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A B S T R A C T
Cataract is one of the most common blinding eye diseases and can be treated by surgery. However,
because cataract patients may also suffer from other blinding eye diseases, ophthalmologists must
diagnose them before surgery. The cloudy lens of cataract patients forms a hazy degeneration in
the fundus images, making it challenging to observe the patient’s fundus vessels, which brings
difficulties to the diagnosis process. To address this issue, this paper establishes a new cataract image
restoration method named Catintell. It contains a cataract image synthesizing model, Catintell-Syn,
and a restoration model, Catintell-Res. Catintell-Syn uses GAN architecture with fully unsupervised
data to generate paired cataract-like images with realistic style and texture rather than the conventional
Gaussian degradation algorithm. Meanwhile, Catintell-Res is an image restoration network that can
improve the quality of real cataract fundus images using the knowledge learned from synthetic cataract
images. Extensive experiments show that Catintell-Res outperforms other cataract image restoration
methods in PSNR with 39.03 and SSIM with 0.9476. Furthermore, the universal restoration ability that
Catintell-Res gained from unpaired cataract images can process cataract images from various datasets.
We hope the models can help ophthalmologists identify other blinding eye diseases of cataract patients
and inspire more medical image restoration methods in the future.

1. Introduction
The cataract is one of the most common causes of blind-

ness. The World Health Organization estimates that cataracts
will result in 40 million blindness in 2025 [31]. Cataracts
are typically caused by the deposition of proteins and form
clouding of the lens in the eye. Cataracts usually develop
with age but can also be caused by external factors such
as trauma, diabetes, prolonged use of certain medications,
or exposure to ultraviolet radiation. As cataracts grow, they
can cause symptoms such as cloudy or blurred vision, faded
colors, glare, poor night vision, and double vision.

Furthermore, cataracts also cause blurry clouding in
retinal fundus photographing images and affect the diag-
nosis of other ophthalmic diseases through this method.
Fundus images have been expansively used in the fundus dis-
ease clinical diagnosis or computer-aided diagnosis systems.
Since cataracts can cause lens opacity, the fundus images of
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cataract patients will suffer from fogging, blurring, and other
degradation. It is challenging to make clinical diagnoses
through low-quality cataract fundus images. Therefore, the
low-quality fundus images could result in the risk of misdi-
agnosis and uncertainty in preoperative planning.

Fundus image restoration can effectively solve the fun-
dus image degradation caused by cataracts. Research in fun-
dus image restoration has been carried out for many years.
Traditional fundus image restoration methods [26, 20, 9, 2]
are mainly based on handcrafted priors. However, these
methods achieve poor performance in clinical applications
due to their limited prior knowledge or poor generalization
ability.

Recently, deep Convolutional Neural Networks(CNNs)[1,
32, 15, 14] have been used in natural image restoration
and achieved impressive results. CNNs have introduced
into fundus image restoration due to the success in nature
image restoration [35, 25, 27, 23, 19]. Meanwhile, the
Transformer [4] has been introduced into fundus image
restoration to address the limitations in capturing long-range
dependencies and achieve remarkable performance. The
advantage of the Transformer is capturing long-range de-
pendencies. The effective combination of CNNs and Trans-
formers may further improve the restoration performance of
deep-learning models in cataract image restoration.

Since deep learning methods are mostly data-driven,
existing cataract image restoration methods rely on a large
number of cataracts and corresponding clear fundus image
pairs. However, practical difficulties appear in cataract fun-
dus image collecting. The degradation of cataract images
is pathological, which means that clear images must be
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Figure 1: Catintell Model Workflow. We use two GAN models to generate synthetic cataract images and restore cataract images
separately. The idea is to collect the information contained in real cataract images and let Catintell-Syn learn from it. Then
Catintell-Res learns from synthetic data generated by Catintell-Syn and works on real cataract images from various datasets.
Existing methods focus on learning from synthetic data generated by an old method[22], which may not contain the features of
real cataract images. But Catintell extracts features directly from real cataract images and applies them to real cataract image
restoration.

collected after surgeries to remove the clouding in the lenses.
Nevertheless, collecting fundus images is not necessary after
cataract surgery and may cause further damage to patients.
Therefore, few cataract-clear image pairs were collected for
now. Some cataract patients may have corresponding clear
fundus images due to surgery follow-up, but, the long time
gap of image collecting reduces the significance of these
image pairs. There remains a lack of paired cataract images
and clear images.

To get training image pairs, the artificial degradation
algorithm[22] was first brought out in 1989 and is used in
many works even till now. Other models such as Gaussian
filters [25, 27, 15] are designed to synthesize cataract-like
images from high-quality (HQ) fundus images. However,
these models can barely achieve good performance due to

simple design. As shown in Fig.4(b), these cataract-like im-
ages fundamentally differ from real clinical cataract images.

In this paper, we set out to address the cataract im-
age restoration problem. To alleviate the issue of lack of
data, we propose a new cataract-like image synthesizing
model, Catintell-Syn, which is a GAN model that uses fully
unsupervised data to generate paired cataract-like images
with realistic style and texture. Based on these simulated
images, we develop a novel cataract fundus image restora-
tion method, Catintell-Res, including a CNN-based gen-
erator and a Transformer-based discriminator. Specifically,
the basic unit in the generator is the Dense Convolution
Block(DCB), which can capture local degradation features
effectively. Unlike the generator, the basic unit of the dis-
criminator is the Window-based Self-attention Block(WSB).
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The self-attention mechanism captures the non-local self-
similarity and long-range dependencies, which can comple-
ment the shortcomings of CNNs. The Transformer-based
discriminator can indirectly allow the generator to focus
on non-local features through its classification ability with
GAN architecture. Furthermore, the visual synthetic degra-
dation comparison results show that the cataract-like images
synthesized by our Catintell-Syn are closest to real cataract
images in degradation style. Extensive experiments demon-
strate that the Catintell-Res achieves remarkable perfor-
mance in both synthetic cataract-like data and real cataract
data. Finally, Catintell-Res is applied to real cataract images
from various external datasets to verify its generalization
performance and proved effective.

Our contributions can be summarized as follows:
1. We propose a new image synthesizing method, Catintell-

Syn, a deep learning model that only uses unpaired
HQ and cataract images to generate realistic cataract
images.

2. We develop a novel Transformer & CNN-based method,
Catintell-Res, for cataract fundus image Restoration.
Considering the significant performance on multiple
datasets.

3. Comprehensive quantitative and qualitative experi-
ments demonstrate that our Catintell models outper-
form other state-of-the-art cataract image restoration
algorithms.

2. Related Work
2.1. Fundus Image Restoration

Traditional fundus image restoration and enhancement
methods [26, 20, 9, 2] are mainly based on hand-crafted
priors. For example, Setiawan 𝑒𝑡 𝑎𝑙. introduce CLAHE into
fundus image enhancement[26]. Mitra 𝑒𝑡 𝑎𝑙. [20] combines
CLAHE with Fourier transform to enhance cataract images.
He 𝑒𝑡 𝑎𝑙.[9] filter images as an edge-preserving smoothing
operator and remove haze degradation efficiently. Cheng
𝑒𝑡 𝑎𝑙. [2] propose a structure-preserving guided retinal im-
age filtering (SGRIF) in fundus image restoration. How-
ever, these methods achieve poor performance in clinical
applications due to their limited prior knowledge or poor
generalization ability.

CNN[1, 32, 15, 14] have been used in natural image
restoration and achieved impressive results. CNNs have in-
troduced into fundus image restoration due to the success in
nature image restoration [35, 25, 27, 23, 19]. For instance,
Zhao et al. [35] propose an end-to-end deep CNN to remove
the lesions on the fundus images of cataract patients. Sourya
et al. [25] , Shen et al. [27], and Raj et al. [23] customize
different synthetic degradation models to simulate the degra-
dation types in actual clinical practice better. Luo et al. re-
port a two-stage dehazing algorithm, which restores cataract
fundus images under the supervision of segmentation [19].
Li et al. [15] propose a network to annotation-freely restore
cataract fundus images (ArcNet).

Meanwhile, the Transformer [4] has been introduced
into fundus image restoration to address the limitations in
capturing long-range dependencies and achieve remarkable
performance. Deng et al. [4] focus on real fundus image
restoration and propose the first Transformer-based method
(RFormer) in real fundus image restoration.
2.2. Generative Adversarial Network

Generative Adversarial Network (GAN) is firstly in-
troduced in [7] and has been proven successful in im-
age synthesis [6, 10, 36], and translation [10, 36]. Subse-
quently, GAN is applied to image restoration and enhance-
ment [32, 34, 25, 35, 12]. For instance, Wang et al. [32] pro-
pose the ESRGAN in single image super-resolution. Zhang
et al. [34] propose a new method that combines two GAN
models, a learning-to-Blur GAN and learning-to-DeBlur
GAN. Jiang et al. [12] focuses on low-light image enhance-
ment and develop an unsupervised generative adversarial
network(EnlightenGAN). Meanwhile, some works [11, 4]
are dedicated to improving the underlying framework of
GAN, such as replacing the traditional CNN framework with
Transformer. Jiang et al. [11] propose the first Transformer-
based GAN, TransGAN, for image generation.

3. Methodology
3.1. Overview

The Catintell model can be divided into two parts with
similar structures: Catintell-Syn for image generation and
Catintell-Res for cataract image restoration. Both of the
Catintell models have the conditional GAN structure.

Catintell-Syn receives HQ fundus images and generates
synthetic cataract-like images of the same size. Catintell-
Syn is trained with unaligned data from the Catintell dataset.
Because cataract fundus images from the Catintell Image
dataset have different sizes and height-width ratios, the HQ
images are cropped to the same size and ratio to accelerate
the convergence of Catintell-Syn. Meanwhile, this model
receives low-quality cataract fundus images as input and
outputs corresponding restored images. It can accept inputs
of various sizes and height-width ratios and restore real
cataract images. We use group convolution, internal small-
range dense structures, and residual structures to improve
performance.

After training with unpaired cataract data, we use Catintell-
Syn to synthesize images highly similar to real cataract
images. Then, these paired synthesized images are utilized
to train Catintell-Res. This model follows a “Pixel to Pixel"
principle to restore fundus images with the same spatial size.
Finally, the trained Catintell-Res can restore real cataract
images from various sources.
3.2. Catintell Model

The structures of Catintell models are similar GAN
architectures, therefore, here, we take the model used in
the cataract image restoration stage, the Catintell-Res as an
example, which is shown in Fig.2(a). Catintell-Res takes a
cataract image 𝐈𝑖𝑛 ∈ ℝ𝐻×𝑊 ×3 as input. First, the input is
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Figure 2: The structure of the Catintell model. (a) The example model has a four-stage convolutional generator with downsampling
and upsampling multiplier 2. (b) The discriminator of Catintell is a Transformer-based classifier and has four stages. (c) Detailed
structure of the Dense Conv Block.

processed by an input projection layer (5 × 5 convolutional
layer) to get the initial feature 𝐈0 ∈ ℝ𝐻×𝑊 ×𝐶 , where C is
the feature dimension, and set to 32 in Catintell-Res. Then,
the feature is encoded by three Dense Conv Blocks with
a skip connection and downsampled with a convolutional
layer. In the encoding stage, this operation is performed four
times, and the spatial size of the feature can be denoted as
𝐗𝑖 ∈ ℝ

𝐻
2𝑖+1

× 𝑊
2𝑖+1

×2𝑖+1𝐶 . Here, i = 0, 1, 2, 3 indicates the four
stages. Afterward, the feature is processed by the bottleneck
layers, another three Dense Conv Blocks, while its height,
width, and channel are kept the same. Then, the feature is
upsampled with four upsampling layers, each followed by
one Dense Conv Block, and its spatial size is transferred
to 𝐗𝑖 ∈ ℝ

𝐻
28−𝑖

× 𝑊
28−𝑖

×28−𝑖𝐶 . Here, i = 5, 6, 7, 8 indicates
the four upsampling stages. There are also skip connections
between encoding and decoding stages of the same spatial
size. Finally, the feature is processed by an output projection
layer (5× 5 convolutional layer) to provide the output image
𝐈𝑜𝑢𝑡 ∈ ℝ𝐻×𝑊 ×3.

The discriminator of Catintell-Res is a lightweight SWIN-
Transformer [17]. The structure of the discriminator is
shown in Fig.2(b). We use BCE loss as GAN loss in
Catintell-Res.

The structure of Catintell-Syn follows the same work-
flow, but its depth and width are lower. We shrink its size
to reduce its encoding level and reduce its generation ability
because cataracts only affect the lenses of the eyes and sel-
dom cause vessel lesions in fundus images. If the generation
ability of Catintell-Syn is too strong, we can observe some
artifact lesions on the generated images. Therefore, the depth
and width are optimized to 3 stages and 16 feature dimen-
sions to degrade fundus images but not generate lesions.

3.2.1. Conv Encoder
In the encoding and decoding stages, the spatial size of

feature maps does not change after processing by the Dense
Conv Blocks or Conv Encoders. The structure of the Dense
Conv Block is shown in Fig.2(d). It comprises two 5×5 con-
volutional layers and two 1 × 1 convolutional layers. There
is layer normalization between 5×5 and 1×1 convolutional
layers and GELU activation between 1 × 1 convolutional
layers. The second 5×5 convolutional layer not only receives
output from the layer ahead but also receives input with a
skip connection to form a dense structure. A Conv Encoder
contains three Dense Conv Blocks, whose structure is shown
in Fig.2(c). There is a skip connection in its structure, which
can accelerate its convergence and raise its performance.
3.2.2. Catintell Loss Functions

To formulate the loss functions, we denote the target HQ
image A with 𝐈, the input cataract-like image A with 𝐈𝑠𝑦𝑛,
the real cataract image B with 𝐈𝑐𝑎𝑡𝑎𝑟𝑎𝑐𝑡, the output restored
image A with 𝐈𝑜𝑢𝑡, the process of degradation generator with
𝐺𝑒𝑛(⋅), and the process of degradation discriminator with
𝐷𝑖𝑠(⋅).

Pixel Loss: The pixel loss is a fundamental loss function
in Catintell models, and we chose to apply it using the
SmoothL1 loss function, 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1, which is shown in the
eq.1.

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 =

{

0.5 × (𝐈 − 𝐈𝑜𝑢𝑡)2,−1 < 𝐈 − 𝐈𝑜𝑢𝑡 < 1
|𝐈 − 𝐈𝑜𝑢𝑡| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

Fundus Perceptual Loss: Due to the massive difference
between the fundus and common images, the perceptual
loss shall be modified to suit fundus images. We retrained a
VGG-19 [28] network to formulate a perceptual loss specif-
ically for fundus images, which is named Fundus Perceptual
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Loss (FPLoss). The VGG-19 is trained with the EyeQ [5]
dataset images with quality labels. The FPLoss works sim-
ilarly to normal perceptual loss, and it can also give style
loss.

Using𝜙(⋅) to denote the feature extractor of VGG-19 and
𝐺𝑟𝑎𝑚(⋅) to denote the Gram matrix calculation, if we assume
the height and width of extracted feature maps are𝐻 and𝑊 ,
the FPLoss, 𝑓𝑝, can be denoted as following eq.2.

𝑓𝑝 =
1

𝐻𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
(𝜙(𝐈𝑜𝑢𝑡)(𝑖, 𝑗) − 𝜙(𝐈𝑐𝑎𝑡𝑎𝑟𝑎𝑐𝑡)(𝑖, 𝑗))2;

𝑓𝑝−𝑠𝑡𝑦𝑙𝑒 =
1

𝐻𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
(𝜙(𝐺𝑟𝑎𝑚(𝐈𝑜𝑢𝑡))(𝑖, 𝑗)−

𝜙(𝐺𝑟𝑎𝑚(𝐈𝑐𝑎𝑡𝑎𝑟𝑎𝑐𝑡))(𝑖, 𝑗))2

(2)

Identity Loss: The identity loss 𝑖𝑑𝑒 can ensure that the
restoration model can keep fundus images unchanged when
the input images are HQ images. (Contrary to the cataract
image synthesis model Catintell-Syn, which can keep the
style of input cataract images) The style and details of a real
HQ image shall be kept the same after the process of this
restoration model. With input 𝐈, the processed image of the
degradation branch is𝐺𝑒𝑛(𝐈). The identity loss will calculate
the pixel loss of 𝐈 and 𝐺𝑒𝑛(𝐈). To be more specific, the pixel
loss applied in the identity loss is SmoothL1 loss, therefore,
the loss can be formulated as eq.3.

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝐈, 𝐺𝑒𝑛(𝐈)) (3)
GAN Loss: The discriminators in the Catintell models

give predictions of possibility. Therefore, we use BCE loss
as GAN loss of Catintell-Res. The calculating of 𝐺𝐴𝑁 is
shown in eq.4

𝐺𝐴𝑁 = −(𝐏𝑌 𝑙𝑜𝑔(𝐏𝑜𝑢𝑡) + (1 − 𝐏𝑌 )𝑙𝑜𝑔(1 − 𝐏𝑜𝑢𝑡)),
𝑤ℎ𝑒𝑟𝑒𝐏𝑌 = 𝐷𝑖𝑠(𝐈𝑐𝑎𝑡𝑎𝑟𝑎𝑐𝑡),𝐏𝑜𝑢𝑡 = 𝐷𝑖𝑠(𝐈𝑜𝑢𝑡)

(4)

The overall losses of Catintell models can be formulated
as follows eq.5 and eq.6, and each loss is adjusted by loss
weight before its loss symbol. The weight of each loss is
adjusted according to its importance. The pixel loss is of
low weight in the Catintell-Syn model, which has unpaired
input images, but significant in the Catintell-Res model.
Meanwhile, we use the high weight of the perceptual and
style losses in Catintell-Syn but relatively low weight in
Catintell-Res.

𝑆𝑦𝑛 = 0.01𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 + 𝑓𝑝 + 0.1𝑖𝑑𝑒 + 0.1𝐺𝐴𝑁 (5)

𝑅𝑒𝑠 = 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 + 0.1𝑓𝑝 + 0.01𝑖𝑑𝑒 + 0.1𝐺𝐴𝑁 (6)

(a) Cataract Image Sapmles (b) HQ Image Sapmles

Figure 3: Sample of our Catintell Image dataset. (a) 2436
cataract images were collected in this dataset. (b) 1144 high-
quality images were collected.

4. Dataset and Experiments
4.1. Dataset

To train and test Catintell models, we collected a dataset,
named Catintell Image, containing 1144 HQ fundus images
and 2436 cataract images from Beijing Tongren Hospital.
Meanwhile, the 10-fold validation is also applied. Before
training, collected images are randomly sampled 10% as
the validation set including 244 cataract images and 114
HQ images 10 times (we intend to create datasets without
replication and absence, thus the last set contains 240 and
118 images), while the rest of these images are training set.
Meanwhile, as mentioned above, the Catintell is a two-stage
model, and the restoration of cataract images happens in
the second stage which needs no clear or HQ images in
the inference process. Therefore, we collected another 102
cataract images to examine the performance of Catintell
in real cataract image restoration. There are some image
samples shown in Fig.3.

Besides the Catintell dataset, we also use two exter-
nal datasets to validate the generality of the model. The
ODIR[21] and an open-source Kaggle cataract dataset[33]
are experimented with to test the model’s ability to enhance
the quality of real cataract images.
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(e) Real Cataract Image(a) Original HQ Image (b) Conventional Method (b) CycleGAN (d) Catintell-Syn

Figure 4: Result of degraded images from Catintell-Syn and traditional modeling method. (a) Source HQ fundus images. (b)
Synthetic cataract fundus images using traditional method. (c) using CycleGAN. (d) using Catintell-Syn. (d) Real cataract fundus
image samples. The images generated by Catintell-Syn are more similar to real cataract fundus images.

The input fundus images are first resized to 768 × 768
and then randomly (paired) cropped to 256 × 256 patches.
The spacial size of 768 × 768 can ensure details of original
images are retained, and 256 × 256 is set for less GPU
RAM usage and data augmentation. Meanwhile, all images
are augmented using horizontal/vertical flipping. This data
augmentation method is not applied to the validation and
test stages to ensure consistent output and completeness
of cataract images. The Catintell-Res model can enhance
fundus images with different height-width ratios. Therefore,
input image shapes in the validating and testing stages are
flexible.
4.2. Deployment Details

During training, Catintell is applied with PyTorch ver-
sion 1.10 and trained with CUDA version 11.7. We train each
model for 80,000 iterations (equivalently 300 epochs) with
the batch size 8 and learning rate 10−5 with cosine decay for
all sub-models at first and apply a fine-tuning process with
the same batch size and learning rate 10−6 with linear decay
only for Catintell-Res models. The Adam [13] optimizer
is applied with 1000 iterations warm up. All experiments
are trained using a single NVIDIA Geforce RTX3090 GPU
running for 10 hours to complete the training process.

The proposed Catintell model is an image restoration
model, so we select the PSNR and SSIM as evaluation
metrics. The optimization process of hyperparameters in
Catintell models is demonstrated in the later part of the
experiment section.
4.3. Catintell-Syn Experiments

We provide qualitative comparisons between Catintell-
Syn, CycleGAN[37], and the traditional degradation method[22].
The so-called ’traditional method’ was first introduced in
1989[22], and is utilized in many cataract restoration works
mentioned above. Though this method can give promising
output for various fundus images, it has trouble dealing with

Table 1
User Study of Catintell-Syn

Image HQ Conventional CycleGAN Ours Real

Rank Score 20 53 62 79 86

images with a height-width ratio other than 1:1. Moreover,
this method follows a fixed algorithm workflow regardless of
the difference between input fundus images and has outputs
almost the same style. The CycleGAN is widely utilized in
style transfer research, we also carry out experiments on this
method. However, it did not achieve fair results on cataract
images.

The results are shown in Fig.4. It can be observed that the
degradation style of Catintell-Syn is essentially consistent
with real cataract images. Specifically, synthetic degrada-
tion closely matches real degradation in both location and
severity. Severe degradation is observed in the blood vessels
and macula area, while the optic disc region shows mild
degradation.
4.4. Catintell-Syn User Study

To get real feedback from ophthalmologists, we con-
ducted a user study to collect their opinions and rank cataract
images synthesized by our Catintell-Syn model. In the study,
we provide them with five images: real cataract images, HQ
images, images from the conventional method, CycleGAN,
and images from our Catintell-Syn model. There are ten sets
of these image groups, and the images are given 10,8,6,4,2
scores corresponding to their ranks respectively. (This score
setting means to get scores with a maximum of 100. Higher
similarity to real cataract images results in higher scores.)
The average results of three experienced ophthalmologists
and three young ophthalmologists are summarized in Table
1.
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(i) ESRGAN (j) RFormer (l) Catintell-Res(Ours)(h) SCRNet(g) PixDA_Sobel (k) I-SECRET

(a) Low-Quality (b) GLCAE (c) DCP (d) ARCNet (e) GCANet (f) GFENet

Figure 5: Restored real cataract image comparisons of Scene 1 on a test image of the Catintell Image dataset. Compared to other
methods, the vessels around the macula in the restored image of Catintell-Res are finely enhanced. The overall style of this image
is also maintained rather than changed to a dark/orange color.

The score of images synthesized by Catintell-Syn is
slightly lower than the real cataract images and obviously
higher than images generated by the conventional method
or CycleGAN. Therefore, we conclude that Catintell-Syn
succeeds in synthesizing cataract images highly similar to
real ones.
4.5. Catintell-Res Experiments

The calculation of quantitive metrics requires paired
images. However, as addressed in the introduction section,
the difficulty of acquiring cataract-clear image pairs within
a short interval hinders data collection. Therefore, to meter
the performance of Catintell-Res models, we use the simu-
lated cataract-HQ image pairs from the Catintell-Syn model.
Moreover, the following models for comparison are also
applied with the simulated cataract-HQ images to ensure fair
comparisons.

The GLCAE [30] and Dark channel prior(DCP) [8] are
modeling methods and need no parameters. They usually fol-
low the same work mode and apply the same modifications
to different images. The ESRGAN [32] and GCANET[1]
are general image enhancement methods that are yet to
be adapted to cataract image restoration. We retrained
these models with cataract image pairs to get better re-
sults. The ARCNet[15], pixDA Sobel[16], SCRNET[15],
RFormer [4], I-SECRET [3], and GFENET[14] are reported
fundus image enhancement methods. The ARCNet, pixDA
Sobel, and SCRNET use high-frequent information to en-
hance the restoration process, and RFormer uses Trans-
formers to elevate its performance. These methods need
algorithms to degrade the HQ images to get cataract-like
images first and then restore the image. Therefore, they
actually target a fixed fake cataract image-generating method
but not the real style of cataract images. However, the
Catintell can learn from the realistic cataract-like images

which are proven better in the prior section. Meanwhile,
the comparisons with general image restoration can also
prove that Catintell is more suitable for the cataract image
restoration task.

The results of quantitive metrics are shown in Table 2.
We can observe from the results that Catintell-Res has a great
ability for image restoration. It extravagantly outperforms
other methods both in PSNR and SSIM through learning
from the synthesized data.

We also use the test set of the Catintell dataset to examine
the restoration ability towards the real cataract image. Two
samples of test results are shown in Fig5 and Fig6. As
mentioned above, the restoration branch of Catintell can
work independently, this test was carried out on the real
cataract images which have no corresponding clear images
to compare. However, besides this visual exhibition, we also
did a user study in the later section to show the results from
Catintell getting the highest rating from ophthalmologists
from clinical usage.

In the first real cataract image test scene, the style of
the restored cataract image is retained by Catintell-Res,
and the vessel details around the macular are restored and
become more obvious compared to other methods and the
original image. In the second scene, the optic cup/disk and
surrounding area of the fundus image restored by Catintell-
Res become much clearer, and the overall contrast of this
image is raised.
4.6. Catintell-Res User Study

After validating the restoration ability of Catintell-Res,
we carried out another user study to figure out what opin-
ions ophthalmologists hold. In the study, we provide them
with eight images, which are original cataract images and
images restored by GLCAE [30], Dark channel prior [8],
ARCNet[15], GCANET[1], GFENET[14], I-SECRET [3],
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(i) ESRGAN (j) RFormer (l) Catintell-Res(Ours)(h) SCRNet(g) PixDA_Sobel (k) I-SECRET

(a) Low-Quality (b) GLCAE (c) DCP (d) ARCNet (e) GCANet (f) GFENet

Figure 6: Restored real cataract image comparisons of Scene 2 on a test image of the Catintell Image dataset. The optic cup/disk
area of the fundus image restored by Catintell-Res has clear edges of vessels. In the surrounding area, the vessels are easy to
distinguish.

(a) Low-Quality (b) GLCAE (c) DCP (d) ARCNet (e) GCANet (f) GFENet

(i) ESRGAN (j) RFormer (l) Catintell-Res(Ours)(h) SCRNet(g) PixDA_Sobel (k) I-SECRET

Figure 7: Restored synthesized cataract image comparisons. Catintell-Res can retain the style of the image and escalate the
contrast of the whole image.

and our Catintell-Res model. We did not label these images
with methods or indicate their source. There are ten sets of
these image groups, and the images are given 10,9,8,7...4,3
scores corresponding to their ranks, respectively. (This score
setting means to get scores with a maximum of 100.) The
average results of three experienced ophthalmologists and
three young ophthalmologists are summarized in Table 3.

The images restored by Catintell-Res are the best ac-
cording to the score among these methods. Therefore, the
restoration ability of Catintell-Res has proven effective and
powerful, whether in quantitive experiments or user studies.

5. Discussion
5.1. Generalized Cataract Restoration Ability

Besides using the synthesized cataract and real cataract
images in the Catintell Image dataset, we also test our models
on the other open-source cataract dataset. The ODIR dataset
is from the ODIR2019 competition[21], which contains
several kinds of fundus images of retinal diseases. We use
cataract images in the training set of this dataset to vali-
date Catintell-Res. We also collected a dataset from Kaggle
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Table 2
Compared with SOTA methods

Method PSNR SSIM Parameters(M)

GLCAE [30] 16.22 0.5627 –
Dark channel prior [8] 15.90 0.7482 –

GCANET[1] 23.61 0.8145 –
ESRGAN [32] 29.47 0.7907 16.72
ARCNet[15] 19.81 0.8709 54.42
GFENET[14] 16.77 0.8521 89.30

pixDA Sobel[16] 18.52 0.8399 54.42
SCRNET[15] 15.76 0.8568 89.28
RFormer [4] 22.96 0.6808 21.66

I-SECRET [3] 19.19 0.7844 10.85

Catintell-Res(Ours) 39.03 0.9476 12.72

Table 3
User Study of Catintell-Res

Method Catintell-Res(Ours) GLCAE DCP ARCNet

Rank Score 99.17 64.67 44.17 78.17

Method GCANET GFENET I-SECRET Original Image

Rank Score 74.33 71.33 34.83 53.33

Table 4
Ablation Study of Different Encoder/Decoder

Method PSNR SSIM Parameters(M)

RRDB [32] 29.61 0.7649 38.56
Swin Transformer [17] 24.83 0.4150 15.56

ConvNeXt [18] 34.97 0.8696 21.81
Catintell-Res(Ours) 39.03 0.9476 12.72

named Cataract-Dataset[33]. We use the cataract division of
this dataset in this experiment.

Catintell-Res is not further retrained or modified, and the
data is directly processed by the trained Catintell-Res model.
The results are shown in Fig.8. We can observe from the
figures that Catintell-Res has obtained universal restoration
ability through the synthesized data from the Catintell Image
dataset, and its ability still functions even on cataract images
from other sources. In the Kaggle dataset, the macula of
these fundus images is restored to be clear, and the vessels
become obvious. This also suits the ODIR-5K dataset, and
we can see that Catintell-Res is able to remove most of the
blurry area in the real cataract images.
5.2. Ablation Studies
5.2.1. Encoder/Decoder

Though we designed a new encoder/decoder structure
in Catintell-Res, we also tried other encoder structures to
optimize the performance of Catintell-Res. ConvNeXt[18],
RRDB(residue in residue dense block) of ESRGAN [32],
and W-MSA of SWIN Transformer [17] are applied in the
model of same structures to compare their performance.

The results are shown in Table 4. The ConvNeXt en-
coder/decoder has the best performance except for Catintell,
which is why we optimize the encoder/decoder of Catintell
with inspiration from ConvNeXt. The encoder/decoder of

(a) Low-Quality (b) Catintell(Ours)
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Figure 8: Restored real cataract image from external datasets.
Catintell-Res has the universal ability to restore cataract
images collected from other fundus cameras and sources.

Table 5
Ablation Study of Different Patch Size

Size PSNR SSIM Parameters(M)

128 35.71 0.9357 12.72
192 38.07 0.9279 12.72

256(Catintell-Res) 39.03 0.9476 12.72
384 37.51 0.9369 12.72

Catintell is optimized for image restoration and achieves the
best performance among those methods.
5.2.2. Patch Size

In the training process of Catintell, we use patches of size
256×256 pixels to avoid heavy computational burden. Since
the patch size significantly impacts the model performance,
we test different patch sizes in this section.

When the patch size is smaller, the model can use a larger
batch size during training to avoid sampling error. However,
smaller patches make it difficult for the model to learn the
spatial context information of the entire image and prone to
overfitting, which in turn leads to a decrease in performance
in the validation stage. On the other hand, when the patch
size is larger, it consumes more space and forces the batch
size to be reduced, and the sampling error increases, making
the model hard to converge.
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Table 6
Ablation Study of Different Width

Width PSNR SSIM Parameters(M)

16 36.07 0.9265 3.78
32(Catintell-Res) 39.03 0.9476 12.72

48 37.11 0.9365 26.82

Table 7
Ablation Study of Different Depth

Depth PSNR SSIM Parameters(M)

3 36.78 0.9346 3.711
4(Catintell-Res) 39.03 0.9476 12.72

5 34.07 0.9005 46.27

As shown in Table 5, the training results of the model
with a patch size of 256 are the best.
5.2.3. Depth and Width

Since Catintell-Res uses a U-shaped structure, each en-
coding/decoding stage is aligned with a downsampling/upsampling,
so the number of encoding/decoding stages significantly
affects the network depth.

The width of the network is determined by the projec-
tion channels of the input projection layer. With the linear
increase of the projection channels, the parameters of the
model increase quadratically.

To obtain the optimal number of encoding/decoding
stages and network width, we conduct the following ex-
periments on the Catintell-Res model, keeping the rest of
the structure unchanged and only changing the number of
encoding/decoding stages or width to verify its impact on
performance. The results are summarized in Table 7 and 6,
and the model with four stages and a width of 32 has the best
performance. Therefore, this width and depth combination
is used in the Catintell-Res model to obtain the best model
performance.
5.3. Limitation

Though Catintell-Res has obtained universal restoration
ability, it can not process images with severe blur. When
fundus images are collected, there is some reason that their
quality is not guaranteed. To be more specific, some images
suffer from wrong illumination, whether too high or too low.
And some may be blocked by eyelids or iris. All of those
abnormal images can be named degradation images. For
those images with severe degradation, there is no sign of
vessels to assist Catintell-Res in escalating image quality.
Therefore, Catintell-Res can not handle these images or
generate whole images through a little undegraded area.

Recently, diffusion models have attracted some interest
from researchers in the image-to-image translation field.
We also regard diffusion models like works from Rom-
bach et al.[24] and Su et al.[29] as good solutions for both
cataract image synthesis and restoration. However, the diffu-
sion models could occupy a massive amount of GPU RAM
while training, which is sometimes over 40GB in practice

and much higher than the inference process. This RAM
burden is too heavy for our GPU to train a diffusion model.

Moreover, suppose the diffusion steps are high or the
latent feature size is small. In that case, the generation ability
of the diffusion model is too strong to retain enough fidelity
for medical usage, and fake focus may be generated due to
this. Therefore, we choose not to use diffusion models in
our work for now, but, still, diffusion models are of great
potential in medical image processing which we plan to
exploit in the future.

We plan to:
1 Enlarge the range of images collected in the Catin-

tell Image dataset to elevate the generating ability
of Catintell-Res for a more extensive range of low-
quality images.

2 Modify the structure of Catintell-Syn to make it able
to generate more kinds of degraded images.

3 Transfer the Catintell models to other medical image
tasks to extend their application.

4 Apply lightweight diffusion models on fundus image
restoration and optimize Catintell models.

6. Conclusion
In this paper, we address the problems in cataract im-

age restoration through a new synthesizing and restoration
method, Catintell. Before our method, there was much dif-
ference between conventional simulated and real cataract
images; the quality of restored cataract images was not high
enough. Our method, Catintell-Syn, uses fully unsupervised
data to generate paired cataract-like images with realistic
style and texture and successfully alleviates the lack of
paired images. Based on the synthetic images, we developed
Catintell-Res to restore real cataract images. The structure
of these models is optimized for fundus images, and we
also added the loss function expertized for ophthalmology
in the training stage. Then, we carried out user studies
and quantitive experiments for Catintell models. The results
show that Catintell achieves remarkable performance in both
synthesizing cataract-like data and restoring real cataract
data. The generalization performance of Catintell-Res is ver-
ified by real cataract images from various external datasets.
We plan to open Catintell models for research and clinic
utilization and hope this model can help ophthalmologists
with their work in the future.
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