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Abstract

This paper presents, for the first time, the soft planar vertical take-off and landing (Soft-PVTOL) aircraft. This concept captures
the soft aerial vehicle’s fundamental dynamics with a minimum number of states and inputs but retains the main features to
consider when designing control laws. Unlike conventional PVTOL and multi-rotors, where altering position inevitably impacts
orientation due to their underactuated design, the Soft-PVTOL offers the unique advantage of separating these dynamics,
opening doors to unparalleled maneuverability and precision. We demonstrate that the Soft-PVTOL can be modeled using
the Euler-Lagrange equations by assuming a constant curvature model in the aerial robot’s arms. Such a mathematical model
is presented in detail and can be extended to several constant curvature segments in each Soft-PVTOL arm. Moreover, we
design a passivity-based control law that exploits the flexibility of the robot’s arms. We solve the tracking control problem,
proving that the error equilibrium globally exponentially converges to zero. The controller is tested in numerical simulations,
demonstrating robust performance and ensuring the efficacy of the closed-loop system.

Key words: Soft robotics; PVTOL; aircraft control; unmanned aerial vehicles; passivity-based control; Euler-Lagrange
equations.

1 Introduction

The challenges inherent in modeling and controlling soft
robots have prompted engineers to pursue simplified ver-
sions, particularly when the primary objective is achiev-
ing effective control [2]. This pursuit is particularly rel-
evant in soft mobile robots operating across six degrees
of freedom, notably in aerial robotics. While significant
strides have been made in modeling and controlling tra-
ditional aerial robots, including innovative configura-
tions like convertible aircraft and fully actuated multi-
rotors, the exploration of soft aerial robots remains lim-
ited. Despite their potential, research in this area is still
in its infancy, with only a few studies addressing the
prototypes and designs of soft aerial robots. In this en-
deavor, we aim to establish the fundamental principles
of modeling and control for a soft aerial robot, leverag-
ing the well-established paradigm of the Planar Verti-
cal Take-Off and Landing (PVTOL) aircraft. The first
concept of PVTOL aircraft was presented by Hauser et
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sponding author G. Flores. Tel. +1 (956) 326-3297.
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al. [15]. PVTOL prototypes have served as the corner-
stone of aerial drone development, providing a robust
platform for exploration and innovation. Our research
aims to extend this foundation to soft aerial robotics.
In this context, we present the Soft-PVTOL, where the
agility of the soft arms lies in their ability to adapt dy-
namically, distributing forces effectively across multiple
points of contact. Unlike rigid arms, which can only ap-
ply forces in predetermined directions, the soft-PVTOL
arms adjust in real-time to changing conditions, enabling
precise force control. This flexibility is demonstrated in
our model through simulations where the arms’ continu-
ous curvature allows for smoother, more responsive ma-
neuvers. The results highlight the system’s capacity to
perform complex, agile movements, particularly in sce-
narios where rigid systems would struggle due to their
fixed degrees of freedom.

1.1 State of the art

In recent years, efforts to enhance drone maneuverabil-
ity have led to exploring innovative configurations fea-
turing tilting or folding rotor arms [7,9,26,28]. Incorpo-
rating foldable mechanisms offers numerous advantages,

Preprint submitted 20 November 2024

ar
X

iv
:2

41
1.

12
29

2v
1 

 [
ee

ss
.S

Y
] 

 1
9 

N
ov

 2
02

4



Fig. 1. The concept of the Soft-PVTOL involves two soft
arms modeled using the constant curvature approach. We
adopt the convention that when the arm tilts below the x
axis in the frame, we assign a negative value, as illustrated
in the case of ql in the diagram. This convention is already
accounted for in (5).

including size reduction, obstacle avoidance, navigation
through narrow gaps, inspection of vertical surfaces,
and object grasping and transportation. Consequently,
adopting drones with adaptive morphology presents
clear benefits in various operational scenarios. In this
context, the potential of soft aerial robots offers unique
advantages in maneuverability, flexibility, adaptability
to complex environments, recovery from collisions in
various directions, and even perching capabilities.

Recent research in the field of aerial soft robots has
primarily focused on conventional multirotor configura-
tions equipped with soft arms [8,13,30,34]. While efforts
have been made to design platforms [6, 12, 21], and de-
velop soft propellers [20,29], these studies have yet to ad-
dress the challenge of effectively modeling and control-
ling such soft aerial configurations. Furthermore, exist-
ing soft aerial robots typically feature passive soft arms
that lack actuation capabilities, leaving the potential of
fully actuated soft aerial robots unexplored.

The realm of modeling and control for soft robots contin-
ues to be a dynamic and challenging area of research [32].
Despite significant advancements, even themost popular
soft robot, the manipulator, presents ongoing challenges
[4,11,35]. Exploring control strategies for soft aerial con-
figurations remains relatively nascent, with only a few
studies addressing this issue. For instance, Deng et al. [5]
employ neural networks to model the dynamics of soft
multi-rotors, enabling the generation of controllers that
collectively manage locomotion.

1.2 Contribution

Exploring simplified models of soft aircraft is interesting
because modeling and controlling soft robots are gener-
ally complex tasks. This led to the creation of the Soft-
PVTOL, a compact version of a soft aerial robot. Its
goal is to simplify complicated dynamics into an easy-to-
understand mathematical model, which helps grasp the
fundamental principles of the system dynamics. As with
standard PVTOL models, the 2D formulation presented
here serves as a critical step toward understanding and
validating the fundamental behavior of the Soft-PVTOL
system. Importantly, the principles and control method-
ologies developed in 2D extend naturally to 3D, just as
with conventional PVTOLs and quadrotors, enabling a
seamless transition to fully three-dimensional soft aerial
robots.

By leveraging the idea of constant curvature of the ro-
tor arms [36], we demonstrate that the Soft-PVTOL can
be modeled using the Euler-Lagrange approach widely
used in robotics [17]. Such a model does not present
singularities for all the feasible curvature changes. This
approach is advantageous since one can exploit the sys-
tem structure to propose nonlinear controllers. In this
context, we also demonstrate that the Soft-PVTOL sat-
isfies the passivity property [14], and thus, we propose
a passivity-based control demonstrating that the error
equilibrium is globally exponentially stable. In design-
ing the controller, we leverage the inherent soft proper-
ties of the arms, utilizing them as a virtual controller
to govern the Soft-PVTOL’s position. This innovative
approach results in fully actuated dynamics, effectively
decoupling orientation from position —a marked advan-
tage over conventional PVTOL systems. Additionally,
we address the control allocation problem by determin-
ing reference values for all four actuators within the
system. This methodology holds promise for extension
to soft multi-rotor configurations, promising further ad-
vancements in aerial robotics.

1.3 Content

The remainder of this paper is as follows. In Section 2, we
derive a mathematical model of the Soft-PVTOL, em-
ploying the Lagrange approach alongside the constant
curvature paradigm for the robot’s arms. Detailed com-
putations are provided in an appendix. Additionally, this
section shows the passivity property of the Soft-PVTOL.
In Section 3, we construct a passivity-based controller
based on the well-known works of Spong, Ortega, and
others, [3,22,24,33] to address the tracking control prob-
lem, establishing global exponential stability of error
equilibrium. Here, we also tackle the control allocation
challenge by determining references for system actua-
tors—namely, motor thrusts and desired curvature val-
ues for the Soft-PVTOL arms. Section 4 presents simula-
tion results, validating the effectiveness of our proposed
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model and control strategy while addressing numerical
challenges inherent to soft robots in simulation settings.
Lastly, Section 5 offers conclusions and outlines future
directions, including the potential extension of this work
to soft multi-rotors.

2 The mathematical model of the Soft-PVTOL

To capture the dynamics of the soft-PVTOL, we em-
ploy a reduced-order model that balances simplicity and
accuracy while maintaining full actuation. This ensures
robust and predictable control, allowing the direct ap-
plication of established strategies. The flexibility of the
soft arms enables the system to exhibit both underactu-
ated and overactuated behavior, offering adaptability to
various scenarios. While underactuation presents inter-
esting challenges, our focus is to demonstrate the feasi-
bility of soft aerial robotics to achieve overactuated dy-
namics by deforming their arms. This dual behavior pre-
serves the advantages of soft robotic dynamics while en-
suring stability and avoiding unnecessary complexities
from rigid-link approximations.

The dynamic model considers the translation and rota-
tion along the 2-D frame executed by the soft drone and
the bending of the left and right rotor arms where we
have assumed a constant curvature approach; see Fig. 1.
We define four types of main frames:

(1) The inertial frame I.
(2) The body frame attached to the robot’s center of

gravity B.
(3) The frames Li for i = {0, 1} defining the beginning

of the left-hand curve path (L0) and the end of the
left-hand curve path (L1).

(4) The framesRi for i = {0, 1} defining the beginning
of the right-hand curve path (R0) and the end of
the right-hand curve path (R1).

We first define the following generalized coordinates,

q =
(
xv zv θ ql qr

)⊺
, (1)

where we consider the constant curvature approach for
the left and right arms of the Soft-PVOL, where ql and
qr are the curvatures of the left and right-hand side soft
arms; see Fig. 2. Soft manipulators in [1, 16, 18, 27, 31]
have used such an approach. It is worth noting that
in a real Soft-PVTOL, these curvatures could be eas-
ily measured using simple Inertial Measurement Units
(IMUs) positioned at the tip of the arms. This makes the
proposed approach feasible and practical for real-world
aerial Soft-PVTOL systems applications.

The vector of control inputs is defined as,

u =
(
τx τz τθ τl τr

)⊺
. (2)

Notice that we assume that there exists a mapping from
u to the vector of the actuators

a =
(
Tl Tr τl τr

)⊺
. (3)

given by u = Ba that we must model later.

The system parameters are grouped into:

(1) m: mass of the robot; I: the total inertia moment
of the robot

(2) ll: length of the bending left-hand arm; ml: mass
of the left-hand rotor; Il: the inertia moment of the
left-hand arm

(3) lr: length of the bending right-hand arm; mr: mass
of the right-hand rotor; Ir: the inertia moment of
the right-hand arm.

(4) The rigid body of the drone is composed of a frame
of length 2ϵ.

Assumption 1 The center of mass of each soft arm is
on its tip or equivalently on the origin of the frames L1

and R1.

We model the Soft-PVTOL using the Euler-Lagrange
equation of motion as follows [19,23,25],

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= τ. (4)

To define the Lagrangian of the system, we first define
the position of the Soft-PVTOL and that of the left and
right-hand motor following Fig. 1 as follows,

pv =

(
xv

zv

)
,

pl =

(
xv

zv

)
+

−ϵ− ll
sin ql
ql

ll

[
1−cos ql

ql

] ,

pr =

(
xv

zv

)
+

 ϵ+ lr
sin qr
qr

lr

[
1−cos qr

qr

]
(5)

where all the positions are w.r.t. the inertial frame. The
time derivatives of the previous positions are given by,

ṗv =

(
ẋv

żv

)
,

ṗl =

(
ẋv

żv

)
+ ll

 sin ql−ql cos ql
q2
l

ql sin ql+cos ql−1
q2
l

 q̇l,

ṗr =

(
ẋv

żv

)
+ lr

 qr cos qr−sin qr
q2r

qr sin qr+cos qr−1
q2r

 q̇r.

(6)
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The details of the computations of the elements in (4)
can be verified in Appendix A.

2.1 Control input part

Since the drone arms move freely due to their soft prop-
erties, combining two thrusts will generate forces in the
coordinates x − z and torque in θ. The input control
vector is:

τ =
(
τx τz τθ τl τr

)⊺
. (7)

In the following, we find particular expressions for each
of the above vector entries.

2.1.1 Control input for the (x, z) dynamics

Wefirst compute the total forces due to thrusts in the x−
z plane as follows. Refer to Fig. 2 where the right-hand
side motor is depicted. Since the Soft-PVTOL position
and orientation are measured w.r.t. the inertial frame,
it follows that:(
τx

τz

)
=

(
cos θ − sin θ

sin θ cos θ

)
︸ ︷︷ ︸
Rotational matrix

[(
cos ql sin ql

− sin ql cos ql

)
︸ ︷︷ ︸
Rotational matrix⊺

(
0

1

)
︸︷︷ ︸
ez

Tl

+

(
cos qr − sin qr

sin qr cos qr

)
︸ ︷︷ ︸
Rotational matrix

(
0

1

)
Tr

]

=

(
cos θ − sin θ

sin θ cos θ

)(
−Tr sin qr + Tl sin ql

Tr cos qr + Tl cos ql

)
︸ ︷︷ ︸

(υx,υz)⊺

.

(8)
where (υx, υz) are virtual control inputs. Notice that in
the case of ql = qr = 0 the above expression results

in

(
τx

τz

)
=

(
− sin θ

cos θ

)
(Tl + Tr) similar to the position

control inputs in a conventional PVTOL.

2.1.2 Control input for θ

Now, we compute the torque generated by both thrusts
as follows. Let us consider Fig. 2.

According to Fig. 2, the torque is given by,

τθ =

[
projez

(
T x
r

T z
r

)][
lr
sin qr
qr

]
−

[
projez

(
T x
l

T z
l

)][
ll
sin ql
ql

]
(9)

Fig. 2. The thrust of the right-hand side motor. From the
figure, it is easy to see that the torque generated by the

right-hand-thrust Tr is given by
(
lr

sin qr
qr

)
(Tr cos qr). Please

note that we have omitted the value of ϵ for simplicity.

where the scalar projection of vectors (T x
r , T

z
r )

⊺ and
(T x

l , T
z
l )

⊺ onto ez = (0, 1)⊺ is given by

projez

(
T x
r

T z
r

)
=



(
T x
r

T z
r

)
· ez

∥ez∥2

 ,

projez

(
T x
l

T z
l

)
=



(
T x
l

T z
l

)
· ez

∥ez∥2

 .

(10)

Since T z
r = Tr cos qr and T z

l = Tl cos ql are respectively
the components of the RHS and LHS thrusts, it follows
that 1 :

τθ = lrTr cos qr
sin qr
qr

− llTl cos ql
sin ql
ql

(11)

and notice that if ql = qr = 0 the torque τθ is similar to
that of the conventional PVTOL.

2.1.3 Control inputs for the curvature angles (ql, qr)

Finally, the (τl, τr) correspond to the tendons control
input and are assumed to be independent of the current
state variables.

1 For simplicity, in what follows we will assume that ϵ = 0.
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2.1.4 Control input in vector form

τ =



τx

τz

τθ

τl

τr


=



(
cos θ − sin θ

sin θ cos θ

)(
−Tr sin qr + Tl sin ql

Tr cos qr + Tl cos ql

)
︸ ︷︷ ︸

(υx,υz)⊺

lrTr cos qr
sin qr
qr

− llTl cos ql
sin ql
ql

τl

τr


.

(12)

2.2 Matrix form

Let us rewrite the previous equations in the matrix form,
[33]:

D(q)q̈+ C(q, q̇)q̇+ g(q) = τ, (13)

where

q =
(
xv zv θ ql qr

)⊺
,

q̇ =
(
ẋv żv θ̇ q̇l q̇r

)⊺
.

(14)

After several computations, one gets:

D(q) =



d11 0 0 d14 d15

0 d22 0 d24 d25

0 0 d33 0 0

d41 d42 0 d44 0

d51 d52 0 0 d55


, (15)

where

d11 = d22 = m+ml +mr

d33 = I

d44 = l2l ml

(
1

q2l

)
+ 2l2l ml

(
1

q4l

)
− 2l2l ml

(
cos ql
q4l

)
− 2l2l ml

(
sin ql
q3l

)
+ Il

d55 = l2rmr

(
1

q2r

)
+ 2l2rmr

(
1

q4r

)
− 2l2rmr

(
cos qr
q4r

)
− 2l2rmr

(
sin qr
q3r

)
+ Ir

(16)

and

d14 = d41 = −llml

(
cos ql
ql

− sin ql
q2l

)
d15 = d51 = lrmr

(
cos qr
qr

− sin qr
q2r

)
d24 = d42 = −llml

(
1

q2l
− cos ql

q2l
− sin ql

ql

)
d25 = d52 = −lrmr

(
1

q2r
− cos qr

q2r
− sin qr

qr

)
(17)

It can be verified that there is no singularity in any of
the terms of D(q), even when qi → 0 where i = {l, r}.
One can confirm this assertion by calculating the limit
of each term dmn inD(q) as qi → 0, noting that the out-
come consistently remains a constant and, in numerous
instances, approaches zero. This is true for all the dmn.

The Coriolis matrix, after some simplifications, is given
by:

C(q, q̇) =



0 0 0 c14 c15

0 0 0 c24 c25

0 0 0 0 0

0 0 0 c44 0

0 0 0 0 c55


(18)

where

c14 = llml

(
ql sin ql + cos ql

q2l

)
q̇l

+ llml

(
ql cos ql − 2 sin ql

q3l

)
q̇l

c15 = −lrmr

(
qr sin qr + cos qr

q2r

)
q̇r

− lrmr

(
qr cos qr − 2 sin qr

q3r

)
q̇r,

(19)

c24 = 2llml

(
1

q3l

)
q̇l − llml

(
ql sin ql + 2 cos ql

q3l

)
q̇l

+ llml

(
ql cos ql − sin ql

q2l

)
q̇l

c25 = 2lrmr

(
1

q3r

)
q̇r − lrmr

(
qr sin qr + 2 cos qr

q3r

)
q̇r

+ lrmr

(
qr cos qr − sin qr

q2r

)
q̇r,

(20)
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c44 = −l2l ml

(
1

q3l

)
q̇l − 4l2l ml

(
1

q5l

)
q̇l

+ l2l ml

(
ql sin ql + 4 cos ql

q5l

)
q̇l

− l2l ml

(
ql cos ql − 3 sin ql

q4l

)
q̇l

c55 = −l2rmr

(
1

q3r

)
q̇r − 4l2rmr

(
1

q5r

)
q̇r

+ l2rmr

(
qr sin qr + 4 cos qr

q5r

)
q̇r

− l2rmr

(
qr cos qr − 3 sin qr

q4r

)
q̇r,

(21)

where it can be shown that there are no singularities in
any term of C(q, q̇).

And finally,

g(q) =



0

g(m+ml +mr)

0

(gmlll)
(

ql sin ql+cos ql−1
q2
l

)
(gmrlr)

(
qr sin qr+cos qr−1

q2r

)


. (22)

There are also no singularities for all the terms of g(q).

2.3 Properties of the dynamic equations

We introduce the following parameter equations:

Θ1 = m+ml +mr, Θ2 = I, Θ3 = llml,

Θ4 = lrmr, Θ5 = Il, Θ6 = Ir
(23)

With the above notation, the inertia matrix is rewritten
as,

D(q) =



Θ1 0 0 Θ3D1 Θ4D3

0 Θ1 0 Θ3D2 Θ4D4

0 0 Θ2 0 0

Θ3D1 Θ3D2 0 llΘ3D5 +Θ5 0

Θ4D3 Θ4D4 0 0 lrΘ4D6 +Θ6


,

(24)

where

D1 =

(
sin ql − ql cos ql

q2l

)
D2 =

(
cos ql + ql sin ql − 1

q2l

)
D3 =

(
qr cos qr − sin qr

q2r

)
D4 =

(
cos qr + qr sin qr − 1

q2r

)
D5 =

(
q2l + 2− 2 cos ql − 2ql sin ql

q4l

)
D6 =

(
q2r + 2− 2 cos qr − 2qr sin qr

q4r

)
.

(25)

2.3.1 Positiveness of the inertia matrix

We first need to prove that D(q) is positive definite for
all the possible values of q.

Lemma 1 The matrix D(q) in (24) is positive definite.

Proof. See Appendix B. □

2.3.2 Skew symmetry property

On the other hand, using the Christoffel symbols as sug-
gested by [33], the Coriolis matrix is expressed as follows:

C(q, q̇) =



0 0 0 Θ3C1q̇l −Θ4C3q̇r

0 0 0 Θ3C2q̇l Θ4C4q̇r

0 0 0 0 0

0 0 0 −2llΘ3C5q̇l 0

0 0 0 0 −2lrΘ4C6q̇rt


, (26)

where

C1 =
[q2l − 2] sin ql + 2ql cos ql

q3l

C2 =
[q2l − 2] cos ql − 2ql sin ql + 2

q3l

C3 =
[q2r − 2] sin qr + 2qr cos qr

q3r

C4 =
[q2r − 2] cos qr − 2qr sin qr + 2

q3r

C5 =

(
ql cos

(
ql
2

)
− 2 sin

(
ql
2

))2
q5l

C6 =

(
qr cos

(
qr
2

)
− 2 sin

(
qr
2

))2
q5r

(27)
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and g(q) is defined as in (22).

Lemma 2 The matrix Ḋ(q) − 2C(q, q̇) is skew-
symmetric.

Proof. See Appendix C. □

2.3.3 Passivity property

Following a similar analysis as in [33], the total energy
of the Soft-PVTOL given by the sum of kinetic and po-
tential energy is:

H =
1

2
q̇⊺D(q)q̇+ P (q). (28)

The first-time derivative of H along the trajectories of
the Soft-PVTOL considering the skew-symmetry prop-
erty (C.3) is,

Ḣ = q̇⊺τ. (29)

Integrating the last equation, the passivity property fol-
lows.

3 Control

The primary advantage of the Soft-PVTOL over its con-
ventional counterpart lies in its exceptional maneuver-
ability. Its ability to decouple attitude and position dy-
namics is particularly noteworthy, overcoming the in-
herent underactuation in conventional PVTOL systems.
Additionally, deflecting its arms allows it to apply forces
and torques to the environment with greater agility than
traditional PVTOL designs. Thus, one desires to decou-
ple the attitude θ from its position (xv, zv) dynamics.
Now, notice that the control input vector τ ∈ R5 has
four actuators given by:

Motors thrusts: (Tl, Tr)

Tendons for the arms: (τl, τr),
(30)

which correspond to the thrusts and the tendons for the
left and right motors. Thus, we have four actuators to
control three DOFs, and the system is overactuated.

For the control design, we should consider the following:

(1) We aim to decouple the orientation from the posi-
tion, allowing for independent control of each, thus
achieving heightened maneuverability in the Soft-
PVTOL.

(2) In our control design process, we initially introduce
a control law based on passivity properties widely
investigated in [33] for the control input τ in (13).
Subsequently, employing a control allocation ap-
proach, we determine the reference values for the
four actuators mentioned earlier.

To achieve point 1) above, the Soft-PVTOL position will
be indirectly controlled by (ql, qr). So, we assume that
(ql, qr) are virtual controllers for the position dynamics.

We illustrate the concept of the proposed controller with
a diagram, as shown in Fig. 3.

Theorem 1 (Passivity-based control [33]) Consider
the Soft-PVTOL system modeled by equation (13). Also,
consider Assumption 2 and Lemmas 1 and 2 together
with the passivity property presented in Section 2.3.3.
Let us consider the control law,

τ = D(q)a+ C(q, q̇)υ + g(q)−Kr, (31)

where
υ = q̇d − Λq̃

a = q̈d − Λ ˙̃q

r = q̇− υ

(32)

and K,Λ are positive definite diagonal matrices. Then,
the equilibrium e = 0 of the tracking error

e =

(
q̃

˙̃q

)
=

(
q− qd

q̇− q̇d

)
(33)

is globally exponentially stable.

Proof. First, we substitute the control law (31) into
the Soft-PVTOL system (13) to obtain the closed-loop
representation:

D(q)ṙ + C(q, q̇)r +Kr = 0. (34)

Then, we propose the Lyapunov function candidate,

V (r, q̃) =
1

2
r⊺D(q)r + q̃⊺ΛKq̃ (35)

and we evaluate the closed-loop system trajectories
along V to get,

V̇ = −r⊺Kr + 2q̃⊺ΛK ˙̃q +
1

2
r⊺
(
Ḋ(q)− 2C(q, q̇)

)
r.

(36)
The last equation can be reduced by claiming Lemma 2
and the definition of r in (32). Thus, it follows that,

V̇ = −q̃⊺Λ⊺KΛq̃ − ˙̃q⊺K ˙̃q = −e⊺

(
Λ⊺KΛ 0

0 K

)
e. (37)

To prove exponential stability, consider the following
analysis. Considering Assumption 2, the inertia matrix
D(q) in (24) has constant norm bounds ∥D(q)∥ ≤ α ∈
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Soft-PVTOL 
aircraft 

dynamics

Position 
control

Control 
allocation

Soft arms 
control

Attitude 
control

Fig. 3. The block diagram illustrates the closed-loop system, where it is assumed that all system states (q, q̇) are available for
feedback—a standard assumption in aerial robot control.

R+ for all feasible values of ql and qr given by (46). No-
tice that V (r, q̃) in (35) can be expressed as,

V (r, q̃) = −
(
r⊺ q̃⊺

)( 1
2D(q) 0

0 ΛK

)
︸ ︷︷ ︸

P

(
r

q̃

)
. (38)

Thus, let us now represent V̇ ( ˙̃q, q̃) in (37) in the coordi-

nates (r, q̃) using (32) and (33) by substituting ˙̃q = r−Λq̃
in (37):

V̇ (r, q̃) = −q̃⊺Λ⊺KΛq̃ − (r⊺ − q̃⊺Λ⊺)K (r − Λq̃)

= −r⊺Kr − q̃⊺Λ⊺KΛq̃ + 2r⊺KΛq̃

= −
(
r⊺ q̃⊺

)( K KΛ

KΛ 2Λ⊺KΛ

)
︸ ︷︷ ︸

Q

(
r

q̃

)
.

(39)

We verify that the block matrix Q in the above equation
is positive definite by noting that all the principal lead-
ing minors are positive. Since K is positive definite by
definition, we must verify that det (Q) > 0:

det (Q) = det (K) det
(
2Λ⊺KΛ−KΛK−1KΛ

)
= det (K) det (Λ) det (ΛK),

(40)

which is clearly positive since K and Λ are positive def-
inite diagonal matrices. Now, notice that,

V̇ = −z⊺Qz ≤ −λmin{Q}z⊺z ≤ − λmin{Q}
λmax{P}

z⊺Pz = −ρV

(41)

where z =
(
r q̃
)⊺

, and ρ = λmin{Q}
λmax{P} > 0. Therefore,

given that V is radially unbounded and V̇ ≤ −ρV holds,
it implies the global exponential stability of the equilib-
rium point e = 0. □

3.1 Control allocation

Putting together (8) and (11), results in,
τx

τz

τθ

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

×


−Tr sin qr + Tl sin ql

Tr cos qr + Tl cos ql

lrTr cos qr
sin qr
qr

− llTl cos ql
sin ql
ql


︸ ︷︷ ︸

(υx,υz,τθ)⊺

.

(42)

To recover the real control inputs (Tr, Tl) and the desired
angles (qr, ql), we proceed as follows. First, notice that
the vector u = (υx, υz, τθ)

⊺ can be rewritten as:


υx

υz

τθ


︸ ︷︷ ︸

u

=


−1 0 1 0

0 1 0 1

0 lr
sin qr
qr

0 −ll
sin ql
ql


︸ ︷︷ ︸

A


Tr sin qr

Tr cos qr

Tl sin ql

Tl cos ql


︸ ︷︷ ︸

v

. (43)

Using the Moore–Penrose inverse and after some com-
putations, we get:

v = A+u (44)

where

A+ =


− 1

2 0 0

0 llqr sin ql
llqr sin ql+lrql sin qr

qlqr
llqr sin ql+lrql sin qr

1
2 0 0

0 lrql sin qr
llqr sin ql+lrql sin qr

− qlqr
llqr sin ql+lrql sin qr

 ,

(45)
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Fig. 4. Function approximation described in Assumption 2.

and we noticed that such an equation is not well defined
when ql = qr = 0, which will throw numerical problems
when one tries to solve it for (Tl, Tr, ql, qr). To avoid that
situation, let us make the following assumption.

Assumption 2 The Soft-PVOL will achieve bounded
angles (ql, qr) such that,

|ql| ≤ π, |qr| ≤ π. (46)

Moreover, in that region, we approximate:

sin ql
ql

≈ cos
(ql
2

)
,

sin qr
qr

≈ cos
(qr
2

)
. (47)

The approximation claimed in Assumption 2 makes
sense since, in practical situations, the angles (ql, qr)
hardly reach angles near to π. The approximation can
be seen graphically in the Fig. 4. Thus, considering
Assumption 2 we describe (43) as follows,

u = Āv (48)

where

Ā =


−1 0 1 0

0 1 0 1

0 lr cos
(
qr
2

)
0 −ll cos

(
ql
2

)
 , (49)

and using the Moore-Penrose inverse, it results in,

v = Ā+u

=


− 1

2υx
ll cos(

ql
2 )

ll cos(
ql
2 )+lr cos( qr

2 )
υz +

1

ll cos(
ql
2 )+lr cos( qr

2 )
τθ

1
2υx

lr cos( qr
2 )

ll cos(
ql
2 )+lr cos( qr

2 )
υz − 1

ll cos(
ql
2 )+lr cos( qr

2 )
τθ


(50)

where

Ā+ =


− 1

2 0 0

0
ll cos(

ql
2 )

ll cos(
ql
2 )+lr cos( qr

2 )
1

ll cos(
ql
2 )+lr cos( qr

2 )
1
2 0 0

0
lr cos( qr

2 )
ll cos(

ql
2 )+lr cos( qr

2 )
− 1

ll cos(
ql
2 )+lr cos( qr

2 )


(51)

where the RHS of (50) is well defined even in ql = qr = 0.
And from (42) notice that,


υx

υz

τθ

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


⊺

τx

τz

τθ

 (52)

and then

υx = τx cos θ + τz sin θ

υz = −τx sin θ + τz cos θ.
(53)

Now, using (50) we solve for (Tl, Tr, ql, qr) using simple
trigonometric functions cos2 x+sin2 x = 1, and tanx =
sin x
cos x , as follows,

Tl =

√√√√(1

2
υx

)2

+

(
lr cos

(
qr
2

)
υz − τθ

ll cos
(
ql
2

)
+ lr cos

(
qr
2

))2

Tr =

√√√√(1

2
υx

)2

+

(
ll cos

(
ql
2

)
υz + τθ

ll cos
(
ql
2

)
+ lr cos

(
qr
2

))2

ql = arctan

(
(υx)

(
ll cos

(
ql
2

)
+ lr cos

(
qr
2

))
(2)
(
lr cos

(
qr
2

)
υz − τθ

) )

qr = arctan

(
−
(υx)

(
ll cos

(
ql
2

)
+ lr cos

(
qr
2

))
(2)
(
ll cos

(
ql
2

)
υz + τθ

) )
.

(54)

It is noteworthy that the equations above, coupled with
(53), necessitate numerical methods for solution due to
their nonlinear nature and dependence on (ql, qr). These
(ql, qr) angles will henceforth be referred to as the desired
angles for the controller, denoted by (qdl , q

d
r ). Thus, we
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solve (54) numerically as,

f(x) =



Tl −

√√√√√( 1
2υx
)2

+

 lr cos

(
qdr
2

)
υz−τθ

ll cos

(
qd
l
2

)
+lr cos

(
qdr
2

)
2

Tr −

√√√√√( 1
2υx
)2

+

 ll cos

(
qd
l
2

)
υz+τθ

ll cos

(
qd
l
2

)
+lr cos

(
qdr
2

)
2

qdl − arctan

 (υx)

(
ll cos

(
qd
l
2

)
+lr cos

(
qdr
2

))
(2)

(
lr cos

(
qdr
2

)
υz−τθ

) 
qdr − arctan

−
(υx)

(
ll cos

(
qd
l
2

)
+lr cos

(
qdr
2

))
(2)

(
ll cos

(
qd
l
2

)
υz+τθ

)



= 0

(55)
where x = (Tl, Tr, q

d
l , q

d
r ).

4 Simulations

The simulation experiments were performed using the
Matlab Simulink ode5 (Dormand-Prince) solver with a
fixed-step size of 0.01 seconds. To solve (55), we use the
Algebraic block of Matlab Simulink with initial guess
x = [20, 10, 0.4,−0.2].

The system parameters are: m = 5, ml = mr = 1
5m,

I = 1, Il = Ir = 0.1, ll = lr = 0.5, and g = 9.8.

The control parameters are: kpx = 3, kdx = 0.85kpx,
kpz = 3, kdz = 0.85kpz, kpθ = 15, kdθ = 0.7kpθ,
kpql = 30, kdql = 0.7kpql , and kpqr = 30, kdqr =
0.7kpqr . KP = diag (kpx, kpz, kpθ, kpql , kpqr ), KD =
diag (kdx, kdz, kdθ, kdql , kdqr ). Also, λ1 = 1, λ2 = 1,
λ3 = 5, λ4 = 10, λ5 = 10, andΛ = diag (λ1, λ2, λ3, λ4, λ5).

The initial conditions are

q(0) =
(
xv(0) zv(0) θ(0) ql(0) qr(0)

)⊺
=
(
5 0 0.2π 0.01π −0.15π

)⊺
q̇(0) =

(
ẋv(0) żv(0) θ̇(0) q̇l(0) q̇r(0)

)⊺
=
(
0 0 0 0 0

)⊺
.

(56)

The desired trajectories for the (xv − zv) coordinates
and the pitch angle θ are given by:

xd
v = 4 sin

(
1

2
t

)
, zdv = 3 cos

(
− 1

10
t

)
+ 4, θd = 0

ẋd
v = 2 cos

(
1

2
t

)
, żdv = −0.3 sin

(
− 1

10
t

)
, θ̇d = 0.

(57)
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Fig. 5. The x − z plot illustrates the 2D trajectory tracked
by the Soft-PVTOL. It is important to note that while in
a conventional PVTOL, the x displacements are associated
with tilting angles of θ, in this particular configuration, the
roll angle remains fixed at zero throughout.

Notice that the Soft-PVTOL must track a time-varying
xv−zv trajectory depicted in Fig. 5 while maintaining a
roll angle equal to zero. To achieve that, the soft extrem-
ities must track a controlled trajectory. In this manner,
it becomes possible to control both the position and the
orientation of the Soft-PVTOL separately. This is differ-
ent from conventional PVTOL and multi-rotors, where
changing the position requires adjusting the orientation
because of the underactuated nature of the PVTOL sys-
tem.

In Fig. 6, we observe the position error vector q̃(t) and

the velocity error vector ˙̃q(t). Notably, all error states
converge to zero exponentially, and the convergence rate
can be adjusted by tuning the control gains. It is ob-
served that the convergence of the error states (q̃xv

, q̃zv )
occurs slower than the rest of the states. This is expected
due to a time-scale separation among the position, ori-
entation, and arm dynamics subsystems, [10].

For a clearer view of the Soft-PVTOL’s convergence to
the desired position outlined in (57), we separately plot
the actual position (xv, zv) against its desired values
(xd

v, z
d
v) and the roll angle θ against its desired value

θd. These are presented on the left-hand side of Fig. 7.
Similarly, we depict the corresponding velocities on the
right-hand side of the same figure. This figure makes it
more evident how the position changes over time while
the roll angle remains fixed at zero.

Analyzing the Euler-Lagrange equations (4), we observe
that the τ ∈ R5 vector encompasses all control inputs
for the Soft-PVTOL aircraft. The components of this
control input vector τ are illustrated in Fig. 8. Notably,
some elements of this control vector, such as (τx, τz), are
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Fig. 6. Position and velocity error states in the closed-loop system.
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Fig. 7. The left-hand side displays the pose of the Soft-PVTOL in the closed-loop response, accompanied by reference values.
Meanwhile, the right-hand side illustrates the velocities and angular velocities alongside their respective references.

virtual, as discussed in Sections 2.1.1 and 3.1.

Upon examining Fig. 8, it becomes apparent that τz
significantly surpasses τx, as anticipated. This discrep-
ancy is expected, given that the primary force exertion
is directed upwards to counteract the weight of the Soft-
PVTOL aircraft.

Once the control values τ are determined using Theo-
rem 1, we proceed to derive the actual control inputs:
the motor thrusts (Tl, Tr) and the desired curvature an-
gles for the arms (qdl , q

d
r ). These are illustrated in Fig. 9.

Additionally, within the same figure, we observe the con-
vergence of the arm curvature angles ql and qr to their
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Fig. 8. The control inputs in the Euler-Lagrange equation (4). In the Euler-Lagrange equation, the control inputs for the
left and right-hand side arms, denoted as (τl, τr), exhibit oscillations around 2.5 to attain the desired curvature angles. An
interesting observation is the minor variation around t = 16 seconds. This arises from computing limits when ql or qr approach
zero to mitigate singularity complexities in the simulation; see Section 4.1 for details of it.
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Fig. 9. The thrusts generated by the left and right motors are illustrated on the left-hand side, while the curvature and their
corresponding desired values for the left and right soft arms are depicted on the right-hand side.

desired values qdl and qdr , respectively. It is important to
recall that (Tl, Tr, q

d
l , q

d
r ) are calculated as outlined in

(54). Specifically, we solve (55) in Matlab Simulink us-
ing the algebraic constraint block with the initial guess
described at the beginning of this section.

4.1 Avoiding numerical issues

While the system itself does not contain any singulari-
ties, the numerical simulation can encounter errors due
to the computational approach used by the simulator.

For instance, consider the entries of the matrix D(q).
Throughout the inertia matrix D(q), and indeed in the

rest of the matrices of the system, various terms are
multiplied by 1

qn
l
or 1

qnr
, where n = {1, · · · , 5}. In Matlab

Simulink, such terms can lead to errors in the simulation
because the equations are computed numerically, term
by term, rather than analytically.

To address this issue and avoid numerical errors, we an-
alytically compute the limit of each term as ql and qr
approach zero. For example, in (24), we compute the
limit of the entries of the matrix D(q) as ql and qr ap-
proach zero, specifically limql→0 D1 = 0. We then sub-
stitute this calculated value directly into the simulation
when |ql| < δ, where δ is a small positive number. In
this simulation, we set δ = 0.1. Outside of this region,

12



D1 retains its usual value as described in D(q).

This approach ensures that the simulation accurately
handles terms involving small values of ql and qr, pre-
venting numerical errors that may arise otherwise.

5 Conclusions and future directions

In this paper, we have presented the Soft-PVTOL air-
craft for the first time, which is the version of the PVTOL
with soft arms. We have demonstrated that the mathe-
matical model of such an aerial robot can be represented
by the Euler-Lagrange equations assuming constant cur-
vature in the soft arms of the robot. Obtaining a concise
mathematical model with the Euler-Lagrange approach
opens the door to propose different well-known and ma-
ture control strategies to stabilize the error dynamics of
the Soft-PVTOL. Moreover, the model can be extended
to a quadrotor or even more complex multi-rotor aerial
soft robots since a multi-rotor is an extension of a PV-
TOL; such property remains in the Soft-PVTOL. It is
interesting that despite the complexity of the model, it
does not present any singularities for all the possible cur-
vature values in the left and right soft arms.

In contrast to conventional PVTOL and multi-rotor sys-
tems, where adjustments in position invariably influ-
ence orientation due to inherent underactuation, Soft-
PVTOL distinguishes itself by releasing this characteris-
tic. This distinctive feature heralds a new era of maneu-
verability and precision and signifies a substantial leap
forward in aerial robotics technology. We have shown
that including soft arms renders the complete system
fully actuated, unlike the conventional PVTOL. Lever-
aging this characteristic, we utilize the curvature of the
arms as a virtual controller to attain arbitrary feasi-
ble desired positions and orientations. Consequently, the
Soft-PVTOL successfully decouples orientation from po-
sition dynamics, allowing for the independent tracking of
trajectories for (xv, zv) and θ. Unlike traditional meth-
ods that approximate soft arms using a series of rigid
links, our model captures the fluidity of motion inherent
to soft robotics, preserving both the structural flexibil-
ity and control precision necessary for aerial systems.

We have validated the passivity property for the Soft-
PVTOL and leveraged it by implementing a passivity-
based controller. Nevertheless, intriguing control chal-
lenges persist for this category of soft aerial robots, such
as robust and adaptive control strategies. While our con-
trol strategy leverages state-of-the-art methods, a key
contribution lies in the novel application of the Euler-
Lagrange framework to model the Soft-PVTOL system.
This approach ensures the integration of well-established
control techniques while maintaining the intrinsic soft-
ness and continuous deformation of the robot’s arms.

The simulation results exhibit the convergence of all

system states, validating the effectiveness of the pro-
posed approach. However, a challenge arose with Mat-
lab Simulink’s computation methodology during the nu-
merical simulation. Simulink calculates expressions term
by term, leading to singularities when the curvature of
one arm reaches zero. Nevertheless, analytically, we have
demonstrated that such singularities do not exist. To
address this discrepancy, we analytically computed the
limit of each entry in the Euler-Lagrange equations ma-
trices as the curvature of the arms approaches zero. This
enabled us to successfully simulate the closed-loop sys-
tem, demonstrating the exponential convergence of all
error states.

While the configuration may resemble a folding arm de-
sign, the key distinction lies in the continuous deforma-
bility of the soft arms, offering advantages that rigid
structures cannot achieve. The softness is not just struc-
tural but functional, enabling smooth force distribution
and dynamic adjustments during flight. This allows the
Soft-PVTOL to transition seamlessly between under-
actuated and overactuated behaviors, enhancing both
maneuverability and resilience in unpredictable environ-
ments. Unlike revolute joints, which impose discrete con-
straints, the soft arms provide finer control by adapt-
ing forces across multiple points. This adaptability sup-
ports precise, energy-efficient maneuvers and safer inter-
actions, making the soft structure essential for applica-
tions where flexibility and performance are critical.

A future direction lies in path planning, where the fo-
cus will be on deducing desired trajectories, considering
potential combinations and interactions between com-
plex maneuvers and the desired curvature angles for the
arms. This involves understanding how different maneu-
vers and arm configurations can be combined and coor-
dinated to achieve optimal paths and movements.

There is a lot of open research in modeling, control, de-
sign, and construction in this field. This work opens the
door for future investigation in more complex scenarios
where the constant curvature assumption is relaxed or
when the arms can twist. An immediate continuation
of this research is the extension for soft quadrotors and
their design and construction.
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Appendix

A Computations of the Euler-Lagrange equation

First, we must to compute the Lagrangian, L = K−P, where the Kinetic energy has translational KT and rotational
KR components:

K =
1

2
mṗ⊺v ṗv +

1

2
mlṗ

⊺
l ṗl +

1

2
mrṗ

⊺
r ṗr︸ ︷︷ ︸

KT

+
1

2
Iθ̇2 +

1

2
Ilq̇l

2 +
1

2
Ir q̇r

2︸ ︷︷ ︸
KR

, (A.1)

where the translational kinetic energy is rewritten as follows,

KT =
1

2
m
(
ẋ2
v + ż2v

)
+

1

2
mlẋ

2
v +

1

2
mlż

2
v +

1

2
l2l
ml

q2l
q̇2l + l2l

ml

q4l
q̇2l − l2l ml

cos ql
q4l

q̇2l − l2l ml
sin ql
q3l

q̇2l − ll
ml

q2l
q̇lżv

− llml
cos ql
ql

q̇lẋv + llml
cos ql
q2l

q̇lżv + llml
sin ql
q2l

q̇lẋv + llml
sin ql
ql

q̇lżv +
1

2
mrẋ

2
v +

1

2
mr ż

2
v +

1

2
l2r
mr

q2r
q̇2r

+ l2r
mr

q4r
q̇2r − l2rmr

cos qr
q4r

q̇2r − l2rmr
sin qr
q3r

q̇2r − lr
mr

q2r
q̇r żv + lrmr

cos qr
qr

q̇rẋv + lrmr
cos qr
q2r

q̇r żv

− lrmr
sin qr
q2r

q̇rẋv + lrmr
sin qr
qr

q̇r żv.

(A.2)

The potential energy is

P = mgzv +mlg

(
zv + ll

1− cos ql
ql

)
+mrg

(
zv + lr

1− cos qr
qr

)
. (A.3)

Thus, the Lagrangian is

L = K − P

=
1

2
mṗ⊺v ṗv +

1

2
mlṗ

⊺
l ṗl +

1

2
mrṗ

⊺
r ṗr +

1

2
Iθ̇2 +

1

2
Ilq̇l

2 +
1

2
Ir q̇r

2 − (gzv) (m+ml +mr)

− (g)

(
mlll

1− cos ql
ql

+mrlr
1− cos qr

qr

) (A.4)

that can be expressed as follows,

L =
1

2
m
(
ẋ2
v + ż2v

)
+

1

2
mlẋ

2
v +

1

2
mlż

2
v +

1

2
l2l
ml

q2l
q̇2l + l2l

ml

q4l
q̇2l − l2l ml

cos ql
q4l

q̇2l − l2l ml
sin ql
q3l

q̇2l − ll
ml

q2l
q̇lżv

− llml
cos ql
ql

q̇lẋv + llml
cos ql
q2l

q̇lżv + llml
sin ql
q2l

q̇lẋv + llml
sin ql
ql

q̇lżv +
1

2
mrẋ

2
v +

1

2
mr ż

2
v +

1

2
l2r
mr

q2r
q̇2r

+ l2r
mr

q4r
q̇2r − l2rmr

cos qr
q4r

q̇2r − l2rmr
sin qr
q3r

q̇2r − lr
mr

q2r
q̇r żv + lrmr

cos qr
qr

q̇rẋv + lrmr
cos qr
q2r

q̇r żv

− lrmr
sin qr
q2r

q̇rẋv + lrmr
sin qr
qr

q̇r żv +
1

2
Iθ̇2 +

1

2
Ilq̇l

2 +
1

2
Ir q̇r

2

− (gzv) (m+ml +mr)− (g)

(
mlll

1− cos ql
ql

+mrlr
1− cos qr

qr

)
.

(A.5)

From (1) it follows that

q̇ =
(
ẋv żv θ̇ q̇l q̇r

)⊺
(A.6)

and then we compute,
∂L
∂q̇

=
(

∂L
∂ẋv

∂L
∂żv

∂L
∂θ̇

∂L
∂q̇l

∂L
∂q̇r

)⊺
(A.7)
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where

∂L
∂ẋv

= mẋv +mlẋv − llml
cos ql
ql

q̇l + llml
sin ql
q2l

q̇l +mrẋv + lrmr
cos qr
qr

q̇r − lrmr
sin qr
q2r

q̇r

∂L
∂żv

= mżv +mlżv − ll
ml

q2l
q̇l + llml

cos ql
q2l

q̇l + llml
sin ql
ql

q̇l +mr żv − lr
mr

q2r
q̇r + lrmr

cos qr
q2r

q̇r + lrmr
sin qr
qr

q̇r

∂L
∂θ̇

= Iθ̇

∂L
∂q̇l

= l2l
ml

q2l
q̇l + 2l2l

ml

q4l
q̇l − 2l2l ml

cos ql
q4l

q̇l − 2l2l ml
sin ql
q3l

q̇l − ll
ml

q2l
żv − llml

cos ql
ql

ẋv

+ llml
cos ql
q2l

żv + llml
sin ql
q2l

ẋv + llml
sin ql
ql

żv + Ilq̇ls

∂L
∂q̇r

= l2r
mr

q2r
q̇r + 2l2r

mr

q4r
q̇r − 2l2rmr

cos qr
q4r

q̇r − 2l2rmr
sin qr
q3r

q̇r − lr
mr

q2r
żv + lrmr

cos qr
qr

ẋv

+ lrmr
cos qr
q2r

żv − lrmr
sin qr
q2r

ẋv + lrmr
sin qr
qr

żv + Ir q̇r.

(A.8)

Now, we compute:

d

dt

(
∂L
∂q̇

)
=
(
a1 a2 a3 a4 a5

)⊺
(A.9)

where

a1 = (m+ml)ẍv − llml

(
cos ql
ql

)
q̈l + llml

(
ql sin ql + cos ql

q2l

)
q̇l

2 + llml

(
sin ql
q2l

)
q̈l

+ llml

(
ql cos ql − 2 sin ql

q3l

)
q̇l

2 +mrẍv + lrmr

(
cos qr
qr

)
q̈r − lrmr

(
qr sin qr + cos qr

q2r

)
q̇r

2

− lrmr

(
sin qr
q2r

)
q̈r − lrmr

(
qr cos qr − 2 sin qr

q3r

)
q̇r

2

a2 = (m+ml)z̈v − llml

(
1

q2l

)
q̈l + 2llml

(
1

q3l

)
q̇l

2 + llml

(
cos ql
q2l

)
q̈l − llml

(
ql sin ql + 2 cos ql

q3l

)
q̇l

2

+ llml

(
sin ql
ql

)
q̈l + llml

(
ql cos ql − sin ql

q2l

)
q̇2l +mr z̈v − lrmr

(
1

q2r

)
q̈r + 2lrmr

(
1

q3r

)
q̇2r

+ lrmr

(
cos qr
q2r

)
q̈r − lrmr

(
qr sin qr + 2 cos qr

q3r

)
q̇2r + lrmr

(
sin qr
qr

)
q̈r + lrmr

(
qr cos qr − sin qr

q2r

)
q̇2r

a3 = Iθ̈

a4 = l2l ml

(
1

q2l

)
q̈l − 2l2l ml

(
1

q3l

)
q̇2l + 2l2l ml

(
1

q4l

)
q̈l − 8l2l ml

(
1

q5l

)
q̇2l − 2l2l ml

(
cos ql
q4l

)
q̈l

+ 2l2l ml

(
ql sin ql + 4 cos ql

q5l

)
q̇2l − 2l2l ml

(
sin ql
q3l

)
q̈l − 2l2l ml

(
ql cos ql − 3 sin ql

q4l

)
q̇2l − llml

(
1

q2l

)
z̈v

+ 2llml

(
1

q3l

)
q̇lżv − llml

(
cos ql
ql

)
ẍv + llml

(
ql sin ql + cos ql

q2l

)
q̇lẋv + llml

(
cos ql
q2l

)
z̈v

− llml

(
ql sin ql + 2 cos ql

q3l

)
q̇lżv + llml

(
sin ql
q2l

)
ẍv + llml

(
ql cos ql − 2 sin ql

q3l

)
q̇lẋv

+ llml

(
sin ql
ql

)
z̈v + llml

(
ql cos ql − sin ql

q2l

)
q̇lżv + Ilq̈l

(A.10)

15



and

a5 = l2rmr

(
1

q2r

)
q̈r − 2l2rmr

(
1

q3r

)
q̇2r + 2l2rmr

(
1

q4r

)
q̈r − 8l2rmr

(
1

q5r

)
q̇2r − 2l2rmr

(
cos qr
q4r

)
q̈r

+ 2l2rmr

(
qr sin qr + 4 cos qr

q5r

)
q̇2r − 2l2rmr

(
sin qr
q3r

)
q̈r − 2l2rmr

(
qr cos qr − 3 sin qr

q4r

)
q̇2r − lrmr

(
1

q2r

)
z̈v

+ 2lrmr

(
1

q3r

)
q̇r żv + lrmr

(
cos qr
qr

)
ẍv − lrmr

(
qr sin qr + cos qr

q2r

)
q̇rẋv + lrmr

(
cos qr
q2r

)
z̈v

− lrmr

(
qr sin qr + 2 cos qr

q3r

)
q̇r żv − lrmr

(
sin qr
q2r

)
ẍv − lrmr

(
qr cos qr − 2 sin qr

q3r

)
q̇rẋv

+ lrmr

(
sin qr
qr

)
z̈v + lrmr

(
qr cos qr − sin qr

q2r

)
q̇r żv + Ir q̈r

(A.11)

Now, we proceed to compute:

∂L
∂q

=
(

∂L
∂xv

∂L
∂zv

∂L
∂θ

∂L
∂ql

∂L
∂qr

)⊺
=
(
0 −g(m+ml +mr) 0 ∂L

∂ql
∂L
∂qr

)⊺ (A.12)

where

∂L
∂ql

= −l2l ml
1

q3l
q̇2l − 4l2l ml

1

q5l
q̇2l + l2l ml

(
ql sin ql + 4 cos ql

q5l

)
q̇2l − l2l ml

(
ql cos ql − 3 sin ql

q4l

)
q̇2l + 2llml

1

q3l
q̇lżv

+ llml

(
ql sin ql + cos ql

q2l

)
q̇lẋv + llml

(
ql cos ql − 2 sin ql

q3l

)
q̇lẋv − llml

(
ql sin ql + 2 cos ql

q3l

)
q̇lżv

+ llml

(
ql cos ql − sin ql

q2l

)
q̇lżv − (gmlll)

(
ql sin ql + cos ql − 1

q2l

)
(A.13)

and

∂L
∂qr

= −l2rmr
1

q3r
q̇2r − 4l2rmr

1

q5r
q̇2r + l2rmr

(
qr sin qr + 4 cos qr

q5r

)
q̇2r − l2rmr

(
qr cos qr − 3 sin qr

q4r

)
q̇2r + 2lrmr

1

q3r
q̇r żv

− lrmr

(
qr sin qr + cos qr

q2r

)
q̇rẋv − lrmr

(
qr cos qr − 2 sin qr

q3r

)
q̇rẋv − lrmr

(
qr sin qr + 2 cos qr

q3r

)
q̇r żv

+ lrmr

(
qr cos qr − sin qr

q2r

)
q̇r żv − (gmrlr)

(
qr sin qr + cos qr − 1

q2r

)
(A.14)

B Proof of Lemma 1

To prove the positiveness of D(q), it suffices to demonstrate that the principal minors of D are always positive. It is
clear by the definition of parameters that the first three principal minors are positive. The fourth principal minor is
computed as follows:

det(D4) = Θ3

∣∣∣∣∣∣∣∣∣∣∣

ρ1 0 0 D1

0 ρ1 0 D2

0 0 ρ2 0

D1 D2 0 llD5 + ρ3

∣∣∣∣∣∣∣∣∣∣∣
(B.1)
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where ρ1 = Θ1

Θ3
, ρ2 = Θ2

Θ3
, ρ3 = Θ5

Θ3
. After several computations, it follows that:

det(D4) = −Θ3

q4l

(
−ρ2ρ3q

4
l ρ

2
1 − llρ2q

2
l ρ

2
1 + ρ2q

2
l ρ1 cos

2 ql + ρ2q
2
l ρ1 sin

2 ql + 2llρ2qlρ
2
1 sin ql − 2ρ2lρ1 sin ql

+ 2llρ2ρ
2
1 cos ql − 2llρ2ρ

2
1 + ρ2ρ1 cos

2 ql − 2ρ2ρ1 cos ql + ρ2ρ1 sin
2 ql + ρ2ρ1

)
=

Θ3

q4l
ρ1ρ2

(
2 cos ql + 2llρ1 + 2ql sin ql − q2l − 2llρ1 cos ql + llq

2
l ρ1 + q4l ρ1ρ3 − 2llqlρ1 sin ql − 2

)
=

Θ3

q4l
ρ1ρ2

[(
−q2l − 2 + 2 cos ql + 2ql sin ql

)
+ llρ1

(
q2l + 2− 2 cos ql − 2ql sin ql

)
+ ρ1ρ3q

4
l

]

= − (Θ3ρ1ρ2)


(
q2l + 2− 2 cos ql − 2ql sin ql

q4l

)
︸ ︷︷ ︸

ξ1

+(2llρ1)

(
cos ql + ql sin ql − 1− 1

2q
2
l − q4l

ρ3

2ll

q4l

)
︸ ︷︷ ︸

ξ2

 .

(B.2)

Simple computations show that,

lim
ql→0

ξ1 =
1

4
, lim

ql→0
ξ2 = −1

8
− ρ3

2ll
(B.3)

And also that limql→∞ ξ1 = limql→−∞ ξ1 = 0 and limql→∞ ξ2 = limql→−∞ ξ2 = − ρ3

2ll
. Thus, one can demonstrate

that, at least locally, the maximum of ξ1 and the minimum of ξ2 are in ql = 0. From the above, the worst-case scenario
occurs when ql = 0, and then:

Θ3ρ1ρ2

[
(2llρ1)

(
1

8
+

ρ3
2ll

)
− 1

4

]
≤ det(D4) ≤ Θ3ρ1ρ2 (B.4)

as long as

1

4
< (2llρ1)

(
1

8
+

ρ3
2ll

)
< 1 (B.5)

or from the LHS of the last inequality, ρ1 > 1
ll+4ρ3

, equivalently Θ1 >
Θ2

3

llΘ3+4Θ5
.

Now, we compute det(D(q)). Let us assume for a moment that ρ4 = Θ4

Θ3
, ρ5 = Θ6

Θ3
:

det(D) = Θ3

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ1 0 0 D1 ρ4D3

0 ρ1 0 D2 ρ4D4

0 0 ρ2 0 0

D1 D2 0 llD5 + ρ3 0

ρ4D3 ρ4D4 0 0 lrρ4D6 + ρ5

∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.6)
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where ρ4 = Θ6

Θ3
. Thus 2 ,

det(D(q)) =
Θ3ρ2
q4l q

4
r

(
ρ1

[
−2 + 2llρ1 − q2l + llρ1q

2
l + ρ1ρ3q

4
l + (2− 2llρ1) cos ql − 2(−1 + llρ1)ql sin ql

][
2ρ4lr

+ ρ4lrq
2
r + ρ5q

4
r − 2ρ4lr cos qr − 2ρ4lrqr sin qr

]
+ ρ24

(
−1 + cos qr + qr sin qr

)(
−ρ1

[
2ll + llq

2
l + ρ3q

4
l

− 2ll cos ql − 2llql sin ql

][
−1 + cos qr + qr sin qr

]
+
[
ql cos ql − sin ql

][
−ql cos ql − qr cos qr

+ ql cos (ql + qr) + qr cos (ql + qr) + sin ql + sin qr − sin (ql + qr) + qlqr sin (ql + qr)
])

− ρ24

(
qr cos qr − sin qr

)(
ρ1

[
2ll + llq

2
l + ρ3q

4
l − 2ll cos ql − 2llql sin ql

][
qr cos qr − sin qr

]
−
[
−1 + cos ql + ql sin ql

][
− ql cos ql − qr cos qr + ql cos (ql + qr)

+ qr cos (ql + qr) + sin ql + sin qr − sin (ql + qr) + qlqr sin (ql + qr)
]))

.

(B.7)
Proceeding as before, computing the limits one gets:

lim
ql,qr→0

det(D(q)) =

(
Θ3ρ1ρ2

16

)(
−ρ4lr − 4ρ5 − 4ρ3

[
ρ24 − ρ1ρ4lr − 4ρ1ρ5

]
+ ll

[
−ρ24 + ρ1ρ4lr + 4ρ1ρ5

])
=

(
Θ3ρ1ρ2

16

)(
−ρ4lr − 4ρ5 − 4ρ3ρ

2
4 + 4ρ3ρ1ρ4lr + 16ρ3ρ1ρ5 − llρ

2
4 + llρ1ρ4lr + 4ρ1ρ5ll

)
=

(
Θ3ρ1ρ2

16

)([
−ρ4lr − 4ρ5 − 4ρ3ρ

2
4 − llρ

2
4

]
+
[
4ρ3ρ1ρ4lr + 16ρ3ρ1ρ5 + llρ1ρ4lr + 4ρ1ρ5ll

])
,

(B.8)
and det(D(q)) > 0 as long as,

4ρ3ρ1ρ4lr + 16ρ3ρ1ρ5 + llρ1ρ4lr + 4ρ1ρ5ll > ρ4lr + 4ρ5 + 4ρ3ρ
2
4 + llρ

2
4. (B.9)

And also:

lim
ql,qr→∞

det(D(q)) = lim
ql,qr→−∞

det(D(q)) = Θ3ρ
2
1ρ2ρ3ρ5. (B.10)

Hence, given that all the principal minors of D(q) are positive, we conclude that the matrix D(q) is positive definite.
This indicates thatD(q) is symmetric and possesses all positive eigenvalues, contributing to its positive definite nature.

C Proof of Lemma 2

Now, we compute Ḋ(q) to verify that Ḋ(q)− 2C(q, q̇) is skew-symmetric. Notice that,

Ḋ =



0 0 0 Θ3C1q̇l −Θ4C3q̇r

0 0 0 Θ3C2q̇l Θ4C4q̇r

0 0 0 0 0

Θ3C1q̇l Θ3C2q̇l 0 −4llΘ3C5q̇l 0

−Θ4C3q̇r Θ4C4q̇r 0 0 −4lrΘ4C6q̇r


, (C.1)

2 This is computed with Mathematica software.
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and

−2C(q, q̇) =



0 0 0 −2Θ3C1q̇l 2Θ4C3q̇r

0 0 0 −2Θ3C2q̇l −2Θ4C4q̇r

0 0 0 0 0

0 0 0 4llΘ3C5q̇l 0

0 0 0 0 4lrΘ4C6q̇r


, (C.2)

and finally, we compute

Ḋ(q)− 2C(q, q̇) =



0 0 0 −Θ3C1q̇l Θ4C3q̇r

0 0 0 −Θ3C2q̇l −Θ4C4q̇r

0 0 0 0 0

Θ3C1q̇l Θ3C2q̇l 0 0 0

−Θ4C3q̇r Θ4C4q̇r 0 0 0


, (C.3)

which clearly is skew-symmetric.
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