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Abstract

Modeling and forecasting air quality plays a crucial role in informed air pollution management and protect-
ing public health. The air quality data of a region, collected through various pollution monitoring stations,
display nonlinearity, nonstationarity, and highly dynamic nature and detain intense stochastic spatiotem-
poral correlation. Geometric deep learning models such as Spatiotemporal Graph Convolutional Networks
(STGCN) can capture spatial dependence while forecasting temporal time series data for different sensor
locations. Another key characteristic often ignored by these models is the presence of extreme observations
in the air pollutant levels for severely polluted cities worldwide. Extreme value theory is a commonly used
statistical method to predict the expected number of violations of the National Ambient Air Quality Stan-
dards for air pollutant concentration levels. This study develops an extreme value theory-based STGCN
model (E-STGCN) for air pollution data to incorporate extreme behavior across pollutant concentrations.
Along with spatial and temporal components, E-STGCN uses generalized Pareto distribution to investigate
the extreme behavior of different air pollutants and incorporate it inside graph convolutional networks.
The proposal is then applied to analyze air pollution data (PM2.5, PM10, and NO2) of 37 monitoring sta-
tions across Delhi, India. The forecasting performance for different test horizons is evaluated compared to
benchmark forecasters (both temporal and spatiotemporal). It was found that E-STGCN has consistent
performance across all the seasons in Delhi, India, and the robustness of our results has also been evalu-
ated empirically. Moreover, combined with conformal prediction, E-STGCN can also produce probabilistic
prediction intervals.

Keywords: Air quality, graph convolutional networks, extreme value modeling, spatiotemporal forecasting.

1. Introduction

The rapid acceleration of industrialization and urbanization has spurred economic growth globally but
has also exacerbated environmental issues, with air pollution ranking among the most pressing concerns
(Brunekreef and Holgate, 2002; Shaddick et al., 2020). According to the World Health Organization (WHO),
approximately seven million premature deaths per year are linked to air pollution, a figure emphasizing the
critical need for effective air quality management policies1. The most harmful air pollutants include partic-
ulate matters (PM), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO),
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which are closely monitored due to their impact on public health, particularly in terms of cardiovascular and
respiratory diseases (Lelieveld et al., 2015; Olaniyan et al., 2020). Recognizing this threat, the United Na-
tions has included air quality as a key component of its Sustainable Development Goals (SDGs)2. Likewise,
the U.S. Environmental Protection Agency and equivalent authorities worldwide have implemented National
Ambient Air Quality Standards (NAAQS) to limit pollution levels, which are crucial for safeguarding hu-
man health and the environment. Our focus in this article is on India, where the Central Pollution Control
Board (CPCB) specifies that the hourly average concentrations of PM with a diameter of 2.5 micrometers
or less (PM2.5) and PM with a diameter of 10 micrometers or less (PM10) pollutants should not exceed 60
micrograms per cubic meter (µg/m3) and 100 µg/m3, respectively3. However, in practice, air quality levels
often surpass these predefined standards. Data from 37 monitoring stations (spatial locations) across Delhi,
the capital city of India, collected over five years from 2019 to 20234, shows average PM2.5 and PM10 concen-
trations exceeding 100 µg/m3 and 200 µg/m3 respectively, significantly above the recommended limits. The
situation deteriorates further with the onset of winter months due to low temperature and Delhi’s landlocked
geographical location, which hinders the dispersion of pollutants by wind. As a result, Delhi experiences
a surge in pollution during winter, increasing the risk of chronic respiratory and cardiovascular diseases,
neurological disorders, and a higher burden of mortality (Salvi et al., 2018). Pandey et al. (2021) further
highlight that air pollution adversely affects India’s economic growth as well. Given these concerns, our
study focuses on developing a spatiotemporal forecasting model to improve air quality predictions in urban
environments. Such models are essential for informing public behavior and helping authorities implement
timely interventions to mitigate health risks.

Research on air quality forecasting can broadly be classified into two categories: physical models and
data-driven methods. Traditional physical models rely on fundamental principles of atmospheric science
to simulate the emission, transport, and dispersion of pollutants within a target area. A couple of well-
known methods in this category are the community multi-scale air quality (Byun and Schere, 2006), and
the nested air quality prediction model system (Wang et al., 2014). However, these often require extensive
theoretical knowledge, carefully selected features, and region-specific parameters, prohibiting their usage
from building a real-time air quality monitoring system. Other methods like Gaussian plume models or the
Operational Street Canyon models lack the accuracy needed for real-time forecasting due to their reliance
on limited parameters (Vardoulakis et al., 2003; Byun and Schere, 2006). In contrast, data-driven methods,
which leverage historical information to capture pollution trends, have shown some promise (Lei et al., 2019).
Thus, traditional statistical models such as ARIMA (autoregressive integrated moving average) and dynamic
factor models are widely used (see, e.g., Kumar and Jain, 2010), but they are limited in their capacity to
handle complex and nonlinear interactions in air quality data. To that end, recent advancements in machine
learning, particularly deep learning, have significantly improved forecasting accuracy. For instance, Li et al.
(2017) showed that long short-term memory (LSTM) networks can capture complex temporal dependencies
and outperform traditional models in air quality forecasting. Du et al. (2019) introduced a novel hybrid deep
learning framework by combining bi-directional LSTM and one-dimensional convolutional neural networks.
Extant literature on pollution forecasting also include the use of recurrent neural networks (Ong et al., 2016),
transformers (Vaswani, 2017), or temporal convolutional network (Samal et al., 2021). However, a critical
limitation of many deep learning models is their focus on temporal data alone, often overlooking spatial
dependencies between monitoring locations. Since pollutant levels at any given station are influenced by
neighboring locations, a spatiotemporal approach is essential to accurately model air pollution dispersion
(Zhou et al., 2024). Graph-based modeling strategies have gained significant attention in this regard, with
graph neural networks (GNN) and graph convolutional networks (GCN) revolutionizing spatiotemporal
forecasting (Scarselli et al., 2008). In the current context, Gao and Li (2021) leveraged GNNs with LSTMs
to capture spatiotemporal information in PM2.5 level. GCNs are also effective for air quality modeling,
particularly due to their ability to perform convolutional operations that propagate information between

2https://sdgs.un.org/goals
3https://cpcb.nic.in/upload/NAAQS_2019.pdf
4Delhi remains the world’s most polluted capital city in 2023; https://www.statista.com.
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nodes in a graph, thus leveraging localized aggregation of features from neighboring nodes (Yu et al., 2018).
For a comprehensive discussion in this context, refer to Atluri et al. (2018); Jin et al. (2024).

The application of GCNs for modeling spatial dynamics of air pollution monitoring stations is however
limited due to scalability and data sparsity issues. Moreover, existing forecasting architectures often struggle
to accurately predict peaks in a time series, which is critical for air pollution forecasting to anticipate
exceedances beyond regulatory thresholds and ensure ambient air quality standards are maintained. Due
to the catastrophic nature of extreme values in air quality data, it is essential to understand and predict
values that exceed the NAAQS threshold for developing effective early warning systems. For that, we turn
attention to the extreme value theory (EVT) which provides a statistical framework for analyzing rare events,
offering insights into the probability and distribution of extreme pollutant concentrations (Coles et al., 2001).
This framework has been successfully applied in various fields, including hydrology, climate studies, and air
quality analysis, to predict the likelihood of exceeding established safety thresholds (Horowitz, 1980; Sharma
et al., 1999; Ray et al., 2023). In air quality studies, EVT methods such as block maxima (BM) and peaks
over threshold (POT) have been employed to model pollutant extremes (Reiss et al., 1997). The probability
distribution of these extreme events can be modeled using the generalized extreme value (GEV) distribution
for BM and generalized Pareto (GP) distributions for the POT method. These techniques help in estimating
the likelihood of extreme occurrences, allowing for the detection of potential rare events. EVT-based studies
have been instrumental in forecasting pollution exceedances, thus supporting effective intervention strategies
(Kan and Chen, 2004; Sfetsos et al., 2006). The reader is further referred to Martins et al. (2017) for a
comprehensive review of EVT tools in air pollution problems.

Interestingly, despite its proven utility, EVT has not been combined with spatiotemporal forecasting
methods to build early warning systems for environmental preparedness. Our study aims to bridge this
gap by introducing a novel EVT-guided spatiotemporal graph convolutional network (E-STGCN) model, to
handle the nonlinear, nonstationary behavior for major air pollutants in Delhi, specifically PM2.5, PM10,
and NO2. We examine the extreme behavior of these pollutants across 37 sensor locations using the POT
method, modeled by the GP distribution. Integrating these insights into a spatiotemporal GCN (STGCN)
enhances its ability to forecast extreme values within time series data. Note that STGCN is a robust class
of space-time deep learning models designed for inference on graph structures with temporal dependencies.
By leveraging STGCN, we effectively represent the spatial configuration of monitoring stations and address
data sparsity. The integration of EVT with STGCN enables more accurate modeling of spatiotemporal em-
beddings, capturing peaks in pollutant levels with greater precision. Furthermore, our proposed framework
is scalable and capable of generating multi-step forecasts for both low and high-frequency spatiotemporal
datasets. Unlike traditional GNN models, typically optimized for hourly predictions and shorter horizons
(e.g., 12 to 72 hours), E-STGCN handles daily air quality data, providing reliable long-term forecasts at
30-, 60-, and 90-day horizons. Additionally, we apply conformal prediction methods to quantify forecast
uncertainties, offering critical probabilistic insights for policy planning.

To establish the efficacy of the proposed algorithm, we rigorously evaluate the model against state-of-
the-art approaches. A list of these competing methods and their modeling capabilities are summarized in
Table 1. Among time-dependent models, we consider the ubiquitous ARIMA approach (Box et al., 1970)
as well as several deep learning techniques including LSTM (Hochreiter and Schmidhuber, 1997), temporal
convolutional networks (TCN) (Chen et al., 2020), DeepAR (Salinas et al., 2020), Transformers (Wu et al.,
2020), and NBeats (Oreshkin et al., 2019). For the spatiotemporal models, we evaluate the performance
of Space-time Autoregressive Moving Average (STARMA) (Pfeifer and Deutrch, 1980), GSTAR (Cliff and
Ord, 1975), Fast Gaussian Process (GpGp) (Guinness, 2018), Spatiotemporal Neural Network (STNN) (Saha
et al., 2020), STGCN (Yu et al., 2018), and DeepKriging (Nag et al., 2023). In the interest of space, more
details of these models are provided in Section S.2 of the supplement.

The remainder of this paper is organized as follows. Section 2 presents the results from the extreme
value analysis of air quality data. In Section 3, we introduce the proposed E-STGCN architecture. Section
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Table 1: Comparison of forecasting frameworks. The columns indicate whether each model can address spatiotemporal cor-
relations, nonlinearity, and stationarity in time series data. Additional columns assess whether the method can produce
probabilistic forecasts, scale effectively for large datasets, and handle extreme observations.

Models Spatiotemporal Nonlinear Non-stationarity Probabilistic Scalability Extreme Value
Forecasting Handling

ARIMA ✘ ✘ ✔ ✔ ✘ ✘

LSTM ✘ ✔ ✔ ✘ ✔ ✘

TCN ✘ ✔ ✔ ✘ ✔ ✘

DeepAR ✘ ✔ ✔ ✘ ✔ ✘

Transformers ✘ ✔ ✔ ✘ ✔ ✘

NBeats ✘ ✔ ✔ ✘ ✔ ✘

STARMA ✔ ✘ ✘ ✔ ✘ ✘

GSTAR ✔ ✘ ✔ ✘ ✘ ✘

GpGp ✔ ✘ ✘ ✔ ✔ ✘

STNN ✔ ✔ ✔ ✘ ✘ ✘

STGCN ✔ ✔ ✔ ✘ ✔ ✘

DeepKriging ✔ ✔ ✔ ✔ ✘ ✘

Proposed E-STGCN ✔ ✔ ✔ ✔ ✔ ✔

4 outlines the experimental setup and reports the air quality forecasting results. In Section 5, we discuss the
implications of our approach to air quality forecasting. Finally, Section 6 concludes the paper and suggests
future research directions.

2. Preliminaries on Extreme Value Theory

Extreme Value Theory (EVT) focuses on analyzing the stochastic behavior of rare or extreme events
within a given process. The goal of extreme value analysis is to quantify unusually large or small events
and estimate the probability of these extreme occurrences, which differ significantly from the more common
observations in the data. EVT deals with the asymptotic distribution of extreme order statistics, especially
in the context of large datasets. This theory has been implemented in diverse domains, including earth
sciences (Katz et al., 2002), economics and finance (Marimoutou et al., 2009), public health (Thomas et al.,
2016), and engineering (Castillo, 2012), among others. As mentioned above, statistical methods for modeling
extreme events primarily rely on two approaches, i.e., block maxima and peaks over the threshold. Below,
we briefly summarize the EVT methods that were utilized in this study.

2.1. Block Maxima (BM) Approach

The BM method analyzes extreme events in a time series dataset (Gumbel, 1958). Given a sequence of
time-dependent observations, this method divides the dataset into equal-sized non-overlapping blocks and
considers the maximum value from each block as the extreme values of the time series. The probability
distribution of the extremes is modeled using the generalized extreme value (GEV) distribution. To mathe-
matically explain this, let X1, X2, . . . , Xn be independent and identically distributed (iid) random variables
with continuous distribution function F (·). Then, as n −→ ∞, the distribution of Mn = max1⩽i⩽n Xi

converges to G (x), called the GEV distribution, defined by (following Fisher and Tippett, 1928):

G(x) =

exp

{
−
(
1 + ξG

(
x−µG

σG

))−1/ξG
}

if ξG ̸= 0,

exp
{
− exp

(
−
(

x−µG

σG

))}
if ξG = 0.
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In the above, ξG ∈ R is the extreme value index and it controls the shape of the distribution, µG ∈ R is the
location parameter, and σG > 0 is the scale parameter. Depending on the tail behavior of the distribution,
which is influenced by ξG, the GEV family can be classified into three extreme value distributions: Gumbel
(ξG = 0), Fréchet (ξG > 0), and Weibull (ξG < 0). While the Gumbel type distribution is suitable
for modeling the extremes of the exponentially decaying-tailed distribution, the Fréchet and the Weibull
families are the reference class for the extremes of heavy-tailed and finite-tailed distributions, respectively
(Rocco, 2014).

Although the block maxima method has been widely used for extreme value analysis, it has several
drawbacks. The partitioning of the dataset in this approach leads to significant information loss, as only
the maximum value from each block is retained, potentially missing multiple extreme observations within
a block. Also, usually, multiple extreme observations happen within a short time interval which cannot be
captured by the block maxima method. POT tries to overcome the disadvantages of the BM approach.

2.2. Peaks Over Threshold (POT) Approach

The POT approach is a key technique in EVT that identifies observations exceeding a pre-selected
threshold, known as extreme values (Balkema and De Haan, 1974). By concentrating only on observations
above the threshold, the POT approach offers an efficient and accurate mechanism for modeling tail be-
havior compared to conventional methods that assess the entire distribution. Given a time series dataset
{e1, e2, . . . , el} and a threshold τ∗ (any observations that exceed the threshold are called extreme events),
the POT approach selects extreme events when ei > τ∗. The distribution of exceedances over the large
threshold τ∗ asymptotically follows a Generalized Pareto (GP) distribution. To explain it mathematically,
let Z1,Z2, . . . ,Zn be a series of iid random variables with a marginal distribution Q(·). Pickands III (1975)
approximated the exceedance distribution for sufficiently large threshold values using a GP distribution,
defined by

H(z) =

1−
(
1 + ξz

σ

)−1/ξ

if ξ ̸= 0

1− exp
(
− z

σ

)
if ξ = 0.

(1)

Here, ξ ∈ R is the shape parameter and σ > 0 is the scale parameter of the GP distribution. The shape
parameter ξ plays a key role in determining the qualitative behavior of the GP distribution and influences its
domain of attraction. When ξ = 0, H(z) belongs to the Gumbel distribution family, where the probability of
extreme observations decreases exponentially, as indicated by its light tails. For ξ > 0, H(z) follows a Fréchet
distribution characterized by heavy tails, suggesting more frequent extreme observations. Conversely, when
ξ < 0, H(z) corresponds to a Weibull distribution with short tails, implying a lower probability of extreme
observations.

The POT approach offers a robust technique for effectively modeling extreme observations with minimum
data loss. It is particularly suited for capturing the clustering effect, which is a prominent phenomenon in
extreme events. The advantages of this method for modeling extreme air pollution levels are demonstrated
in AL-Dhurafi et al. (2018), where the POT approach has been applied to investigate air pollution index
exceedances in urban areas of Peninsular Malaysia.

2.3. Methods for Threshold Selection

The choice of threshold plays a key role in identifying the extreme observations in the dataset, thus sig-
nificantly impacting the effectiveness of the POT approach. If a low threshold is selected, usual observations
can be treated as extreme and violate asymptotic assumptions. On the contrary, a high threshold value can
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overlook potential extreme observations by treating too few data points as extreme. The threshold selec-
tion can be done objectively through a bias-variance trade-off or determined subjectively, with input from
domain experts. Among various statistical procedures, the mean excess plot (MEP) is a popular approach
for determining the threshold in the POT method (Benktander and Segerdahl, 1960). The mean excess
function of the random variable Z with distribution function QZ(z) and right endpoint zR is given by

ME (τ∗) := E (Z − τ∗ | Z > τ∗) =

∫ zR

τ∗

(
1−QZ(s)

1−QZ(τ∗)

)
ds,

provided E (Z) < ∞ (Embrechts et al., 2013). Thus, if we model the statistical properties of exceedance for
any arbitrarily chosen random variable Z among Z1,Z2, . . . ,Zn, with GP (σ, ξ) distribution (as in (1)), then
the expected value of Z will be finite if and only if ξ < 1 and the mean excess function can be computed as:

ME (τ∗) =
σ

1− ξ
+

ξ

1− ξ
τ∗,

where 0 ⩽ τ∗ < ∞ if 0 ⩽ ξ < 1 and 0 ⩽ τ∗ ⩽ −σ
ξ if ξ < 0. A natural estimate of the mean excess function,

M̂E (τ∗), is defined by

M̂E (τ∗) =

∑n
i=1 (zi − τ∗) I[zi>τ∗]∑n

i=1 I[zi>τ∗]
; τ∗ ⩾ 0.

The MEP method considers the set of all points {(τ∗, M̂E(τ∗)) : τ∗ < z(n)} where z(n) is the highest
order statistic from the sample. In principle, the MEP will appear linear if the exceedance observations are
fitted with GP distribution, which has a finite mean. This plot has been utilized in various fields, including
environmental science (Ghosh and Resnick, 2010), finance (Chukwudum et al., 2020), and others.

3. Proposed Methodology

This section introduces the proposed E-STGCN method for spatiotemporal forecasting of air pollution
concentration levels in the presence of extreme observations. Specifically, Section 3.1 outlines the mathe-
matical formulation of the spatiotemporal air pollution forecasting problem, while Section 3.2 provides an
overview of the E-STGCN architecture, with detailed descriptions of the components within each module
of the proposed framework.

3.1. Problem Formulation

In this study, we address the air quality prediction problem as a spatiotemporal forecasting task, where
the key challenge is to model temporal patterns from historical data while simultaneously capturing the
spatial relationships between multiple air quality monitoring stations. Given a sequence of air pollutant
concentrations across N stations at timestamp t, Xt =

{
X1

t , X
2
t , . . . , X

N
t

}
∈ RN , our goal is to generate

q-step-ahead (q ⩾ 1) forecasts for the pollutant levels based on T historical observations. To achieve this, we
develop a forecasting model that integrates extreme value theory with STGCN for modeling the spatiotem-
poral correlations among the N monitoring stations, accounting for the presence of extreme observations in
the dataset. Let us use FE-STGCN to denote the forecasting function from our algorithm. To understand the
objective formally, let G = {V,E} denote an undirected graph, where V ∈ RN represents the set of nodes,
corresponding to the monitoring stations and the set of edges E ∈ RN×N indicates the spatial correlations
between the stations. Mathematically, the air quality forecasting problem can then be expressed as:

X̂T+1, X̂T+2, . . . , X̂T+q = FE-STGCN (X1,X2, . . . ,XT ;G,W )

6



where X̂T+i = {X̂1
T+i, X̂

2
T+i, . . . , X̂

N
T+i} ∈ RN represents the i-step-ahead forecast of air pollution concen-

trations for the N monitoring stations, computed based on the T historical observations, with G modeling
spatial dependencies, and W as the learnable parameters of FE-STGCN.

3.2. E-STGCN Model Overview

The overall architecture of the E-STGCN framework, depicted in Fig. 1, consists of three primary mod-
ules: the spatial module, the temporal module, and the EVT module. The spatial module maps the input
data onto attributed spatiotemporal graphs and learns the underlying spatial correlations. These learned
graph structures and historical air pollutant concentrations are processed through the spatial blocks com-
prising GCNs and fully connected neural networks, which capture dynamic temporal information and spatial
influences. The output from the spatial module is then fed into the temporal module, where the future tra-
jectories of air pollutant concentrations are predicted using recurrent LSTM layers and a fully connected
dense layer. The EVT module, a key component of the E-STGCN architecture, fits GP distribution to the
historical air pollutant concentrations that exceed permissible thresholds. It then constrains the output of
the temporal module using a combination of data-driven loss and POT loss (discussed in Section 3.2.3).
Integrating the EVT-based knowledge with the spatiotemporal information learned from the Spatial and
temporal modules enables the E-STGCN framework to accurately capture the underlying dynamics of the
air pollutant concentrations, particularly in the presence of threshold exceedances. There is an intuitive con-
nection between the proposed E-STGCN and that of Physics-informed machine learning (Karniadakis et al.,
2021), which combines (noisy) data with physical models and implements through deep neural networks.
However, in our method, instead of a physical model, we use an EVT-based GP distribution-fitted model
as the building block for E-STGCN. Our proposed framework is designed to accurately forecast extreme
observations in pollution concentration levels by effectively capturing underlying spatiotemporal patterns.

3.2.1. Spatial Module

In the spatial domain, the air pollutant concentrations at different sensor locations influence each other
with varying intensities, and most interactions are dynamic. To capture the spatial correlations among the
monitoring stations, we employ graph convolution operations. Typically, GCNs allow convolution operations
on arbitrary graph structures, enabling the learning of node-order invariant representations. In the E-
STGCN framework, we model the historical air pollutant concentrations using GCN by considering the
geographical locations of the monitoring stations as nodes, which form the basis of spatial dependencies.
Thus, the undirected graph G = {V,E}, with V nodes and E connecting edges, can be represented using
an adjacency matrix A for efficient computer processing. Specifically, the adjacency matrix A is static and
is constructed based on the weighted Haversine distance (dij) between the geographical locations of the ith

station (with latitude ϕi, longitude λi) and the jth station as:

dij = 2R sin−1

[√
sin2

(
∆ϕ

2

)
+ cos (λi) cos (λj) sin2

(
∆λ

2

)]
,

where ∆ϕ = ϕi − ϕj , ∆λ = λi − λj , and R represents the earth’s radius. The weights of the adjacency
matrix, indicating the similarity between the corresponding nodes, are computed using a Gaussian kernel as

aij = exp

(
−
d2ij
σ̃2

)
, when i ̸= j and exp

(
−
d2ij
σ̃2

)
⩾ ϵ, (2)

where σ̃2 and ϵ are the parameters that control the distribution and sparsity of the adjacency matrix A.
Specifically, if the distance between the nodes exceeds

√
−σ̃2 ln ϵ, no edges are considered between the nodes.
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Figure 1: Extreme Spatiotemporal Graph Convolutional Networks (E-STGCN). Daily air pollution concentration
levels from different regions of Delhi, along with the corresponding adjacency matrix, are processed through a Graph Convolu-
tional Network (GCN) and a dense layer to generate spatiotemporal embeddings. To account for extreme values, each sensor’s
time series data is modeled using a Generalized Pareto (GP) distribution. The GCN-embedded data is then passed through
an LSTM layer, followed by a dense layer, to produce accurate forecasts. The network is trained using a modified loss function
that combines the conventional mean squared error (MSE) loss with a peaks-over-threshold loss (POTL) when predictions
exceed a predefined threshold (τ).

With a slight abuse of terminology, let us represent the air pollutant concentrations monitored at N
stations over T timestamps as spatiotemporal graphs G = {G1,G2, . . . ,GT }, where each graph Gt = {Xt, A}
consists of Xt ∈ RN , representing the pollutant attributes at time t, and A ∈ RN×N , providing the structural
information for the N stations. To map the non-Euclidean spatiotemporal graphs to spatiotemporal node
embeddings, we perform localized convolutions of the node neighborhood using GCN layers. The GCN model
mimics the convolutional neural networks (CNN) filters by constructing polynomial filters over neighboring
nodes, which can be approximated by Chebyshev’s polynomial of order d as:

Pw(L) =

d∑
u=0

wuCu(L̃),

where Cu represents the uth degree Chebyshev polynomial of the first kind and L̃ is the normalized graph
Laplacian, defined as L̃ = 2L

ζmax
− IN . Here, L = (D−A) ∈ RN×N denotes the graph Laplacian, D ∈ RN×N

is the diagonal degree matrix (where Dii =
∑

j Aij), and ζmax is the largest eigenvalue of L. Thus, the

polynomial Pw(L) ∈ RN×N represents the convolutional filters, with w being the filter weight. Hence, using
Pw(L) on the input data Xt, we can obtain the graph convolutions as:

X
′

t = Pw(L)Xt. (3)

Kipf and Welling (2016) demonstrated that layer-wise linear formulations can be constructed using
multiple stacked localized graph convolution operators, employing a 1st-order approximation of L. This
allows for the use of a deeper architecture to learn spatial dependencies without the need to explicitly focus
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on the parameterization of the dth-order polynomial. Consequently, (3) can be simplified as:

X
′

t = w0Xt + w1

(
2(D −A)

ζmax
− IN

)
Xt, (4)

where w0 and w1 are the weights of the filters shared across all N nodes and IN is the identity matrix
of order N . By applying a stack of K different polynomial filter layers, which corresponds to a sequence
of K graph convolution layers with 1st-order approximations, the spatiotemporal node embeddings for
Gt =

{
X1

t , X
2
t , . . . , X

N
t , A

}
; t = 1, 2, . . . , T , can be computed as:

h
i,(0)
t = Xi

t

h
i,(k)
t = f

(k)
t

(
W

(k)
t

∑
j∈N (i) h

j,(k−1)
t

|N (i)|
+B

(k)
t h

i,(k−1)
t

)
; k = 1, 2, . . .K

Zi
t = Dense

(
h
i,(K)
t

)
,

where in the kth iteration, the function f
(k)
t and filter weights {W (k)

t , B
(k)
t } are shared to update the

initial embedding using 1-hop localized convolutions, repeated K times based on a neural message passing

mechanism (Gilmer et al., 2017). Thus, h
i,(k)
t is the embedding of node i at timestamp t during iteration k,

computed by taking the mean of its neighboring nodes and its self-embedding from the previous iteration
at time t. The final spatiotemporal representation, Zi

t , from the spatial block, is computed by modeling
the GCN output from the Kth layer using a fully connected dense layer. Consequently, the spatiotemporal
embedding Zt =

{
Z1
t , Z

2
t , . . . , Z

N
t

}
∈ RN generated from Gt updates Xt with the encoded information from

(K−1)-order neighborhood of the central node through K successive filtering operations. It is of the essence
here to point out that the 1st-order approximation of the polynomial filter is highly effective and scalable
for large-scale graph structures (Yu et al., 2018).

3.2.2. Temporal Module

The temporal module of the E-STGCN framework is designed to model the spatiotemporal embeddings,
{Z1,Z2, . . . ,ZT }, learned in the spatial block. Due to the complex sequential dependencies within {Zt}, we
employ an LSTM network, a robust variant of RNNs that effectively overcomes the optimization challenges
of conventional RNN architectures (Hochreiter and Schmidhuber, 1997). The LSTM layer introduces a
specialized memory cell that replaces the standard hidden nodes of RNNs, ensuring greater speed, stability,
and accuracy. These memory cells contain self-connected recurrent edges with fixed weights, which allow
the stable computation of gradients across many time steps. The LSTM network utilizes a cell state to store
the long-term information, while the short-term information is managed through hidden states, similar to
the standard RNN structure. The update process for both the cell state and hidden state is controlled by
a gating mechanism consisting of three key components: the forget gate, the input gate, and the output
gate. These gates enable the network to effectively learn and retain long-term and short-term dependencies
within sequential datasets. At each timestamp t, for each of the N nodes, the LSTM receives p lagged
values zit = {Zi

t−p−1, Z
i
t−p−2, . . . , Z

i
t} ∈ Rp along with the previous hidden state vector Hi

t−1 as input. It

then generates the q-steps-ahead projections of Zi
t along with the new memory M i

t , updating both the
hidden state Hi

t and the cell state Ci
t . The forget gate plays a critical role in determining which information

from the previous cell state should be retained. It calculates the forget gate activation vector (F i
t ) as

F i
t = ϕ1

(
U i
ZF z

i
t + U i

HFH
i
t−1 +Bi

F

)
,

where U i
ZF ∈ Rm×p, U i

HF ∈ Rm×m, and Bi
F ∈ Rm are the weights associated with the forget gate, and

m denotes the number of hidden layers. The activation function ϕ1 is selected as a sigmoidal activation
function, which ensures that the element-wise values of F i

t ∈ Rm lies within [0, 1]. A value of 1 signifies that
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the information from the previous cell state Ci
t−1 is fully retained in Ci

t , while a value of 0 indicates that
previous cell state values are completely discarded. Next, to determine how much of the new input vector
zit should be integrated into the current cell state, the input gate calculates the corresponding activation
vector Iit ∈ Rm as

Iit = ϕ1

(
U i
ZIz

i
t + U i

HIH
i
t−1 +Bi

I

)
.

Thus, based on the current timestamp data zit, the new memory vector M i
t ∈ Rm is computed as

M i
t = ϕ2

(
U i
ZMzit + U i

HMHi
t−1 +Bi

M

)
,

where U i
ZI , U

i
ZM ∈ Rm×p and U i

HI , U
i
HM ∈ Rm×m are the weight matrices, Bi

I and Bi
M ∈ Rm are the

bias vectors associated with the input gate. The activation function ϕ2 is chosen as the tanh activation.
The activation vectors from the forget gate and the input gate determine the amount of information to be
retained from the previous cell state and the current memory state, respectively, for updating the current
cell state as

Ci
t = F i

t ⊙ Ci
t−1 ⊕ Iit ⊙M i

t ,

where ⊙ denotes the element-wise multiplication. Finally, the current hidden state is calculated in the
output gate based on the activation vector

(
Oi

t ∈ Rm
)
of the output gate as:

Hi
t = Oi

t ⊙ ϕ2

(
Ci

t

)
, where Oi

t = ϕ1

(
U i
ZOz

i
t + U i

HOH
i
t−1 +Bi

O

)
,

with U i
ZO ∈ Rm×p, U i

HO ∈ Rm×m, and Bi
O ∈ Rm being the learnable parameters of the output gate. To

compute Hi
t and Ci

t , the initial values are set to Hi
0 = Ci

0 = 0. Consequently, the q-steps-ahead forecast of
the air pollutant concentrations for the ith node is obtained using a fully connected dense layer as:{

Ẑi
t+1, Ẑ

i
t+2, . . . , Ẑ

i
t+q

}
= Dense

(
Hi

t

)
.

The spatiotemporal representations for all the N monitoring stations are modeled similarly, resulting
in q-steps-ahead forecasts. The final output generated by the temporal module effectively captures the
sequential patterns of the air pollutant series. However, the model struggles to forecast sudden peaks,
which are particularly common in Delhi’s air pollutant concentrations during winter months. To address
this, we design the EVT module within the E-STGCN architecture, enabling the framework to forecast
spatiotemporal dependencies in situations of threshold exceedances accurately.

3.2.3. EVT Module

In the field of air pollution control, Roberts (1979) emphasized that rare events often hold more signifi-
cance than regular observations. Therefore, prior knowledge of these rare occurrences is crucial for accurate
modeling and forecasting of air pollutant concentrations. The spatial and temporal modules of the E-STGCN
architecture leverage historical pollutant data from various monitoring stations and their geographical lo-
cations to predict future trends. However, their inability to differentiate between common and rare events
limits their effectiveness in modeling extreme occurrences. To address this issue, the EVT module, a key
component of the E-STGCN framework, utilizes extreme value theory to identify the underlying patterns
of air pollutant concentrations associated with rare observations. The theoretical insights gained from the
EVT enhance data-centric forecasting strategies, enabling more accurate predictions of potential extreme
pollutant concentrations. This integration improves air pollution forecasting and provides deeper insights
into extreme events.

In the EVT module, we employ the POT approach to analyze the extreme observations and integrate
them into the spatiotemporal forecasts of the previous modules. In the POT method (as discussed in Section
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2.2), we examine the behavior of exceedances by fitting a GP distribution to the pollutant concentrations
that exceed the NAAQS threshold (τ). Following (1), the conditional GP distribution for the ith monitoring
station at time t can be mathematically formulated as:

P
[
Zi
t − τ ⩽ zit | Zi

t ⩾ τ
]
=

1−
(
1 +

ξizi
t

σi

)−1/ξi

if ξi ̸= 0

1− exp
(

zi
t

σi

)
if ξi = 0,

where ξi ∈ R is the shape parameter and σi > 0 is the scale parameter for the GP distribution fitted to the
pollutant concentrations of the ith monitoring station. The shape parameter ξi is particularly important
as it influences the tail behavior of the GP distribution. We compute the log-likelihood of the fitted GP
distribution (POT loss), following Farkas et al. (2024), as

POTL
(
zit
)
= − log

(
σ̂i
)
−
(
1 +

1

ξ̂i

)
log

(
1 +

ξ̂izit
σ̂i

)
, (5)

where σ̂i, ξ̂i are estimated based on the training data from the ith monitoring station. We then incorporate
the log-likelihood function (5) while designing the loss function of the temporal module. This approach
enhances the modeling of threshold exceedances by incorporating knowledge from EVT as prior information
to the model.

3.2.4. Optimization

The objective function of the E-STGCN framework is formulated as a combination of the data loss,
computed by the mean squared error (MSE), and the POT-based loss function depending on the predicted
values exceeding a specified threshold τ . Mathematically, this modified loss function can be expressed as:

Loss
(
Zi
t+q, Ẑ

i
t+q

)
=

MSE
(
Zi
t+q, Ẑ

i
t+q

)
, Ẑi

t+q ⩽ τ

β1 MSE
(
Zi
t+q, Ẑ

i
t+q

)
+ β2 POTL

(
Ẑi
t+q

)
, Ẑi

t+q > τ,
(6)

where β1 and β2 are the hyperparameters that regulate the contributions of data loss and the POT-based
loss, respectively. Since the loss function is differentiable almost everywhere, we utilize the backpropagation
method to train the corresponding weights. If the predictive values do not exceed the threshold τ , then
the model is optimized solely based on the data loss, which is the case in the STGCN model. Thus, the
proposed E-STGCN framework generalizes the STGCN architecture with the modified loss function that
integrates prior distributional knowledge to the predictions in case of threshold exceedances. This enhances
the proposal’s ability to generate accurate spatiotemporal forecasts in the presence of peaks in the air
pollutant concentration levels. A detailed visualization showcasing the working principle of the E-STGCN
framework is provided in Fig. 1.

4. Experimental Evaluation

In this study, we assess the efficiency of the proposed E-STGCN framework by comparing its forecasting
performance with several temporal and spatiotemporal forecasters. We use daily data on Delhi’s air pollutant
concentration levels from January 1, 2019, to December 31, 2022, to train the models and generate forecasts
for different months of 2023. To demonstrate the generalizability of our proposal, we evaluate its forecasting
performance across three forecast horizons, namely short-term, medium-term, and long-term, spanning over
30 days, 60 days, and 90 days, respectively, using a rolling window approach. For the short-term horizon,
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forecasts are computed for each of the 12 months of 2023. The forecast window covers two consecutive
months in the medium-term horizon, resulting in 6 cases. There are four forecast windows for the long-
term horizon, each covering three successive months. Fig. 2 visually represents the training, validation,
and test periods used in the forecasting tasks. The following subsections present a brief description of the
air pollutant datasets and their global characteristics (Section 4.1), extreme value analysis of air pollutant
concentrations (Section 4.2), performance comparison metrics (Section 4.3), implementation of the proposed
framework and experimental results (Section 4.4), statistical significance tests of the experimental results
(Section 4.5), and uncertainty quantification of the proposal (Section 4.6).

Figure 2: Dataset split for different forecast evaluation window

4.1. Data and Preliminary Analysis

In this study, we focus on forecasting the daily concentration levels of three major air pollutants, namely
PM2.5, PM10, and NO2, and analyze their statistical and global features using the data collected from
37 monitoring stations located in Delhi. Pollution concentrations fluctuate significantly throughout the
year across various stations, with ranges between 0.08 − 761.95µg/m3 for PM2.5, 1.00 − 923.70µg/m3 for
PM10, and 0.13− 428.15µg/m3 for NO2. The average concentrations are 102.31 µg/m3, 203.48 µg/m3, and
43.02 µg/m3 for PM2.5, PM10, and NO2 respectively. We also compute the five-point summary statistics,
standard deviation (sd), coefficient of variation (cv), skewness, and kurtosis for the pollutant concentrations
monitored at different stations. Furthermore, we analyze various global time series features, including long-
term dependency, stationarity, linearity, and seasonality for the pollutant levels. A brief description of these
features is summarized in Section S.1 of the supplement. The results of the descriptive statistics and global
features of PM2.5, PM10, and NO2 datasets, as reported in Tables S.1, S.2, S.3 of the supplement, reveal that
the air pollutant series from most of the monitoring stations exhibit long-range dependencies, non-stationary
behavior, and nonlinear patterns. Additionally, some datasets display weekly and quarterly seasonality.

Next, in Fig. 3, we visualize the spatial distribution of the air pollutant monitoring stations in Delhi. The
upper panel of the plot showcases the average pollution levels observed at each station. These plots highlight
that monitoring stations in close proximity tend to record similar pollution concentration levels compared
to distant ones, underscoring the spatial dependencies in pollutant concentrations. Moreover, we examine
the pairwise correlations between pollution levels at different stations. The correlation heatmap, shown
in the lower panel of Fig. 3, emphasizes that stations located geographically closer tend to have stronger
correlations. The diagonal elements represent the self-correlation of each pollutant series, which naturally
equals 1. Interestingly, certain stations (e.g., stations 1 and 5) show significant pairwise correlations with
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distant stations, indicating non-local spatial interactions. These observations provide critical insights for
modeling both spatial and temporal dependencies during the forecasting process.

Figure 3: Upper panel: Spatial distribution of the monitoring stations in Delhi and average pollution level of (a) PM2.5, (b)
PM10, and (c) NO2. The lower panel represents the pairwise correlation between the level of (a) PM2.5, (b) PM10, and (c)
NO2 from each station.

4.2. Extreme Value Modeling of Air Quality Data

In this section, we employ the BM method and the POT approach to detect and model the extreme
observations in the air pollutant concentrations. Fig. 4 presents the results of extreme value analysis using
the BM method for daily pollution concentrations of PM2.5, PM10, and NO2, measured at the Alipur
monitoring station from 2019 to 2022. The other stations display similar behavior as well. In our analysis,
we consider a block size of 30 days, representing the maximum value in each block with a red circle and
the remaining observations with green circles. From the plots, it can be observed that in several blocks, the
maximum values are not necessarily extreme. Conversely, in other blocks, multiple extreme values, apart
from the maximum, are abandoned by this method. To address these limitations, we employ the POT
approach in our study. For determining the optimal threshold in the POT method, we utilize the MEP
approach and demonstrate the results for pollution concentrations of PM2.5, PM10, and NO2 monitored at
the same station in Fig. 5. The plot highlights the mean excess value for various threshold (τ∗) with a 95%
confidence interval. From the MEP, we can observe that the mean excess value becomes linear beyond the
green straight line, indicating that the corresponding value represents the threshold. Specifically, the MEP-
based thresholds are 583 for PM2.5, 658 for PM10, and 116 for NO2 datasets. However, using these thresholds
results in only 0.14% extreme values for PM2.5, PM10, and NO2 dataset, which is insufficient for effective
POT analysis. Therefore, in this study, we opt for a subjective method of threshold selection, utilizing
the NAAQS established by the CPCB for industrial, residential, rural, and other areas. Domain experts
determine these thresholds to protect public health, vegetation, and the environment. Following the NAAQS
recommendation, we set the threshold values as 60 µg/m3 for PM2.5, 100 µg/m3 for PM10, and 80 µg/m3 for
NO2 pollutants and examine the exceedance of pollution concentration levels over these thresholds. From

13



Tables S.1, S.2, S.3 of the supplement, the average exceedance levels are 61% for PM2.5, 77% for PM10, and
10% for NO2. To verify the iid assumption of the POT approach for these exceedance datasets, we perform
the Durbin-Watson (DW) test (Durbin and Watson, 1971), which detects autocorrelation at lag 1 in the
residuals from the regression analysis. The DW test p-values (refer to the above-mentioned tables in the
supplement) indicate that for most exceedance time series, lag 1 residuals are uncorrelated. However, for
certain stations with limited observations above the threshold, the DW test statistic could not be computed.
We also demonstrate the fitting of the GP distribution for different air pollutant concentrations with the
selected thresholds in Fig. 6.

Figure 4: Block maxima plot for extreme value analysis of (a) PM2.5, (b) PM10, and (c) NO2 pollutant concentration in Alipur,
Delhi monitoring station with each month representing a block. Green points indicate the pollution levels and red circles are
the maximum values identified for each block.

Figure 5: Mean excess plot for (a) PM2.5, (b) PM10, and (c) NO2 pollutant concentration in Alipur, Delhi monitoring station.
The blue solid line indicates the mean excess level, the red dotted lines represent the 95% confidence interval, and the green
solid line is the threshold obtained from the mean excess plot.

Figure 6: (a)-(c) Probability density plots of PM2.5, PM10, and NO2 pollutant concentration extremes in Alipur, Delhi moni-
toring station, respectively. All histograms are fitted with the probability density (blue) of the generalized Pareto distribution.
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4.3. Forecasting Performance Evaluation Measures

In our experimental evaluation, we employ four key performance indicators, namely Mean Absolute Error
(MAE), Mean Absolute Scaled Error (MASE), Root Mean Squared Error (RMSE), and Symmetric Mean
Absolute Percent Error (SMAPE), to quantify the performance of different forecasters (Hyndman, 2018).
The mathematical formulations of these metrics are as follows:

MAE =
1

q

q∑
t=1

|Xi
t − X̂

i
t |, MASE =

∑T+q
t=T+1 |X̂i

t − Xi
t |

q
T−1

∑T
t=2 |Xi

t − Xi
t−1|

,

RMSE =

√√√√ 1

q

q∑
t=1

(Xi
t − X̂i

t)
2, and SMAPE =

1

q

q∑
t=1

2|X̂i
t − Xi

t |
|X̂i

t | + |Xi
t |

× 100%,

where q denotes the forecast horizon, X̂i
t is the forecast of the actual value Xi

t for the ith station at time t,
and T is the size of the training sample. By definition, the minimum value of these performance measures
suggests the ‘best-fitted’ model.

4.4. Experimental Setup and Forecasting Accuracy

In this section, we discuss the implementation of the proposed E-STGCN approach for forecasting air
pollutant concentrations in Delhi. To train the sequential workflow of our model, we first utilize the ‘fgpd’
function from the evmix package in R. This function computes the maximum likelihood estimates for the
scale parameter (σi > 0) and the shape parameter (ξi ∈ R) of the GP distribution, based on the training
dataset for the ith station whenever an exceedance over the NAAQS threshold occurs. These estimated
parameters provide prior information regarding extreme values in the training data. Subsequently, we
implemented the E-STGCN model in Python to generate the spatiotemporal forecasts for the proposed
approach. For modeling the spatial dependencies in the dataset, we compute the adjacency matrix (A)
based on the weighted Haversine distance, as in (2). This matrix identifies the neighbors for each sensor,
organizing their locations into a graphical structure by identifying relevant nodes and edges. Next, we employ
CNNs and a dense layer from the TensorFlow library to encode the training data’s structural and feature-
based information. To model the temporal dependencies, the output of the spatial module is passed through
an LSTM layer and a dense layer. The weights of the temporal layer are optimized using a custom loss
function, which combines the mean squared error loss with a POT-based loss (as in (6)). This modified loss
function leverages prior information about the NAAQS exceedances to enhance the accuracy of air pollution
forecasts. Once the E-STGCN model and other benchmark forecasters are implemented, we generate out-
of-sample forecasts using a rolling window approach for different forecast horizons. Below, we summarize
the performance of our proposal and baseline models from temporal and spatiotemporal paradigms based
on several key performance indicators. A brief description of the benchmark temporal and spatiotemporal
baseline models used in the experimental analysis, along with their implementation details, is outlined in
Section S.2 of the supplement.

Tables 2, 3, and 4 present the performance of the proposed model and the baseline architectures in
generating short-term forecasts for PM2.5, PM10, and NO2 levels, respectively. As indicated in Table 2, the
proposed E-STGCN model achieves state-of-the-art performance for several months of 2023. In particular,
during the onset (November) and end (February) of winter, our proposed framework generates the most
accurate forecasts for the PM2.5 concentration levels. While NBeats and ARIMA outperformed in December,
January, and April, the E-STGCN model improved ARIMA’s forecast by 22.4% (based on the MAE metric)
in March, and its performance remained competitive with NBeats. During the summer months, from May
to September, the proposed framework outperformed the benchmark models, except in July, where LSTM
generated better forecasts. In October, the GpGp model recorded the lowest forecast error. For short-
term forecasting of PM10, the E-STGCN model consistently performed best for the first three months of
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2023, as measured by most performance metrics. During April and May, the PM10 concentration levels
rarely exceeded the NAAQs threshold, leading to similar performance between the E-STGCN and STGCN
models, as the framework was trained primarily on the data loss. The performance of the STNN and
the NBeats models is better for June and July. However, the E-STGCN model regained its forecasting
superiority from August to October. In November and December, the spatiotemporal GpGp and STARMA
models showed competitive performance with our method. For 30-day ahead forecasts of NO2 concentration
levels, the performance of the E-STGCN and STGCN models was very similar, as the average exceedance
of NO2 levels over the NAAQS threshold was around 10%, limiting the use of the POT-based loss function.
As shown in Table 4, the E-STGCN and STGCN models provided the lowest forecast errors in several
months, including January, February, April, May, and August to November. For March, June, and July, the
STARMA and GSTAR models performed best, while in December, their performance was competitive with
ARIMA.

The 60-day and 90-day-ahead forecasting results, as presented in Tables 5 and 6, demonstrate how
the proposed E-STGCN architecture improves upon the baseline models for longer forecast horizons. For
both PM2.5 and PM10 pollutants, our model delivers the most accurate forecasts during the first two
60-day windows, improving forecast accuracy by 9.73% over the best-performing baseline model. In the
subsequent two forecast periods (May–June and July–August), the GSTAR model performs best for PM2.5

levels, while for PM10, the GpGp and NBeats models provide similar performance to our proposed model.
During the September–October period, the E-STGCN framework achieves the lowest forecast error for both
pollutants. However, in the final medium-term forecast period of 2023, the ARIMA model surpasses the
performance of all other approaches. For the medium-term and long-term forecasting of NO2 concentration
levels, we observe similar patterns to those seen in the short-term forecasts. The proposed E-STGCN and
STGCN models generate similar results and outperform the baseline models in most periods, except for
July–August (in the medium-term) and the last two long-term forecast windows, where NBeats, DeepAR,
and ARIMA perform better. For other forecast windows, the STARMA and GSTARmodels offer competitive
performance compared to the best-performing frameworks. For the long-term forecasting task of PM2.5 and
PM10, our model performs best in two out of the four windows, as indicated by all accuracy metrics. In
the April–May–June period, NBeats provides the best performance for PM2.5, while Transformers deliver
comparable results to E-STGCN and STGCN for PM10. During the third forecast window (July–August-
September), DeepAR, STNN, and NBeats achieved the best performance for both pollutants.

The experimental results reported in our study align with the No Free Lunch theorem, which suggests
that any forecasting model performing best on a particular dataset is likely to perform poorly on others
(Wolpert and Macready, 1997). Overall, the E-STGCN framework consistently achieved superior forecast
performance across most tasks. Among the temporal models, ARIMA and NBeats performed well, while from
the spatiotemporal paradigm, most of the baseline architectures, namely STARMA, GSTAR, GpGp, STNN,
and STGCN, demonstrated competitive performance. The DeepKriging framework, however, performed
poorly in most forecasting tasks due to scalability issues, which hindered its ability to handle medium-
sized spatiotemporal datasets. Additionally, the performance of models like LSTM, TCN, DeepAR, and
Transformers lagged behind the E-STGCN framework due to their inability to effectively capture the spatial
dependencies associated with pollutant concentrations. We also observed that the proposed E-STGCN
consistently outperformed or performed similarly to the STGCN model. This advantage is attributed to
the training mechanism adopted in E-STGCN, which employs the POT-based loss function. This modified
loss function enables the framework to better capture exceedances of pollution concentration levels over the
NAAQS threshold, especially during the onset and end of winter months. The performance of the E-STGCN
model in the experimental results highlights its strong generalization ability and adaptability, making it
capable of providing high forecast accuracy for datasets having extreme observations. Consequently, the
E-STGCN framework offers effective and reliable forecasts for air pollutant concentrations across different
forecast horizons.
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Table 2: Forecasting performance of the proposed E-STGCN model in comparison to the temporal-only and spatiotemporal
forecasting techniques for 30 days ahead forecast horizon of PM2.5 pollutant (best results are highlighted).

Forecast
Metric

Temporal-only Model Spatiotemporal Model Proposed
Period ARIMA LSTM TCN DeepAR Transformers NBeats STARMA GSTAR GpGp STNN STGCN DeepKrigging E-STGCN

JAN

MAE 54.88 160.54 108.88 164.82 93.72 61.72 95.87 63.48 86.09 65.90 69.11 179.16 56.07
MASE 0.96 2.85 1.94 2.93 1.63 1.10 1.67 1.10 1.49 1.18 1.20 3.21 0.98
RMSE 71.18 174.93 137.98 178.87 114.86 78.46 112.01 82.27 107.61 84.55 90.21 192.41 75.34
SMAPE 31.20 152.10 79.80 160.70 60.40 36.50 69.40 39.50 53.30 37.50 41.50 187.10 31.60

FEB

MAE 36.26 91.75 74.64 96.10 37.45 38.97 73.25 70.54 37.82 143.11 36.78 142.16 30.00
MASE 1.23 3.11 2.57 3.27 1.27 1.35 2.47 2.40 1.31 5.27 1.26 4.95 1.01
RMSE 45.68 101.86 96.43 105.83 50.23 49.71 88.40 85.35 49.05 168.10 46.61 224.10 38.81
SMAPE 32.00 127.70 74.70 139.70 33.10 34.00 89.10 83.80 33.50 76.60 32.50 167.80 26.70

MAR

MAE 33.32 56.96 61.43 60.59 25.88 25.90 36.81 31.18 31.99 74.22 37.43 76.95 25.83
MASE 1.70 2.78 3.03 2.98 1.35 1.24 1.79 1.53 1.75 3.93 1.94 3.83 1.27
RMSE 38.68 61.09 80.25 64.47 30.17 31.38 42.52 35.75 36.87 88.74 42.73 80.11 31.84
SMAPE 38.60 108.50 76.50 120.90 31.90 30.00 59.10 44.70 38.20 63.10 42.00 193.20 35.30

APR

MAE 22.49 47.35 47.05 51.54 33.61 22.44 50.17 37.83 36.48 46.06 25.31 68.90 25.37
MASE 1.22 2.52 2.57 2.75 1.94 1.20 2.68 2.02 2.16 2.52 1.38 3.75 1.35
RMSE 27.92 53.81 59.37 57.56 38.34 28.55 57.09 45.31 41.67 53.42 30.26 73.88 33.21
SMAPE 32.20 93.50 82.00 108.50 45.10 33.00 107.10 68.90 48.40 71.60 35.90 195.20 38.20

MAY

MAE 35.10 45.77 47.65 49.80 39.24 30.31 42.19 35.32 40.23 42.10 34.01 85.44 28.95
MASE 1.43 1.83 1.93 2.00 1.63 1.22 1.69 1.42 1.72 1.69 1.39 3.52 1.16
RMSE 42.79 56.97 62.95 60.38 45.89 37.60 52.70 45.30 47.76 53.44 40.22 100.97 37.37
SMAPE 48.40 85.80 83.90 100.40 53.70 44.20 80.10 59.30 53.70 76.60 48.70 141.70 43.80

JUN

MAE 23.59 22.77 31.88 26.79 53.82 33.72 27.43 24.78 54.13 29.15 22.14 43.22 22.03
MASE 2.20 1.99 2.89 2.39 5.22 3.08 2.47 2.24 5.34 2.60 2.03 3.97 2.04
RMSE 27.23 27.32 40.01 30.91 55.83 40.94 30.66 28.29 57.68 33.82 27.25 46.10 26.17
SMAPE 45.10 58.40 76.80 75.10 78.80 54.00 85.50 73.60 78.00 65.70 45.30 174.60 42.80

JUL

MAE 23.00 12.98 22.36 16.23 64.44 17.71 20.32 16.44 60.83 17.16 18.85 92.72 15.69
MASE 3.20 1.63 2.84 2.00 8.76 2.47 2.47 1.99 8.39 2.09 2.53 12.38 2.12
RMSE 26.16 15.84 28.49 19.05 65.33 21.69 23.09 19.42 63.79 20.20 23.40 107.91 18.87
SMAPE 53.20 41.20 79.40 55.30 99.60 43.00 81.20 60.20 94.60 56.70 46.10 133.90 41.10

AUG

MAE 20.00 16.06 25.41 19.67 60.41 18.38 20.52 25.65 58.39 14.87 14.51 35.37 11.85
MASE 3.25 2.30 3.87 2.87 10.15 2.98 3.06 3.84 9.78 2.30 2.38 5.40 1.84
RMSE 22.20 19.01 30.73 22.42 61.48 22.64 24.71 28.93 59.55 18.41 17.73 37.24 15.00
SMAPE 44.00 45.90 88.60 61.10 90.70 38.40 67.40 94.20 89.20 36.60 33.90 160.80 31.00

SEP

MAE 22.48 20.76 30.91 24.06 53.97 19.66 22.97 22.30 52.60 28.39 17.33 35.54 15.06
MASE 2.46 2.15 3.26 2.50 6.01 2.12 2.41 2.34 5.84 2.99 1.88 3.74 1.64
RMSE 26.80 25.72 37.13 29.06 57.04 24.10 30.48 29.16 56.34 33.63 21.73 40.25 18.90
SMAPE 49.90 57.10 94.50 70.30 84.10 44.80 67.70 63.90 82.50 91.50 42.30 139.20 38.60

OCT

MAE 35.69 75.37 76.73 79.84 35.38 41.20 67.20 65.33 33.87 84.67 36.51 68.69 36.37
MASE 1.93 4.19 4.33 4.45 1.98 2.25 3.72 3.63 1.89 4.77 2.04 3.89 1.99
RMSE 47.38 85.49 90.79 89.45 42.93 52.15 83.63 81.76 42.76 94.30 43.08 76.29 44.76
SMAPE 35.90 111.30 116.80 124.00 35.70 44.90 90.90 86.90 34.00 145.70 36.70 62.10 36.70

NOV

MAE 102.46 216.26 177.96 219.77 147.62 119.58 141.29 143.39 136.72 218.78 95.48 239.19 77.08
MASE 1.77 3.74 3.09 3.80 2.52 2.06 2.42 2.46 2.32 3.77 1.65 4.15 1.33
RMSE 119.19 228.49 197.04 231.84 164.44 137.38 157.71 159.42 153.82 230.81 111.04 250.58 90.35
SMAPE 49.30 159.30 116.60 164.40 81.10 61.80 81.10 81.80 72.50 168.90 45.40 198.10 34.60

DEC

MAE 74.03 176.33 134.41 181.01 106.47 68.77 97.15 106.11 96.54 159.13 104.60 194.85 116.77
MASE 1.97 4.76 3.63 4.89 2.85 1.84 2.59 2.86 2.55 4.37 2.82 5.26 3.15
RMSE 94.04 186.95 163.73 191.37 122.82 89.40 123.92 133.80 116.90 170.62 121.14 205.76 132.24
SMAPE 39.80 151.90 81.40 159.90 66.10 35.90 58.20 68.30 56.80 139.00 64.90 183.90 76.60

Table 3: Forecasting performance of the proposed E-STGCN model in comparison to the temporal-only and spatiotemporal
forecasting techniques for 30 days ahead forecast horizon of PM10 pollutant (best results are highlighted).

Forecast
Metric

Temporal-only Model Spatiotemporal Model Proposed
Period ARIMA LSTM TCN DeepAR Transformers NBeats STARMA GSTAR GpGp STNN STGCN DeepKrigging E-STGCN

JAN

MAE 99.31 276.07 262.61 275.41 165.16 87.24 121.40 82.99 86.54 115.31 89.89 233.97 82.67
MASE 1.23 3.46 3.31 3.45 2.05 1.10 1.49 1.02 1.09 1.47 1.12 2.94 1.03
RMSE 126.85 294.14 307.81 293.53 192.87 112.07 147.81 110.33 109.86 145.59 119.16 273.87 108.41
SMAPE 35.90 175.50 124.70 174.60 70.50 30.80 47.10 29.70 30.30 37.00 32.00 120.60 29.10

FEB

MAE 59.32 218.02 212.75 216.10 102.77 68.89 157.65 153.76 106.83 77.69 70.35 201.06 56.49
MASE 1.25 4.72 4.58 4.68 2.14 1.50 3.38 3.32 2.22 1.75 1.48 4.41 1.21
RMSE 77.99 228.33 247.69 226.50 122.29 83.55 175.50 171.40 125.72 101.26 88.41 223.28 71.36
SMAPE 25.40 172.10 116.00 169.00 49.80 29.50 96.70 93.30 52.60 32.20 32.20 140.50 24.30

MAR

MAE 51.41 159.77 168.58 154.64 52.33 52.00 54.18 51.87 60.80 252.19 56.17 167.16 42.54
MASE 1.29 3.93 4.20 3.80 1.23 1.31 1.30 1.26 1.61 6.54 1.39 4.12 1.05
RMSE 62.16 166.91 203.62 162.02 63.41 64.42 64.10 61.11 71.00 309.41 70.32 174.16 51.96
SMAPE 29.60 169.10 115.00 158.10 31.30 29.50 33.40 31.60 34.40 78.20 36.20 185.20 25.30

APR

MAE 59.82 181.01 171.35 179.36 71.49 67.72 151.14 106.86 61.34 62.35 53.04 229.48 53.04
MASE 1.37 4.18 3.89 4.14 1.61 1.54 3.46 2.45 1.42 1.45 1.24 5.38 1.24
RMSE 75.86 191.41 191.06 189.86 88.30 85.42 165.07 124.18 74.55 77.04 62.40 311.57 62.40
SMAPE 30.90 164.50 130.50 161.40 37.90 36.10 117.10 68.50 31.90 32.70 27.70 143.40 27.70

MAY

MAE 71.01 176.32 167.71 170.78 79.39 71.75 117.99 88.82 78.77 94.51 77.46 188.01 77.46
MASE 1.12 2.81 2.67 2.72 1.24 1.15 1.86 1.41 1.23 1.53 1.24 3.01 1.24
RMSE 91.48 199.93 205.51 195.07 107.15 92.81 147.03 118.57 105.91 117.57 96.88 211.09 96.88
SMAPE 38.00 167.30 119.70 155.40 42.90 38.60 77.90 49.30 42.50 47.90 41.40 194.50 41.40

JUN

MAE 67.66 117.99 123.54 114.96 47.59 43.32 87.20 74.67 69.23 43.44 53.60 130.25 51.65
MASE 2.00 3.36 3.53 3.27 1.42 1.27 2.46 2.11 2.09 1.25 1.58 3.78 1.51
RMSE 81.88 129.68 148.78 126.93 58.79 56.31 100.34 89.19 82.67 55.60 65.15 154.60 65.44
SMAPE 45.10 150.10 124.00 142.20 36.00 33.40 90.00 70.90 47.00 33.00 39.00 137.00 37.90

JUL

MAE 101.08 60.00 72.71 57.24 72.83 30.07 38.87 31.80 96.52 60.67 48.40 76.07 48.40
MASE 5.72 3.21 3.77 3.05 4.37 1.65 2.01 1.66 5.83 3.52 2.74 4.11 2.74
RMSE 108.53 65.60 88.01 63.07 77.47 36.78 46.32 38.07 103.92 75.32 55.25 80.74 55.25
SMAPE 81.10 120.10 117.10 110.20 69.50 36.90 62.10 46.70 79.90 56.40 51.70 186.90 51.70

AUG

MAE 60.84 108.73 112.74 105.64 48.29 47.00 71.27 84.91 60.04 87.94 47.44 94.30 39.70
MASE 2.86 4.88 5.02 4.73 2.23 2.03 3.16 3.80 2.88 3.98 2.19 4.25 1.80
RMSE 69.72 116.57 124.58 113.71 56.02 59.81 87.31 97.19 69.23 97.95 55.36 114.38 47.97
SMAPE 42.60 146.70 141.80 138.40 37.20 39.20 71.80 94.80 43.10 104.10 36.00 93.00 31.00

SEP

MAE 82.97 92.66 104.00 91.22 52.34 68.16 48.30 47.63 66.26 79.02 44.58 119.67 35.90
MASE 4.60 5.68 6.07 5.59 3.08 3.89 2.95 2.90 3.91 4.93 2.54 7.04 2.05
RMSE 94.06 102.86 122.03 101.53 63.62 81.38 60.46 58.86 78.06 90.40 55.68 166.10 44.51
SMAPE 60.70 130.70 122.30 126.70 46.50 53.40 48.50 46.60 53.70 96.90 41.50 98.90 35.70

OCT

MAE 56.62 214.64 202.97 206.32 81.46 94.69 120.44 118.95 67.79 178.89 62.18 218.93 56.42
MASE 1.54 6.00 5.57 5.75 2.17 2.61 3.27 3.29 1.80 5.03 1.70 6.12 1.55
RMSE 76.41 225.67 223.43 217.78 101.38 114.30 148.51 147.03 88.08 192.39 80.64 231.48 74.86
SMAPE 25.00 176.90 140.50 162.80 37.90 47.60 66.20 65.60 30.20 134.70 27.80 181.60 25.00

NOV

MAE 160.63 370.52 342.23 365.48 230.28 114.14 164.50 163.94 101.36 248.39 105.00 378.61 105.00
MASE 2.00 4.64 4.27 4.57 2.86 1.43 2.04 2.04 1.28 3.08 1.32 4.77 1.32
RMSE 181.25 387.20 370.87 382.37 255.63 137.63 183.15 182.67 123.56 273.40 125.82 406.14 125.82
SMAPE 49.20 182.20 140.80 176.90 78.10 31.90 51.80 51.80 27.60 88.70 29.40 169.70 29.40

DEC

MAE 111.36 320.05 303.66 311.54 174.14 82.85 131.11 148.68 112.51 100.10 117.10 326.28 134.80
MASE 2.02 5.87 5.58 5.71 3.12 1.54 2.36 2.71 2.02 1.95 2.14 6.03 2.50
RMSE 139.68 329.61 342.88 321.36 191.44 100.84 163.30 183.15 139.38 118.07 141.74 347.20 157.71
SMAPE 36.60 184.50 129.80 174.50 66.20 24.70 45.00 55.20 36.10 28.90 39.50 168.30 48.20
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Table 4: Forecasting performance of the proposed E-STGCN model in comparison to the temporal-only and spatiotemporal
forecasting techniques for 30 days ahead forecast horizon of NO2 pollutant (best results are highlighted).

Forecast
Metric

Temporal-only Model Spatiotemporal Model Proposed
Period ARIMA LSTM TCN DeepAR Transformers NBeats STARMA GSTAR GpGp STNN STGCN DeepKrigging E-STGCN

JAN

MAE 13.76 23.48 38.72 26.73 16.49 15.71 17.87 15.76 16.37 28.46 12.28 40.02 12.28
MASE 3.33 8.21 15.68 9.85 11.36 4.58 4.99 2.48 4.48 8.15 4.74 13.43 4.74
RMSE 17.01 26.50 41.37 29.63 19.45 19.34 21.80 19.37 19.92 36.38 15.01 48.68 15.01
SMAPE 33.70 61.60 160.40 76.20 39.50 41.50 44.20 38.70 39.70 62.50 28.30 109.50 28.30

FEB

MAE 14.21 25.80 39.27 27.09 16.76 13.64 20.57 18.42 16.95 33.94 11.92 33.84 11.92
MASE 2.32 4.85 8.16 5.18 4.47 2.65 3.61 2.71 3.58 7.55 2.50 6.94 2.50
RMSE 17.06 28.35 41.70 29.61 19.36 16.64 23.51 21.46 20.09 47.18 14.56 36.77 14.56
SMAPE 34.60 70.80 158.20 76.70 40.20 37.00 56.20 47.40 41.40 67.40 28.50 123.20 28.50

MAR

MAE 12.39 17.26 31.02 18.48 16.78 12.68 8.64 9.94 14.91 21.44 8.96 30.13 8.96
MASE 4.65 6.43 12.07 6.82 9.83 4.20 3.16 2.63 5.53 8.56 3.53 11.56 3.53
RMSE 14.36 19.22 32.85 20.42 18.54 15.22 10.60 11.92 17.07 27.80 11.23 33.18 11.23
SMAPE 38.90 53.90 157.50 59.50 48.30 39.00 27.20 31.40 46.50 58.50 27.40 144.90 27.40

APR

MAE 15.70 22.31 36.47 23.05 19.74 16.72 18.32 18.19 17.41 25.79 13.63 37.75 13.63
MASE 3.57 3.15 6.41 3.24 5.02 2.78 2.56 2.94 4.37 6.08 2.28 6.95 2.28
RMSE 19.05 25.77 39.24 26.49 22.29 20.62 22.58 22.24 21.18 33.53 16.22 40.30 16.22
SMAPE 40.50 60.90 168.20 64.30 49.60 47.70 49.20 50.00 45.20 64.20 34.40 196.80 34.40

MAY

MAE 14.82 19.30 32.75 19.71 20.06 18.59 14.77 13.94 16.85 27.00 11.33 23.67 11.33
MASE 3.37 2.59 5.80 2.59 6.46 6.02 2.18 2.62 4.64 7.54 2.20 8.26 2.20
RMSE 18.05 22.61 35.85 23.03 22.99 22.09 18.47 17.38 20.32 35.38 14.35 28.05 14.35
SMAPE 41.70 56.70 155.60 58.60 52.60 55.40 41.30 40.40 47.50 66.00 32.40 65.40 32.40

JUN

MAE 13.79 12.89 23.74 13.38 24.21 11.55 7.43 10.03 13.84 25.04 8.05 26.23 8.05
MASE 5.61 3.72 9.24 3.77 10.91 5.10 1.84 4.18 10.88 14.84 2.71 10.78 2.71
RMSE 15.80 14.59 25.68 15.09 25.40 13.58 9.28 11.79 16.15 33.49 9.88 27.36 9.88
SMAPE 49.80 48.50 144.50 50.70 70.10 45.60 29.30 39.80 51.30 70.60 31.30 197.50 31.30

JUL

MAE 15.21 10.11 19.58 10.19 25.66 8.11 6.74 7.92 13.51 23.31 7.56 14.86 7.56
MASE 6.35 3.40 6.25 3.28 10.64 2.77 2.15 2.50 6.09 9.64 2.68 5.08 2.68
RMSE 16.93 11.74 21.19 11.88 26.97 10.41 8.48 9.63 15.33 31.45 9.95 16.94 9.95
SMAPE 61.60 46.90 153.80 47.50 82.10 47.50 35.00 40.10 59.30 74.90 37.20 80.00 37.20

AUG

MAE 17.45 9.59 17.26 9.62 25.21 8.56 7.89 8.40 14.07 19.88 6.95 12.12 6.95
MASE 7.14 4.18 6.10 4.22 10.73 3.11 2.44 2.76 7.98 12.51 2.13 5.74 2.13
RMSE 19.36 11.41 19.24 11.45 27.10 10.80 9.92 10.40 16.21 28.54 8.66 13.93 8.66
SMAPE 71.50 52.90 154.50 53.10 86.80 47.50 40.80 46.60 64.80 75.40 38.40 74.90 38.40

SEP

MAE 13.27 10.27 20.46 10.32 20.50 9.90 8.50 10.48 12.52 15.40 6.46 22.24 6.46
MASE 4.74 3.50 5.65 3.49 7.77 3.24 2.30 2.62 6.35 6.97 1.87 6.37 1.87
RMSE 14.91 11.93 22.27 11.98 21.82 11.92 10.62 12.61 14.62 19.91 8.32 23.50 8.32
SMAPE 53.50 48.50 148.30 48.80 69.10 49.60 41.00 52.20 53.30 66.50 32.10 195.10 32.10

OCT

MAE 13.92 19.79 34.59 20.17 18.54 16.77 16.12 16.93 15.79 24.02 12.09 32.98 12.09
MASE 2.55 3.05 6.12 3.09 3.81 2.77 2.48 2.61 3.46 4.22 1.91 6.01 1.91
RMSE 19.20 24.99 38.91 25.41 23.56 22.57 22.37 23.21 21.30 30.25 17.30 37.23 17.30
SMAPE 35.40 55.90 165.90 57.50 46.20 48.50 44.40 47.60 41.90 79.90 30.30 136.30 30.30

NOV

MAE 19.56 31.39 42.55 31.40 25.12 22.51 18.01 20.86 20.54 34.00 16.62 46.43 16.62
MASE 3.11 4.04 5.61 4.03 4.83 3.39 3.02 3.42 4.35 5.18 2.19 5.95 2.19
RMSE 24.01 35.90 47.07 35.92 29.31 27.62 22.48 25.60 24.75 42.28 21.10 49.98 21.10
SMAPE 43.80 77.40 140.20 77.40 51.40 54.70 42.20 46.30 47.60 84.10 36.20 190.20 36.20

DEC

MAE 17.57 30.04 41.09 30.01 23.40 20.50 18.74 24.55 18.18 31.54 21.44 47.41 21.44
MASE 2.62 4.24 6.53 4.24 3.30 3.91 2.56 3.42 2.99 5.07 3.30 8.38 3.30
RMSE 21.30 33.03 45.11 33.00 26.49 24.97 22.83 28.63 22.00 38.10 24.77 51.95 24.77
SMAPE 37.40 74.20 134.40 74.10 50.80 48.60 40.50 59.90 39.00 76.00 47.90 160.60 47.90

4.5. Statistical Tests for Model Robustness

To validate the robustness of our experimental results, we employ multiple comparison with the best
(MCB) test (Koning et al., 2005) and the Diebold-Mariano test (Diebold and Mariano, 2002). The MCB test
aims to identify the ‘best’ forecasting model among all F architectures based on their performance across
D datasets. For a specific evaluation metric, this non-parametric procedure ranks all models based on their
performance across different forecasting tasks and computes the mean rank. The model with the lowest
mean rank is considered the ‘best’ forecasting architecture. Next, the critical distance (CD) for each of the
F models is computed as δθ

√
F(F + 1)/6D, where δθ represents the critical value of the Tukey distribution

at significance level θ. The CD of the ‘best’ performing model serves as the reference value against which all
other models are compared. We apply the MCB test and visualize the results based on the RMSE metric for
PM2.5, PM10, and NO2 in Fig. 7. From these plots, we observe that the proposed E-STGCN architecture
achieves the ‘best’ performance, with a minimum rank of 3.14 for PM2.5 and 2.20 for PM10 datasets. For
NO2 forecasting, the performance of E-STGCN and STGCN are similar and they jointly obtain the lowest
rank of 2.36. Among the baseline models, the STGCN, NBeats, and ARIMA frameworks consistently
showcase better performance, having competitive ranks with E-STGCN. Spatiotemporal models such as
GSTAR, STARMA, and GpGp outperform the majority of the time-dependent frameworks by effectively
capturing space-time correlations. Moreover, the CD values for most of the baseline models lie above the
reference value (shaded region), indicating that their performance is significantly worse than the ‘best-
fitted’ E-STGCN model. Additional MCB test results based on the other evaluation metrics are provided
in Fig. S.1, in Section S.3 of the supplement. Overall, the MCB test results emphasize that the proposed
E-STGCN approach consistently delivers accurate forecasts for various air pollutants, as measured by all
the performance indicators.

Next, we employ the Diebold-Mariano (DM) test to assess whether the forecasting performance of the
proposed E-STGCN framework significantly differs from that of the baseline models. Specifically, for any
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Table 5: Forecasting performance of the proposed E-STGCN model in comparison to the temporal-only and spatiotemporal
forecasting techniques for 60 days ahead forecast horizon of different pollutants (best results are highlighted).

Pollutant
Forecast

Metric
Temporal-only Model Spatiotemporal Model Proposed

Period ARIMA LSTM TCN DeepAR Transformers NBeats STARMA GSTAR GpGp STNN STGCN DeepKrigging E-STGCN

PM2.5

JAN - FEB

MAE 73.48 132.20 116.87 131.90 66.52 59.28 80.56 100.35 58.53 76.26 56.73 84.47 55.00
MASE 1.72 3.11 2.73 3.10 1.54 1.39 1.87 2.36 1.36 1.82 1.32 1.99 1.28
RMSE 86.23 148.60 135.33 148.33 89.53 77.12 96.46 113.61 78.81 94.98 76.44 100.93 73.00
SMAPE 46.50 152.00 126.90 151.30 47.40 45.20 81.50 57.00 39.90 48.80 39.60 77.20 37.90

MAR - APR

MAE 35.03 59.96 49.14 55.51 29.62 35.06 50.95 50.86 37.44 143.20 27.68 68.10 22.35
MASE 1.82 3.02 2.46 2.78 1.58 1.84 2.56 2.55 2.07 7.71 1.39 3.47 1.13
RMSE 40.90 65.06 58.64 60.99 34.89 41.08 57.72 58.23 42.69 154.31 35.06 77.92 27.69
SMAPE 43.70 131.80 93.70 114.10 39.20 42.80 111.50 112.70 46.50 98.80 41.70 144.30 31.20

MAY - JUN

MAE 37.54 40.38 42.47 38.31 46.70 22.53 43.36 22.15 49.65 43.12 30.41 37.31 43.53
MASE 2.14 2.23 2.35 2.11 2.71 1.24 2.41 1.23 2.95 2.33 1.70 2.03 2.44
RMSE 42.70 49.77 51.29 48.09 51.41 32.55 50.27 30.71 54.99 52.49 42.70 44.79 56.56
SMAPE 57.70 97.10 117.20 88.10 66.60 39.10 127.60 38.70 68.60 70.40 58.00 99.80 94.50

JUL - AUG

MAE 30.37 21.33 26.49 18.44 60.75 24.10 29.51 12.67 62.11 20.80 29.41 36.68 28.05
MASE 4.07 2.68 3.38 2.30 8.17 3.25 3.77 1.60 8.35 2.60 3.89 4.71 3.70
RMSE 33.44 24.35 30.50 21.69 61.90 28.32 32.59 16.06 64.19 24.31 35.63 38.78 34.11
SMAPE 60.90 74.00 109.00 59.70 93.40 51.00 132.80 38.10 93.60 61.90 56.70 197.50 55.40

SEP - OCT

MAE 36.12 54.88 63.93 52.05 44.53 40.25 58.62 34.86 44.33 53.65 33.99 57.96 33.60
MASE 2.63 3.95 4.64 3.74 3.32 2.91 4.25 2.54 3.34 3.90 2.50 4.15 2.46
RMSE 51.27 69.38 78.49 66.93 50.97 55.78 76.23 49.13 51.34 68.24 41.05 71.90 40.34
SMAPE 55.00 107.90 148.20 97.40 59.80 64.00 120.70 52.40 59.40 108.80 49.60 123.00 48.90

NOV - DEC

MAE 90.77 204.62 195.80 200.48 127.97 132.34 159.92 157.59 120.80 198.17 95.34 224.42 91.09
MASE 1.91 4.30 4.11 4.21 2.67 2.78 3.35 3.31 2.50 4.18 2.00 4.73 1.91
RMSE 111.64 217.05 210.92 213.17 146.81 149.75 175.57 173.31 139.69 211.16 115.40 244.57 112.98
SMAPE 46.50 169.40 155.70 162.30 74.50 80.80 117.80 113.50 68.20 163.30 49.60 189.00 46.30

PM10

JAN - FEB

MAE 94.47 252.19 245.06 245.01 135.51 95.19 120.61 116.70 101.61 102.18 80.35 125.87 72.53
MASE 1.53 3.99 3.87 3.88 2.11 1.53 1.88 1.83 1.58 1.63 1.27 1.97 1.15
RMSE 113.55 269.06 280.32 262.36 163.79 116.76 147.89 143.09 130.47 127.15 106.36 152.58 94.10
SMAPE 35.10 183.00 148.20 171.80 61.20 35.40 61.00 56.50 40.70 40.00 31.40 58.10 28.20

MAR - APR

MAE 61.48 168.41 174.61 164.51 62.63 61.36 103.94 95.72 57.14 165.95 51.94 181.87 49.59
MASE 1.43 3.87 4.02 3.78 1.39 1.42 2.35 2.18 1.32 4.06 1.20 4.19 1.14
RMSE 73.69 178.80 203.57 175.13 78.19 75.55 125.97 117.40 70.86 212.95 63.17 191.54 60.07
SMAPE 33.40 167.10 135.50 159.10 35.80 33.80 76.30 67.70 32.20 60.90 29.20 198.90 28.10

MAY - JUN

MAE 71.99 145.59 145.40 143.09 83.16 67.01 129.13 111.88 67.53 87.48 76.14 77.28 66.47
MASE 1.48 2.95 2.92 2.90 1.65 1.35 2.61 2.27 1.40 1.83 1.55 1.53 1.36
RMSE 89.34 167.01 173.28 164.85 113.32 95.91 150.33 134.00 87.32 107.85 100.07 107.10 89.67
SMAPE 43.60 155.20 133.70 149.30 56.00 42.90 128.80 100.80 41.70 48.30 47.80 50.50 41.10

JUL - AUG

MAE 58.10 87.62 95.24 82.17 59.70 42.82 76.47 77.41 70.26 58.97 49.79 72.79 49.79
MASE 2.90 4.18 4.53 3.90 3.05 2.04 3.62 3.69 3.65 2.79 2.46 3.43 2.46
RMSE 65.40 97.74 109.72 92.87 67.62 54.78 91.86 93.15 78.60 72.70 59.03 84.92 59.03
SMAPE 50.40 142.70 142.60 125.20 52.50 40.70 110.10 112.70 58.20 64.00 43.70 105.10 43.70

SEP - OCT

MAE 64.76 153.86 160.36 148.98 67.84 77.56 119.55 118.63 70.16 132.91 69.95 164.33 63.70
MASE 2.38 5.74 5.96 5.55 2.50 2.88 4.44 4.42 2.62 4.95 2.59 6.14 2.36
RMSE 81.32 174.76 184.58 170.42 87.21 97.58 151.29 150.95 88.90 155.66 84.98 185.21 81.31
SMAPE 40.50 156.20 149.10 145.10 42.70 47.90 93.70 92.00 43.80 119.00 43.20 175.80 40.00

NOV - DEC

MAE 114.94 342.22 328.89 338.54 202.89 156.01 204.62 188.63 186.24 175.93 162.09 350.87 162.09
MASE 1.71 5.07 4.85 5.01 2.97 2.30 3.00 2.79 2.71 2.58 2.40 5.20 2.40
RMSE 139.63 356.98 351.94 353.46 226.80 177.83 226.54 210.06 208.70 208.93 187.66 366.66 187.66
SMAPE 35.00 179.80 157.70 175.80 72.60 52.30 81.90 72.00 64.90 61.20 53.80 187.60 53.80

NO2

JAN - FEB

MAE 15.04 29.56 39.64 26.76 17.21 18.62 18.45 18.37 18.52 35.17 13.50 42.27 13.50
MASE 2.85 6.53 9.23 5.79 5.78 4.21 3.85 2.60 3.95 7.72 4.69 8.48 4.69
RMSE 18.17 32.57 42.33 29.93 20.18 22.76 22.59 22.23 21.72 47.45 16.28 52.00 16.28
SMAPE 37.30 91.50 172.00 76.70 41.50 51.50 46.50 47.90 45.90 67.30 31.90 108.70 31.90

MAR - APR

MAE 15.60 21.86 33.86 20.66 17.82 14.20 14.39 15.75 17.59 26.32 12.04 27.12 12.04
MASE 4.38 3.44 6.65 3.25 5.23 3.61 2.61 3.03 5.67 6.98 2.74 5.56 2.74
RMSE 18.92 25.14 36.57 24.02 20.56 18.02 18.53 20.26 21.19 34.52 15.32 31.41 15.32
SMAPE 43.60 68.30 170.60 62.10 48.20 40.80 40.50 47.80 50.30 63.10 33.80 103.60 33.80

MAY - JUN

MAE 16.25 18.31 28.86 16.63 19.45 21.93 15.58 14.83 17.27 22.31 12.43 29.55 12.43
MASE 5.05 3.09 6.64 2.92 7.01 7.33 2.72 3.33 6.70 6.69 3.66 6.44 3.66
RMSE 19.17 21.37 31.48 19.76 21.69 25.46 18.72 17.95 20.48 29.14 15.34 32.01 15.34
SMAPE 50.80 64.00 163.30 55.10 56.20 62.10 54.40 53.40 55.00 65.30 40.80 143.80 40.80

JUL - AUG

MAE 18.64 9.98 18.39 9.90 25.17 8.69 9.28 10.07 16.33 24.76 12.05 18.77 12.05
MASE 7.28 3.48 5.83 3.40 9.63 2.77 2.80 2.96 7.62 10.54 4.11 5.96 4.11
RMSE 20.75 12.36 20.89 12.27 26.64 11.41 11.63 12.44 19.01 35.55 14.79 21.13 14.79
SMAPE 72.20 50.70 154.10 50.30 84.30 49.00 52.00 57.70 67.60 78.50 53.30 162.50 53.30

SEP - OCT

MAE 15.03 15.67 27.75 15.31 19.61 14.92 17.39 19.72 15.21 18.80 12.42 19.78 12.42
MASE 3.82 3.19 5.89 3.11 5.13 3.18 3.42 3.91 4.43 4.66 2.72 4.81 2.72
RMSE 19.63 20.84 32.21 20.47 23.89 20.35 23.63 25.64 19.91 25.21 16.95 24.92 16.95
SMAPE 48.70 55.20 162.60 53.50 57.90 56.50 68.10 84.80 51.10 68.10 39.90 86.90 39.90

NOV - DEC

MAE 20.08 30.52 43.84 30.71 23.70 21.87 21.51 24.54 20.97 41.25 19.76 36.24 19.76
MASE 2.68 3.81 5.99 3.83 3.37 2.93 2.82 3.23 3.10 6.36 2.72 5.28 2.72
RMSE 24.78 35.49 48.37 35.66 28.20 27.05 26.81 29.82 25.37 62.27 24.71 40.88 24.71
SMAPE 43.80 75.00 156.00 75.80 48.50 51.40 49.80 57.90 47.00 77.60 43.30 81.60 43.30

Figure 7: MCB plots for (A) PM2.5, (B) PM10, and (C) NO2 pollutant concentration levels based on RMSE metric. In the
figure, for example, ‘E-STGCN - 3.14’ means that the average rank of the proposed E-STGCN algorithm based on the RMSE
error metric is 3.14 for PM2.5 dataset; the same explanation applies to other algorithms and datasets. The shaded region
depicts the reference value of the test.

baseline architecture A and the proposed E-STGCN model, we compute the multivariate loss differential
series for a given station as:

Λi
t,A =

∣∣∣Xi
t − X̂i

t,A

∣∣∣− ∣∣∣Xi
t − X̂i

t,E-STGCN

∣∣∣ ,
where Xi

t represents the ground truth data for station i at time t with X̂i
t,E-STGCN and X̂i

t,A being the

19



Table 6: Forecasting performance of the proposed E-STGCN model in comparison to the temporal-only and spatiotemporal
forecasting techniques for 90 days ahead forecast horizon of different pollutants (best results are highlighted).

Pollutant
Forecast

Metric
Temporal-only Model Spatiotemporal Model Proposed

Period ARIMA LSTM TCN DeepAR Transformers NBeats STARMA GSTAR GpGp STNN STGCN DeepKrigging E-STGCN

PM2.5

JAN - FEB - MAR

MAE 87.20 108.92 101.25 108.36 52.24 50.23 77.69 80.22 50.66 91.36 47.42 65.84 46.00
MASE 2.47 3.10 2.87 3.09 1.48 1.43 2.20 2.28 1.45 2.66 1.35 1.94 1.31
RMSE 97.95 127.48 118.65 127.00 75.09 66.30 90.16 92.99 68.84 110.19 64.49 76.98 62.59
SMAPE 59.70 143.60 137.90 142.00 41.70 47.90 110.70 110.30 40.20 67.80 37.90 50.20 36.60

APR - MAY - JUN

MAE 44.46 47.61 59.85 43.16 40.92 25.30 52.92 47.06 47.07 79.39 40.23 58.46 36.04
MASE 2.55 2.63 3.36 2.38 2.39 1.42 2.95 2.62 2.81 4.72 2.28 3.32 2.05
RMSE 50.55 55.62 68.24 51.84 45.93 30.93 59.96 54.56 52.37 85.98 47.66 70.62 42.94
SMAPE 59.90 116.20 171.10 96.50 58.00 40.80 157.20 133.60 63.50 83.50 58.20 131.70 52.10

JUL - AUG - SEP

MAE 37.00 20.14 28.17 19.75 61.16 41.07 31.89 29.92 61.83 20.28 49.34 43.87 45.66
MASE 4.64 2.36 3.35 2.31 7.69 5.17 3.80 3.56 7.76 2.41 6.18 5.32 5.73
RMSE 40.83 24.13 32.83 23.78 62.78 47.51 35.94 34.54 64.02 24.56 60.88 53.88 57.29
SMAPE 68.30 64.30 112.40 62.50 93.20 69.80 146.50 132.70 93.10 61.30 74.20 135.20 71.50

OCT - NOV - DEC

MAE 99.14 158.91 176.00 157.95 98.80 136.28 163.98 163.83 96.85 162.02 97.34 177.69 95.10
MASE 2.66 4.29 4.76 4.26 2.65 3.68 4.43 4.43 2.58 4.37 2.62 4.81 2.56
RMSE 126.15 180.61 196.24 179.76 125.13 161.44 190.17 189.36 123.31 183.52 125.07 197.34 122.44
SMAPE 64.30 151.40 187.30 149.20 63.90 110.10 157.20 157.30 61.80 162.00 64.30 199.50 61.00

PM10

JAN - FEB - MAR

MAE 111.07 219.16 219.77 215.14 109.07 110.28 128.22 118.87 84.76 135.20 68.88 207.63 68.81
MASE 2.04 3.94 3.94 3.86 1.92 2.02 2.28 2.12 1.50 2.51 1.24 3.73 1.24
RMSE 128.20 237.79 251.17 234.10 139.64 129.64 149.21 139.84 113.21 176.45 92.72 235.06 92.55
SMAPE 44.00 174.70 161.10 167.80 52.20 43.80 86.60 73.20 37.20 48.00 29.90 151.50 29.90

APR - MAY - JUN

MAE 69.36 162.31 159.67 155.56 65.89 69.75 150.98 123.69 68.75 134.97 71.32 143.21 71.32
MASE 1.49 3.45 3.37 3.29 1.39 1.47 3.20 2.62 1.48 2.97 1.54 3.08 1.54
RMSE 85.71 180.11 181.27 174.06 88.02 95.17 169.22 144.79 86.74 161.53 85.70 163.18 85.70
SMAPE 40.00 169.50 158.80 154.00 38.70 42.40 152.90 112.20 42.50 64.80 40.80 94.30 40.80

JUL - AUG - SEP

MAE 67.13 89.83 98.76 84.03 57.10 44.69 84.31 86.80 70.51 52.56 78.42 71.77 59.51
MASE 3.48 4.48 4.92 4.18 3.03 2.21 4.20 4.35 3.82 2.67 4.04 3.54 3.04
RMSE 76.53 100.04 111.97 94.82 66.28 56.63 98.63 103.53 80.25 65.99 100.54 84.83 76.20
SMAPE 54.90 144.20 156.50 125.70 50.80 45.60 130.20 130.80 57.80 57.30 54.10 104.50 53.30

OCT - NOV - DEC

MAE 181.14 296.82 300.74 292.10 162.13 246.24 259.03 263.90 155.14 268.84 145.11 284.10 135.20
MASE 3.24 5.32 5.38 5.23 2.86 4.41 4.63 4.73 2.72 4.83 2.60 5.09 2.41
RMSE 212.44 317.30 325.67 312.89 194.85 274.96 293.93 297.78 188.18 291.76 179.30 309.89 169.99
SMAPE 74.10 177.60 175.10 171.40 61.40 122.30 135.20 139.80 57.40 151.00 54.50 164.10 49.30

NO2

JAN - FEB - MAR

MAE 15.26 25.05 37.10 24.14 17.52 18.14 19.04 18.62 18.74 30.57 13.74 22.91 13.74
MASE 3.59 6.34 9.93 6.11 6.33 4.74 4.85 3.07 4.64 7.52 5.73 7.03 5.73
RMSE 18.22 28.35 39.76 27.45 20.35 21.85 22.75 22.10 21.95 40.92 16.56 26.15 16.56
SMAPE 40.40 76.40 174.30 71.60 44.80 55.00 54.30 55.00 49.50 69.60 35.00 72.90 35.00

APR - MAY - JUN

MAE 17.56 20.04 31.76 18.86 20.23 14.51 19.61 19.57 19.08 23.83 15.58 22.12 15.58
MASE 4.91 3.17 6.53 3.05 5.85 2.98 3.24 3.73 6.69 6.49 3.72 4.02 3.72
RMSE 20.81 24.36 35.15 23.23 23.11 18.73 23.74 23.30 22.80 31.31 18.60 26.23 18.60
SMAPE 50.20 64.60 173.50 58.50 55.30 47.80 69.50 69.10 56.20 65.80 44.70 81.10 44.70

JUL - AUG - SEP

MAE 19.29 10.10 19.57 10.00 25.88 10.09 10.84 11.91 18.41 19.59 15.59 23.39 15.59
MASE 7.18 3.38 6.06 3.38 9.38 3.14 3.16 3.45 8.80 8.51 5.42 8.10 5.42
RMSE 21.28 12.74 22.09 14.01 27.37 13.01 13.71 14.90 20.72 26.72 18.40 32.27 18.40
SMAPE 72.40 50.50 167.30 50.00 83.80 58.90 61.20 71.60 72.30 72.20 60.50 124.50 60.50

OCT - NOV - DEC

MAE 19.43 28.26 42.40 27.22 22.33 25.21 28.42 32.14 20.41 35.98 21.08 43.38 21.08
MASE 2.79 3.86 6.44 3.69 3.54 3.56 4.02 4.63 3.09 5.42 2.97 6.63 2.97
RMSE 24.92 34.10 47.19 33.11 27.58 31.41 35.32 38.73 25.60 41.82 26.91 48.01 26.91
SMAPE 43.50 74.60 179.40 70.00 48.20 68.00 80.00 101.20 47.10 120.90 48.00 196.40 48.00

corresponding forecasts generated by the E-STGCN and model A, respectively. This statistical testing
procedure checks whether the expected loss differential is zero using the DM statistic as

DM statistic for station i =
√
q
µi
Λ

αi
Λ

,

where q is the forecast horizon, µi
Λ and αi

Λ are respectively the sample mean and standard deviation of the
loss differential series Λi

t,A. Using this statistic, we test the null hypothesis H0 : E(Λi
t,A) ⩽ 0 against the

alternative H1 : E(Λi
t,A) > 0, where E(·) denotes expectation. If the p-value of the test is less than the

significance level, we reject H0 and conclude that the forecasting performance of the E-STGCN framework
is superior to that of A architecture. In our analysis, we conduct the DM test to assess the statistical signifi-
cance of the performance differences between E-STGCN and the second and third-best-performing baselines,
STGCN and NBeats. Figs. 8 and 9 present the test results for forecasting PM2.5 and PM10 concentrations
during the October-November-December period, respectively. These plots evaluate the station-wise fore-
casting performance of E-STGCN with the benchmarks, where the x-axis represents station indices and
the y-axis indicates DM test statistics. A positive DM test statistic value indicates the superiority of the
E-STGCN over the baselines, while a negative value suggests that the baselines perform better.

As highlighted in the plots, the E-STGCN method performs similarly to or better than the baselines
across most stations, except for PM2.5 forecasting of CRRI Mathura Road (station no. 7), where STGCN
achieves superior results. Moreover, the significant p-values at 1%, 5%, 10%, and 20% levels are marked using
orange, green, blue, and violet-colored stars, respectively. As evident from Fig. 8, E-STGCN significantly
outperforms NBeats for PM2.5 forecasting in 19 out of 37 stations at 1% significance level. Compared to
STGCN, E-STGCN demonstrates significantly different performance for multiple stations at varied levels.
For the PM10 forecasting, we observe from Fig. 9 that E-STGCN achieves significantly better results than
both the STGCN and NBeats for several monitoring stations at 1% and 5% levels of significance. The overall
findings of the DM test are consistent with the MAEmetrics reported in the experimental evaluations. Hence,
this test underscores the statistical significance of our findings. For NO2 concentration levels, the forecasts
from the E-STGCN and the STGCN models are very similar due to the absence of many significant extreme
observations, resulting in Λi

t,STGCN ≈ 0, rendering the DM statistic undefined in this case.
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Figure 8: DM test results comparing (a) E-STGCN and STGCN, and (b) E-STGCN and NBeats for forecasting PM2.5

pollutant concentrations over the 90-day OCT-NOV-DEC forecast window. The Y-axis represents DM-test statistic values
based on the MAE metric, while the X-axis indicates the monitoring station indices. Stars denote significant p-values, with
colors representing 1% (orange), 5% (green), 10% (blue), and 20% (violet) significance levels, respectively.

Figure 9: DM test results comparing (a) E-STGCN and STGCN, and (b) E-STGCN and NBeats for forecasting PM10 pollutant
concentrations over the 90-day OCT-NOV-DEC forecast window. The Y-axis represents DM-test statistic values based on the
MAEmetric, while the X-axis indicates the monitoring station indices. Stars denote significant p-values, with colors representing
1% (orange) and 5% (green) significance levels, respectively.

4.6. Uncertainty Quantification

In addition to producing the point forecasts of the air pollutant concentrations through the E-STGCN
approach, we quantify the uncertainty inherent with these forecasts using the conformal prediction technique
(Vovk et al., 2005). This distribution-free approach generates the probabilistic intervals around the point
estimates based on a conformal score (γt). The computation of γt at time t involves modeling p-lagged
values of the target series Xt using both E-STGCN and an uncertainty model U as follows

γt =
|Xt − E-STGCN(Xt−p) |

U (Xt−p)
.

Subsequently, using the sequential nature of Xt and γt, we derive the conformal quantile by applying a
weighted aggregation technique with a fixed window {νt = 1 (χ ⩾ t− υ) , χ < t} of size υ as

κt = inf

{
ω :

1

min (υ, χ− 1)

t−1∑
χ=1

γχνχ ⩾ 1− ρ

}
,
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where ρ is the significance level. Then, the computation of the conformal prediction interval using the
conformal quantiles κt can be expressed as,

[E-STGCN(Xt−p)± κt U (Xt−p)] .

In Fig. 10, we present the point and interval estimate of air pollutant concentrations generated by the E-
STGCN model along with the results of the two best-performing baselines STGCN and NBeats, as identified
by the MCB plots in Section 4.5. The conformal prediction intervals demonstrated in Fig. 10 are calculated
with ρ = 0.20 for three selected forecasting scenarios. The plot highlights the generalizability of the proposed
E-STGCN model in providing valuable insights about air pollutant concentration levels, mainly modeling
their threshold exceedance values. These findings are pivotal for environmentalists in designing awareness
and mitigation strategies.

Figure 10: Upper panel presents ground truth (red dots) PM2.5 pollutant concentrations monitored at (A) DTU, (B) Dr.
Karni Singh Shooting Range, and (C) IGI Airport stations during February 2023 window and corresponding point forecasts
of E-STGCN (blue line), STGCN (green line), and NBeats (violet line) framework. The conformal prediction interval (yellow-
shaded) of the E-STGCN model quantifies the associated uncertainty. The lower panel highlights similar information about
PM10 concentrations monitored at the corresponding stations.

5. Policy implications

Rapid urbanization and industrialization have significantly impacted air quality in many developing and
underdeveloped countries. In its 2021 Global Air Quality Guidelines (AQGs), WHO recommended critical
air pollutants such as PM, NO2, SO2, O3, and CO based on their effects on mortality and human health.
Among these, PM and NO2 have gained particular attention from air quality researchers due to their direct
links to increased mortality, as evidenced in epidemiological studies (Olaniyan et al., 2020). NO2 is a
highly reactive gas primarily emitted from automobile exhaust, power plants, and industrial machinery. In
urban areas, NO2 levels are mainly driven by the transportation sector. For instance, the urban regions
of North America and Europe often report higher NO2 despite low levels of PM2.5 and PM10 (Ji et al.,
2022). It was found that acute exposure to NO2 can aggravate respiratory diseases, such as asthma and
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other pulmonary symptoms, although no causal relationship between NO2 exposure and health mortality
was established (Faustini et al., 2014). On the other hand, PM comprises a mix of acids (such as nitrates and
sulfates), organic chemicals, metals, soil, dust particles, and allergens. These particles originate from various
sources like fossil fuel combustion, industrial emissions, construction activities, wildfires, stubble burning,
and household cooking. In Delhi, PM levels frequently exceed the NAAQS, even when NO2 concentrations
remain relatively low (Abirami and Chitra, 2021). It is particularly critical as PM is identified as a causal
factor for cardiovascular and respiratory mortality and remains a serious concern for India’s capital. Given
that the population of Delhi and the national capital region (NCR) of India is particularly vulnerable to PM
exposure, which can cause health emergencies, this study aims to forecast PM levels in Delhi by considering
extreme behaviors of air pollutants. The proposed E-STGCN framework offers a technological solution for
real-time monitoring and forecasting of hazardous air pollutants in Delhi. This approach is particularly
valuable when extreme observations and nonlinear patterns characterize the observed spatiotemporal data.
The proposed methodology has the potential to advance future research endeavors on enhancing air quality
forecasting models and to promote environmental sustainability. Although E-STGCN has been developed
specifically for air pollution data in this study, it can also be extended to other applied fields, including
epidemiology, seismology, and transportation research, where similar patterns of extreme events and complex
dependencies are frequently observed.

6. Conclusion

Accurate air quality forecasting remains a challenging problem due to complex spatiotemporal depen-
dencies in pollutant concentration levels. Pollutants such as PM2.5, PM10, and NO2 often exhibit extreme
behaviors while also displaying nonlinear and non-stationary properties. Among these hazardous pollutants,
PM2.5 and PM10 concentrations are consistently high in some of the world’s majorly polluted cities, leading
to serious health hazards and restricting economic growth. In particular, air pollution levels can intensify
with seasonal variations. For instance, in Delhi, the concentration of PM2.5 and PM10 increases rapidly
during winter due to low wind speed, stubble burning, firecracker emissions, and other contributing sources.
To address these challenges, public awareness through early warning systems is of paramount importance.

In this study, we propose the E-STGCN model, which aims to provide actionable insights by generating
real-time forecasts of air pollutant concentrations. Our approach bridges the gap between existing EVT-
based models, which focus on predicting extreme behavior, and data-driven forecasting methods that predict
future trajectories without accounting for the tail behavior of the extreme observations. By integrating
EVT knowledge with spatiotemporal GCNs, our proposed framework effectively performs spatiotemporal
forecasting while tackling extreme observations. Experimental results, conducted on real-world air pollutant
data (daily frequencies) of PM2.5, PM10, and NO2 from 37 monitoring stations in Delhi demonstrate that
the E-STGCN approach is well-suited for predicting the future dynamics of nonlinear and non-stationary
datasets with spatiotemporal dependence and extreme events. Additionally, the model generates appropriate
probabilistic bands along with point forecasts, enabling environmental advocates to monitor air pollution
trends and design effective control strategies. Further, the forecastability and statistical significance tests
conducted in this study verify the effectiveness and robustness of the proposed architecture for air pollution
forecasting over various time horizons.

An interesting avenue for future research is to identify various climatic, transportation, and industrial
indices that have a causal impact on rising air pollution levels. Future studies could explore how incorpo-
rating these causal covariates might enhance the accuracy of the E-STGCN approach. Another potential
direction would be to extend the air pollution modeling capabilities of E-STGCN on a global scale, analyzing
its impact on pollution-related mortality and morbidity.
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Supplementary material

S.1. Statistical Tests on Air Pollutant Data

Below, we summarize the global features of the dataset used in our analysis and highlight their imple-
mentation strategies:

• Long-term dependency is a crucial feature in time series processes and has gained significant attention
in probabilistic time series modeling. To evaluate long-range dependency, we examine the self-similarity
parameter, often referred to as the Hurst exponent, using the pracma package in R.

• Stationarity is a fundamental property of time series that implies the statistical features, particularly
mean and variance, remain constant over time. To assess stationarity, we employ the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test from the tseries package in R.

• Linearity is another essential characteristic of time series data, playing a critical role in model selection.
In our analysis, we apply Teraesvirta’s neural network test from the nonlinearTseries package in R to
determine whether the data-generating process follows a linear trend.

• Seasonality refers to recurring patterns in time series that occur at regular intervals. To identify the
presence and frequency of seasonal patterns in our dataset, we use Ollech and Webel’s test from the
seastests package in R.

Descriptive statistics and these global features of the three pollutant series (PM2.5, PM10, and NO2) for
various monitoring stations in our dataset are presented in Tables S.1, S.2 and S.3.

S.2. Baseline Models

(a) Temporal baseline models:

• Autoregressive Integrated Moving Average (ARIMA) is a popular statistical method for time
series forecasting (Box et al., 1970). The ARIMA(p, d, q) framework tracks the linear trajectory in a
d-order (non-negative integer) differenced stationary time series by combining p historical values of
the target series and q prior forecast errors. We utilize the forecast package in R statistical software
to implement the ARIMA model.

• Long-short Term Memory (LSTM) networks, a recurrent neural networks (RNN) architecture, is
suitable for modeling long-term dependencies in time series forecasting (Hochreiter and Schmidhuber,
1997). This framework utilizes a gating mechanism with the input gate, forget gate and output gate
to regulate the flow of information as short-term and long-term memory.

• Temporal Convolutional Network (TCN) combines causal convolutions and dilated convolutions
to model the long-term dependencies in a time series dataset (Chen et al., 2020). This architecture
has a stable training mechanism due to skip connections in the residual blocks.

• DeepAR is a variant of the RNN approach, capable of performing probabilistic forecasting (Salinas
et al., 2020). This scalable architecture is suitable for handling complex seasonality in multiple time
series.
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Table S.1: Descriptive statistics of the PM2.5 pollutant levels in different stations. In the table, weekly (W), quarterly (Q),
and no (-) seasonality are indicated.

Station Min 1st quar-
tile

Mean Median 3rd quar-
tile

Max Sd CV Skewness Kurtosis Freq of
EVal

Seas DW
test

1 — Alipur 4.81 48.15 127.64 95.71 181.72 758.40 103.66 0.81 1.42 2.36 68.01 - 0.12

2 — Anand Vihar 9.52 52.72 122.39 88.94 162.3 592.28 96.17 0.79 1.52 2.24 69.66 W 0.11

3 — Ashok Vihar 5.95 42.35 109.27 75.6 146.49 601.49 93.26 0.85 1.68 3.13 60.41 - 0.06

4 — Aya Nagar 7.96 37.22 77.86 58.01 98.12 556.03 61.17 0.79 2.33 8.45 47.95 W 0.24

5 — Bawana 7.83 52.92 122.94 94.93 166.03 696.78 93.11 0.76 1.55 3.19 69.38 - 0.05

6 — Burari Crossing 10.97 81.64 105.04 99.79 118.07 565.65 53.53 0.51 2.33 9.28 83.36 - 0.37

7 — CRRI Mathura 7.97 42.72 97.18 72.76 125.91 518.18 76.23 0.78 1.78 3.86 59.52 Q 0.24

Road
8 — DTU 9.39 46.63 111.06 83.60 149.51 631.85 86.41 0.78 1.67 3.65 65.27 - 0.84

9 — Dr. Karni Singh 4.39 34.27 89.47 60.34 122.61 571.73 79.41 0.89 1.79 3.89 50.21 Q 0.09

Shooting Range
10 — Dwarka Sector 8 8.09 41.38 104 76.03 140.48 600.4 85.35 0.82 1.72 3.88 59.59 - 0.03

11 — IGI Airport 2.68 34.89 82.85 60.57 108.71 506.20 67.44 0.81 1.98 5.51 50.55 - 0.01

12 — Ihbas Dilshad 7.50 43.27 91.83 76.73 119.43 606.41 66.98 0.73 1.70 4.67 62.40 - 0.63

Garden
13 — ITO 12.13 53.52 111.17 84.02 142.13 659.29 84.56 0.76 2.04 5.86 69.25 - 0.29

14 — Jahangirpuri 8.77 49.88 128.39 90.71 179.66 658.26 105.42 0.82 1.46 2.03 67.67 - 0.05

15 — Jawaharlal Nehru 3.79 36.18 95.16 65.22 128.78 513.36 82.48 0.87 1.69 3.17 53.84 - 0.05

Stadium
16 — Lodhi Road IMD 5.49 38.08 78.41 60.37 99.07 479.72 58.98 0.75 2.05 5.80 50.34 - 0.26

17 — Major Dhyan Chand 6.71 38.98 94.15 67.88 126.01 525.64 76.45 0.81 1.63 3.07 55.41 W 0.75

National Stadium
18 — Mandir Marg 4.67 39.87 93.91 73.81 121.22 563.93 74.69 0.8 1.75 4.07 59.45 - 0.18

19 — Mundka 7.38 45.92 120.93 93.04 169.61 698.96 98.22 0.81 1.55 3.12 65.27 - 0.20

20 — Najafgarh 4.50 35.22 83.68 67.57 111.60 574.41 65.59 0.78 1.92 6.09 55.89 Q 0.31

21 — Narela 6.62 47.04 110.17 84.39 149.57 689.10 85.87 0.78 1.62 3.68 65.62 - 0.19

22 — Nehru Nagar 6.06 41.86 116.12 74.08 163.04 554.05 101.59 0.87 1.48 1.96 59.45 W 0.03

23 — North Campus DU 5.58 43.00 95.97 70.35 123.72 570.07 77.70 0.81 1.87 4.43 58.22 - 0.16

24 — NSIT Dwarka 8.33 51.39 100.39 86.92 133.17 406.61 65.08 0.65 1.23 1.72 68.42 - 0.76

25 — Okhla Phase 2 6.18 37.48 99.64 67.85 132.97 547.56 87.48 0.88 1.72 3.22 55.07 W 0.07

26 — Patparganj 4.73 42.34 104.57 74.03 138.85 633.95 87.84 0.84 1.65 3.21 60.41 W 0.25

27 — Punjabi Bagh 6.84 46.34 109.45 79.57 144.22 609.18 88.64 0.81 1.84 4.40 62.67 - 0.04

28 — PUSA DPCC 3.68 37.14 93.82 67.32 130.31 570.61 79.06 0.84 1.64 3.29 54.25 W 0.11

29 — PUSA IMD 7.46 35.75 80.82 60.75 103.87 569.5 64.86 0.80 2.13 7.01 50.89 - 0.06

30 — R K Puram 6.38 41.25 99.97 71.01 134.12 558.86 83.07 0.83 1.61 3.01 58.29 - 0.06

31 — Rohini 6.13 47.64 119.07 85.15 160.09 761.95 99.09 0.83 1.72 3.81 64.79 - 0.89

32 — Shadipur 9.38 37.88 89.67 72.40 119.80 397.45 66.43 0.74 1.40 2.13 58.42 - 0.35

33 — Sirifort 0.08 39.96 96.32 70.71 129.24 573.09 78.07 0.81 1.79 4.38 57.95 W 0.40

34 — Sonia Vihar 6.01 46.37 106.71 77.84 138.55 598.80 86.30 0.81 1.75 3.69 62.60 - 0.34

35 — Sri Aurobindo Marg 5.28 34.88 85.33 60.77 113.41 534.86 72.01 0.84 1.94 5.31 50.68 - 0.17

36 — Vivek Vihar 4.61 45.91 115.35 79.91 156.20 650.88 97.79 0.85 1.57 2.48 62.60 - 0.27

37 — Wazirpur 6.88 48.74 114.83 80.10 150.70 585.79 92.57 0.81 1.69 3.04 65.41 - 0.15

• Transformers is a state-of-the-art deep learning architecture that models complex patterns in time
series data (Wu et al., 2020). This framework utilizes the multi-head attention mechanism to capture
the crucial information in a sequential learning problem.

• Neural Basis Expansion Analysis for Time Series (NBeats) is a fully connected neural network
architecture designed for time series forecasting (Oreshkin et al., 2019). This model comprises several
blocks equipped with a basis expansion mechanism for transforming data into high-dimensional space
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Table S.2: Descriptive statistics of the PM10 pollutant levels in different stations. In the table, weekly (W), quarterly (Q), and
no (-) seasonality are indicated.

Station Min 1st quar-
tile

Mean Median 3rd quar-
tile

Max Sd CV Skewness Kurtosis Freq of
EVal

Seas DW
test

1 10.04 98.38 201.54 183.66 284.63 758.40 125.43 0.62 0.76 0.36 74.38 - 0.20

2 16.26 128.95 265.22 249.69 361.79 729.94 153.63 0.58 0.57 -0.38 83.56 - 0.31

3 11.80 106.94 212.58 191 290.86 753.97 130.1 0.61 0.91 0.59 77.47 - 0.16

4 11.39 79.36 152.38 138.25 200.58 665.41 94.31 0.62 1.22 2.20 66.16 W 0.17

5 12.03 127.09 240.84 218.46 335.64 810.85 139.82 0.58 0.73 0.16 82.74 - 0.20

6 20.33 135.13 201.05 180.15 226.15 795.88 99.65 0.50 1.40 2.61 91.99 - 1.00

7 10.22 92.00 205.10 189.72 292.14 721.69 129.26 0.63 0.74 0.22 72.19 - 0.45

8 1.00 114.05 214.90 199.14 295.47 923.70 123.74 0.58 0.78 0.87 78.97 - 0.72

9 8.03 87.93 180.60 166.45 243.90 756.47 110.83 0.61 0.88 0.99 71.37 Q, W 0.52

10 14.63 136.14 253.11 247.16 351.80 807.89 136.80 0.54 0.47 -0.21 85.21 - 0.38

11 12.95 87.57 172.51 148.58 235.35 633.67 105.43 0.61 1.13 1.35 68.22 W 0.01

13 16.00 94.81 170.99 153.03 226.25 691.84 99.54 0.58 1.21 2.17 71.85 - 0.75

14 15.48 125.76 248.47 229.62 339.05 821.78 145.85 0.59 0.72 0.03 81.99 - 0.23

15 10.25 96.43 190.98 175.62 260.25 678.37 115.37 0.60 0.86 0.71 74.04 Q, W 0.46

16 10.06 84.84 161.70 147.87 218.69 611.18 93.82 0.58 0.95 1.05 69.45 - 0.18

17 12.44 98.55 190.49 171.7 261.15 663.12 112.55 0.59 0.82 0.39 74.32 - 0.32

18 17.09 92.99 172.77 159.56 231.77 705.68 98.16 0.57 0.90 0.96 71.58 - 0.46

19 10.67 129.55 256.72 241.74 358.95 790.97 144.14 0.56 0.52 -0.35 84.32 - 0.54

20 8.75 86.20 157.88 147.47 212.83 731.23 93.13 0.59 0.93 1.54 69.18 Q 0.92

21 20.48 128.72 231.14 207.18 314.71 718.18 127.53 0.55 0.75 0.16 85.07 - 0.21

22 10.48 97.90 205.37 181.25 284.89 702.19 129.16 0.63 0.90 0.53 74.11 W 0.29

23 5.17 100.15 194.37 176.32 260.85 735.53 119.71 0.62 1.00 1.10 75.07 - 0.38

25 9.73 108.34 211.05 190.43 282.79 741.37 124.62 0.59 0.86 0.56 78.08 W 0.34

26 8.36 90.98 189.19 170.67 262.95 689.97 118.8 0.63 0.83 0.36 71.85 W 0.23

27 20.60 109.55 206.63 183.98 277.36 768.33 121.4 0.59 0.96 0.79 78.36 W 0.27

28 9.97 104.87 201.78 191.35 277.41 726.86 117.88 0.58 0.66 0.26 76.64 - 0.79

29 13.01 69.98 152.34 130.26 209.25 706.66 99.95 0.66 1.24 2.02 62.12 W 0.22

30 11.52 98.04 193.74 180.34 266.95 699.3 111.82 0.58 0.74 0.46 74.45 W 0.09

31 11.1 116.87 230.09 204.46 318.69 783.4 138.92 0.60 0.82 0.21 80.14 - 0.09

33 10.97 118.90 221.00 213.68 301.66 664.34 121.23 0.55 0.63 0.18 82.05 - 0.50

34 13.00 108.97 213.34 190.00 292.41 720.11 127.22 0.60 0.88 0.50 78.77 - 0.75

35 8.86 72.39 148.27 134.51 202.46 596.06 92.57 0.62 1.00 1.23 63.15 - 0.53

36 12.48 111.68 223.87 198.14 305.24 699.36 132.67 0.59 0.85 0.32 79.18 W 0.33

37 19.3 138.93 246.48 215.07 325.32 793.65 139.44 0.57 0.99 0.68 88.42 - 0.04

and dense layers. The initial layers of the block are used for modeling and predicting past and future
observations, while the subsequent layers are designed to remodel the errors and adjust the forecasts.

To implement the above-mentioned deep learning models, we have used the darts library in Python
(Herzen and et al., 2022).

(b) Spatiotemporal baseline models:

• Space-time Autoregressive Moving Average (STARMA) is a modification of the autoregressive
moving average framework that incorporates the spatiotemporal auto-correlations (Pfeifer and Deu-
trch, 1980). This architecture includes both autoregressive and moving average terms that are lagged
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Table S.3: Descriptive statistics of the NO2 pollutant levels in different stations. In the table, weekly (W), quarterly (Q), and
no (-) seasonality are indicated.

Station Min 1st quar-
tile

Mean Median 3rd quar-
tile

Max Sd CV Skewness Kurtosis Freq of
EVal

Seas DW
test

1 0.70 17.88 34.28 30.93 46.07 120.01 20.60 0.60 0.99 1.00 3.70 - 0.46

2 4.87 44.92 75.56 70.53 100.18 325.77 39.95 0.53 1.06 2.55 41.03 Q 0.25

3 3.54 21.59 40.42 36.01 55.90 183.59 23.53 0.58 0.96 1.57 5.41 - 0.83

4 0.94 13.15 19.48 18.58 23.76 128.24 11.50 0.59 2.29 10.54 0.07 - NA

5 1.85 11.60 27.25 21.86 36.65 188.92 21.39 0.79 1.98 7.01 2.40 - 0.23

6 1.54 34.17 142.87 86.02 250.16 428.15 130.93 0.92 0.72 -0.90 51.37 Q 1.00

7 0.33 14.00 38.52 20.72 41.88 308.38 43.89 1.14 2.30 5.01 12.67 - 0.29

8 1.06 21.43 40.66 33.89 47.72 276.46 32.42 0.8 2.41 7.97 8.77 - 0.51

9 3.44 28.22 53.46 46.16 72.41 291.46 34.51 0.65 1.64 6.14 20.07 - 0.24

10 6.61 21.27 36.5 31.97 47.19 127.53 20.34 0.56 1.16 1.40 3.70 - 0.46

11 0.64 23.9 44.08 33.03 56.03 417.31 37.91 0.86 3.43 21.22 11.58 - 0.01

12 6.32 26.16 50.41 42.99 67.89 197.44 31.23 0.62 1.17 1.48 16.71 - 0.59

13 8.13 19.87 36.33 28.14 40.49 272.12 29.42 0.81 3.23 14.19 6.99 - 0.23

14 8.63 31.49 60.03 50.28 73.94 237.59 39.34 0.66 1.62 2.63 20.96 - 1.00

15 6.51 40.86 60.95 58.68 78.80 202.93 27.71 0.45 0.55 0.54 23.90 - 0.47

16 0.13 6.49 13.73 9.99 18.13 100.24 11.54 0.84 2.15 7.10 0.21 - 1.00

17 8.97 23.66 42.06 35.99 53.79 159.29 24.17 0.57 1.25 1.68 8.70 - 0.48

18 11.15 39.88 54.12 52.51 69 179.24 22.53 0.42 0.46 0.64 12.26 - 0.67

19 4.38 23.26 37.74 33.95 49.39 117.4 18.32 0.49 0.85 0.47 2.33 - 0.38

20 2.96 11.74 20.73 18.23 27.27 89.38 12.29 0.59 1.36 2.90 0.14 - NA

21 4.12 26.27 38.89 34.96 48.52 150.4 17.65 0.45 1.21 2.25 3.22 - 0.49

22 8.63 34.86 55.21 48.80 71.95 225.00 27.77 0.50 1.30 3.23 17.53 - 0.93

23 0.96 9.09 25.18 17.37 30.10 205.36 24.75 0.98 2.34 6.74 5.27 - 0.24

24 2.09 19.09 29.37 26.55 37.99 101.78 14.01 0.48 1.20 2.49 0.89 - 0.36

25 7.12 29.30 49.55 45.01 65.23 219.36 25.99 0.52 0.96 1.80 14.59 - 0.08

26 1.78 15.05 31.51 24.23 38.31 140.9 24.21 0.77 1.59 2.44 5.75 - 0.44

27 0.22 33.69 51.52 46.93 63.70 208.14 25.11 0.49 1.58 5.26 11.10 - 0.51

28 6.57 33.97 53.48 54.06 71.61 155.5 24.43 0.46 0.14 -0.63 14.59 - 0.50

29 0.65 12.32 35.21 23.84 47.35 325.08 35.86 1.02 2.57 10.75 9.86 - 0.40

30 0.27 27.91 44.34 43.06 59.15 179.95 22.45 0.51 0.53 1.06 6.71 - 0.70

31 0.30 14.48 25.59 21.53 32.62 146.91 15.69 0.61 1.72 5.22 0.75 - 0.51

32 6.37 24.22 51.60 44.04 73.03 181.41 32.76 0.63 0.95 0.58 19.18 - 0.44

33 0.21 14.10 34.24 25.96 48.55 247.18 27.86 0.81 1.73 5.02 7.05 - 0.20

34 2.87 21.53 35.90 32.32 46.62 111.92 18.41 0.51 0.91 0.77 2.74 Q 0.42

35 2.22 20.39 29.54 28.34 36.58 106.78 12.91 0.44 0.95 2.18 0.27 - NA

36 0.15 17.76 29.64 25.19 39.45 107.11 16.14 0.54 0.98 0.95 0.75 - 0.67

37 2.05 23.73 41.77 37.17 55.93 139.69 23.67 0.57 0.87 0.60 7.88 - 0.55

in space and time, making it useful for modeling linear trajectories in spatiotemporal systems.

• Generalized Space-time Autoregressive (GSTAR) model is a robust spatiotemporal forecasting
framework that allows the autoregressive parameters to vary across different locations (Cliff and Ord,
1975; Ruchjana et al., 2012). Unlike the STARMA model, the non-uniform weights of the GSTAR
architecture make it more useful for modeling heterogeneous characteristics of sample locations.

• Fast Gaussian Process (GpGp) method is a modification of Vecchia’s Gaussian process approxima-
tion (Vecchia, 1988), designed for analyzing ordered sequences in time series observations (Guinness,
2018). This approach introduces a grouping mechanism for the ordered sequence, which significantly
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reduces the computational complexity of traditional Gaussian process forecasting methods.

• Spatiotemporal Neural Network (STNN) is a hybrid forecasting approach that combines the
classical STARMA model with Support Vector Machine (SVM) and Artificial Neural Networks (ANN)
to enhance forecast accuracy (Saha et al., 2020). The STNN operates as an error-remodeling approach,
where the original training data is first modeled using the linear STARMA model. Residuals of the
STARMA model are then modeled using the SVM architecture, and ANN is subsequently applied to
the predicted values of the residuals from SVM to capture the nonlinearities better. The final STNN
forecasts are obtained by aggregating the predictions from both the STARMA and ANN frameworks.

• Spatiotemporal Graph Convolution Network (STGCN) is a graph-based deep learning frame-
work for performing spatiotemporal forecasting (Yu et al., 2018). This framework comprises two
spatiotemporal blocks, each containing a spatial graph convolution layer and two temporal gated con-
volution layers. The output from the spatiotemporal blocks is modeled with a fully connected dense
layer to generate the required forecasts. Since this model combines multiple convolutional layers, it
allows for faster training with fewer parameters.

• Space-Time DeepKriging (DeepKriging) model is a distribution-free spatiotemporal modeling ar-
chitecture that is well-suited for handling non-Gaussian and non-stationary processes (Nag et al.,
2023). The DeepKriging framework follows a two-step workflow, where radial basis functions and
Gaussian kernels capture spatial and temporal trends, respectively. These spatiotemporal basis func-
tions encode the coordinates, enabling effective spatiotemporal interpolation. In the second stage,
convolutional LSTM networks are employed to generate forecasts based on the previously learned
embeddings, allowing for more accurate spatiotemporal predictions.

To implement the STARMA, GSTAR, GpGp, and STNN models, we utilize the starma, gstar, GpGp,
and TDSTNN packages in the R statistical software, respectively. We adopt the available implementation
provided in the STGCN and DeepKriging model in Yu et al. (2018) and Nag et al. (2023), respectively.

S.3. MCB Plots

The MCB test results for PM2.5, PM10, and NO2 pollutants are summarized in Fig. S.1. The results
consider MAE, MASE, and SMAPE evaluation metrics, as discussed in Section 4.3 of the main manuscript.
For PM2.5, the MCB test results show that the E-STGCN framework achieves the lowest mean rank with
values of 2.91 (MAE), 2.48 (SMAPE), and 3.14 (MASE), followed by the STGCN, NBeats, ARIMA, and
GSTAR models. The critical distance values of the remaining baseline models lie above the reference value
(shaded region), indicating that their performance is significantly worse than the ‘best-fitted’ E-STGCN
model. For PM10, the E-STGCN framework consistently ranks as the ‘best’ model across all performance
indicators, followed by STGCN, NBeats, ARIMA, and GpGp. The performance of the other models is
significantly inferior compared to the E-STGCN framework. In the case of forecasting NO2 levels, the E-
STGCN and STGCN frameworks achieved similar rankings, emerging as the ‘best’ models across all metrics
except MASE, where STARMA performed best. Among the remaining models, NBeats, ARIMA, GSTAR,
and GpGp performed significantly better than the other approaches.
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Figure S.1: MCB plot for forecasting pollutant concentrations based on different performance metrics. In the figure, for
example, ‘E-STGCN - 2.91’ means that the average rank of the proposed E-STGCN algorithm for PM2.5 forecasting, based on
the MAE error metric, is 2.91; the same explanation applies to other algorithms, metrics, and pollutants. The shaded region
depicts the reference value of the test.
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