⊗g∗Cb) ⊗ g∗Xx̄

g∗(Ca⊗(Cb⊗Xx̄)) g∗Ca⊗g∗(Cb⊗Xx̄) g∗Ca⊗(g∗Cb⊗g∗Xx̄)

ω((a+b)+x̄,a,b) ω((−a−b)+x̄,−a,−b)

ω((a+b)+x̄,a+b,−a−b) ω(a,b,−b)

ω(a+(b+x̄),a,−a) ω(b+x̄,b,−b)

For the identities involving Xx̄ and Xȳ, we have to be again explicit about the bases
in the multiplicity spaces and moreover consider the action of g∗ on them:

g∗((Xx̄⊗Xȳ)⊗Ca) g∗(Xx̄⊗Xȳ) ⊗ g∗Ca (g∗Xx̄⊗g∗Xȳ) ⊗ g∗Ca

g∗(Xx̄⊗(Xȳ⊗Ca)) g∗Xx̄⊗g∗(Xȳ⊗Ca) g∗Xx̄⊗(g∗Xȳ⊗g∗Ca)

ω(x̄,t,a) ω(x̄,−t,−a)

ω(t,a,−a) ω(x̄,t,−t)

ω(x̄,t+a,−t−a) ω(ȳ+δ,a,−a)

Here, we used the condition ȳ + δ = x̄ + t̄ for the basis vector g∗(et ⊗ ea) (top
left) mapped to the basis vector g∗(et+a) (bottom left) and e−t ⊗ e−a (top right)
to e−t−a (bottom right). The identity is again essentially the formula (16) for
ω(x̄, t + a, −t − a). Then, consider

g∗((Xx̄⊗Ca)⊗Xȳ) g∗(Xx̄⊗Ca) ⊗ g∗Xȳ (g∗Xx̄⊗g∗Ca) ⊗ g∗Xȳ

g∗(Xx̄⊗(Ca⊗Xȳ)) g∗Xx̄⊗g∗(Ca⊗Xȳ) g∗Xx̄⊗(g∗Ca⊗g∗Xȳ)

σ(a,t) σ(−a−t)

ω(x̄+a,t,−t) ω(x̄+δ,a,−a)

ω(x̄,t,−t) ω(a+ȳ,a,−a)

where we used the condition ȳ = x̄ + (t̄ + ā) + δ. Next, look at
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g∗((Ca⊗Xx̄)⊗Xȳ) g∗(Ca⊗Xx̄) ⊗ g∗Xȳ (g∗Ca⊗g∗Xx̄) ⊗ g∗Xȳ

g∗(Ca⊗(Xx̄⊗Xȳ)) g∗Ca⊗g∗(Xx̄⊗Xȳ) g∗Ca⊗(g∗Xx̄⊗g∗Xȳ)

ω(a+x̄,a,t) ω(−a+x̄,−a,−t)

ω(a+x̄,a+t,−a−t) ω(a+x̄,a,−a)

ω(a,t,−t) ω(x̄,t,−t)

Here, we did not use the condition ȳ = x̄ + t̄ + δ. Finally, we come to

g∗((Xx̄⊗Xȳ)⊗Xz̄) g∗(Xx̄⊗Xȳ) ⊗ g∗Xz̄ (g∗Xx̄⊗g∗Xȳ) ⊗ g∗Xz̄

g∗(Xx̄⊗(Xȳ⊗Xz̄)) g∗Xx̄⊗g∗(Xȳ⊗Xz̄) g∗Xx̄⊗(g∗Xȳ⊗g∗Xz̄)

ε|2Γ|−1/2σ(t,r)−1 ε|2Γ|−1/2σ(−t,−r)−1

ω(t+z̄,t,−t) ω(x̄,t,−t)

ω(x̄+δ,r,−r) ω(ȳ,r,−r)

where t and r satisfy, as for the associator, the conditions t̄ = x̄ + ȳ + δ and
r̄ = ȳ + z̄ + δ. This lets us rewrite the expressions

ω(z̄ + x̄, t, −t) = ω(t + r, t, −t), ω(x̄ + δ + ȳ, r, −r) = ω(t, r, −r).

Then, the identity follows from the formulae (14) and (15) for σ(r, s)σ(−r, −s)−1.
This concludes the proof of the tensor structure. We remark that we did not use
any information on ε or |2Γ|.
G-Braiding: For the Z2-braiding on GLM(Γ, σ, ω, δ, ε | q, α, β) we verify the hexagon
identities.

The hexagon identity for Ca, Cb, Cc and Cd is known to hold in C1 = Vect(σ,ω)
Γ ,

corresponding to the abelian 3-cocycle (σ, ω). It is satisfied as ω(b, c, a) = ω(b, a, c)
and ω(a, ·, ·) is the coboundary of σ(a, ·), and similarly for the inverse hexagon
identity:

(Ca⊗Cb)⊗Cc

Ca⊗(Cb⊗Cc) (Cb⊗Cc)⊗Ca

Cb⊗(Cc⊗Ca)

(Cb⊗Ca)⊗Cc Cb⊗(Ca⊗Cc)

ω(a,b,c)

σ(a,b+c)

ω(b,c,a)

σ(a,b)

ω(b,a,c)

σ(a,c)

We come to the hexagon identities involving one Xx̄, starting with

(Xx̄⊗Ca)⊗Cb

Xx̄⊗(Ca⊗Cb) (C−a⊗C−b)⊗Xx̄

C−a⊗(C−b⊗Xx̄)

(C−a⊗Xx̄)⊗Cb C−a⊗(Xx̄⊗Cb)

ω(x̄+δ,a,b)

q(a+b)−1ω(x̄+a+b,a+b,−a−b)
ω(a,b,−b)

ω(−a−b+x̄,−a,−b)

q(a)−1ω(x̄+a,a,−a)

σ(−a,b)

q(b)−1ω(x̄+b,b,−b)



Z2-CROSSED TAMBARA-YAMAGAMI-LIKE CATEGORIES FOR EVEN GROUPS 41

Take note of the appearance of a tensor structure in the top arrow. This hexagon
identity can be rewritten using formula (15) for σ(−a, b) and formula (16) for
ω(x̄ + a + b, a + b, −a − b). Then all terms ω(x̄, ·, ·) cancel and all terms ω(a + b, ·, ·)
cancel except for a new ω(a + b, a, b). Then the identity is precisely the defining
property of q, q(a + b)q(a)−1q(b)−1 = σ(a, b) ω(a + b, a, b)ω(δ, a, b) for all a, b ∈ Γ.
Furthermore, consider

(Ca⊗Xx̄)⊗Cb

Ca⊗(Xx̄⊗Cb) (Xx̄⊗Cb)⊗Ca

Xx̄⊗(Cb⊗Ca)

(Xx̄⊗Ca)⊗Cb Xx̄⊗(Ca⊗Cb)

σ(a,b)

q(a)−1

ω(x̄+δ,b,a)

q(a)−1

ω(x̄+δ,b,a)

σ(a,b)

(Ca⊗Cb)⊗Xx̄

Ca⊗(Cb⊗Xx̄) (Cb⊗Xx̄)⊗Ca

Cb⊗(Xx̄⊗Ca)

(Cb⊗Ca)⊗Xx̄ Cb⊗(Ca⊗Xx̄)

ω((a+b)+x̄,a,b)

q(a)−1

σ(b,a)

σ(a,b)

ω((b+a)+x̄,b,a)

q(a)−1

Both identities hold directly. If the braiding were not given, these identities would
show that the braiding of Ca ⊗Xx̄ coincides with the braiding of Ca ⊗Xx̄+b, so that
it is independent of x̄.

The inverse hexagon identities in these cases are:

Xx̄⊗(Ca⊗Cb)

(Xx̄⊗Ca)⊗Cb C−b⊗(Xx̄⊗Ca)

(C−b⊗Xx̄)⊗Ca

Xx̄⊗(Cb⊗Ca) (Xx̄⊗Cb)⊗Ca

ω(x̄+δ,a,b)−1

q(b)−1ω((x̄+a)+b,b,−b)

σ(−b,a)−1

σ(a,b)

ω(x̄+δ,b,a)−1

q(b)−1ω(x̄+b,b,−b)

Ca⊗(Xx̄⊗Cb)

(Ca⊗Xx̄)⊗Cb C−b⊗(Ca⊗Xx̄)

(C−b⊗Ca)⊗Xx̄

Ca⊗(C−b⊗Xx̄) (Ca⊗C−b)⊗Xx̄

σ(a,b)−1

q(b)−1ω((x̄+a)+b,b,−b)

ω((−b+a)+x̄,−b,a)−1

q(b)−1ω(x̄+b,b,−b)

ω((a−b)+x̄,a,−b)−1

σ(a,−b)
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In these two identities, most terms cancel, and we use formula (15) to express
σ(−b, a) and σ(a, −b) in terms of σ(a, b) and ω(a, b, −b), respectively, which cancels
with the corresponding term on the top arrow. If the braiding were not given, these
identities would show that the braiding of Xx̄ ⊗ Cb coincides with the braiding of
Xx̄+a ⊗Cb up to a factor ω(a, b, −b), so it demands the x̄-dependency of ω(x̄, b, −b).
Next, we consider

Ca⊗(Cb⊗Xx̄)

(Ca⊗Cb)⊗Xx̄ Xx̄⊗(Ca⊗Cb)

(Xx̄⊗Ca)⊗Cb

Ca⊗(Xx̄⊗Cb) (Ca⊗Xx̄)⊗Cb

ω((a+b)+x̄,a,b)−1

q(a+b)−1

ω(x̄+δ,a,b)−1

q(b)−1

σ(a,b)−1

q(a)−1

This hexagon identity again amounts to the defining property of q. If the braiding
were not given, one might wish to treat this identity (involving the easier braiding
Ca⊗Xx̄ and no tensor structure) before the analogous hexagon identity Xx̄⊗Ca⊗Cb

above (involving the braiding Xx̄ ⊗ Ca).
We come to the hexagon identities involving Xx̄ and Xȳ. First, consider

(Xx̄⊗Xȳ)⊗Ca

Xx̄⊗(Xȳ⊗Ca) (Xȳ⊗C−a)⊗Xx̄

Xȳ⊗(C−a⊗Xx̄)

(Xȳ⊗Xx̄)⊗Ca Xȳ⊗(Xx̄⊗Ca)

ω(x̄,t,a)

αq(t+a)
ω(ȳ+δ,a,−a)

σ(−a,t+a)

αq(t)

ω(ȳ,t,a)

q(a)−1ω(x̄+a,a,−a)

We apply formula (15) to σ(−a, t + a) and the condition t̄ = x̄ + ȳ + t̄ to ω(·, a, −a)
and ω(·, t, a). The parameter α simply cancels at this point. Then the hexagon
identity amounts to the other defining condition of q, q(a)2 = σ(a, a) for a ∈ Γ, and
again the additivity condition on q. If the braiding were not given, this identity
would show that the braiding of Xx̄⊗Xȳ and that of Xx̄⊗Xȳ+a differ by the braiding
of Xx̄ ⊗ Ca by this additivity condition. Next, we look at

(Xx̄⊗Ca)⊗Xȳ

Xx̄⊗(Ca⊗Xȳ) (C−a⊗Xȳ)⊗Xx̄

C−a⊗(Xȳ⊗Xx̄)

(C−a⊗Xx̄)⊗Xȳ C−a⊗(Xx̄⊗Xȳ)

σ(a,t)

αq(t)
ω(a+ȳ,a,−a)

ω(−a+ȳ,−a,a+t)

q(a)−1ω(x̄+a,a,−a)

ω(−a+x̄,−a,a+t)

αq(a+t)

where as initial basis vector we choose et so that the final basis vector is e−a ⊗ea+t,
with t̄ = (x̄+ā)+ȳ+δ. Then we collect and rewrite ω(x̄+ȳ, −a, a+t)ω(x̄+ȳ, a, −a)
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using formula (17) to ω(x̄ + ȳ, a, t), which is equal to ω(t + a + δ, a, t). Then the
hexagon identity is again the defining additivity relation of q. Moreover,

(Ca⊗Xx̄)⊗Xȳ

Ca⊗(Xx̄⊗Xȳ) (Xx̄⊗Xȳ)⊗Ca

Xx̄⊗(Xȳ⊗Ca)

(Xx̄⊗Ca)⊗Xȳ Xx̄⊗(Ca⊗Xȳ)

ω(x̄+a,a,t)

σ(a,t)

ω(x̄,t,a)

q(a)−1

σ(a,t+a)

q(a)−1

where as initial basis vector we choose ea+t. This hexagon identity holds again
because of the defining relation q(a)2 = σ(a, a).

The inverse hexagon identities in these cases are as follows:

Xx̄⊗(Xȳ⊗Ca)

(Xx̄⊗Xȳ)⊗Ca Ca⊗(Xx̄⊗Xȳ)

(Ca⊗Xx̄)⊗Xȳ

Xx̄⊗(C−a⊗Xȳ) (Xx̄⊗C−a)⊗Xȳ

ω(x̄,t,a)−1

σ(t,a)

ω(a+x̄,a,t)−1

q(a)−1ω(ȳ+a,a,−a)

σ(−a,t+a)−1

q(−a)−1ω(x̄−a,a,−a)

Here, as initial basis vector we choose et+a with t̄ = x̄ + ȳ + δ and consequently
write ω(ȳ + a, a, −a)ω(x̄ − a, a, −a) = ω(t, a, −a)ω(δ, a, −a). We rewrite, using the
coboundary property in Proposition 5.5 and equation (15),

σ(−a, t + a) = σ(−a, t)σ(−a, a)ω(−a, t, a)
= σ(a, t)ω(t, a, −a)σ(−a, a)ω(−a, t, a).

Then the hexagon identity reduces to the following special case of the additivity
property

q(a)q(−a) = σ(a, −a)−1ω(δ, a, −a).
For later use, using σ(a, −a) = σ(a, a)−1ω(a, a, −a) and σ(a, a) = q(a)2, we show
further that

q(−a) = q(a)ω(a + δ, a, −a).(18)

We further consider the identities

Xx̄⊗(Ca⊗Xȳ)

(Xx̄⊗Ca)⊗Xȳ Xȳ⊗(Xx̄⊗Ca)

(Xȳ⊗Xx̄)⊗Ca

Xx̄⊗(Xȳ⊗Ca) (Xx̄⊗Xȳ)⊗Ca

σ(a,t+a)−1

αq(t+a)

ω(ȳ,t,a)−1

q(a)−1

ω(x̄,t,a)−1

αq(t)
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Ca⊗(Xx̄⊗Xȳ)

(Ca⊗Xx̄)⊗Xȳ Xȳ⊗(Ca⊗Xx̄)

(Xȳ⊗Ca)⊗Xx̄

Ca⊗(Xȳ⊗Xx̄) (Ca⊗Xȳ)⊗Xx̄

ω(x̄+a,a,t)−1

αq(a+t)

σ(a,a+t)−1

αq(t)

ω(ȳ+a,a,t)−1

q(a)−1

As initial basis vector in these two diagrams we choose et+a and ea⊗et, respectively,
in both cases with t̄ = x̄+ȳ+δ. In both cases, the hexagon identity follows from the
coboundary property for σ(a, a+ t) and q(a)2 = σ(a, a) and the additivity property
for q.

We finally come to the hexagon identities and inverse hexagon identities involving
Xx̄, Xȳ and Xz̄. These are the only ones where the associator of X ⊗ X ⊗ X appears,
as well as the tensor structure on X ⊗ X. This is also the only identity where the
value of α is relevant. We start with the inverse hexagon identity, which is simpler
in some regards:

Xx̄⊗(Xȳ⊗Xz̄)

(Xx̄⊗Xȳ)⊗Xz̄ Xz̄⊗(Xx̄⊗Xȳ)

(Xz̄⊗Xx̄)⊗Xȳ

Xx̄⊗(Xz̄⊗Xȳ) (Xx̄⊗Xz̄)⊗Xȳ

ε|2Γ|−1/2σ(r,t)

q(t)−1

ε|2Γ|−1/2σ(t,s)

αq(r)

ε|2Γ|−1/2σ(r,s)

αq(s)

Here, r̄ = ȳ + z̄ + δ and t̄ = x̄ + ȳ + δ and s̄ = z̄ + x̄ + δ, and we note that the
inverse of the matrix (|2Γ|−1/2σ(t, r)−1)t,r is (|2Γ|−1/2σ(r, t))t,r, where r, t run over
arbitrary fixed 2Γ-cosets, by the character sum in Lemma 6.1. We spell out the
identity in question, using as summation condition x̄ + ȳ + δ = r̄ + s̄ + δ:

αq(r)σ(r, s)αq(s) = ε|2Γ|−1/2
∑

t∈r̄+s̄+δ

σ(r, t)q(t)−1σ(t, s).

This is a somewhat modified Gauss sum. We reduce it to a formula that only
depends on r + s: we use q(r)σ(r, s)q(s) = q(r + s)ω(r + s, r, s)ω(δ, r, s) on the left-
hand side, and on the right-hand side σ(t, r)σ(t, s) = σ(t, r + s)ω(t, r + s). Then,
by the summation condition on t, the terms involving ω on both sides cancel and
the identity in question becomes

α2q(r + s) = ε|2Γ|−1/2
∑

t∈r̄+s̄+δ

σ(t, r + s)q(t)−1.

We may reduce to the case r+s = 0. Indeed, let b = r+s and substitute t = a+r+s
with a ∈ δ. Then, using again the additivity property of q gives

α2q(b) = ε|2Γ|−1/2
∑
a∈δ

σ(a + b, b)σ(a, b)−1q(a)−1q(b)−1ω(a + b + δ, a, b).

Furthermore, using the coboundary property for σ(·, b), the property σ(b, b) = q(b)2

and ω(a + δ, ·, ·) = 0 by the summation condition reduces the identity in question
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to the following identity independent of r and s:

α2 = ε|2Γ|−1/2
∑
a∈δ

q(a)−1.

We defined α just so that this holds, and hence the above inverse hexagon identity
holds. Next, we consider the hexagon identity

(Xx̄⊗Xȳ)⊗Xz̄

Xx̄⊗(Xȳ⊗Xz̄) (Xȳ⊗Xz̄)⊗Xx̄

Xȳ⊗(Xz̄⊗Xx̄)

(Xȳ⊗Xx̄)⊗Xz̄ Xȳ⊗(Xx̄⊗Xz̄)

ε|2Γ|−1/2σ(t,r)−1

q(r)−1ω(x̄+r,r,−r)
ω(ȳ,r,−r)

ε|2Γ|−1/2σ(−r,s)−1

αq(t)

ε|2Γ|−1/2σ(t,s)−1

αq(s)

where t̄ = x̄ + ȳ + δ and r̄ = ȳ + z̄ + δ and s̄ = z̄ + x̄ + δ. We spell out the identity
in question and simplify the right-hand side by using formula (15) for σ(−r, s) and
cancelling ω(x̄ + ȳ + r + s, r, −r) since x̄ + ȳ + r̄ + s̄ = 0 in Γ/2Γ:

αq(t)σ(t, s)−1αq(s)

= ε|2Γ|−1/2
∑

r∈ȳ+z̄+δ

σ(t, r)−1 · σ(−r, s) · q(r)−1ω(x̄ + ȳ + r, r, −r)

= ε|2Γ|−1/2
∑

r∈s̄+t̄+δ

σ(t, r)−1σ(r, s)q(r)−1.

If we substitute t = −l and use formula (18) for q(−l) and formula (15) for σ(−l, s)
and σ(−l, r), we collect an additional factor ω(l+δ, l, −l)ω(r, l, −l)ω(s, l, −l), which
again cancels due to the condition t̄ + r̄ + s̄ + δ = 0 in Γ/2Γ. Then the hexagon
identity reduces again to the modified Gauss sum we have proved for the inverse
hexagon identity above:

αq(l)σ(l, s)αq(s) = ε|2Γ|−1/2
∑

r∈s̄+t̄+δ

σ(l, r)σ(r, s)q(r)−1.

This concludes the proof of the hexagon identities.
G-Ribbon Structure: We shall verify that the following defines a ribbon twist on
GLM(Γ, σ, ω, δ, ε | q, α, β):

θCa = σ(a, a), θXx̄ = β

for a ∈ Γ and x̄ ∈ Γ/2Γ, with a choice of β = ±α−1 and α2 = ε|Γ|−1/2 ∑
a∈δ q(a)−1

as above. More precisely, we check that the defining condition in Section 3.4 holds:

θCa+b
θ−1
Ca

θ−1
Cb

= σ(b, a)σ(a, b).

This is a standard calculation for abelian 3-cocycles. Indeed, in our case the
coboundary formula in Proposition 5.5 applied on both sides of σ(a + b, a + b) gives
σ(a, a)σ(a, b)σ(b, a)σ(b, b), and the further terms ω(a+b, a, b)ω(a, a, b)ω(b, a, b) = 1.
Then, consider

θXa+x̄θ−1
Ca

θ−1
Xx̄ = ω(a + x̄, a, −a) · ω(x̄ + a, a, −a)q(a)−1 · q(a)−1.

This holds because on the left-hand side the twists on Xx̄ and Xa+x̄ are equal and
cancel and because on the right-hand side the tensor structure and the additional ω
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in the braiding cancel, leaving q(a)−2 = σ(a, a)−1. Then, we look at

θXx̄+aθ−1
Xx̄ θ−1

Ca
= q(a)−1ω(a + x̄, a, −a) · ω(x̄ + a, a, −a)q(a)−1.

This holds analogously to the previous case. Finally, we verify
θCt

θ−1
Xx̄ θ−1

Xȳ = αq(t) · αq(t)

for any t ∈ x̄ + ȳ + δ. Indeed, this holds because the α2 on both sides cancel and
q(t)2 = σ(t, t).

This concludes the proof of the Z2-ribbon structure on GLM(Γ, σ, ω, δ, ε | q, α, β).
We finally verify the assertion that these choices of ribbon structure together with

the rigid structure have positive quantum dimensions if and only if αβ = ε, which is
completely analogous to Section 4. For the objects Ca the quantum dimension is 1.
For the objects X x̄ we compute that, with the rigid structure and ribbon structure
given above, the quantum dimension of Xx̄ is

dim(Xx̄) = evXx̄ ◦cXx̄,X−x̄−δ ◦ (θXx̄ ⊗ idX−x̄−δ ) ◦ coevXx̄

= ε|Γ|1/2 · (α q(0))β idXx̄

= ε(αβ)|Γ|1/2 idXx̄ ,

independently of x̄. This concludes the proof of Theorem 5.12. □
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