2411.12251v1 [math.QA] 19 Nov 2024

arxXiv

MODULAR Z,;-CROSSED TAMBARA-YAMAGAMI-LIKE
CATEGORIES FOR EVEN GROUPS

CESAR GALINDO,* SIMON LENTNER? AND SVEN MOLLERP»¢

ABSTRACT. We explicitly construct nondegenerate braided Za-crossed tensor
categories of the form Vectr @ Vectp or. They are Zs-crossed extensions, in
the sense of [ENOT0|, of the braided tensor category Vectr with Zs-action
given by —id on the finite, abelian group I'. Thus, we obtain generalisations
of the Tambara-Yamagami categories [TY98] [Gal22|, where now the abelian
group I' may have even order and the nontrivial sector Vectr or more than
one simple object.

The idea for this construction comes from a physically motivated approach
in to construct Zs-crossed extensions of Vectr for any I' from an
infinite Tambara-Yamagami category Vectpq @ Vect, which itself is not fully
rigorously defined, and then using condensation from Vectpa to Vectr, which
we prove commutes with crossed extensions.

The Zz-equivariantisation of Vectr @ Vectr or yields new modular tensor
categories, which correspond to the orbifold of an arbitrary lattice vertex op-
erator algebra under a lift of —id, as discussed in [GLM24].
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1. INTRODUCTION

Braided tensor categories and their specialisations, such as modular tensor cat-
egories, have emerged as important structures in low-dimensional physics, in par-
ticular 2-dimensional conformal field theories (e.g., in the form of vertex operator
algebras or conformal nets) and topological phases of matter. In the presence of
an action of a finite group G, this notion is naturally modified to that of a braided
G-crossed tensor category in the sense of [Tur(0).

At the centre of this article is the notion of a braided G-crossed extension,
i.e. a braided G-crossed tensor category extending a given braided tensor category
[ENOT0]. More precisely, given a braided tensor category B together with an action
of a finite group G by braided tensor autoequivalences, a braided G-crossed exten-
sion C D B is a G-graded tensor category C = e C4 equipped with a G-action
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satisfying g.Cp, = Cypy-1 and with a G-crossed braiding Cy ® C, — Cgpg—1 ® C4 such
that the identity component is C; = B with the given braiding and G-action.
For a braided G-crossed extension B C C, the G-equivariantisation C//G, also
referred to as gauging of B by G, is a braided tensor category extending B/ G.
Braided G-crossed extensions are essential for understanding representation cat-
egories of (suitably regular) vertex operator algebras [McR21], as we discuss in more
detail in [GLM24]. See, e.g., [GJ19, DNR21l [GR24] for some applications.

In this article, we study braided G-crossed extensions of pointed braided fusion
categories B [JS93| [EGNOI5]. The latter have the defining property that all their
simple objects are invertible, i.e. they are of the form B = Vect? for some finite,
abelian group I' and a quadratic form @ on I' determining the braiding and associ-
ator. In the context of lattices, such pairs (T', Q) appear as discriminant forms, for
which @ nondegenerate.

Perhaps the easiest nontrivial examples are the Tambara-Yamagami categories,
which provide G-crossed extensions of Vectle2 for G = Zs acting on I' by multiplica-
tion with —1. Indeed, in [TY98], Tambara and Yamagami classified the Zo-graded
fusion categories C with exactly one noninvertible simple object in the graded com-
ponent of nontrivial degree g € Zs, i.e. of the form

C=CdCy= Vect? @ Vect .

In general, this fusion category does not admit a braiding, but with the G-action
above, there exist G-crossed braidings, which were classified in [Gal22]. This pro-
duces two explicit Zs-crossed extensions C = Vectl(i?[Zg, gl,e € {£1},of B= Vect? ,
see Finding precisely two G-crossed extensions of the given B with
the given categorical action of G on B matches the general classification result for
braided G-crossed extensions in [ENO10, [DN21]; see

One is especially interested in cases where the Zs-crossed braiding, and thus in
particular the given braiding on Vectr, i.e. the quadratic form @, is nondegener-
ate. In this case, the Zy-equivariantisation C//Zs is a modular tensor category (see
[Proposition 4.7), which was described in [GNNQ9]. The definition of the Tambara-
Yamagami category requires that on Vect? the associator is trivial and the qua-
dratic form @ admits a quadratic form ¢ with Q = ¢2, which appears in the braiding
and associator involving the g-graded component. In the nondegenerate case, this
necessarily means that the group I' has odd order or, equivalently, that G acts on
I" with the only fixed point 0.

In this article, we generalise the results in [TY98] [Gal22] by constructing braided
Zo-crossed extensions C of B = Vectlc;2 with the quadratic form @@ nondegenerate
and the finite, abelian group T' of arbitrary order where G = Z still acts (as a

certain categorical action, cf. [Remark 5.13]) by multiplication with —1 on T'.
Theorem For e € {£1}, the data given in define a Za-crossed

ribbon fusion category
C= Vect? [Za,e] = Vectlg @ Vectr/ar,
which is a braided Zo-crossed extension ofVect? for a discriminant form (T, Q) with

the above categorical Zo-action. It is equipped with a natural choice of Zo-ribbon
structure for which all quantum dimensions are positive.

The definition of the Zs-crossed braiding on C again depends on a (special) choice
of square root ¢ of the quadratic form @ on I' (see .

By the classification of braided G-crossed extensions [ENO10, [DN21], for each ¢,
there is a unique braided Zs-crossed extension VeCt?[ZQ7 g] of Vect? with the given
Zs-action. Can we verify this directly from our construction (see ?
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We also compute the Zg-equivariantisation C//Zs, which is again a modular ten-
sor category (see[Proposition 5.14)). In particular, we determine the simple objects,
fusion rules and modular data of C/Zy (see [Proposition 5.15| [Proposition 5.16}
[Proposition 5.18)).

The input data for the construction of the above braided Zs-crossed categories
are taken from [GLM24], where they are produced by using the idea that braided G-
crossed extensions commute in a certain sense with condensations by commutative,
associative algebra objects. Concretely, this idea is applied to the situation

Zo-crossed ext.

Vectﬂgd Vectgd @ Vect

écond. icond.

Vect? Zo-crossed ext. Vect? [ZQ, 6}

where (I',Q) is realised as an isotropic subgroup (meaning an even lattice L)
of the quadratic space (Rd,Q). While the infinite Tambara-Yamagami category
Vect]gd @ Vect is not fully rigorous, we can still use the data obtained in
as the data that should define Vectlg[Zg, ¢] and then verify the coherence conditions
explicitly (see [Section 6). This yields the rigorous (but without ad hoc
seeming) definition of the braided Zg-crossed extension Vect?[Zg, e] of Vectlg given

in this paper.

Outline. In we briefly recall discriminant forms and lattices.

In we recall braided G-crossed tensor categories. We also introduce
G-ribbon structures and discuss pseudo-unitarity in that context.

As a first example, in we describe Tambara-Yamagami categories as
braided Zs-crossed extensions of pointed braided fusion categories.

Then, in we define the generalisations of the Tambara-Yamagami
categories where the abelian group I' describing the underlying pointed braided
fusion category may be of even order. The necessary input data are defined in
[Section 5.1l In[Section 5.3 we describe the equivariantisations. In we
describe these categories explicitly in terms of lattice data. The proof of the main

theorem, [Theorem 5.12] is given in [Section 6

Notation. Unless stated otherwise, all vector spaces will be over the base field C.
Categories will be enriched over Vect = Vectc, but we could equally well take any
algebraically closed field of characteristic zero. By Z, we shall always mean the
cyclic group Z/nZ. We write e(x) = e?™2.

Throughout the text, we denote by G a (usually finite) group, written multi-
plicatively, with g denoting an arbitrary element of G. However, in the special case
of G = (g) = Zs, we denote by g the nontrivial element of G. By contrast, I" always
denotes an abelian group, which we write additively. Quadratic forms on I' are
usually written multiplicatively with values in C*; they are related to the usual
notion of quadratic forms with values in Q/Z or R/Z via e(-).
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2. LATTICES AND DISCRIMINANT FORMS

By a (rational) lattice, we mean a free abelian group L of finite rank equipped
with a nondegenerate bilinear form (-, -): L x L — Q. The lattice L is called integral
if (v,w) € Z for all v,w € L. If (v,v) € 2Z for all v € L, then L is called even.
An integral lattice that is not even is called odd. Given a lattice L, we denote by
L*={ve L®zQ| (v,w) € Z for all w € L} the dual of L, embedded via (-, -) into
the ambient space of L.

If L is even, then L C L* and the quotient L*/L is a finite, abelian group endowed
with a nondegenerate quadratic form Q: L*/L — C* given by Q(v+L) = e({(v,v)/2)
for all v € L*. In that situation, we call L*/L the discriminant form of L.

More generally, we call any pair (I", Q) of a finite, abelian group I' together with
a nondegenerate quadratic form @Q: I' — C* a discriminant form (sometimes called
metric group). The function @ being quadratic means that Q(na) = Q(a)"2 for all
a €T and n € Z and that Bg: I' xT' — C* with Bg(a,b) = Q(a+b)Q(a)~1Q(b)~*
for a,b € T is bimultiplicative (and nondegenerate). We call Bg the associated
bimultiplicative form. Any discriminant form (T', Q) can be realised as dual quotient
L*/L for some even lattice L [Nik80].

Given two discriminant forms (I'1, Q1) and (I'z, Q2), we denote their (orthogonal)
direct sum by (T'y @ I's, Q1 € Q2), which represents the group I'y @ I's with the
quadratic form Q1 ® Q2 defined by (Q1 @ Q2)((a1,a2)) = Q1(a1)Q2(az).

A discriminant form is called indecomposable if it cannot be written as an or-
thogonal direct sum of two nonzero discriminant forms. Such discriminant forms
are also referred to as indecomposable Jordan components. describes the
indecomposable Jordan blocks (see, e.g., [CS99, [Sch09]). Here, k € Z~q, p is an
odd prime and (—) denotes the Kronecker symbol.

TABLE 1. Indecomposable Discriminant Forms

Symbol Group Quadratic Form
(P Zpe = () Q(x) = e(p’kug for some u € Z with
(u,p) =1 and (?): +1.
(28)EY Zow = () Q(x) = e(27%~1t) for some t € Zg with
t
(5)=+1

)7 Lok X Zow = (2,y) Q(z) = Q(y) = 1 and Bg(z,y) = e(27F)
(Qk)]_[2 ZQ’“ X Z2’€ = <$,y> Q(‘T) = Q(y) = BQ(QZ’,y) = 6(27]6)

3. BRAIDED G-CROSSED TENSOR CATEGORIES

In this section, we introduce the main categorical notions relevant for this text,
in particular braided G-crossed tensor categories and braided G-crossed extensions.
We also state the results from [ENOI10, [DN21] on the classification of the latter.
Then, we describe G-ribbon structures, pseudo-unitarity and their relation to the
G-equivariantisation.
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3.1. Tensor Categories and G-Actions. In this text, tensor categories are C-
linear abelian monoidal categories, similar to [DGNO10]. Moreover, we consider
braided tensor categories, rigid tensor categories and ribbon categories. A fusion
category is a tensor category that is finite, semisimple, rigid and has a simple tensor
unit 1, as in [EGNO15]. A modular tensor category is a ribbon fusion category with
nondegenerate braiding.

A rigid tensor category is called pointed if every simple object is invertible (or
a simple current). In the following, we consider the typical description of pointed
(braided) fusion categories associated with finite (abelian) groups and some coho-
mological data (see, e.g., [JS93, [EGNO15]).

Example 3.1 (Pointed Fusion Categories). Suppose that G is a finite group and
w € Z3(G,C*) a 3-cocycle. Consider the pointed fusion category Vect: of G-graded
vector spaces, where the simple objects are Cg4, g € G, and the tensor product is
given by C, ® Cp, = Cgj, with associator

w(g,h,k
(C, ®Cr) ® Cx “C8Y ¢, @ (€ ® C)
for all g, h, k € G. The pentagon identity for the associator holds precisely because
w is a 3-cocycle.

Example 3.2 (Pointed Braided Fusion Categories). Let I' be a finite, abelian
group and (o,w) € Z3 (I,C*) an abelian 3-cocycle on it [EM50]. We denote by
Vect” the pointed braided fusion category given by the above fusion category
Vectp equipped with the braiding

Co®C " 0,

for a,b € I'. The hexagon identity for the braiding corresponds exactly to the
defining property of an abelian 3-cocycle, i.e.

1 w(b,a,c) o(a,b+c) w(a, b, c)w(c, a,b) o(a+b,c)

(1) w(a,b,c)w(b,c,a)  a(a,b)o(a,c)’ w(a,c,b) ~ o(a,c)a(b,c)
for a,b,c € T', in addition to the 3-cocycle property of w. If w =1, states that
o is bimultiplicative; else, w measures its deviation from bimultiplicativity.

Abelian 3-coboundaries are of the form (o, dr) with o, (a,b) = x(a,b)x(b,a)
for any function x: I'xI" — C*, and they correspond to braided tensor equivalences
Vect ™ = Vectf:‘j*"“’dN that map each object C, to itself but with a possibly non-
trivial tensor structure given by x. Hence, cohomology classes of abelian 3-cocycles
on I' correspond to equivalence classes of braided tensor categories on the abelian
category Vectr with the given tensor product.

The abelian 3-cocycles (o, w), up to coboundaries, correspond bijectively to qua-
dratic forms @: I' — C*, as shown in [EM50]. Recall that Bg: I' x I' — C* with
Bo(a,b) = Q(a+b)Q(a)™1Q(b)~! for a,b € T' denotes the associated bimultiplica-
tive form. In this correspondence, Bg(a,b) = o(a,b)o(b, a) is the double-braiding
and Q(a) = o(a,a) the self-braiding. If the quadratic form @ is nondegenerate,
meaning that Bg is, then the braiding is nondegenerate. We denote by Vectlc;2 the
equivalence class of braided tensor categories corresponding to a cohomology class
of abelian 3-cocycles defined by the quadratic form @ on I'.

There is a rigid structure C; = C_,, a € I', with the obvious evaluation and
coevaluation. There is also a canonical choice of a ribbon structure 6c, = Q(a). As
we shall discuss in [Section 3.4] and [Section 3.5| this is the unique choice of ribbon
structure for which all simple objects C, have quantum dimension 1, thus coinciding
with the Frobenius-Perron dimension. This is known as the pseudo-unitary choice.
All possible ribbon structures differ from this by a homomorphism I — {£1}.
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If |T'| is odd, then the cohomology class associated with the quadratic form Q

on I' can be represented by a distinguished abelian 3-cocycle (o, w) with w = 1 and
o(a,b) = BgQ(a, b) for a,b € T'. Here, we recall that when the abelian group I' has

odd order, every bimultiplicative map B: I' xI' — C* has a unique bimultiplicative
square root B'/2; an analogous statements holds for quadratic forms.

We describe group actions on tensor categories:

Definition 3.3. Let C be a tensor category with the associativity constraint given
by (X®Y)®Z S X®(Y®Z) and G a finite group. Then a G-action on C consists
of the following data:

(i) For every element g € G, a functor
g«: C —C.

We denote the image of an object X € C by ¢.(X) and that of a morphism
/by g«(f)-
(ii) For every pair of elements g, h € G, a natural isomorphism
TYM(X): (gh)«(X) = gu(hu(X))
such that associativity holds: for all g, h,l € G,
T3 (L (X)) o T (X) = g, (T3 (X)) 0 T

(iii) A tensor structure 79 on each functor g., i.e. for every g € G and every
pair of objects X,Y € C, a natural isomorphism

TRy 9-(X ®Y) = g.(X) ® gu(Y)
such that the diagrams

g (XRY)DZ) T . (X@Y)®9.(Z) = (9.(X)®g.(Y))®9.(Z)

g-(a)] le

9-(X@(Y©2)) 7 9:(X)29.(Y®Z) — 9.(X)®(9:(Y)©9.(2))

and
gh
(gh)«(X ®Y) ——— (gh)«(X) ® (gh).(Y)
TP (X@Y) | |mgr eyt vy

0 (h(X ©Y)) —— g.(ha(X)) @ g (ha(V)

commute for all g, h € G.

A G-action is called strict if all the monoidal functors (g.,79) are strict and the
natural transformations 75 are equalities.

Remark 3.4. The data of an action of G on C is equivalent to a tensor functor
from the discrete tensor category G, where the set G serves as objects and the
tensor product is defined by the multiplication in G, to the tensor category of
tensor functors Autg, (C) along with monoidal natural isomorphisms.

Given a G-action on a tensor category, we can define the following category,
whose objects arise from G-invariant objects of the original tensor category.

Definition 3.5. Let C be a tensor category and G a finite group acting on C. The
G-equivariantisation of C, denoted by C//G, is the tensor category with objects the
pairs (X, ¢) where X € C and ¢ is a family of isomorphisms, ¢,: g.(X) — X for
each g € G, satisfying

h
©gh = ©q 0 g (n) o T3
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for g, h € G. Morphisms f: (X, ¢) = (Y,¢') in C/G satisty
@y 0 g«(f) = f o g

The tensor product is (X, ¢) ® (Y, ¢') = (X ® Y, ¢") with
‘P;J/ =g ® ‘Plg ° T)g(,ya

and the tensor unit is (1,idy).

We describe the simple objects of C/G. The group G acts on the set Irr(C) of
equivalence classes of simple objects. Fixing a representative X; for every orbit and
denoting the corresponding stabiliser subgroup by G;, we can choose isomorphisms
ty: 9«(X;) — X;. The action restricted to G; defines a 2-cocycle x; € Z%(G;, C*),

(2) Xilg, h)idx, =t} oty 0 g.(ty) o T§".

The cohomology class of x; does not depend on the choice of {t, | ¢ € G;}. The
simple objects of C /G, up to isomorphism, are in bijection with isomorphism classes
of irreducible x;-projective representations of G; for every i. For more details on
the correspondence, see [BN13].

Example 3.6. Let G = (g) = Z5 be a cyclic group of order 2 acting on a tensor
category C. In this case, the classification of simple objects of C/G is straightfor-
ward. If a simple object X has a trivial stabiliser, then X9 = X @ g.(X) is an
equivariant object with ¢, = id,, (x)®T57(X). If the stabiliser is G, then take
tg: 9+(X) — X and, using the equation , define v = x(g,9)~ /2. The isomor-
phisms apgi) = +vty: g«(X) — X endow X with two nonisomorphic equivariant
structures.

3.2. Braided G-Crossed Tensor Categories. We now endow the categories
from the previous section with the additional structure of a braiding. The so
obtained braided G-crossed tensor categories (see, e.g., [Tur00, [EGNO15]) are the
central objects in this text.

For a tensor category C and a group G, a (faithful) G-grading on C is a decom-
position C = @gegcg such that the tensor product ® maps C; x Cp to Cgp, the
unit object is in C; and Cy # 0 for all g € G.

Definition 3.7. A braided G-crossed tensor category is a tensor category C endowed
with the following structures:
(i) an action of G on C,
(i) a faithful G-grading C = ®4ecCy,
(iii) isomorphisms, called the G-braiding,
cxy: XY -9, Y)0X
forge G, X €Cy, Y €C, natural in X and Y.

These structures are subject to the following conditions, where we omit the asso-
ciativity constraints in the diagrams for better readability:

(a) g«(Ch) C Cypg—1 for all g,h € G.
(b) The diagrams

(X @Y) — 2 (V) ® X)

-1
g ghg~ 1, h g hy—1_g
T
X,Y JTz (T5") TheY,X

9e(X) ® g (V) 220220 (ghg 1), 0.(Y) ® g.(X)

commute for all g, h € G, X € Cp,, Y € C.
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(¢) The diagrams

XQY®Z —2Y%2 L 0. (YRZ)©X
lCX,Y ®idz i‘r&z
idg, (v) ®cx,z
Y)9X®Z —— ¢.(Y)®g(2) 0 X
commute for all g € G, X € Cy, Y, Z € C and the diagrams

XQY®Z —=2 , (gh).(Z)9 XY
lidx ®cy,z lT.qu
CX,hy (2)®idy ’
X0h(Z2) YV ———— g.h(2) X QY

commute for all g,h € G, X €Cy, Y €Cp, Z €C.

The definition of equivalence of braided G-crossed tensor categories is given in
[Gall7], Section 5.2.

We call C as in the definition a braided G-crossed extension of a braided tensor
category B if C; = B.

An important application of braided G-crossed tensor categories is the following,
related to the equivariantisation, which can be found in the present context in
[Turl0] (appendix by Michael Miiger):

Proposition 3.8 ([DGNO10]). Let C be a braided G-crossed tensor category. The
equivariantisation C /G is a braided tensor category that contains a fusion subcat-
egory braided equivalent to the symmetric category Rep(G). This corresponds to
those equivariant objects (V, (¢q)gec) where V' is in the tensor subcategory gener-
ated by the unit object of C.

Conwversely, for every braided tensor category D containing the symmetric fusion
category Rep(G) with trivial braiding, we can define a braided G-crossed tensor
category C == D¢g as the de-equivariantisation by G. This is the tensor category
of modules over C, the algebra of functions on G, which is an algebra object in
Rep(G) and thus in D.

Remark 3.9. The equivariantisation of a braided G-crossed tensor category C is a
nondegenerate braided tensor category if and only if the neutral component C; is a
nondegenerate braided tensor category. For the existence of a ribbon element, see

Section 3.4

We discuss some examples of braided G-crossed tensor categories and their equi-
variantisations.

Example 3.10.

(1) The archetypal example of a braided G-crossed tensor category is Vectg, the
pointed fusion category of G-graded vector spaces with the obvious G-grading. Up
to equivalence, it has a unique braided G-crossed structure where the G-action is
strict and given by g.(Cp) = Cypg-1 for g,h € G, with the G-braiding being the
identity.

In this case, the equivariantisation Vectg /G is canonically braided equivalent to
Z(Vect), the Drinfeld centre of Vectg. See [NNWQ9| for more details.

(2) For an arbitrary G-graded extension of Vect, we need to twist the previous
example and consider the braided G-crossed tensor category Vecty: for a 3-cocycle
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w € Z3(G,C*), as in [Example 3.1} Given g,h € G, define the maps

_ wlg,h,x)w(gha(gh)~", g, h)
T =T ey

w(gzrg™,9,y)
w(gzg™, gy, 9)w(g, 2, y)
for z,y € G. The G-action on Vects on objects is the same as before, and the

G-braiding is again the identity. However, the action now is nonstrict. Indeed, for
each g € G, the constraints are

3)

/Lg(z7 y) =

4y = He(2,y)idg e,y T (Ca) = Y90 () iy, (n(c,))

The equivariantisation Vecte /G is canonically braided equivalent to the twisted
Drinfeld centre Z(Vects). Again, see [NNWQ9| for more details.

(3) Now, assume that G is abelian. Hence the G-action is trivial on objects. In
this case, u, € Z2(G,CX) is a 2-cocycle for each a € G. The cohomologies i, for all
a € G measure whether the category Vect¢: /G is pointed or not. If v, = §(l,) for
some [, € C1(G,C*), then the simple objects of Vect{, /G correspond to elements in
G x @G. Specifically, the pair (a,y) corresponds to the object C,, with the equivariant
structure @, = v(b)la(b) idc,. The tensor product is determined by the extension

of G by G given by the 2-cocycle 'VG,bzlflbb € Z%(G, CAY') See [GJ16] for details.

3.3. Classification of Braided G-Crossed Extensions. We briefly recall the
important result from [ENO10], Theorem 7.12, the classification of all braided G-
crossed fusion categories C for a given braided fusion category C; equipped with an
action of a finite group G. This is also thoroughly treated in [DN21], where the
assumption of semisimplicity and rigidity is dropped, but finiteness in the sense
of [EGNOI5] is retained (that is, they are working in the setting of finite braided
tensor categories). A more detailed discussion of this result, in the form presented
below, is given in Section 2.3 of [GLM24].

Theorem 3.11 ([DN21], Section 8.3; [ENO10|], Theorem 7.12). Let B be a finite
tensor category with nondegenerate braiding, with an action of a finite group G on B
by braided autoequivalences. Then, there is a certain obstruction O4 € H*(G,C>),
and if and only if this obstruction vanishes, there exists a braided G-crossed ten-
sor category C, where C; = B as a braided tensor category with G-action. The
equivalence classes of extensions associated with the G-action form a torsor over

w € H3(G,C*); see|Remark 3.19
Remark 3.12.

(1) For a braided G-crossed tensor category C, we can define for w € Z3(G, C*)
a twisted C¥ by modifying the associativity constraint with w and twisting the
G-action by multiplying with the scalars in equation . See Proposition 2.2 in
[EG1§| for details.

(2) The braided G-crossed extensions and their G-equivariantisations of the triv-
ial modular tensor category B = Vect correspond to Vect and its Drinfeld centre,

respectively; seo

We remark that the main assertion in this work on the existence of certain

braided G-crossed extensions (see|{Theorem 5.12)) do not make use of [Theorem 3.11]

Nonetheless, it would be interesting to match our constructions to the work of

[ENOI1Q] (see [Problem 1)).

3.4. G-Ribbon Structure. We also consider a G-crossed version of ribbon cat-
egories. The following definition is adapted from Lemma 2.3 in [Kir04]; see also
Section 4.5 of [Gal22].
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Definition 3.13. A G-twist 0 for a braided G-crossed tensor category @geG Cy is
a natural isomorphism x_ : X, — g.(X,) for X, € C4 such that 6; = idy and the
diagrams

X, Y oo (gh)+ (X, ® Y3)
ng,th qu(};’yh
(4) 9-(Yn) © X4 (9h)+«(Xg) @ (gh)«(Yn)
CguYh)-,Xgl nghfl»g(Xg)QaT;*h(Yh)

(ghg™")«(Xy) ® gu(Y) (ghg™")«(9:(Xy)) @ gau(ha(Y2))

T R—
(ghg™ ")+ (0x,)

®9+(0vy,)
and
«(0vy,)
9.(Yn) L g (R (Yn))
(5) (’gw/h)i Tng’h(Yh,)
(ghg™")«(g-(Y1)) (gh)«(Yn)

—1
T3 9 (V)

commute for all g,h € G, X4, € C4 and Y}, € Cp,.
A G-twist in a rigid braided G-crossed tensor category is called a G-ribbon if the
following diagram commutes for all g € G and X € Cg:

-t id y
1 X X @ x+ L Ox@idx) | 97 Mg+ (X) ® X*)

(6)  enx| ERES

XX - X@g 1 (XY) ———— g0 (X) ® g, (XY)
idx ®0x+« 7§ 9(X)®id

Remark 3.14. In the definition of a G-ribbon, if we take G to be the trivial group,
the condition in diagram @ reduces to (idx ®fx+)oevyx = (0x ®idx+«)oevx. This
condition is equivalent to the more common requirement 6x- = (6x)*.

In the following, we show that G-twist and G-ribbon on a braided G-crossed
tensor category descend to the usual notions of twist and ribbon, respectively, on
the equivariantisation.

Lemma 3.15. Let C be a braided G-crossed tensor category. If0x, : Xq — g. X, for
X4 € C4 15 a natural isomorphism that satisfies the commutativity of diagram ,
then for any equivariant object (X, @) € CJJG, the isomorphism

Drecbx Greapl”
wie)t X =@ Xn " P h(Xn) TS P X=X
heG heG heG

is a natural isomorphism of the identity in C /|G, where <p§lh): h«(Xp) = Xp is the
restriction of op to Xp C X.

Proof. In order to verify that w(x ) is a morphism in C/G, we need to check that
g9+ (w) = weg for all g € G. Since pgg.(w) = wey is an equality of morphisms in
C =P, Cx, it is enough to check the equality in the components. Hence, denoting

vs =P P and w= P,
hea heG

where goéghgil) 0 9+(Xn) = Xgpg—1 and wh) = Lpgh)éxh : Xy — X, we need to check

for all g,h € G that
(pgghg’l)g* (W) = w(ghg’l)(pgghg’l)_
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We shall assume, without loss of generality, that the G-action on C is strict.
Thus, diagram simply becomes
(7) 9+(0x) = 0g.x
for every object X and g € G. Now, we can check the equality:
—1 —1 h
P gn(@M) = S . (0192 (60n)

= pgn 00y, (x,)

hg~1 _
= Q" (ghg™)u(g) 0 4. (x0)
_ (ghg™") hg~!
= Pghg1 9Xghg,1<,0§ !

= w(ghg’l)wgghg’l)’

where in the second equality we have used the G-equivariance of ¢ and , in the
third the G-equivariance of ¢ again and in the fourth the naturality of 6.

Finally, if f: (X, ) — (Y, ¢') is a morphism in C/G, then ¢, g.(f) = fip4 for all
g € G by definition. Taking the g-component of f, we get cp'(g)g*(f(g)) = f(g)gpég).

g
Using the naturality of § and the previous equation, we obtain for all g € G:

wg?@/)f(g) = /Dy, [
— <p;<9)g*(f<9))0xg
— f(g)wglg)gx
_ ¢(9), (9)
BEANRE L
Therefore, w(y,,)f = fw(x,s), i-e. w is a natural isomorphism of the identity. — [J

Recall that if B is a braided tensor category, with braiding c, then a twist is a
natural isomorphism of the identity wx : X — X such that w; = id; and

(8) wxey = (Wx @wy)cy,xexy

for all X,Y € B. If B is left rigid and additionally wx~ = (wx)* for all X, then w
is called a ribbon.

Proposition 3.16. LetC = @gec Cq be a braided G-crossed tensor category and 0

a G-twist. Then the natural isomorphism w(x ,) of the identity from [Lemma 3.15
defines a twist for C/G. If 0 is a G-ribbon, then w(x ) is a ribbon.

Proof. The braiding of C/G is given by ¢(x,,,(v,y) = D cq €x,.y, Where

geG

Yg ®ing

cx,v: X,V 220 g (V) ® X, Y ® X,.

states that w is indeed a natural isomorphism of the identity. Then,
equality follows, assuming without loss of generality that the G-action is strict,
using the naturality of # and diagram .

Now, if C is rigid, then so is C /G. Indeed, if (X, ) € C/G and (X*,evx,coevy)
is a dual of X as an object in C, then (X*, (p*)~1) € C/G and (evx,coevy) define
a dual in C/G. Now, it is again straightforward to verify, assuming the G-action is
strict, that diagram [6] implies that w is a ribbon. O

For a tensor category C, we shall denote by Autg (id¢) the abelian group of tensor
automorphisms of the identity. If a group G acts on C, it induces a G-action on
Autg(ide) by group automorphisms. We define

Autg(idc) ={y € Autg(ide) | g«(7x) = V4.(x) for all X € C, g € G},
Autd*(ide) = {v € Aut§(ide) | v = 74-1(x) for all X, € C,g € G}.
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Proposition 3.17. Let C be a braided G-crossed tensor category. The set of all
G-twists is a tm’sor over the abelian group Aut®(1dc) The set of all G-ribbons is
a torsor over Aut® (ide).

Proof. We shall assume without loss of generality that C is a strict braided G-
crossed tensor category; see Theorem 5.6 in [Gall7]. The commutativity of dia-
gram corresponds to the equation

Oxoy = (ghg™").(0x) ® gu(0y) 0 cq,v,x 0 Cxy
for X € C4, Y € Cj. Now, using the naturality of the G-braiding, we also obtain
OxoY = Cgh.Y,g.X © Cq. X.n.Y © (Ox @ Oy).

Let 6 and 0’ be G-twists of C. We shall prove that vx = 6% 19X Xy~ Xgisa
natural isomorphism in Aut®(1dc) We observe that

TXeYy = 9X®Y o Oxgey
- -1
= ((ghg™")+(0x) ® g« (8y) 0 cq.y,x 0 Cx.y)
o (Cgh*Y,g*X 0 Cy,X,h.Y © (G/X 2 9;/))
= C)_<,1Y ° C;*ly,x o (ghg™ ")+ (0x) " @ gu(By) "
0 Cah.v,g.X © Cq. Xn.y © (Ox ® 6%)
= cxy 0 9(fy) T @ 0% o cox .y o (O @ 6y)
= (0% @051 0 (O @ 0y) = (0x'0%) ® (65'65)
=7x @Yy,
where we have used
C;*ly,x 0 (ghg™1)u(0x) " ® g (Oy) ' o cgnyvig.x = gu(Oy) T @O
and
9_ ® ey = CX y © (9«(0y)~ '® 9)_(1) 0Cg. X,h.Y
in the penultimate and last equality, respectively. These equations follow directly
from the naturality of the G-braiding. Now, for all g € G,

9+ (7x) = g:(0% 0x) = 9. (0x)9:(0%) = 0, 5,05 (x) = V9. (x)

for all X € C, and h € G.

Conversely, given v € Aut®(1dc) and a G-twist 0, it is straightforward to check
that v0 is a new twist. Then the group Aut® (ide) acts freely and transitively on
the set of G-twists.

Finally, if 6 and 6" are G-ribbons, then

=g, ' (0x) " g (0)
=g, (0%"0%)

= 9. (7x)

= Yg—1(X)
for all X € C and g € G. It is easy to verify that, given v € Autg’*(idc) and a
G-twist 0, the natural isomorphism ~6 is a new G-ribbon. O

We define a group homomorphism
Q: Autg(ide) — Aute(ide j),
Q) (x.0) = Vx-
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The group homomorphism 2 restricted to Autg’* (idc) takes values in Autg (ide ),
the abelian group of tensor isomorphisms of the identity such that yx- = v%.

Corollary 3.18. Let C be a braided G-crossed tensor category. Two G-twists 6,0’
(respectively G-ribbons) produce the same twist (respectively ribbon) on CJ/G if and
only if QO710") = id.

Remark 3.19. If C is fusion, then Autg(ide) is canonically isomorphic to U(C),
the character group of U(C), called the universal grading group; see [GNO§|. The
subgroup Autg (ide) consists of elements of order 2, i.e. it is in particular an ele-
mentary abelian 2-group. Now, in the case of a braided G-crossed fusion category,
Autg (ide) = Autg(ide) and Autg’*(idc) = Autg(ide). In particular, in the fu-
sion category case, the number of pivotal and spherical structures corresponds to
G-twists and G-ribbons, respectively.

Example 3.20. Consider the braided G-crossed tensor category Vect¢: from
This category has a canonical G-ribbon given by the identity functor.
Hence, it follows from [Proposition 3.17| that the G-twist structures of Vect¢: are
in bijective correspondence with the linear characters G, and the set of G-ribbon
structures with Go, the linear characters taking values in {£1}.

3.5. Pseudo-Unitary Fusion Categories and G-Graded Extensions. Finally,
we also study the notion of pseudo-unitarity in the context of G-graded fusion cate-
gories. This will later allow us to single out a particular choice of G-ribbon structure
(see [Proposition 4.6| and [Theorem 5.12)).

The global dimension, denoted by dim(C), is defined for any fusion category C in,
e.g., Definition 2.2 of [ENO10]. This definition is intrinsic to C. Another dimension
of a fusion category C is the Frobenius-Perron dimension FPdim(C) € R~, which
only depends on the Grothendieck ring K¢(C) of C; see Section 8 of [ENO10].

We are interested in the relationship between the global dimension and the
Frobenius-Perron dimension of fusion categories, as it relates to the existence of
spherical structures for which the associated dimension function coincides with the
Frobenius-Perron dimensions, as indicated by the following result; see Proposi-
tion 8.23 in [ENOO05].

Proposition 3.21. Let C be a fusion category (over C). Then C admits a spherical
structure whose quantum (or categorical) dimensions match the Frobenius-Perron
dimensions if and only if FPdim(C) = dim(C). Moreover, this spherical structure
18 unique.

The above property naturally leads to the following definition (see, e.g., Sec-
tion 8.4 of [ENO10]).

Definition 3.22. Let C be a fusion category (over C). The category C is called
pseudo-unitary if FPdim(C) = dim(C), or equivalently, by [Proposition 3.21} if there
exists a spherical structure with respect to which the dimension of every simple
object is positive (and equal to the Frobenius-Perron dimension).

The following result is an analogue of Proposition 8.20 in [ENO05], focusing on
the global dimension rather than the Frobenius-Perron dimension.

Proposition 3.23. Let G be a finite group and C = @gec Cy a faithfully G-graded
fusion category. Then dim(C;) = dim(Cy) for all g € G, and the global dimension
of C is given by dim(C) = |G| dim(Cy).

Proof. Consider the C;-module category € e Cy and the connected multi-fusion

category
Fune, ( @ Cs, @ Cy> = @ Home, (C4,Cy).

zeG yeG T,y
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Now, each C, is an invertible C;-bimodule; see Theorem 6.1 of [ENO10]. There-
fore, Home, (C,C,) = C; as fusion categories, and C,-1, = Home, (Cy,C;) as a Ci-
bimodule category. It then follows from Proposition 2.17 in [ENOI0] that the global
dimension of each C, is dim(Cy). Therefore,

dim(C) = Y dim(C,) = |G| dim(Cy). 0

geG

We now relate the pseudo-unitarity of a (braided) G-graded (G-crossed) fusion
category to that of its neutral component and that of its equivariantisation.

Corollary 3.24. Let G be a finite group.

(1) Let C be a faithfully G-graded fusion category. Then C is pseudo-unitary if
and only if the neutral component Cy is pseudo-unitary.

(2) Suppose that C is a fusion category with a G-action. Then the equivarianti-
sation satisfies dim(C//G) = |G| dim(C). Hence, CJ|G is pseudo-unitary if and only
if C is pseudo-unitary.

(8) Let B be a nondegenerate braided fusion category with a G-action by braided
tensor autoequivalences. Then the associated (in the sense of non-
degenerate braided fusion categories CJ/G are pseudo-unitary if and only if B = Cy
is pseudo-unitary.

Proof. (1) Proposition 8.20 in [ENOOQ5] implies FPdim(C) = |G|FPdim(Cy).
Then, by |Proposition 3.23] FPdim(C) = dim(C) if and only if FPdim(C;) = dim(Cy).

(2) If G acts on C, the semidirect-product fusion category C x G is G-graded
and Morita equivalent to C/G (see [Nik08], Proposition 3.2). Since Frobenius-
Perron dimension and global dimension are invariant under Morita equivalence
(see Proposition 2.15 and Proposition 8.12 in [ENOI10], respectively), it follows
that dim(C/G) = |G| dim(C) and FPdim(C x G) = |G| FPdim(C).

(3) This follows directly from the previous items. O

Remark 3.25. It follows from [ENOOQ5], Proposition 8.23, that each pseudo-
unitary fusion category admits a unique spherical structure with an associated
dimension equal to the Frobenius-Perron dimension. In particular, it follows that
any gauging of a pseudo-unitary fusion category is pseudo-unitary. In this paper,
we are primarily interested in gauging pointed braided fusion categories, which are,
in particular, pseudo-unitary.

Below, we construct certain braided G-crossed extensions and also write down
a pseudo-unitary G-ribbon element, which we then know is unique. More system-
atic would be a version of the above classification statement, that
inherently uses the setting of a ribbon category with ribbon autoequivalences (see
Problem 5 in [GLM24]).

4. Zo-CROSSED EXTENSIONS OF TAMBARA-YAMAGAMI TYPE

We give a first nontrivial example of a braided G-crossed extension, namely one
for which the monoidal structure is of Tambara-Yamagami type. The example is
also studied in greater detail in Section 3 of [GLM24]. In we shall then
generalise this to allow for more than one simple object in the nontrivial graded
component.

From now on, let G = (g) = Z>. Tambara and Yamagami classified all Z,-graded
fusion categories in which all but one of the simple objects are invertible [TY9S].
The braided G-crossed structures on these were classified in [Gal22).
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Definition 4.1. Let I" be a finite, abelian group, o: I' x I' =& C* a symmetric,
nondegenerate bimultiplicative form and € € {£1} a sign choice. The Tambara-
Yamagami category TY(T,0,¢€) is the semisimple Zs-graded tensor category

TY(T, 0,e) = Vectr ® Vect
with simple objects C,, a € I, and X, fusion rules

Ca®Ch=Copp, Ca®X=X0Co=X, XeX=C,
ter
for a,b € T" and the following nontrivial associators
o(a,b
(CadX)®@Cp=X ) X=C,® (X®Cy),
o(a,t
X®Ch)@X= @(Ct (—)>@Ct =X® (C, @ X),
tel ter
ell| =20 (t,r) !
XeX)oX=PX —— PX=X® (XeX).
tel rer
There is a rigid structure on TY(T', 0,¢) with (left) dual objects C} = C_, and
X* = X, and coevx = i, and evx = |I'|'/?7¢,, where (¢, and m¢, are the canonical
embeddings and projections, respectively, for the direct sum X®X = @, C;, and
otherwise the obvious choices. The two zigzag identities relating evx and coevy hold
as both the associator and inverse associator on X ® X ® X at ¢ = 0 are ¢|T'|~1/2.

We then upgrade the above categories to braided Z,-crossed tensor categories.
To this end, we first need to introduce the following Gauss sum. Given a finite,
abelian group I' and a nondegenerate quadratic form ¢: I' — C*, we define
(9) G(l,q7 1) = |r|7Y/2 Z q(a)™! = e(sign(T, ¢7*)/8) = e(—sign(T, ¢)/8),

acl’

where sign denotes the signature (a number in Zg) of a discriminant form.

Theorem 4.2 ([Gal22|, Lemma 4.8, Theorem 4.9, Proposition 4.12). Consider the
Tambara- Yamagami category TY(I',0,¢) and G = (g) = Zs.

(1) There are two actions of G on TY(T',0,¢e) such that the action on Vectr
is g.Coq = C_, with trivial tensor structure Témcb =1id and trivial compo-
sition Ty9(C,) =id, a,b € T'. Namely, the actions g.X = X with trivial
tensor structures T¢_ y =T ¢, = Ty x = id and with composition structures
T99(C,) = id and 7399 (X) = +id.

(2) The nonstrict action T5*¥(X) = —id does not admit a Za-braiding.

(8) For the strict Zo-action, the Zs-braidings are in bijection with pairs (¢, ) of
a nondegenerate quadratic form q: T' — C* with associated bimultiplicative
form o(a,b) = q(a + b)q(a)tq(b)~* and a choice o of square root of

o =eG(T,q ).
Then the Zs-braiding is, for a,b € T,

o(a,b)
(Ca ® (Cb - (Ca+b —_— (Ca-i-b = (Ca & (va
ala)™!

Co@X=X

X =X®C,,

q(a)™?
X®C,=X

X =C_, ®X,

X®xz@ctﬂ>@ct:X®x.

tel tel
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(4) The Zy-ribbon structures for a given (q,«) are in correspondence with a
choice of B = +a~'. Then the ribbon twist is, for a € T,
q(a)® B
Co—C, and X —X.
We denote by TY(T,0,¢]|q,a,B) the Za-crossed ribbon Tambara-Yamagami cate-
gory associated with these data.

Note that because a® = ¢ e(—sign(T', ¢)/8) by equation (9), it follows that  and
B are 16-th roots of unity, and in particular |o| = |3] = 1. Moreover, af € {£1}
by definition.

Remark 4.3. As we explain in more detail in Remark 3.4 of [GLM24], the two
choices of a yield equivalent G-crossed ribbon categories TY(T', 0,¢]| ¢, a, B).

Remark 4.4. TY(I',0,¢|q, , 8) is a braided Zs-crossed extension of the braided
tensor category Vectl = Vect;’1 (with o symmetric) discussed in
with ribbon structure given by ¢, = ¢(a)?. In other words, in order to define a
braided Zs-crossed extension of Tambara-Yamagami type, we need to, among other
things, choose a square root of a quadratic form. (But note that the quadratic form
q? on I’ may be degenerate if |I'| is even.)

Remark 4.5. A symmetric, nondegenerate bimultiplicative form o: I' x I' — C*
admits |I'/2T'| many choices of quadratic form ¢: I' — C* with associated bimulti-
plicative form o.

There is a somewhat natural choice of the sign 5. Indeed, the following assertion
is not difficult to verify, but see Proposition 3.7 in [GLM24] for a proof.

Proposition 4.6. The quantum dimensions of the above Zs-crossed ribbon fusion
category TY(T,0,e]|q,, B) coincide with the Frobenius-Perron dimensions if and

only if aff = €.

By the definition of o and 3, the condition af = € is equivalent to the equation
B/ = e(sign(T’, q)/8).
Proposition 4.7 ([GNNO09], Proposition 5.1). The equivariantisation of the braided

Zs-crossed tensor category TY(T, 0, q, o, B) Z2 has a nondegenerate braiding and
is hence a modular tensor category if and only if || is odd.

Because it is often natural to demand that the equivariantisation of a braided G-
crossed tensor category be modular, e.g. in the context of vertex operator algebras
(cf. [GLM24]), the special case of " of odd order is the most interesting one.

Assume in the following that |T'| is odd. Then, as explained in [Example 3.2} for

any nondegenerate quadratic form @ on I', the equivalence class Vect has a distin-
guished representative Vect;’l, for which the representing abelian 3-cocycle (o, w)
has trivial associator w = 1 and braiding given by the symmetric bimultiplicative

form o = B ".
Hence, by [Remark 4.4 the Tambara-Yamagami categories TY(T', 0,¢ | q, o, 8) are

braided Zs-crossed extensions of Vect?, concretely represented by Vectl'i’l. Since I'
is of odd order, there is a unique quadratic form ¢ with associated bimultiplicative
form B, = o (see [Remark 4.5)), and this quadratic form must coincide with the
unique square root of Q, i.e. ¢ = Q/2.

Also since | is odd, Vect? has a unique ribbon structure (cf. [Section 3.4).
The ribbon twist is given by 0c, = Q(a) = g(a)? for a € T, and with this ribbon
structure the quantum dimensions agree with the Frobenius-Perron dimensions; in
particular, Vectle2 is pseudo-unitary. Hence, the Zs-crossed ribbon structure on
TY({T,0,e|q,a, ) is an extension of the ribbon structure on Vect?, and yields
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coinciding quantum and Frobenius-Perron dimensions if and only if 3 = ¢/« by

Proposition 4.6

Summarising the above considerations, we obtain the following statement:

Corollary 4.8. Suppose || is odd. The modular tensor category Vect? with strict
Zo-action g.C, = C_, has two braided Zo-crossed extensions with positive quantum
dimensions, namely, for e = £1,

Vect?[Zg,a} = Ty(F,BgQ,E | QY% a,e/a).

Here, « is one of the solutions of o® = e G(T,q~ 1) = ¢ e(—sign(T, q)/8), which
both give equivalent extensions. The equivariantisations Vect?[Zg,E] | Zs are again
modular.

Comparing this with the results from [ENO10], [Theorem 3.11} we conclude that

these are the unique two braided Zs-crossed extensions of Vect .
The equivariantisation Vect?[Zg, €]/ Zy was described in detail in [GNNQ9] and
will be recovered as a special case of our generalisation in

Remark 4.9. If [T is odd, the Gauss sum G(T',¢~1) over ¢~ = Q~'/2 can be ex-
pressed in a simple way in terms of the signature of the discriminant form sign(T", Q)
(see, e.g., [Sch09]):

G(T,q~ ") =TI g(a)™" = e(sign(T,q')/8)

_ (E') ;E(;,Q_l) _ (|F2|) o(~sign(T", Q)/8),

where (-) is the Kronecker symbol, and for n odd (2) = (%) = (71)(”2*1)/8. With

the above formula, the ribbon twist eigenvalue on X, up to an irrelevant sign, is
9 1/2
Ox =pf=c/a==+ (5 (|F> e(sign(T", Q)/S)) .

5. Zo-CROSSED EXTENSIONS FOR EVEN GROUPS

In this section, as the main result of this work, we construct for G = (g) = Zs
explicitly the braided G-crossed extension

Vect%,2 [Z3,€] = Vectr @ Vectrop

of the (nondegenerate) braided fusion category Vect? for a discriminant form (T, Q)
with a Zs-action given by —id on I'. This includes, in particular, a description of
the associators, Zs-braiding and Zs-ribbon structure.

Here, in contrast to the previously known results in [Section 4] the finite, abelian
group I' may have even order, leading to new examples of braided Zs-crossed ten-
sor categories. Through the process of equivariantisation, these also provide new
examples of modular tensor categories (see [Section 5.3]).

As discussed in Theorem 8.1 of [GLM24], these categories correspond to the rep-
resentation categories of orbifolds of lattice vertex operator algebras under reflection
automorphisms, whose Grothendieck rings were described in [ADLO05].

The input data for the construction of these braided G-crossed categories are pro-
duced in Section 6.2 of [GLM24] by using the idea that braided G-crossed extensions
commute in a certain sense with condensations (i.e. going to the local modules over
a commutative, associative algebra object in a braided tensor category in the sense
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of [Par95, [KOQ2]). Concretely, this idea is applied to the situation

Zo-crossed ext.

Vectgd Vectgd @ Vect

icond. icond.

Vect? Zo-crossed ext. VeCt? [227 6]

where (T', Q) corresponds to an isotropic subgroup (meaning an even lattice L) in
(R%,Q), in order to produce the braided Zy-crossed tensor category Vect?[Zg, g]
with all structures.

In principle, for this we need an infinite version of a Tambara-Yamagami category
associated with the infinite, abelian group R? with automorphism —id, which should
be Vect]}% @ Vect as abelian category, but for which we cannot define a tensor product
in the usual sense.

Nonetheless, we use this approach in [GLM24] to very explicitly determine the
data that should define Vect?[Zg, ¢]. We then use this in as input for a
rigorous (but without [GLM24] ad hoc seeming) definition of a braided Zs-crossed
tensor category GLM(T', o,w, d,e | q,r, B). We prove that this is indeed a braided
Zsy-crossed extension of Vect? and hence must coincide with Vectlg [Zo, €].

Finally, in [Section 5.4 we realise the discriminant form (I", Q) explicitly as dual
quotient I' = L*/L of some even lattice L. That is, we view Vecty = Vect(ra’w)

concretely as the condensation
Vectgd = Vectg;a)) > Vectlcl2 = Vect%a’w)

of the infinite pointed braided fusion category Vectgd by the even lattice L, as
discussed in detail in Section 4.3 of [GLM24]. Then, we discuss how these lat-
tice data produce the data used to define the braided Zs-crossed tensor category
GLM(T,o,w,d,e|q,a,B8). If L is positive-definite, the braided Zs-crossed tensor
category will in this way appear for the Zs-orbifold of the corresponding lattice
vertex operator algebra, which we discuss in [GLM24].

5.1. Special Abelian Cocycles. Recall from that for a quadratic
form @ over a finite, abelian group I (i.e. a discriminant form if ) is nondegenerate),
we can consider a representing abelian 3-cocycle (o,w) on T', namely such that
o(a,a) = Q(a) for all @ € T. In the following, we aim to show that every pair
(T', Q) has a special representing abelian 3-cocycle that is particularly suited for
the purposes of this text.

For the following discussion, we sometimes refer to the orthogonal decomposition
of a discriminant form into its (indecomposable) Jordan components. For notation
and further details, we refer the reader to[Table 1| and [CS99] [Sch09].

Definition 5.1. Let I be an abelian group. A normalised symmetric 2-cochain
o: T'xT — C* is called abelian if O(c)(a;b,c) == o(a,b)o(a,c)o(a,b+c)~t € {£1}
for a,b,c € I' and the map

(10) d(o)(—;b,¢): I' = {£1}, a— 9(o)(a;b,c),

is a group homomorphism for every pair b,c € I'. The subset of all abelian sym-
metric 2-cochains is an abelian subgroup of the 2-cochains and will be denoted by

c2,..(I,C).

sym

Note that d(o) is by definition symmetric in the last two arguments.
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Lemma 5.2. If o € CZ,,,(T,C*), then the pair (0,0(c)) is an abelian 3-cocycle.
The map nym(F,(CX) — 73, (T,C*), o+ (0,0(0)) is a group homomorphism that
induces a well-defined homomorphism

9: C2 (T,C*) — H3 (T,C*)

sym

with kernel ker(9) = {o € C2, . (I',C*) | o(a,a) =1 for all a € T'}.

sym
Proof. By equation , the map 0 can be viewed as a group homomorphism
2 (D,C%) = Z*(I,T), o~ (o).

sym

It can be readily verified that, in general, for each o € ZQ(F,f), the function
a(a; b, ) defines a 3-cocycle in Z3(T', C*).

Moreover, since 9(o)(a;b,c) = d(o)(a;c,b), the abelian (or hexagon) condition
in equation for w = (o) is given by

d(o)(a;b,e) ™t = (o) (a;b,c) Y, 9(o)(c;a,b) = d(o)(c;a,b)!

for a,b,c € T'. Since 9(0)(a, b, c) € {£1}, these conditions are satisfied. Altogether,
(0,0(0)) lies in Z3, (T',C*) for o € CZ,,,(T,CX).

Finally, an arbitrary abelian 3-cocycle (o,w) € Z3, (T',C*) is cohomologous to
the trivial cocycle if and only if o(a,a) = 1 for all @ € T. In particular, the same

holds for (o, 0(0)). O

We shall show that every quadratic form has an associated abelian 3-cocycle that
comes from an abelian symmetric 2-cochain. To do this, and to present concrete
nontrivial examples, we need to construct an abelian symmetric 2-cochain for two

families of discriminant forms (cf. [Table 1)).

Example 5.3. Let I' = Z, be a cyclic group of even order. We represent the
elements in Z,, by integers 0 < x < n. A generator of the abelian group of quadratic
forms over I is given by

2

an(x) :e(x), 0<z<n,

2n

that is, any other quadratic form over I is obtained as a power of @9,,. (In the
special case where n = 2%, k > 1, is a power of 2, this discriminant form is inde-
composable and denoted by the Jordan symbol nfl, see The other Jordan
symbols nltil are realised by raising 9, to the power of t.)

An abelian symmetric 2-cochain associated with @Q3,, is given by

Ugn(x,y) =e (%) , 0<z,y<n.

The associated 3-cocycle, measuring the failure of 03, to be bimultiplicative, is
9(09,)(a; 2,y) = (—1)*=)
where
L itz 4y =>mn,
11 ry) N
(11) p(z,y) {0 A,

for 0 <z,y <O0.

Example 5.4. Let I'y, = Zyr ® Zyx for any k > 1, with representatives (x1,x2) for
0 < 1,29 < 2F. We endow I';, with the nondegenerate quadratic forms

129 1?2 + 1179 —l—x%)
)

Qo) = (). Qo) = (0

where 0 < z1, 25 < 2F.
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The discriminant form (T', Q;) corresponds to the Drinfeld centre of the pointed
category Vectyz,, , while (I'k, @y, ) is a generalisation of the 3-fermion, in the sense
that it is anisotropic. Both discriminant forms are indecomposable and their Jordan

symbols are (2¥)}? and (2%);,?, respectively (see|Table 1.

Abelian symmetric 2-cochains associated with Q)i are given by
T1Y2 + T2Y1
o ((z1,22), (y1,92)) = <2k+1> ’

_ — T1Y1 + T2y + T1Y2 + T2y
Oy, ((xlaxQ)v (yl,y2)) =¢e .

2k+1

where 0 < 2;,y; < 2F.
In these cases, the 3-cocycles 8(0%) are given by

Ao ) (a1, a); (w1, 22), (41, 2)) = (—1)@Plrv2)bazplorv),

Aoy ) (a1, a2); (x1,72), (Y1, y2)) = (,1)a1(p(m1,y1)+p(wz,y2))+az(p(rz,yz)+p(fr1’y1))’
where 0 < 2;,1; < 2%, and p is defined in equation .

Without loss of generality, given a quadratic form @ on I', we may assume that
the representing abelian 3-cocycle (o,w) has the following nice form, facilitating
the subsequent computations:

Proposition 5.5. For any abelian group T, the group homomorphism

d:C% _(I,C*) — H3 (I,CX)

sym

is surjective. In other words, any (possibly degenerate) quadratic form @ on T has
a representing abelian 3-cocycle of the form (o,w) = (0,0(0)) for some abelian
symmetric 2-cochain o. In particular, these abelian 3-cocycles (o,w) satisfy the
following properties:

(1) o is normalised, i.e. o(a,1) =oc(1,a) =1 for alla €T,

(2) o is symmetric, i.e. 0(a,b) = o(b,a) for all a,b €T,

(8) for fized b,c € T, w(-,b,c) defines a group homomorphism I' — C*,

(4) o(a,b+c)o(a,b) to(a,c)™t = w(a,b,c) for all a,b,c € T.

This also entails that o2 = Bg, the bilinear form associated with ), and that
w only takes values in {£1}, such that w(:,b,c) defines a group homomorphism
I'/2T' — C* for all b,c € T'. Additionally, w(a,b,c) = w(a,c,b) for all a,b,c € T.

We remark that if || is odd, then the above properties reduce to the choice of
abelian 3-cocycle (o,w) in the second half of That is, the only solution
in this case is given by w = 1 and o the unique bimultiplicative square root of Bg

(see [Example 3.2)).

Proof. First, suppose that I' is odd. For a quadratic form @ on I', the symmet-
ric bilinear form o(a,b) == Bg(a,b)'/? = (Q(a + b)/(Q(a)Q(b)))'/? is an abelian
symmetric 2-cochain such that w := 9(¢) = 1 and o(a,a) = Q(a) for all a € T".

Now, to the general case. First, we assume that ) is nondegenerate, i.e. that
(T, Q) is a discriminant form. Note that it suffices to prove the assertion for the
indecomposable orthogonal components of (I, Q). Indeed, all of the assertions are
preserved under taking orthogonal direct sums. As we will see, the decomposition
and [Example 5.3 and [Example 5.4] provide us with a concrete way to construct
an associated abelian symmetric 2-cochain on I'. Although the orthogonal decom-
position of T" is not entirely unique, this does not affect the argument, as we are
primarily asserting an existence statement.
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Without loss of generality, assume now that (T',Q) is indecomposable and of
order a power of 2; we have treated the odd case above. The indecomposable dis-
criminant forms are either over cyclic groups of order a power of 2 or the families
constructed in In both cases, the examples provide specific abelian
symmetric 2-cochains, thus allowing us, via the orthogonal decomposition, to con-
struct a concrete symmetric abelian 2-cochain associated with the nondegenerate
quadratic form @ on T.

Finally, if (T', Q) is degenerate, we can embed it into a (nondegenerate) discrim-
inant form using the construction of the double:

T,Q) = Tal,Q), a— (a,0),

where Q(a,) = Q(a)y(a) for a € T and ~ € T; see Proposition 5.8 in [DN21]. By
the previous argument, (I' ® I', @) has an associated abelian symmetric 2-cochain,
and by restriction, this defines another one over (T, Q). O

In [Proposition 5.21] we will see how abelian 3-cocycles with the properties de-
scribed in arise naturally in the context of discriminant forms
I' = L*/L of even lattices, where the bilinear form (-,-) takes values in 2Z, i.e.
integral lattices scaled by /2.

Remark 5.6. The lattices in |Proposition 5.21| provide an alternative way to prove
Proposition 5.5 (in the nondegenerate case). While it is clear that not all discrimi-
nant forms can be realised as dual quotients L*/L of even lattices L = V2K with
K integral, all indecomposable Jordan components do indeed appear in L*/L for
some lattice L = v/2K. As explained in the above proof, this is sufficient to prove
the assertion.

We fix further structures on the (I', Q). In addition to [Proposition 5.5, where

we described a square root of the bimultiplicative form Bg associated with @), we
now describe a square root of the quadratic form @ itself. Again, we first consider
specific examples, before using these to prove the general case.

Example 5.7.

(1) Consider the discriminant form (Z,,Q3,), where n > 2 is even, and the

abelian symmetric 2-cochain ¢3,, on it from [Example 5.3 Set

.732

a5, (z) ::e(4>, 0<z<n.

n

Then ¢3,,(a)? = Q2,(a), and moreover, with w := d(09,,),
g2n(a +b) — 0

@2n(a)g2n(b) 7"

for all a,b € Z,,, where § =0 if 4 | n and § = 1 otherwise.
(2) Consider the discriminant form (Zor ® Zyk, Q)) for k > 1 and the abelian

symmetric 2-cochain 02' from [Example 5.4} Define

T1T2 k
q (z1,20) = e (2k+1) , 0<zy, e <28,

(a,b)w(a + b,a,b)w(d, a,b)

Then ¢ (a1,a2)* = @ (a1, a2), and moreover, with w := d(a;"),

q; (a1 + b1, az + b2)
q;f (a1, a2)q (b1, bs)

for all a;,b; € Lok

= O’;:(((Il, (12), (b1, bg))w((al + bl, ag + bg), (a1, (12), (bl, bg))
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(3) Consider the discriminant form (Zox @ Zgk, @, ) for k > 1 and the abelian
symmetric 2-cochain o, from |[Example 5.4, Define
_ 2 + T1T2 + x2
q, (v1,72) =e (W) 7

where 0 < z1, x5 < 2%, It follows that q; (a1, az)? = Q. (a1, a2), and moreover

qr, (a1 + b1,a2 + b2)
q;, (a1, a2)qy (b1,b2)

=0, ((a1,a2), (b1,b2))w((a1 + b1, a2 + b2), (a1, a2), (b1,b2))

for all a;,b; € Zgr, with w = 0(o}, ).
For an abelian group T, let I'y := {a € ' | 2a = 1}.

Proposition 5.8. Given a representing abelian 3-cocycle (o,w) = (0,0(0)) for

(T', Q) as in|Proposition 5.5, there is an element § € T's and a function q: T — C*

such that:

(1) q(a)* = o(a,a) = Q(a),

(2) a(a+b)g(a)~'q(b)~" = o(a,b)w(a+ b, a,b)w(é, a,b)
for all a,b €T.

Proof. The proof is similar to the proof of Again, it suffices to

prove the assertion for all indecomposable discriminant forms (T, Q).

For odd |I'|, where ¢ had to be the unique bimultiplicative square root of Bg and
w trivial, the unique solution is 6 = 0 since I'/2I" = {0} and ¢ the unique quadratic
square root of Q.

For the indecomposable 2-adic Jordan components, all verified in
a choice of ¢ is possible with § = 0, except for the Jordan components 2; 1 where
we need to set 0 = 1 € Zy. Hence, for any decomposition of (T', Q)), the element ¢
will always lie in T'5. O

In other words, in the case of a discriminant form (T, @) and fixing a decompo-
sition into indecomposable Jordan blocks, § € I’y is of the form

52{16Z2%D/2D if D= 2F!,

- (0€D/2D else,

where the sum runs over the indecomposable Jordan components D of T.

Since w is a homomorphism into {£1} in the first argument, ¢ is only relevant
modulo 2. Hence, reversely, if we assume, as asserted by that
§ € T, i.e. 20 = 0, then it is not difficult to see that the quotient I's/(2I' N T'y)
is nontrivial if and only if I's ¢ 2T if and only if I splits off (as abelian groups)
direct summands of order 2. In other words, nontrivial contributions to § can only
come from direct summands of order 2, and this is what we see in the proof of
Proposition 5.9]

In view of [Proposition 5.21] we remark that the Jordan components 2! only
appear in the context of even lattices L = v/2K where K is integral but not even.
On the other hand, all other indecomposable Jordan components already appear
for lattices L = /2K where K is even. We observe that the somewhat natural
choice of § given in [Proposition 5.22| for I' = L*/L agrees with the above formula
for §, as it must.

Remark 5.9. can also be proved using the concrete lattice realisa-
tion in [Proposition 5.21| because all all indecomposable Jordan components appear

in L*/L for some lattice L = V2K with K integral.
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For instance, if K is even, then it is apparent from the construction there that
§ = 0. On the other hand, for K = Z and L = v/2Z so that L*/L = 2! the
construction there yields § = 1 € Z,, in agreement with the above claim.

5.2. Braided Z,-Crossed Tensor Category. In the following, we explicitly de-
fine a braided G-crossed extension GLM(T, o,w,d,¢q,«, B) with G = (g) = Zs
of the braided tensor category Vectl(i2 with an action of Zy by ¢.C, = C_, and a
certain tensor structure 79.

We assume in the following that the representing abelian 3-cocycle (o, w) for the

discriminant form (T, @) has the form given in We further fix a

sign e = 1. Moreover, let § € T'/2T" be (for now) arbitrary.
Given these data, consider the Zs-graded abelian category

C =C1 ®C, = Vectr @ Vectr /or,

where the simple objects are denoted by C, for a € T and by X® for z € T'/2T". In
general, we also denote the coset of an element x € I by z € I'/2T".

Then we shall prove below (see that the following endows C with the
structure of a Zg-graded tensor category GLM (T, o, w, §, €):

Co ® Cp = Car,
(Ca ® Xi —_ X&+i’
xa? ® (Ca — X;E-i—&’

X”_: ® Xg = @ (Ct = @ Ct
_ tel te6+3+7
F=0-+a+7y
for a,b € T and &,y € I'/2T", where we take the associator to be
w(a,b,c)
(Ca®Ch)@C, ————  C, ® (C, ® Co),
_ w(Z+46,a,b) _
X*RCh)®Cp —————— > X" ® (C, @ Cp),
_ o(a,b) _
(Ca®dX")RQCH ————Cu @ (X" ®@Cy),
_ w((a+b)+T,a,b) _
(Ca®Ch)@XT ——————— C, ® (Cp, @ X*),
_ B w(a+z,a,t) _ _
eatt E(Co@X)@XY ———— 5 C, @ (XT@XY) 5 e, ® ey,
_ _ w(Z,t,a) - _
ea®e €EXKPRXY)RC, ——————— s X* @ (XY ®C,) 2 eqrt,
i _ o(a;t) ~ _
et € (XTRCy) XY ——————— XT® (C, ® XY) 3 ey,
_ ~ _eler| T Y20ty ~ _
v € (XP@X)@X* ———— 3 X* @ (XY @ X*) 3 v,
with the normalisation factor |2I'| for a,b,c € I and 7,9,z € I'/2T". Here, ¢; € C;
denotes a vector in the tensor product X* @ X¥ = ®t66+i+g] C; and vy € X¥*% in
the tensor product (X* @ X¥) @ X* = @5, 5,4 X7

Similarly to there is a rigid structure with dual objects C: = C_,
and (X®)* = X~ and with coevy = tc, and evx = |2T|"/?7¢,. The two zigzag
identities relating evx, and coevyx hold because the associator and also the inverse
associator on X @ X ® X at t = 0 are E|2F|_1/2, by the slightly unusual character

sum in [Cemma 6.1] below.
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We shall then show that this tensor category C = GLM(T', 0,w,d,e) admits an
action of G = (g) = Zy defined by

g*(ca = C—a, g*Xi = Xi
for a € T, € T'/2T", with strict composition and with tensor structures 7 given by
w(a,b,—b)
9= ((Ca & (Cb) _— g*(ca & g*(cb>
_ w(a+Z,a,—a) _
g*(Ca by xx) — g*(ca & g*le
_ w(Z+d,a,~a) _
g*(xa: ® (Ca) E— g*xx (9 g*Cav
- _ w(z,t,—t) - _
(X @XY) ———————— g . X" ® g XY

for a,b € T and z,y € T'/2T" and again with ¢ the summation index appearing in
the tensor product of XX-type.

Now, suppose in addition that 6 € T'/2T" and ¢: I' — C* are given as in
Recall that § must lie in I's, i.e. 20 = 0.

We shall establish that for every choice of ¢, the Zy-graded tensor category C
above becomes a braided Zs-crossed tensor category GLM(T, o, w,d,¢]|q, ) with
the following braiding:

o(a,b)
(Ca & (Cb (Cb & (Caa
_ q(a)™! _

C, ®X* X? ® C,,
_ q(a) " 'w(z+a,a,—a) _
X?® C, C_, ® X",
- _ aq(t) _ -

X¥ @ XY XY @ X

for a,b € T and z,y € T'/2T" with a normalisation factor « given by a choice of
square root of

o?=eGs(T,qh)

with the partial Gauss sum

Gs(T g™t = 20123 g(a) .

a€d

Here, t is again the summation index in the tensor product X% @ X¥ and X¥ @ X%,

We study the appearing partial Gauss sum Gs(I',¢~!) in more detail. Recall
that the sign s = £ (not to be confused with the signature) is well-defined for a
discriminant form as long as the latter does not contain the Jordan component 2ti1.
Indeed, for the Jordan components ¢*™ (¢ a power of an odd prime) and qti” and
quI" (¢ a power of an even prime) the sign s is nothing but the sign in the exponent,
and then extends to the whole discriminant form multiplicatively, but for ¢ = 2
there are the exceptional isomorphisms 2{! 2 2:1 and 25! = 24! meaning that
the sign is in general not well-defined (see also(Table 1)). Also recall that (-) € {£1}

denotes the Kronecker symbol.

Proposition 5.10. Given a discriminant form (I, Q) and a choice of representing

abelian 3-cocycle (o, w) as in[Proposition 5.5, as well as a choice (q,6) as in[Propo]
the above partial Gauss sum Gs(T,q ") is well-defined (i.e. independent
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of these choices) if and only if T' does not contain a Jordan component Ztil in its
orthogonal decomposition, in which case § =0 € T'/2T" and the sum evaluates to

_ _ _ 2
Go(T,q™") = 27172 37 gla) ™" = e(~ sign(T")/8) s(Ter) () ,
T odd]
ae2l’
where I' = Ty ® LToqq s the decomposition of T' into the 2-adic part and the p-adic
part for all odd primes p.

[Proposition 5.10| generalises the Gauss sum G(I',¢~!) in see equa-

tion @ and [Remark 4.9}

Proof. A proof is obtained by proving the assertion for all indecomposable Jordan
components. For the p-adic components for odd primes p, the assertion is simply
It is not difficult to compute the Gauss sum for the indecomposable
2-adic Jordan components except for 2?1 and see that the assertion holds. O

For 27! = 25_1 with signature 1 (mod 8), the above partial Gauss sum evaluates
to e(7/8) or e(3/8), depending on the choice of g. These are exactly the values one
would obtain from the formula in [Proposition 5.10] by inserting either 1 or —1 for
the sign s. Similarly, for 23 > 2+1 with signature 7 (mod 8), the partial Gauss
sum yields e(5/8) or e(1/8), again compatible with [Proposition 5.10}

Finally, in view of [Proposition 5.23] we mention that if I' = L*/L comes from an
even lattice L = v2K where K is even, then the sign factors in [Proposition 5.10|
cancel and the partial Gauss sum evaluates exactly to e(—sign(I')/8). Moreover,
if L = v/2K where K is only integral (in which case Jordan components 2?”
appear so that the partial Gauss sum is not well-defined), then the choice of ¢
given in [Proposition 5.22| fixes the value of the Gauss sum, which still evaluates to

e(—sign(T)/8).

Remark 5.11. Alternatively, in order to prove |Proposition 5.10 we note once
again that all indecomposable Jordan components appear in discriminant forms
I' = L*/L for even lattices L = V2K where K is integral. In fact, since we are
excluding Ztil, it suffices to consider L = v/2K for K even. Then the Gauss sum
Go(T, ¢~ 1) takes the simple form in |[Proposition 5.23, allowing us to infer the value
of the Gauss sum for all indecomposable Jordan components.

For example, suppose that ¢ = 2* for k > 2. Then the even lattice \/7 Aj has
the discriminant form I' = ¢;™', whose signature is 1 (mod 8). By |Proposition 5.23}
the Gauss sum equals Go(T', ¢~ 1) = e(7/8) (cf. [Example 5.24)).

Finally, we will see that the following Zs-ribbon twist turns C into a Zs-crossed
ribbon fusion category GLM (T, o,w, d, €| q, o, B):

o(a,a)
Cy ——— C,,
_ B _
X — s g, X"
for a choice B = +a~!. We point out that the ribbon twist takes the same value
on all the objects X® for z € I'/2I" (cf. [Remark 5.13)).

Summarising the above, we state the main result of this section (cf.[Theorem 4.2]
[Proposition 4.6|and [Corollary 4.8). The proof is given in [Section 6}

Theorem 5.12. Let G = (g) & Zy. The data given above define a braided Zs-
crossed tensor category

GLM(T,0,w,6,¢|q,a, f) = Vectr @ Vectr or,
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which is a braided Zs-crossed extension of Vectle2 for a discriminant form (T, Q)
with representing abelian 3-cocycle satisfying [Proposttion 5.5, with the categorical
Za-action being g.C, = C_, with tensor structure g.(C,®Cyp) = 9.C, ®g.Cy given
by w(a,b,—b) for a,b € T'. The ribbon twist defined above yields positive quantum
dimensions if and only if aff = €.

Note that if I is odd and we choose 0 = B2, w =1 and ¢ = Q'/2, then the
definition exactly reduces to the Tambara-Yamagami category in

Problem 1. By the results in [ENO10, [DN21], for each ¢, there is a unique braided
Zo-crossed extension Vect?[Zg,s] of Vect? (say with a ribbon structure that has
positive quantum dimensions) with the given Zs-action (which depended on w), i.e.
independent of the choice of (g, ). Can we verify this directly from the construction

of GLM(T,o,w,0,e|q,a,e/a)? Cf. |Corollary 4.8 The independence of the sign of
Remark 4.3

« follows as in

Remark 5.13. We point out that the braided Zs-crossed extension in
corresponds to a certain categorical action of G = (g) & Zy on Vectg,
which in particular permutes the simple objects as ¢.C, = C_, for all a € T'.

However, not all Zs-actions with the latter property necessarily give the same
extension. Indeed, if we consider the special case of discriminant forms I'" with
2" = 1, then Zy does not permute the objects of Vect?, which are indexed by T,
but the action is mot the trivial action, as can be seen by looking at the tensor
structure (see also Example 4.4 in [GLM24]).

The Zs-action from with 2I' = 1 and the truly trivial Zg-action
both produce braided Zs-crossed extensions of the form C; ®C,; = Vectr @ Vectr as
abelian categories, but they differ in other aspects. For instance, for our Zs-action
the ribbon twists are the same for all objects in C, = Vectr, while this will not
typically be the case for the trivial Zs-action.

5.3. Equivariantisation. In this section, we consider the equivariantisation
g‘CM(Fa o,Ww, 675 ‘ q7a76)//Z2

of the braided Zs-crossed tensor category from [Theorem 5.12] which is a modular
tensor category. In particular, we determine the simple objects, the fusion rules
and the modular data, i.e. the S- and 7-matrix.

First, similarly to [Proposition 4.7, we show:

Proposition 5.14. The equivariantisation GLM(T, o,w, d, €| q, o, B) | Z2 has a non-
degenerate braiding, and hence is a modular tensor category.

Proof. As proved in Proposition 4.56 of [DGNO10], the equivariantisation C/G of
a braided G-crossed tensor category C is nondegenerate if and only if the grading is
faithful and C; is nondegenerate. Since GLM(T, o,w,d, €| q, o, B) is faithfully graded
and the trivial sector is nondegenerate by construction, its Zs-equivariantisation is
hence nondegenerate. Furthermore, since it has a Zs-ribbon structure, the equi-
variantisation is modular. U

We describe the simple objects of GLM(T,0,w,d,¢|q,, 8)//Zy. To this end,
consider the exact sequence 0 — I'y — T'32T' — 0, where T'y = {a €T |2a =1}
In particular, 2I' 2 T'/T'y and |2T||Ty| = |T|.

Proposition 5.15. The simple objects of GLM(T, o,w, b€ | q,c, B) | Za, up to iso-
morphism, are given by:
(1) 2|T'a| invertible objects (of quantum dimension 1) indexed by I'y x {£1}.

They are given by X, = C, with equivariant structure gy = sidc, for
a€ly and s € {£1}.



Z2-CROSSED TAMBARA-YAMAGAMI-LIKE CATEGORIES FOR EVEN GROUPS 27

(2) L(IT] = |Tq|) = |T|(1 = 1/|2L]) simple objects of quantum dimension 2
indezed by the set of unordered pairs {{a,—a} | a € T\T's}. They are given
by Yia,—ay = Ca ®C_, for a in '\ Ty, with the equivariant structure given
by interchanging the direct summands.

(8) 2|Ty| simple objects of quantum dimension (|T|/|T2|)*/? = |2T'|*/? indeved
by I'/2T x {£1}. They are given by Zz s = X* with equivariant structure
pg = sidxz for z € T/2T" and s € {£1}.

Proof. The assertion follows directly from an application of O

Next, we determine the fusion rules among the simple objects of the equivarian-
tisation. We know that o(a, —b)o(a,b) = w(a,b, —b) for a,b € T'. In particular, for
b ey, wla,b,—b) = c(a,b)> = Bg(a,b) for a € I'. Moreover, it defines a group ho-
momorphism w(-,a, —a): T'/2I' — {£1} for each a € T', or Bg(-,a): I'/2I' — {£1}
for a € T's.

Proposition 5.16. The fusion rules of GLM(T,0,w,d,e|q, e, B) | Zs are:

Xa,s @ Xpt = Xatp,stw(ab,—b) = Xatb,stBg(ab)s
Ka,s ® Yib, -0} = Yiatb,a-b}>

Xa,s @ Zz,r = Zatz,srw(ats,a—a) = Lata,srBo(atda)
Yia,—a} ® Zayr = Zg51 D Zig 1

KXote1PXote,—1DXp—c 1D Xp—e,—1 ifb+c,b—cely,

Yooy © Vo) = Yiote,~b—c) X1 ®Xp—c,—1 ifb+c¢ Ty, b—cely,
) c,—c¢ Y{bfc,fb+c}@Xb+c,1 @Xb-i-c,—l ifb+cely, b—c é Ty,
Y{b+c,—b—c} €BYi{b—c,—b-i—c} Zf b+ ¢, b—c ¢ F27
Zzr @ Zys = @ X rsw(@,t,—t) @ Y-ty
_ tels te(\T'2)/2
t=04+7+y t=6+z+7y
= @ Xi.rsBo(z,t) P @ Y,y
_ tels te(I'\TI'2)/2
F=5+3+7 t=0+3+7

Here, (I'\T'2)/2 indicates that we select one of t or —t for each pair {t,—t} C T'\T's.

Remark 5.17. We remark that the fusion rules of GLM(T, o,w,d,e|q, o, B) and
those of its Zg-equivariantisation GLM(T', o,w, d, €| q, o, B) /Z2 do not depend on e.
This is analogous to Tambara-Yamagami categories: both GLM (T, o, w, d,¢| ¢, a, B)
and GLM((T, o,w,d,¢e|q,, B) ) Zo are Zo-graded categories. We can twist the as-
sociativity constraint using the nontrivial 3-cocycle w € Z3(Zy,C*) defined by
w(1,1,1) = —1. This twist only alters ¢ to —e, leaving the fusion rules unaffected.

Finally, we determine the modular data. Recall that, given a ribbon fusion
category B, its modular data are defined as the pair of |Irr(B)| x | Irr(B)|-matrices

Sxy =trleyxocexy), Txy =dxy0y,
where X, Y € Irr(B).

Proposition 5.18. The modular data of GLM(T,0,w,d,e|q,a, B)/Z2 are given
by the T -matriz with entries

TXeuXe. = Q@)™ Ty iy View, = Q@)™ Tz, 2., =587
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and the S-matriz with entries
Sx,..xy. = Bg(a,b), SXa,s,Y{b,_z,} = 2Bg(a,b),
SX,. 20, = 8|20"*Bo(2,a)Q(a), SvViuayZo, =0,
Sy Yooy = 2(Ba(b,c) + Bq(b,c) "),
824,25, = €s2T1V2G5(T, 47 ") Go1a45(T, Q)

with the Gauss sum Gsz(I',Q) = 20723 _s.-Q(a) for z € T/2I" and the
Gauss sum Gs(T',q~ 1) over q(a)=! from |Proposition 5.10
Recall that e € {£1}, that 3 is a square root of 8% = 1/a? = ¢/G4(I",¢ ') and

that the choice 8 = e/a results in positive quantum dimensions. (Note that « itself
does not explicitly appear in the modular data.)

Proof. First, we use [Proposition 3.16| to compute the ribbon element of the equi-
variantisation. For simple objects graded only over the neutral component, the
ribbon is simply the Zs-twist of one of the simple constituents. For simple objects
graded only over the nontrivial element g, the ribbon is the Zs-twist of one of the
simple constituents composed with ¢ . Using the Z-ribbons in , we obtain

Ox,.=Q(a), Oy, _,, =QD), 0z, =sp.

The expression for the 7-matrix follows.
Then we compute the S-matrix using the fusion rules in [Proposition 5.16] and
the following formula, which holds in any modular tensor category B:

Sxy =050y Y N{y0zdim(Z)
Zelrr(B)

for all X,V € Irr(B), with the fusion rules written as X @ Y = €D ;¢ N)Z(’YZ
with N)Z(,Y S Zzo.

(1) Since X, s ® Xt = Xaqp,stBg(ab)s it follows

SXuXy = Q(a) QD) "' Q(a +b) = Bg(a,b).
(2) Because X, s ® Y(3,—y = Y{atb,a—b}, We obtain
SXu Yooty = 2Q(a)7'Q(b)'Q(a + b) = 2Bg(a,b).
(3) Since Xa,s ® Zi,r = Z&+i,srBQ(a+i,a)a
SXosiZo, = |2F|1/2Q(a)_1rﬁ_1rsﬁBQ(a +Z,a)= S|2F|1/QBQ(.f, a)Q(a).

(4) The fusion rule Y{, 0} ® Zz, = Zta1 © Zi74, —, implies

SV Ze, = Q(a)'rB71(]20)/2B — [2T|'/28) = 0.
(5) From the fusion rule of Yy, 43 ® Yy, _.} we obtain
Yooty Viero) = QL) (2Q(b +c¢)+2Q(b— c))
= Q(BQ(b, ¢) + Bg(b, —C))
= 2(BQ(b, ¢) + Bg(b, c)_l).
(6) Finally, the fusion rule of Z; , ® Z; s implies that
8242y, =TSP Z Q(t)

ted+24+y
= 150?20 |Y?Gs1745(T, Q)
:ET‘S|2F|1/2G5(F,qil)G5+i+§(FaQ)' O
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We comment on the product [2T'|/2G5(T', ¢ 1)Gs4744(T', Q) of the two partial
Gauss sums appearing in the S-matrix entry Sz, . 7, .. The first Gauss sum is well-
defined only for discriminant forms not containing 2}1 and evaluated in
The second Gauss sum is always well-defined but takes exceptional values
for 271, 4;“ and 2Ii11. For ease of presentation, let us assume that the discriminant

form (T, @) does not contain these Jordan components. Then § = 0 € I'/2T" and
Gsiayy(T, Q) = [T/2T V2 e(sign(T, Q) /8)dz45.,0.

Hence, the product of the Gauss sums evaluates to

2
(12) 12T [Y2G5(T, ¢ ) Gotar5(T, Q) = [TV %5(Tey) (M) 8545.0

if we exclude the possibility of these exceptional cases. Below, we list also the
(exceptional) S-matrix entry for the discriminant forms 47"

If C and D are braided Zs-crossed tensor categories, then the tensor category
CXZ2D=(C;XD;)® (CgRWD,) C CRD is a braided Zy-crossed tensor category
with the diagonal Zs-action and the obvious Zs-braiding. In particular,

GLM(Ty, 01,w1,01,61]q1, a1, B1) 822 GLM (T, 02, wa, 82, €2 | ga, cva, B2)
ZGLMIT L ®T2,01 ® 09, w1 Bwa, 01 B 02,6162 | 1 D g2, 12, f152).

Hence, it suffices to present concrete examples associated with indecomposable dis-
criminant forms (T, Q).

Odd Groups. Let (T, Q) be a discriminant form (indecomposable or not) where T’
is a group of odd order. Then, we already noted that GCLM(T, o,w,d,¢|q, «, ) re-
duces to the (odd) Tambara-Yamagami category TY (T, o, ¢ | ¢, «, 8), as considered
in[Section 4] In that case, the equivariantisation was already computed in Section 5
of [GNNQ9].

Recall that in the odd case, ¢ is the unique quadratic square root of @), o is the
unique bimultiplicative square root of Bg and § = 0 € I's. Moreover, |I's| = 1 and
2I'=T.

It is not difficult to reduce our formulae for the fusion rules and the modular
data to the special case of odd |I'|, and we find perfect agreement with [GNNQ9|.
Indeed, the simple objects are then classified as follows:

(1) Two invertible objects X (of quantum dimension 1) for s € {£1}.
(2) ('] —1)/2 simple objects Y74, _q) of quantum dimension 2 for a € "\ {0}.
(3) Two simple objects Z, of quantum dimension |T'|'/2 for s € {£1}.
We forego an explicit description of the fusion rules; they are readily read off from
[Proposition 5.16|
In the odd case, the modular data are given by the 7T-matrix

-1 -1
TXme =1, Ty{a,fa}7y{a,fa} = Q(a) ) ,TZS,ZS =sp

and the S-matrix

SXSaxt =1, SXS,Y{b,fb} =2,
SX57Z7‘ = S|]‘—“1/27 SY(a,—a}wzr = 07
SY{b,fb}vy{u,—u} = Q(BQ(by C) =+ BQ(ba 0)71)7 5

87,2, =ers[T['?G(L, ¢ ")G(T, Q) = ers|T|/? (|F|> )

In the last formula, we used that the product of the two Gauss sums simplifies to

a Kronecker symbol; see equation or [Remark 4.9
Here, ¢ € {#1} and f is a square root of 3% = 1/a? = ¢ (%) e(sign(T, Q)/8).
The choice 8 = &/« results in positive quantum dimensions.
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Even Indecomposable Components. As another example, for £k > 2 we consider
the indecomposable discriminant form with Jordan symbol (2¥)£!, i.e. the group
I’ = Z,x with the quadratic form Q(z) = e(;,fﬁ—fl)7 where 0 < x < 2% and t € ZJ (see
. The sign in the Jordan symbol is s(T", Q) = (%): (—1)“2_1)/8 = =41, and
we write (2F); := (2¥)i! for short. The signature is e(sign(I', Q)/8) = e(t/S)(%)k.

Recall that the choice of o from [Example 5.3|, the choice ¢(z) = e(zt,j’%;) from
[Example 5.7]and § = 0 € T'; satisfy the conditions in[Proposition 5.8 To be precise,
there we only considered the case t = 1, while in general we simply raise o and ¢
to the power of ¢.

Moreover, I'y = (28=1) = Z, (which we write as {0,1} and not as {0,2¥"!} in
the following) and 2T" = (2) = Zgr—1 so that I'/2T" = Z, (also represented by {0, 1}).
The simple objects are then classified as follows:

(1) Four invertible objects X, s (of quantum dimension 1) for ¢ € {0,1} and
s € {£1}.
(2) 2F=1 —1 simple objects of quantum dimension 2, denoted by Y;, := Yin,—n}s
for1<n<2k1_1,
(3) Four simple objects Z; s of quantum dimension 2(*~1/2 for 7 € {0,1} and
se{l,—-1}.
By [Proposition 5.10, the Gauss sum Go(I",¢~!) takes the values
4

Goll.q™) = e(—sign(1, Q)/) (L) = e(-1/9)(£) " (2).

On the other hand, it is not difficult to see that

5571 lf If == 2,

G3(T,Q) = V2e(sign(I', Q) /8) - { b HE>3

Hence, we obtain for the product of these Gauss sums

_ t 55;’ lfk:2,
Go(T, g 1)Ga(T,Q) = v2 (5 )- {5; e

which agrees with but in addition treats the cases 4:'. Then, the modular
data for (2%), with k > 2 and t € ZJ are given by the T-matrix with entries

(—1)* ifk=2,
1 if k>3,

oy, =e(—tn?/2"), Ty 7. =sp7"
and the S-matrix with entries

X Xo, = 1, SXuYn = 2(=1)"",

—1)e@) if =2

S = 2(k71)/2 ( - )

XaaiZar =5 (—1)e7 if k> 3,
Sy,,y, = 4cos(tmnr/2871),

8200 Zsy = 51"52’“/2(3) ) Ozga k=2,
T, T Y, 2 6i+g,0 ifk 2 3

TX,.. X, = (—ta®2"7?) = {

Sy, 2z, =0,

Here, ¢ € {£1} and 8 is a square root of 32 = 1/a? = ¢/Gy(I',q~*). The choice
B = e/a results in positive quantum dimensions.

Example 5.19. We take the discriminant form T' = (4); = (4)]* (for k = 2) with
the choice ¢ = 1, some choice of @ and 8 = ¢/a = 1/a. The Gauss sum is
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Go(T',q~ 1) = e(7/8). For definiteness, take a = ¢(7/16) and so 8 = ¢/a = e(9/16),
recalling that a? = ¢ Go(T", ¢~ !). Then the modular data are given by

Tzdiag(Xo’l Xo—1 X1,-1 Xl,l‘ZO,—l Z1,-1 201 le ‘ Y, )
U el e () e () () e (D
and
Xo1 Xo—1 X1,1 Xi1|Zo—1 21,1 Zoy Zig | N1
Xa |1 1 1 1]V V3 V2 a2
Xo.-1 1 1 1| —vV2 —vV2 —V2 —V/2] 2
Xi,1 1 1 V2 V2 V2 V2|2
Ss— | X 1 | =v2 2 —V2 V2 |-2
Zo 1 0 2 0 20
Z 0 -2 0 |0
Zos 0o 2 |o
Z1 1 0|0
Yi 0

5.4. Data for Lattices. We now discuss how the data used to define the braided
Zs-crossed tensor category in can be obtained from lattice data. If the
even lattice is positive-definite, the braided Zs-crossed tensor category will in this
way appear as category of modules of a Zs-orbifold of the corresponding lattice
vertex operator algebra (see Theorem 8.1 in [GLM24]).

Any discriminant form (T, Q) can be realised as dual quotient I' = L*/L of some
even lattice L = (L, (-,-)) embedded into its ambient quadratic space (R%, Q) with
Q(v) = e({v,v)/2) for v € R? [Nik80]. We then recall from Section 4.3 of [GL.M24]
that one can realise Vectt = Vect(F”’w) concretely as the condensation

VeCth = VeCt(E’@) ~ Vect? = Vectég’w)

of the infinite pointed braided fusion category Vect by an infinite commutative,
associative algebra A = C.[L] associated with the even lattice L C R9.
In particular, in [GLM24] we describe how the abelian 3-cocycle (¢,w) on the

ambient quadratic space (R%, Q), chosen as, say,

a(u,v) = e({u,v)/2),
for u,v,w € RY, induces the abelian 3-cocycle (o,w) on (I',Q). The latter fur-
ther depends on a choice of 2-cocycle e¢: L x L — C* whose skew form equals
e(u,v)e(v,u)~t = &(u,v) for all u,v € L, and further a choice of representatives
a € L* for the L-cosets a € ' and the corresponding 2-cocycle u: I' x I' — L.

w(u,v,w) =1

In this section, we assume for simplicity the following strong evenness condition
for the lattice L:

Assumption 5.20. The lattice L fulfils one of the following equivalent conditions:

(1) (u,v) € 27Z for all u,v € L,

) L =+/2K where K is an integral lattice,
) L C 2L*,

) o(u,v) 7e(<u v)/2) =1 for all u,v € L,
)

)

The 2-cocycle € on L whose skew form is &, can be chosen to be trivial,
rk(L)

(2

(3
(4
(5
(6) /2T > 7}

Proof. All equivalences except the one to item @ are clear. For an integral lattice
of rank d = rk(L) there is a basis {aq,...,aq} of L* and integers my,...,mq € Z
such that {mjaq,...,m,aq} is a basis of L. Then, as abelian group I' = L*/L =
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Loy X =+ X L. This implies that I'/2" 2 Z} for some | < d and moreover that
I'/2T = 74 if and only if all m; are even if and only if L C 2L*. O

The assumption is made precisely so that 7(u,v) = e({u,v)/2) =1 for u,v € L,
instead of taking values in {£1}, and hence that the 2-cocycle € on L becomes trivial.
The particular representing abelian 3-cocycle (o,w) for Vect? from [GLM24] then
simplifies to

for a,b,c € ' and hence obeys the additional conditions in

Proposition 5.21. For a lattice L fulfilling the stronger evenness condition in
[Assumption 5.20) the representing abelian 3-cocycle (o,w) for the discriminant form

I = L*/L from Section 4.3 in [GLM24] satisfies the properties in |Proposition 5.5,

In particular, this means that o and w(a, -, -) for fixed a € T are symmetric and
w(+, b, ¢) factors through a group homomorphism I'/2I" — C* for fixed b,c € T

By the definition of the dual lattice, ¢ restricts to a bimultiplicative pairing
L* x L — {£1}. Now, if L satisfies [Assumption 5.20} o(a,u) = e({a,u)/2) for
u € L does not depend on the choice of coset representative ¢ and thus factors
through a pairing I x L — {#1}. Because it only takes values in {41}, this further
factors through a pairing

p: T/2T x L/2L — {+1},

which we can show to be a perfect pairing. This pairing p allows us to identify
/2T =2 Hom(L/2L,{+1}).

This also recovers the interpretation @ of the stronger evenness condition in
[Assumption 5.20} the 2-torsion of T is as large as possible, namely T'/2T" & Z;k(L),

noting that for a general even lattice I'/2I" = Z), with [ < rk(L).

We now fix a class ¢ € I'/2I" and a function ¢: I' — C* with the properties in
stated in

To this end, for an even lattice L, we consider the function v — e((v,v)/4) taking
values in {£1}, which is a certain choice of square root of the natural (and trivial)
quadratic form e({v,v)/2) =1 on L. This descends to a function

§: L/2L — {£1}, 0(v+2L) :=e((v,v)/4).

Under the additional evenness condition in [Assumption 5.20 i.e. if (u,v) € 2Z for
u,v € L, this function is a group homomorphism ¢ € Hom(L/2L,{£1}). Via the
pairing p, we may identify this § with a class 6 € I'/2T", and we note that any
representative of § in I' is in I'y = {a € ' | 2a = 1} (cf. [Proposition 5.§)).

On the other hand, we can use the choice of representatives for I' = L*/L to
define a function

¢: ' = C*,  qla) =e((a,a)/4)

satisfying q(a)? = o(a,a) for a € I'. Under the additional evenness condition in
[Assumption 5.20] it satisfies

(13) qla+b)q(a)tq(d)™! = o(a,b)w(a + b,a,b) " 5(u(a, b))

for all a,b € T'. Identifying 6 with its corresponding element in I'/2I" via the
pairing p, we may replace é(u(a,b)) by (6, u(a,b)) = w(d,a,b) so that we recover
the conditions in Thus, we proved:
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Proposition 5.22. Given a lattice L fulfilling the stronger evenness condition in
[Assumption 5.20] and given the representing abelian 3-cocycle for the discriminant
form T = L*/L from Section 4.3 in |[GLM24], the above choices of q and § satisfy

the conditions in [Proposition 5.8

Overall, we have shown how to produce the data used to define the braided Zs-
crossed tensor category in|Section 5.2 directly from an even lattice L with I = L*/L.

We finally comment on the partial Gauss sum in[Proposition 5.10]with the choices
made for I' = L*/L in this section:

Proposition 5.23. In the situation of [Proposition 5.22, the partial Gauss sum
Gs(T,q 1) in|Proposition 5.1( evaluates to

Gs(Lyq™") = 201712 Y " q(a)™! = e(—sign(L)/8) = e(—sign(I)/8).
acd

Note that here, in contrast to[Proposition 5.10] the value of the partial Gauss sum
is also well-defined for the indecomposable 2-adic Jordan components 2ti1 because
we are making a specific choice of ¢. For instance, if L = /2K where K = Z is the
(odd) standard lattice, then T' = L*/L = 2! = 2-! and the Gauss sum takes the
value Gs(I', ¢~ ') = e(—sign(L)/8) = e(7/8), and not e(3/8), as would have been
possible as well. We discuss this example further:

Example 5.24. We consider the Gauss sum Gs(I',¢~!), T = L*/L, for the even
lattice L = /nZ = \/n/2A, where n € 2Z~o. When n = ¢ is a power of 2, this
is already discussed in This lattice is of the form L = /2K for the
integral lattice K = \/n/2Z, i.e. L satisfies [Assumption 5.20, The dual lattice of
Lis L* = (1/y/n)Z so that T & Z,,, and the signature of L is sign(L) =1 (mod 8).

Hence, with the choices made for (g,d) in this section, [Proposition 5.23| asserts
that the Gauss sum evaluates to Gs(T',¢~!) = e(7/8). Note that if 4 | n, then
already K is even and the Gauss sum will not depend on these choices (cf. the
discussion after [Proposition 5.10]).

In the following, we compute the Gauss sum for I' explicitly, and verify
for this particular case. We choose the coset representatives a = k/\/n
with k=0,...,n—1 for I' = L*/L. Then, the function ¢: I' — C* is

q(k/v/n+ L) = e(k*/(4n))

for k=0,...,n — 1. Further, L/2L = (/nZ)/(2\/nZ) = Zy and §: L/2L — {£1}
is given by

5(v/n+2L) =e(1/(4n))
evaluated at the nontrivial element in L/2L = Zo. Hence, ¢ is the trivial character
if n =0 (mod 4) and the nontrivial character if n = 2 (mod 4). That is, viewing
§ € T/2I' = (\/nZ)/(24/nZ), we obtain 6 = 24/nZ when n = 0 (mod 4) and
d = /n(1+42Z) when n =2 (mod 4). Hence, the Gauss sum is

Gs(T,q7 ') =+/2/n i: e(—k*/(4n)),
k=1

k even

n—1

Gs(Toq™) = V2/n 3 e(—k?/(4n)
k=1
k odd

ifn =0 (mod 4) and n = 2 (mod 4), respectively. Finally, an explicit computation
shows that Gs(I',¢q~1) = e(7/8) in both cases, as asserted by [Proposition 5.23|
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6. PROOF OF MAIN THEOREM

Proof of [Theorem 5.13 We prove the theorem by explicitly checking all coherence
conditions in C = GLM(T,0,w,d,e]| q,a, 3). Recall that G = (g) = Z.

We shall use without mentioning that o(-,-) and w(a,-,-) for any fixed a € T’
are symmetric and that w(-,b,¢) is multiplicative in the first argument and takes
values in {£1}. We also remark that for the subsequent calculations it is helpful to
initially ignore terms of the form w(a, b, —b), which appear in several steps of the
computation, and to only cancel them in the very end.

Tensor Structure: We check that the pentagon identities hold in GLM(T, o, w, 4, €),
starting with the ones not involving any X7, i.e. the ones in C; = Vectlc;?:

w(a,b+c,d)
(Ca®(CprC,))RCHy —— Co((CoC,)RCy))

w(a,by wb,gd)

((Ca®Ch)®C,)®Cq Ca®(Co®(CcCy))

w(a+m /wm,:7,c+d)

(C,®Ch) @ (C.2Cy)

Of course, this identity is satisfied precisely because w is a 3-cocycle on I', which
was used in the construction of the tensor category Vecty = C; in

We now come to the pentagon relations involving a single X%. First, we consider

w(Z+6,a+b,c)
(XZR(C,2Ch))RC, — XTR((C,2Cyp)®C,))

w(Z+6,a,b) Ya,byc)

(XT®C4)®Cs)RC, X?®(C,®(Cy@Ce))

w((i-i—a)—&-m /w(i'-\;-(s,a,b-ﬁ-c)

(X*®C,) ® (Cp,aC,)

which holds because w(a, b, ¢) cancels and w with fixed first argument is a 2-cocycle.
Furthermore,

o(a,c)

(Ca®(X*RCy))RC, — CoR((X*RCh)RC.))

o(aV x;c+6,b,c)

((Co®X*)®C4)RC.. Ca®(X*®(CpRC,))

w(a+£+m /U(a,\;ﬂrc)

((Ca ®xi) ® ((Cb®(cc>

o(a,c)

(Co®(Cp@XT))RC, — Co®((Cr@X)®C))

w((a+b)+5c,ay Yb, )

((C,0C)RXT)RC, Ca®(Coa(X*®C,))

U(am /w((¢:+b)+(5c+c),a,b)

(C,®Ch) @ (XTRC,)
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The first identity holds because the difference between o(a, b+ c) and o(a,b)o(a, c),
which is the coboundary of o(a,-), is equal to w(a,-,-). The second identity holds
because ¢ is symmetric, and so the same formula holds for the coboundary of o (-, ¢).
Finally, there is the pentagon identity

w((a+(b+c))+zZ,a,b+c)
(Ca®(CpRC,))2XT —— C,R((CpRC.)®XT))

w(a,by‘ x(b+c)+x,b,c)

(((Ca®Cb)®<Cc)®Xi' (Ca®((Cb®((Cc®Xi))

w(((a+b)+c)+i,am /w((¢1\'+b)+(c+i),a,b)

(Co®Cyp) ® (C.0X7)

which holds because w(a + b+ ¢,-,-) and w(z, -, -) are 2-cocycles.

We then come to the pentagon relations involving X® and X¥:

w(Z,t+a,b)
(XTR(XYRC,))RC, —— XTR((XYRC,)RCy))

w(z,tV yy+6,a,b)

(XT@XY)®C,)RCy XTR(X¥@(Ca®Cy))

w(t% /w(i,\'t,a-‘rb)

(XT@XY) @ (C,®Cy)

Here, the initial basis vector is (e;®e,)®ep and the final basis vector is ;4 41p. This
identity holds because of the condition t = Z + § + §, which we solve for §. Then
the terms w(z, -,-) again cancel because of the 2-cocycle condition. Also consider
the pentagon identity

w(Z,t,b)
(XZR(Co@XY))RC, — XZR((C,@XY)®Cy))

a(ay ‘avb)

((XTRC,)@X¥)@Cy X*@(Ca@(X¥RCy))

w(a‘c+a7t,b)\> /o()a7t+b)

(X*RC,) @ (XY®Cy)

where the initial basis vector is e; ® e, and the final one is e;1,. This pentagon
identity holds because again the difference between o(a,t + b) and o(a,t)o(a,b) is
caught by w(a,t,b). Furthermore,

o(a+b,t)
(XTR(Ca®Cyp))@XY —— XTR((C,2Cy)2XY))

w(x-&-é,aV w(cwb)ﬂ/,avb)

(XTRCq)®Cy) XY XTR(Ca®(CpXY))

(X*®C,) @ (CpaXY)

where the initial and final basis vector is e;. The identity holds because of the
condition t = (Z 4+ a + b) + ¥ + § and since again w(t, a,b) catches the difference
between o(a + b, t) and o(a,t)o(b,t). Then, we look at the pentagon identity
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w(a,t,b)
(Ca®(XZRXY))RC, —— C,@((XTRXY)RCy))

w(aer,ay\ %z,t,b)

((C.@XT)@XY)@Cy, Ca®(XTR(X¥RCy))

w(a+i,tm /w(a:—f,a,t+b)

(C,2X%) ® (XY®Cy)

Here, the initial basis vector is e,4;: ® e, and the final basis vector is e, ® epy¢.
This identity is true because the terms involving w(Z, -, -) and w(a, -, -) individually
cancel due to the 2-cocycle condition. Moreover, consider

w(a+(z+b),a,t)
(Co®@(XZTRCy))XY —— C,@((XTRCh)2XY))
t

J(aV ,t)

((C,@XT)@Cp) XY Cor(X*a(Cy@X?))

U(b,m /w(a—\;-i,a,t)

(C,@XT) ® (C,XY)

s
=

where the initial basis vector is e,y; and the final basis vector is e, ® e;. This
pentagon identity holds as the terms involving w(Z,-,-) and w(a,-,-) individually
cancel and again the difference between o (b, t)o(b, a) and o (b, a+1) is compensated
by w(b,a,t). Finally,

w(a+(b+7),a,b+t)
(Co@(CraX®))@X¥ —— C,R((Cr@X®)RXY))

w((a—i—b)—i—x,aV xb-i-x,b,t)

((Ca®Cp)@XT)RXY Ca®(Cr@(X*@XY))

w((aer)Jri,am /W(U«:'bﬂf)

(Coa®Ch) @ (XT@XY)

where the initial basis vector is eqyp4¢ and the final basis vector is e, ® e, ® ey.
This identity is true because again the terms w(z, -, ), w(a, -, ) and w(b, -, ) cancel
individually due to the 2-cocycle condition.

We now come to the pentagon relations involving X*, X¥ and X?, starting with:

w(Z+6,r,a)
(XFR(XY@X?))QC, —— XT@((XV@X7)®C,))

a|2F|1/2a(t,T)/ Yy,r,a)

(XTXY)@X*)®C, XT@(XY@(X*®C,))

(X*@XY) @ (X*@C,)

Here, the initial basis vector is v; and mapped to v, by the first arrow, the final
basis vector is v,44. This identity holds because of the condition t = & + § + 4,
because again terms involving w(Z,-,-) cancel and since the difference between
o(t,r)o(t,a) and o(t,r + a) is caught by w(t,r,a). The normalisation factor |2T|
cancels independently of its value. Then we consider
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el20| =25 (t+a,r) !
(XZR(XYRC,))@X* —— XZR((XYRC,)®X?))

w(z,tV ‘ﬂvr)

(XT@XY)RC,q)@X? XFR(XV®(Co®X))

w«mw% /mr] 2o (tr) 7!

(XT@XY) @ (C,@X7)

where the initial basis vector is v;4, with t =  + 4 + § and the final basis vector
is v, with 7 = § + (a + z) + 0. This means that Z + z = t + 7 + a. This pentagon
identity then holds because w(r,t,a) = o(t,r)o(a,r)o(t +a,r)~t. Next, we look at

g2~ 25 (t,a4r) "1

(XTR(Cu@XY))@X* —— XT@((C,@XY)®X?))

o(a,t) “(ﬂry,a,r)

(X*@Cq)@X")@X* X7 @ (Ca®(XYRX?))

5|21"|71/20(t,r)71\} /w(:ijhs,a,r)

(XTRC,) ® (XY@X?)

Here, the initial basis vector is v; with ¢ = (Z + @) + % + J. Then this identity holds
like in the previous case. Finally, consider the pentagon identity

i i w(Ea—i—t)—i—Z,a,t) i i i
(Ca@(XT@XY))@X* —— Co@((XT@XY)@X))

w(a+a:,aV Yf_l/(‘)a(t,r)_l

((C,@XT)RX¥)@X? Ca®(XTR(XY@X?))

a|2r|*1/20(t+a,r)k> /ow;‘)

(Ca®X®) @ (XVRX?)

where the initial basis vector is vs4, with t + a = (Z+a) + ¢+ 6 and the final basis
vector is eq ® v, with ¥ = y + z + . Then, this identity holds after substituting
these two expressions like in the previous cases.

We now come to the last type of pentagon relations, involving X%, X%, X# and X¥.
The innermost product X* ® X¥ produces, after multiplication with further X, a
basis vector in the multiplicity space denoted by vy, while the outermost product
produces the resulting object C,; with basis vector denoted by es. These bases in
the five products in the above diagram are, from left to right, v; ® es4¢, v ® €5y,
Uy Qestt, U @esye and for the bottom node v, ® e;. With these bases, the pentagon
identity reads

o(r,s+t)
(XT@(XY@X#))@XV —— XTR((XY@X?)@X™))

a2F—1/2g(t,r)7 20|20 (1)

(XTRXY)@X?)@X® XZ@(XY@(X*@X™W))

w(t+% /w@f:;>

(XTRXY) @ (XZ@XW)
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Again, the conditions t = 247y +0, 7 =y+2z+06 and § =1 = Z+w+ 0 hold. Again,
o(r,s +t) can be expressed as o(r,t), which cancels, times o(r, s) times w(r, s,t).
Then, after substituting 7 and ¢, all w cancel, as does the sign €. However, the
factor [2I|~1/2|2'|~1/2 = |2I'|~! becomes important. The last pentagon identity
then follows from the following slightly unusual character sum:

Lemma 6.1. For s,l € T' with s =1€ T'/2T" and for a coset ¥ € T /2T,

|2F|_1 ZO’(T, S)O’(T,l)_l = 6s,l~

rer

Proof. The summand can be rewritten as o(r, s)o(r, 1)t = w(r, s,l — s)o(r,l — s).
Let 79 be some fixed coset representative, so that we may write the summation
variable as r = r¢g + a with @ € 2I'. Now, the assumption 5 = [ means that
s—1€2I', and so o(-,l — s) = Bg(-,(l —s)/2) is a character on I'. Moreover,
w(r,s,l — s) is always a character as a function of r, and on any fixed 2I'-coset it is
a constant w(7, s,l — s). Hence, the character sum is

207" N o s)o(r, )7 = 20w (F, 5,1 = s)o(ro,l — 5) Y o(a,l—s).

rero+2I’ ac2l

Since B was assumed to be a nondegenerate pairing I' x I' — C*, it descends
to a nondegenerate pairing 2I" x I'y with the 2-torsion I'; = {a € T | 2a = 0}.
A sum of a 1-dimensional characters over a subgroup is zero if and only if the
character restricts to a nontrivial character on the subgroup. Hence, the sum over
the character o(-,l — s) = Bg(-, (I — s)/2) is zero unless 2 - (I — s)/2 = 0 in T,
meaning that [ = s. In this case, the factor w(7, s,l — s)o(rg,l — s) is also 1. O

G-Action: We now discuss the Zs-action on GLM(T, 0,w, d,¢): the compatibility
between the trivial composition structure and the tensor structure amount to the
fact that all tensor structures are scalars +1 and hence square to one.

To prove the coherences of the tensor structures, which have to compensate for
the associators not being Zs-invariant, we collect some formulae on ¢ and w with
negative entries: by definition,

(14) o(a,—b) = o(a,b) 'w(a,b, —b)~*
and by symmetry
(15) U(_a7b) = U(avb)ilw(baaa _a)il

for a,b € T. From this we derive the following additivity property for w(a,b, —b)
in b, which can be solved to express w(a, —b, —c):

(16)  w(a,b+c,—b—c)™*

o(a,b+c)o(a,—b—c)
o(a,b)o(a,c)w(a,b,c)o(a,—b)o(a, —c)w(a, —b, —c)

(a,b,—b)"w(a,c, —c) " tw(a, b, c)w(a, —b, —c)

for a,b,c € T'. We also note for later use that from the 2-cocycle condition for
w(a,-,-) it follows immediately that

(17) w(a, —b,b+ ¢) = w(a,b,c) *w(a,b, —b)

for a,b,c €T.
Formula then (re)proves the first of the coherence identities:
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w(a+b,c,—c) w(a,b,—b)
0 ((Ca®C)BC.) —— 4u(Ca®Th) ® uCc — (9.Ca®9sCt) @ 9.Ce

lw(a,b,c) w(—a,—b,—c)l

s ((Ca@((cb@(cc)) — g*(ca®g*((cb®cc) —_— g*(ca®(g*(cb®g*cc)
w(a,b+c,—b—c) w(b,c,—c)

Similarly, the identities involving a single X® hold:

w((Z+a)+38,b,—b) w(Z+6,a,—a)
g*((Xf@)Ca)@Cb) — x (Xi@@a) ® g*(cb — (g*XI@)g*Ca) ® g*(cb
J{w(iJré,a,b) w(i+5,7a,7b)J
G« (Xj@)(ca@(cb)) e g*xj®g* (Ca®(cb> — g*xj@)(g*ca@g*cb)
w(Z+6,a+b,—a—>b) w(a,b,—b)
w((a+x)+8,b,—b) w(a+z,a,—a)

9+ ((Co@X")@Ch) — gu(Ca®X?) @ guCh — (9+Ca®94X) ® 9. Cp

ld(a,b) U(*‘I’*b)l

9+(Ca®(X*RCp)) —— g:Co@g. (X*@Cy) > 9+Ca®(g:X"®9.Cy)
w(a+(Z+d),a,—a) w(Z+8,b,—b)

w((a+b)+z,a+b,—a—0b) w(a,b,—b)
g*(((ca@)(cb)@xi) - 9« ((Ca®cb) ® g*xj — (g*(ca®g*(cb) ® g*xi

lw((a+b)+i,a,b) w((—a—b)+i,—a,—b)l

9x ((Ca®(cb®xj)) — 9.CRg. (Cb®xi) ? g*(ca®(g*(cb®g*xi)
w(a+(b+z),a,—a) w(b+Z,b,—b)

For the identities involving X% and X?, we have to be again explicit about the bases
in the multiplicity spaces and moreover consider the action of g, on them:

w(t,a,—a) w(&,t,—t)

G (XT@XY)RCq) — g4(XT@XY) ® 9.Cq — (9:XT®9:XY) ® ¢.C,

J{w(i,t,a) w(i,—t,—a)J{

g*(X"E®(Xg®Ca)) — g*X’i@g*(Xg@CQ) > Q*Xi®(g*xg®g*ca)
w(Z,t+a,—t—a) w(y+d,a,—a)

Here, we used the condition § + § = Z + ¢ for the basis vector g.(e; ® e,) (top
left) mapped to the basis vector g.(ei+q) (bottom left) and e_; ® e_, (top right)
to e_y—o (bottom right). The identity is again essentially the formula for
w(Z,t+ a,—t — a). Then, consider

w(Z+a,t,—t) w(Z+6,a,—a)
G (XZRC,)@XY) —— g (XTRC,) ® gxX¥ — (X2, C,) ® g X¥

J{a(a,t) o’(faft)J/

g*(xj®((ca®xg)) I g*Xj®9*(Ca®Xg) — g*Xj®(g*(Ca®g*Xg)

w(Z,t,—1) w(a+y,a,—a)

where we used the condition § = 7 + (t + a) + §. Next, look at
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w(a+z,a+t,—a—t) w(a+z,a,—a)
g*((ca@)xg_g)@xy) E—— (Ca@xi) ® guX¥ —— (g*(Ca(X)g*Xi) ® g XY

lw(a+i,a,t) w(—a+i,—a,—t)l

9+(Ca®(X*@XY)) r 9:Ca®g. (XT@XY) r 9+ Ca®(g: X" @0, XY)
w(a,t,—t) w(z,t,—t)

Here, we did not use the condition § = z + t 4+ 6. Finally, we come to

w(t+2,t,—t) w(@t,—t)
G (XZRXY)@X?) ——— g (XTRXY) @ g X7 —— (g XTRg:XY) @ g, X*

}prrl/%(t,r)—l e\2r\—1/20(7t,4)—1l

w(Z+6,r,—1) w(y,r,—r)

where t and r satisfy, as for the associator, the conditions ¢ = & + 4 + J and
7 =14+ Z+ . This lets us rewrite the expressions

w(izZ+z,t,—t) =wlt+nrt—-t), w@+di+y,r—r)=w(tr —r).

Then, the identity follows from the formulae and for o(r,s)o(—r,—s) L.
This concludes the proof of the tensor structure. We remark that we did not use
any information on € or |2T|.

G-Braiding: For the Zs-braiding on GLM(T, o,w, d, €| q, o, 5) we verify the hexagon
identities.

The hexagon identity for C,, Cy, C. and C, is known to hold in C; = Vectff’w),
corresponding to the abelian 3-cocycle (o,w). It is satisfied as w(b, ¢, a) = w(b, a, ¢)
and w(a,-,-) is the coboundary of o(a,-), and similarly for the inverse hexagon
identity:

o(a,b+c)
Co®(CprC,.) —— (CpC.)RC,

w((z,bV' \b c,a)

(Ca®Ch)®C, Cy®(C.oC,)

U(ak %a,c)

((Cb®(ca)®(cc — (Cb®((ca ®(CC)
w(b,a,c)

We come to the hexagon identities involving one X%, starting with

q(a+b) " rw(@+a+b,a+b,—a—b)

w(a,b,—b)
X*@(Ca®Cy) — (C_a®C_p)®XT
w(a‘:+5,aV w(—a—b+z,—a,—b)
(XTRC,)RCy C_,®(C_p,@X")

q(a)*lw(ﬂa,a?—k 4 1w (Z+b,b,—b)

(C_,@XH)RCp — C_,®(XZ@Cy)
o(—a,b)
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Take note of the appearance of a tensor structure in the top arrow. This hexagon
identity can be rewritten using formula for o(—a,b) and formula for
w(Z+a+b,a+b,—a—"b). Then all terms w(z, -, ) cancel and all terms w(a+b,-,-)
cancel except for a new w(a + b,a,b). Then the identity is precisely the defining
property of ¢, g(a + b)g(a)"1q(b)~! = o(a,b) w(a + b,a,b)w(d, a,b) for all a,b € T.

Furthermore, consider

q(a)”"

Co®(X*®Cp) —— (X*®C,y)RC,

o’(aV %a’:nté,b,a)

(Ca@XT)RC,y X*R(Cp®Cy)

q(a)x %"’b)

(XT@C,)®Cy — XTR(C,@Cs)
w(Z+9,b,a)

q(a)™*
Co®(Cp@X*) —— (Cp@X*)RC,

w((a+b)+fc,aV “b,a)

(C,®Ch)RX® Cp®(X*®C,)

N v

(Cp®C,)@XT —— Cp®(C,®XT)
w((b+a)+z,b,a)

Both identities hold directly. If the braiding were not given, these identities would
show that the braiding of C, ® X® coincides with the braiding of C, ® X**?, so that
it is independent of Z.

The inverse hexagon identities in these cases are:

q(b) " tw((Z4a)+b,b,—b)
(XZRC,)®C, — C_,@(X*®C,)

w(Z+5,a, b)/ \f(:lua)*l

X*¥@(Co®Cp) (C_p@X*)RC,

U<am Aﬂ*lw(ﬂb,by—b)

XZR(Cp®C,) — (XTRCh)RC,
w(Z+6,b,a) "t

q(b) " rw((Z4a)+b,b,—b)
(Ca®X*)RCpp —— C_pR(Co@X7)

a(a,b)/ \( b+a)+Z,—b,a) "t

Co®(X*RCy) C_pRC,)0X*

q(b)flw(i-l-b,b,—b\‘ %a,fb)

Cu®(C_p@X?) — (C,@C_;)@X?*
o.z((afb)Jri,az,fb)_1
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In these two identities, most terms cancel, and we use formula to express
o(—b,a) and o(a, —b) in terms of o(a, b) and w(a, b, —b), respectively, which cancels
with the corresponding term on the top arrow. If the braiding were not given, these
identities would show that the braiding of X% ® C, coincides with the braiding of
XZTe @ Cy, up to a factor w(a,b, —b), so it demands the Z-dependency of w(z, b, —b).
Next, we consider

q(a+b)~"
(C,®Ch) X% —— XTR(C,xCy)

w((a+b)+;@,a,b)7 \wiﬂa,a,b)*l

Ca®(Cp@X¥) (XT®Cq)RCy

q(b)x /(a)‘1

Ca®(X*RCh) —— (Ca®@X*)RCy
o(a,b)~!

This hexagon identity again amounts to the defining property of ¢g. If the braiding
were not given, one might wish to treat this identity (involving the easier braiding
C,®X* and no tensor structure) before the analogous hexagon identity X*®C,®C,,
above (involving the braiding X @ C,).
We come to the hexagon identities involving X® and X¥. First, consider
aq(t+a)
w(y+d,a,—a)
XER(XIRC,) — (XYRC_,)@XT

w(i,ty \C(A‘—a,t-i-a)

(XTXY)C, XY@ (C_,@XT)

QQ& /(1(('1)71w(5+a,a,—a)

(X¥@XH)RC, — XY@ (XTRC,)
w(y,t,a)

We apply formula (15)) to o(—a,t+a) and the condition t = z + ¢+t to w(, a, —a)
and w(-,¢,a). The parameter « simply cancels at this point. Then the hexagon
identity amounts to the other defining condition of ¢, ¢(a)?> = o(a, a) for a € T', and
again the additivity condition on ¢. If the braiding were not given, this identity
would show that the braiding of X*®X¥ and that of XZ®X¥T¢ differ by the braiding
of X¥ ® C, by this additivity condition. Next, we look at
aq(t)
w(a+y,a,—a)
XZR(C@X¥) —— (C_,2XY)@X*

U(GV %—a-‘r@—a,a—&-t)

(XTRC,) XY C_,®(XY@X?)

q(a)*lw(ﬂa,a,fk A(a—&-t)

(C_a®@X?)@XY — C_,®(XT@XY)
w(—a+z,—a,a+t)

where as initial basis vector we choose e; so that the final basis vector is e_, ® €41+,
with ¢ = (z+a)+y+3d. Then we collect and rewrite w(Z+7, —a, a+t)w(Z+7, a, —a)
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using formula (17)) to w(Z + ¥, a,t), which is equal to w(t + a + d,a,t). Then the
hexagon identity is again the defining additivity relation of q. Moreover,

o(a,t)

Ca®(XF@XT) —— (XT@XI)RC,

w(i—‘—a,ay Y‘i,t,a)

(Ca®XT)RXY X*@(X¥eC,)

q(a)x Al)_l

(XZRC, )XY —— XT@(C,@XY)
o(a,t+a)

where as initial basis vector we choose e,4;. This hexagon identity holds again
because of the defining relation q(a)? = o(a,a).
The inverse hexagon identities in these cases are as follows:

o(t,a)

(XZTXNRC, —— C,R(XT@XY)

w(x,t, a)/ \wia—i—i,a,t)fl

XZ@(XY@C,) (C,@XT)XY

q(a)flw(gj-l-a,a,—k‘ A’—a)flw(f—a,a,—a)

XZR(C_,@XY) — (XTRC_,)@X¥
o(—a,t+a)”?!

Here, as initial basis vector we choose e;y, with ¢ = T + ¢ + J and consequently
write w(y + a,a, —a)w(T — a,a, —a) = w(t, a, —a)w(d, a, —a). We rewrite, using the
coboundary property in [Proposition 5.5(and equation ,
o(—a,t+a) =oc(—a,t)o(—a,a)w(—a,t, a)
=o(a,t)w(t,a,—a)o(—a,a)w(—a,t, a).

Then the hexagon identity reduces to the following special case of the additivity
property

q(a)g(—a) = o(a, —a)~'w(d,a, —a).

1

For later use, using o(a, —a) = o(a,a) 'w(a,a, —a) and o(a,a) = q(a)?, we show

further that
(18) ¢(~a) = g(a)w(a + 6,0, a).
We further consider the identities

aq(t+a)
(XZRC, )XY —— XY (XTRC,)

cr(a,tJra)y' %@,t,a)fl

XE@(C,0XY) (XY@X*)®C,

Q(U«)x aq(t)

XER(XY2C,) — (XTeXY)®C,

w(Z,t,a) "t
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ag(a+t)
(Cu@XT)@XY¥ —— XY@ (C,@XT)

w(i+a,a,t)7 “‘a,a+t)_1

C,0(XT@XY) (XY@C,)@X*

N e

Co®@(XY@XT) —— (C,@XY)@X?*
w(F+a,a,t) "t

As initial basis vector in these two diagrams we choose e, 1, and e, ®ey, respectively,
in both cases with ¢ = 44 +4. In both cases, the hexagon identity follows from the
coboundary property for o(a,a+t) and q(a)? = o(a,a) and the additivity property
for q.

We finally come to the hexagon identities and inverse hexagon identities involving
X%, X% and X?. These are the only ones where the associator of X ® X @ X appears,
as well as the tensor structure on X ® X. This is also the only identity where the
value of « is relevant. We start with the inverse hexagon identity, which is simpler
in some regards:

a®) ™
(XERXY)@X?7 ——— XZ@(XT@XY)

a\zr\-l/%(ry Xprrl/%(t,s)

XT@(XY@X?) (XF@XT)@XY

aq(r) aq(s)
XTR(X*@XY) —— (XT@X?)@XV

2T~ 25 (r,s)

Here, 7 =9+ z+dandt =2+ 4y + 9 and 5 = z+ T + 6, and we note that the
inverse of the matrix (|2T| =2 (t,r) '), is (|20'|~ Y20 (r, 1)), where 7, run over
arbitrary fixed 2I'-cosets, by the character sum in We spell out the
identity in question, using as summation condition £ +y +d =7 + 5+ 9J:
aq(r)o(r, s)ag(s) = e|20|71/2 Z a(r,t)qt) to(t, s).
ter+5+8

This is a somewhat modified Gauss sum. We reduce it to a formula that only
depends on r + s: we use q(r)o(r, s)q(s) = q(r+ s)w(r + s, r, s)w(d, r, s) on the left-
hand side, and on the right-hand side o(t,r)o(t,s) = o(t,r + s)w(t,r + s). Then,
by the summation condition on ¢, the terms involving w on both sides cancel and
the identity in question becomes

o2q(r + s) = |20~ 1/2 Z o(t,r+s)q(t)~L.
tEF+5+0
We may reduce to the case r+s = 0. Indeed, let b = r+s and substitute t = a+r+s
with a € . Then, using again the additivity property of ¢ gives
o?q(b) = e|2r|~1/? Z ola+b,b)o(a,b) tqla) tq(b)*w(a + b+ d,a,b).
a€d

Furthermore, using the coboundary property for o (-, b), the property o(b,b) = q(b)?
and w(a + d,-,-) = 0 by the summation condition reduces the identity in question
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to the following identity independent of r and s:
a? = el2r| 712 Z q(a)™t.
a€d

We defined « just so that this holds, and hence the above inverse hexagon identity
holds. Next, we consider the hexagon identity

q(r) " rw(@+r,r,—1)
w(y,r,—r)

XEZR(XY@X?) —— (XY@X7)@X?

a|2F|71/20(t,r)7' \DFFI/ZU(—?',S)*I

(XT@XY)@X? XY@ (X*@X?)

aq(t) aq(s)
(X¥RXT)@X? — XY@ (XT@X?)
g2~/ 20 (t,5) "1

wheret =z 4+ y+dand 7=+ 2+ and 5 = z+ Z + 6. We spell out the identity
in question and simplify the right-hand side by using formula for o(—r, s) and
cancelling w(Z +y+r+s,7,—r) sincez+y+7+ 5 =0 in I'/2I":

aq(t)o(t,s) taq(s)

= ¢g|2r|71/2 Z o(t,r) ™t o(=rs)-q(r) rw(@ +y 4+, —1)
r€Y+z+4

= g|o2r|71/2 Z o(t,r) to(r,s)q(r) "t
rE€5+i+6

If we substitute t = —! and use formula for g(—1) and formula for o(—1,s)
and o(—1,r), we collect an additional factor w(l+46,1, —)w(r,l, —1)w(s, !, —1), which
again cancels due to the condition ¢ + 7 + 5+ 6 = 0 in I'/2I". Then the hexagon
identity reduces again to the modified Gauss sum we have proved for the inverse
hexagon identity above:

aq(o(l, s)aq(s) = 2072 " a(l,r)o(r,s)a(r) 7"
rEFHI+S
This concludes the proof of the hexagon identities.

G-Ribbon Structure: We shall verify that the following defines a ribbon twist on
GLM(T,o,w,0,e]q,a,p):

Oc, =o(a,a), Oxs =p

for a € I' and z € I'/2T", with a choice of 8 = £a~! and o? = ¢|T|~1/2> s q(a)~
as above. More precisely, we check that the defining condition in holds:

Oc 06:96: =o(b,a)o(a,b).

1

a+b

This is a standard calculation for abelian 3-cocycles. Indeed, in our case the

coboundary formula in [Proposition 5.5|applied on both sides of o(a+ b, a +b) gives
o(a,a)o(a,b)o(b,a)o(b,b), and the further terms w(a+b, a, b)w(a, a, b)w(b, a,b) = 1.
Then, consider

—1 —1

~q(a)

This holds because on the left-hand side the twists on X% and X®*% are equal and
cancel and because on the right-hand side the tensor structure and the additional w

Oxats 9639;; =w(a+Z,a,—a) w(Z+ a,a,—a)q(a)



46 CESAR GALINDO, SIMON LENTNER AND SVEN MOLLER

-2

in the braiding cancel, leaving g(a)~2 = o(a,a)~!. Then, we look at

0X5+a9£5196{11 =q(a) 'w(a+Z,a, —a) - w(z + a,a, —a)q(a) " .
This holds analogously to the previous case. Finally, we verify
Oc, 03 055 = aq(t) - aq(t)

for any t € Z + 4 + d. Indeed, this holds because the a? on both sides cancel and
a(t)? = o(t,1).

This concludes the proof of the Zy-ribbon structure on GLM(T, o, w, d,¢ | q, o, B).

We finally verify the assertion that these choices of ribbon structure together with
the rigid structure have positive quantum dimensions if and only if a8 = €, which is
completely analogous to[Section 4] For the objects C, the quantum dimension is 1.
For the objects X® we compute that, with the rigid structure and ribbon structure
given above, the quantum dimension of XZ is

dim(X®) = evxs ocys x—s-s © (xs @ idy—a-5) 0 coevys
= |[|Y2 - (aq(0))Bidx=
(aB)IT|2 e,
independently of Z. This concludes the proof of O
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