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Abstract
Accurate multi-turn intent classification is essential for advancing
conversational AI systems. However, challenges such as the scarcity
of comprehensive datasets and the complexity of contextual depen-
dencies across dialogue turns hinder progress. This paper presents
two novel approaches leveraging Large Language Models (LLMs)
to enhance scalability and reduce latency in production dialogue
systems. First, we introduce Symbol Tuning, which simplifies intent
labels to reduce task complexity and improve performance in multi-
turn dialogues. Second, we propose C-LARA (Consistency-aware,
Linguistics Adaptive Retrieval Augmentation), a framework that
employs LLMs for data augmentation and pseudo-labeling to gener-
ate synthetic multi-turn dialogues. These enriched datasets are used
to fine-tune a small, efficient model suitable for deployment. Exper-
iments conducted on multilingual dialogue datasets demonstrate
significant improvements in classification accuracy and resource
efficiency. Our methods enhance multi-turn intent classification
accuracy by 5.09%, reduce annotation costs by 40%, and enable scal-
able deployment in low-resource multilingual industrial systems,
highlighting their practicality and impact.

CCS Concepts
• Information systems→ Languagemodels;Question answer-
ing; • Computing methodologies→ Intelligent agents.
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Figure 1: Comparison of instruction tuning and symbol tun-
ing. Simplifying verbose intent labels (e.g., “Request to Can-
cel Order”→ “Cancel Order”) reduces redundancy, enhanc-
ing LLM classification performance by 5.09%, addressing key
challenges in production intent classification.

1 Introduction
Dialogue systems are critical for automating interactions between
customers and agents, streamlining communication and enhanc-
ing user experience. They play a pivotal role in international e-
commerce platforms, addressing the increasing demand for in-
stantaneous and efficient customer service. Intent classification,
a fundamental aspect of natural language understanding in dia-
logue systems, involves identifying users’ goals from their inputs,
thereby minimizing waiting times and operational costs [22]. User
interactions frequently evolve into multi-turn dialogues when de-
tailed information is required, complicating the development of
multi-turn intent classification (MTIC) models, despite their simi-
larity to standard text classification tasks. Additionally, real-world
multilingual systems require scalable solutions that uphold inclu-
sivity and ethical standards, particularly in low-resource settings.
This complexity arises from the need to consider contextual fac-
tors like historical utterances and prior intents. Without a proper
understanding of session context, the system risks misinterpreting
user intentions, which may result in incorrect applications or irrel-
evant responses [24]. Consequently, MTIC within dialogue system
presents significant challenges.

The first challenge is that the length of intents in industrial di-
alogue systems is longer compared to general text classification
tasks. Figure 1 shows that the real intents comprise several words in
our knowledge base because operators(Ops) typically assign intents

*Equal Contributions.
†Corresponding Author: bin.fu@shopee.com

ar
X

iv
:2

41
1.

12
30

7v
1 

 [
cs

.C
L

] 
 1

9 
N

ov
 2

02
4

https://doi.org/N.A
https://doi.org/N.A


Preprint, Working Paper, Nov 2024 Liu et al.

Figure 2: Annotation pipeline of multi-turn intent classifica-
tion datasets. Two major challenges in production systems
are illustrated: (1) managing numerous (500+) intents across
markets with redundant labels, and (2) the high cost of col-
lecting multi-turn training data.

a clear and descriptive name to facilitate knowledge management,
which makes them redundant. The recent advancements in large
language model(LLMs) present new research opportunities to sim-
plify and optimize the text classification process [19]. Research
indicates that LLMs perform excellently in sentiment analysis[12],
which only adopts shorter labels such as positive, negative. How-
ever, LLMs still fail to address context dependency in multi-turn
conversations and struggle with long intent labels common in in-
dustrial systems.

The second challenge lies in the difficulty of collecting multi-turn
datasets. While several studies [15, 23] on MTIC exist, they often
assume access to comprehensive multi-turn training data, which is
rarely available in real-world applications.

Figure 2 shows the annotation pipeline for MTIC tasks. Even if
we ignore the redundant info within intents, unlike dialogue act
classification [13] with only less than 10 classes within dialogue
state tracking (DST), there are hundreds of intents operated by local
Ops in knowledge base of dialgoue system to cover user’s various
and specific intents in each market, which increase the complexity
of multi-turn classification and its annotation. Annotators often
struggle with the numerous of intents, leading to increased mis-
takes and longer decision-making times. As a result, the annotation
process becomes costly and time-intensive, making it impractical
to manually annotate large-scale multi-turn datasets. However, in-
sufficient training data can significantly hinder model performance
even with LLM. These challenges underscore the necessity for more
efficient methods to address data scarcity and classification com-
plexity.

To tackle two challenges, we first study the feasibility of using
LLM for supervised fine-tuning (SFT) to perform MTIC using a
generative method. Various intents increase the complexity of this
task since the more tokens a large language model(LLM) generates,
the lower the task performance [16]. To conquer this, we compress
the redundant info within intent to succinct intent via GPT4, then
adopt those intents in SFT named as symbol tuning, which help to
reduce the difficulty of multi-turn classification tasks by the LLM
generative method.

Secondly, to overcome the shortage of multi-turn data, we pro-
pose a novel pseudo-labeling and data generation framework called
Consistency-aware Linguistics Adaptive Retrieval Augmentation
(C-LARA). Extending beyond existing synthetic data generation [9],
C-LARA serves as an effective pseudo-labeling tool for generat-
ing multi-turn data from user’s unlabeled utterances with self-
consistency. C-LARA arranges the retrieval result in different orders
to assemble adaptive prompts, which cover the diverse reasoning
path and filter out noise in in-context learning to improve the
quality of labeling data. Subsequently, we use the training data
to train a smaller model for online inference. C-LARA is a novel
framework tailored for multi-turn intent classification. It addresses
limitations in prior approaches by leveraging adaptive retrieval and
self-consistency mechanisms to enhance the accuracy of pseudo-
labeling for multi-turn dialogues. Unlike previous methods, it di-
rectly optimizes for zero-shot multi-turn data classification and
scalable deployment.

In summary, the contributions of this paper are as follows:

(1) We introduce symbol-tuning, leveraging compressed intents
to enhance LLM performance for MTIC, demonstrating a
5.09% improvement in supervised fine-tuning (SFT) results.

(2) We develop C-LARA, a novel framework for generating high-
quality multi-turn data, effectively augmenting MTIC results.

(3) We fine-tune smaller models using data generated by C-
LARA, enabling scalable and accurate deployment of MTIC
systems in low-resource industrial settings.

2 Problem Formulation
2.1 Multi-Turn Intent Classification
Multi-Turn Intent Classification (MTIC) involves identifying the
intent 𝐼 of the final query 𝑞𝑛 from a predefined set I, based on a
sequence of user queries Q = {𝑞𝑖 }𝑛𝑖=1 in a chatbot session. This
task relies on the conversational context C = {𝑞𝑖 }𝑛−1𝑖=1 , which
includes prior queries. Context-dependency adds complexity, re-
quiring models to interpret nuanced conversational dynamics and
evolving user intentions. Each intent 𝐼 has a local-language ti-
tle 𝑦 and a hierarchical English category 𝑧 (e.g., Indonesia: 𝑦 =
’Cara membatalkan pesanan’, 𝑧 = ’Logistics > Order > Cancellation’).

2.2 Supervised Fine-tuning
Supervised Fine-tuning (SFT) adapts pre-trained large language
models (LLMs) for specific tasks using labeled datasets. This process
achieves high benchmark accuracy through task-specific supervi-
sion.

Problem Definition. Given a dataset D = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, where 𝑥𝑖
is an input query and 𝑦𝑖 is the corresponding label, the objective
is to optimize model parameters 𝜃 to maximize the conditional
likelihood 𝑝(𝑦𝑖 |𝑥𝑖 ;𝜃 ):

LSFT(𝜃 ) = − 1
𝑁

𝑁∑︁
𝑖=1

log𝑝(𝑦𝑖 |𝑥𝑖 ;𝜃 ).



Balancing Accuracy and Efficiency in Multi-Turn Intent Classification for LLM-Powered Dialog Systems in Production Preprint, Working Paper, Nov 2024

Conditional Probability Modeling. For structured outputs, 𝑦𝑖 is a
sequence of tokens {𝑡1, 𝑡2, . . . , 𝑡𝑚}, with probability factorized au-
toregressively:

𝑝(𝑦 |𝑥 ;𝜃 ) =
𝑚∏
𝑗=1

𝑝(𝑡 𝑗 |𝑡< 𝑗 , 𝑥 ;𝜃 ).

The training objective becomes:

LSFT(𝜃 ) = − 1
𝑁

𝑁∑︁
𝑖=1

𝑚∑︁
𝑗=1

log 𝑝(𝑡 𝑗 |𝑡< 𝑗 , 𝑥𝑖 ;𝜃 ).

2.3 Symbol Tuning
Unlike methods replacing task labels with unrelated symbols [21],
our Symbol Tuning approach focuses on intent classification. Ver-
bose labels in industrial systems disperse semantic information,
hindering model performance. To address this, we compress labels
into concise phrases using GPT-4. For example, "Request to Can-
cel Order" becomes "Cancel Order," serving as compact semantic
anchors that enhance shallow and deep layer representations.

Mathematical Formulation. Let the original intent label be 𝐿 =
{𝑡1, 𝑡2, . . . , 𝑡𝑚}. The compressed label 𝐿′, with 𝑛 ≪ 𝑚, is gener-
ated by optimizing:

𝐿′ = argmin𝐿′ C(𝐿′) + E(𝐿′, 𝐿),
where: - C(𝐿′): Compactness of 𝐿′ (e.g., token count). - E(𝐿′, 𝐿):
Semantic divergence, computed as:

E(𝐿′, 𝐿) = 1 − cosine_sim(𝜙(𝐿′), 𝜙(𝐿)),

with 𝜙(·) as an embedding function.

Objective Function. GivenD = {(𝑥𝑖 , 𝐿𝑖 )}𝑁𝑖=1, where 𝐿𝑖 is the original
label, the supervised fine-tuning loss becomes:

LST(𝜃 ) = −E(𝑥,𝐿′)∼D
𝑛∑︁
𝑗=1

log 𝑝(𝑡 𝑗 |𝑡< 𝑗 , 𝑥 ;𝜃 ),

where 𝑡< 𝑗 denotes preceding tokens in 𝐿′.

Performance Implications. Replacing verbose labels 𝐿 with compact
𝐿′ reduces token processing and improves classification accuracy,
streamlining intent recognition tasks.

3 Solutions
3.1 Symbol Tuning on LLM
To address intent classification tasks, we utilize generativemodels
rather than conventional discriminative or regressive approaches.
Our Symbol Tuning (ST) method involves supervised fine-tuning
(SFT) of an LLM with compressed intent labels. Given a complete
chat session S = {𝑞1, 𝐼1, ..., 𝑞𝑛−1, 𝐼𝑛−1, 𝑞𝑛}, the model is trained to
generate the representative question 𝑟𝑛 corresponding to the correct
intent 𝐼𝑛 of the final query 𝑞𝑛 . Queries and intents are structured
in a natural question-answering flow, as illustrated below:

SYSTEM: "A chat between a curious user and an ar-
tificial intelligence assistant. The assistant provides
helpful, detailed, and polite responses to the user’s
questions."
USER: "{q_1}"
ASSISTANT: "The intent title is {r_1}."

...
USER: "{q_n}"
ASSISTANT: "The intent title is {r_n}."

The generated 𝑟𝑛 is compared with intents inI using cosine similar-
ity in the embedding space to ensure semantic alignment between
the model’s output and predefined intent titles.

Compressed Generation. Intent representative queries 𝑟 often con-
sist of approximately 12 tokens, making them inefficient as genera-
tion targets. To address this, we employ an LLM to compress 𝑟 into
concise phrases, typically two words, while preserving their seman-
tic essence. This process ensures that each compressed intent label
𝑟𝑐 is unique. If duplicates occur, the model iteratively increases the
word count until uniqueness is achieved. This compression reduces
the average length of 𝑟𝑐 to four tokens, optimizing it for genera-
tion tasks and improving classification accuracy. This approach
enhances classification accuracy by reducing semantic dispersion
in labels, ensuring more focused information propagation through
LLM layers.

Cross-Lingual Labels. In non-English markets, intent labels 𝑟 are
compressed into English while retaining the original language for
input queries Q. Leveraging English, the predominant language in
LLM pretraining corpora, simplifies label generation and enhances
model performance in multilingual settings. This cross-lingual strat-
egy reduces complexity and improves alignment with pretraining
distributions. This strategy leverages the strengths of pre-trained
LLMs while accommodating multilingual data, offering a scalable
solution for cross-lingual intent classification.

3.2 Consistency-aware Linguistics Adaptive
Retrieval Augmentation

To enhance in-context learning, we propose the Consistency-aware,
Linguistics Adaptive Retrieval Augmentation (C-LARA) framework.
Building upon the LARA model [9], C-LARA incorporates a fine-
tuned single-turn modelM𝑐 within a retrieval-augmented pipeline.
This framework enables zero-shot Multi-Turn Intent Classification
(MTIC) using only single-turn demonstrations. Unlike LARA, which
is computationally intensive in real-time, C-LARA operates offline
as a pseudo-labeling tool, generating high-quality multi-turn data
for training lightweight classification models.

Specifically, the LARA pipeline can be complex and resource-
intensive to implement for real-time systems. Hence, we use this
method offline as a multi-turn data pseudo-labeling tool to train a
smaller classification model. The training method mirrors that of
the single-turn classifierM𝑐 following the paper, adding pseudo-
labeled multi-turn data to the original data comprising only single-
turn samples.

Since this is not a real-time task, the pipeline response time is not
a critical consideration, hence self-consistency checking was per-
formed on the LLM outputs to ensure the quality of pseudo-labels.
For this check, as shown in Figure 3, the in-context learning phase
is run three times per sample, with the in-context demonstrations
sorted in three orders according to their similarity scores to the
session queries: ascending, descending, and random. This approach
to self-consistency checking method can also be implemented when
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Figure 3: Illustration of C-LARA: merging LARAwith Self-Consistency effectively combines query aggregation, knowledge base
retrieval, and self-consistency mechanism to generate high-quality pseudo-labels for multi-turn dialogues. The self-consistency
process improves labeling accuracy by validating intent predictions across different prompt orderings.

using a black-box LLM. Online chat logs are sampled for pseudo-
labeling, and only those having consistent labels for all 3 runs will
be kept for training.

3.2.1 Hierarchical Text Classification(HTC). M𝑐 is an ensemble of
label-attention encoder and a hierarchical-aware tree-based encoder
with 3-layered global and local intent classifiers.

The label-attention encoder has one classifier head for each
intent layer. Each classifier head has one hidden linear layer to
obtain the layer intermediate output 𝐿𝑙 , which encodes the layer
information. This layer information will be utilised in the input of
the next layer classifier head.

𝐿𝑙 =

{
𝐻𝑊 1

𝑙
+ 𝑏1

𝑙
, if 𝑙 = 1,

(𝐻 ⊕ 𝐿𝑙−1)𝑊 1
𝑙
+ 𝑏1

𝑙
, if 𝑙 > 1,

where𝑊 1
𝑙
∈ R𝑑×𝑑 for 𝑙 = 1 and𝑊 1

𝑙
∈ R2𝑑×𝑑 for 𝑙 > 1. 𝑏1

𝑙
∈ R𝑑 , 𝑙

is the layer number, ⊕ denotes tensor concatenation. Finally, we
obtain the local logits𝐻 𝑙

𝑙𝑜𝑐𝑎𝑙
for each layer classes by using another

linear layer

𝐻 𝑙
𝑙𝑜𝑐𝑎𝑙

= 𝐿𝑙 ·𝑊 2
𝑙
+ 𝑏2

𝑙
,𝑊 2

𝑙
∈ R𝑑×|I𝑙 | , 𝑏2

𝑙
∈ R | I𝑙 |

where |I𝑙 | is the number of classes in the layer.
However, the label-attentionmodel is unaware of the overall hier-

archical structure. Therefore, we ensemble it with another method.
We refer to HiTIN [26] for the implementation of a state-of-the-art
HTC global approach. In this method, a tree network is constructed
based on the simplified original taxonomy structure, and the mes-
sages are propagated bottom-up in an isomorphism manner, which
complements the label-attention model used. The embedding for
leaf nodes are obtained by broadcasting the text representation 𝐻 .
After the tree isomorphism network propagation, all embedding
from all layers are aggregated to form single embedding, and a
classification layer is used to obtain the logits 𝐻𝑔𝑙𝑜𝑏𝑎𝑙 of all tree

Market Lang. Intents Train(ST) Test(MT)
BR pt 316 66k 372
ID id 481 161k 1145
MY en,ms 473 74k 1417
PH en,fil 237 33k 189
SG en 360 76k 737
TH th 359 60k 502
TW zh-tw 373 31k 353
VN vi 389 178k 525

Table 1: Multilingual dataset statistics for Single Turn (ST)
and Multi-Turn (MT).

MKT Model 𝑟𝑐 CL-Label Accuracy
SG Naive Concat. - - 60.52%
SG Selective Concat. - - 56.99%
SG Llama2-7B ✘ ✘ 56.24%
SG Llama2-7B ✔ ✘ 61.33%
SG Domain-Llama2-7B ✔ ✘ 63.23%
ID Naive Concat. - - 60.61%
ID Selective Concat. - - 63.23%
ID Llama2-7B ✔ ✘ 49.96%
ID SeaLLM-7B-chat ✔ ✘ 52.49%
ID SeaLLM-7B-chat ✔ ✔ 55.02%

Table 2: Performance of LLMwith symbol tuning approaches.

nodes. The logits are then split by the number of classes in each
layer to obtain 𝐻 𝑙

𝑔𝑙𝑜𝑏𝑎𝑙
.

The final class probabilities for each layer 𝑃𝑙 is then obtained by:
𝑃𝑙 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐻 𝑙

𝑙𝑜𝑐𝑎𝑙
+ 𝐻 𝑙

𝑔𝑙𝑜𝑏𝑎𝑙
)

4 Experiments
4.1 Dataset
The dataset used in our experiments is derived from the conversa-
tion history of a large e-commerce platform. It includes user queries
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in the local languages of eight markets: Brazil (BR), Indonesia (ID),
Malaysia (MY), Philippines (PH), Singapore (SG), Thailand (TH),
Taiwan (TW), and Vietnam (VN), as detailed in Table 1. Labeled data
were manually annotated by local customer service teams, with
only samples achieving label consistency across three independent
taggers being selected to ensure quality.

Single-turn training data collected over years of business op-
erations form the basis for supervised fine-tuning and in-context
learning. For multi-turn evaluation, real online sessions are anno-
tated by local customer service teams, with only the last query
𝑞𝑛 labeled in each session Q. For preprocessing, we remove noisy
annotations, standardize intents, and augment multi-turn sessions
using dialogue state transition probabilities derived from chat logs.
Symbol Tuning. We perform symbol tuning on LLM for the SG
and ID datasets, where SGmainly uses English while ID uses Bahasa
Indonesia. The training data comprises a mix of existing single-turn
samples and about 60k semi-automatically crafted multi-turn sam-
ples added to each market. Some are obtained by cleaning data on
online chat logs to identify more accurate intents using an LLM
with a few-shots of the chain-of-thought prompt. The rest are con-
structed by combining several dialogues sampled from the existing
single-turn training dataset to form one session. The transition of
intents in a session is calculated from the online chatlog.
HTCwithC-LARA. 70k of online chat logs are sampled for pseudo-
labelling. After self-consistency checking, around 12% of the data
yield inconsistent results and are discarded from training. 1.5k sam-
ples are split from the pseudo-labeled data to serve as the validation
set for early stopping.

4.2 Metrics
The primary evaluationmetric is the accuracy of predicted labels for
the final query 𝑞𝑛 in each conversation session Q. Metrics account-
ing for class imbalance were not considered, as the sampled sessions
reflect the distribution of online traffic across intents, providing a
realistic approximation of live performance.

4.3 Implementation Details
Symbol Tuning on LLM. FastChat framework is used to fine-tune
7B LLMs using LoRA method on their 𝑞_𝑝𝑟𝑜 𝑗 , 𝑣_𝑝𝑟𝑜 𝑗 , 𝑜_𝑝𝑟𝑜 𝑗 , and
𝑘_𝑝𝑟𝑜 𝑗 modules with a learning rate of 2e-5 over 10 epochs. The
7B models used are Llama-2-7B (for SG) and SeaLLM-7B-chat (for
ID) on Hugging Face. Before the models are fine-tuned on the
multi-turn intent recognition task, they are further pre-trained on
ShareGPT dataset with the same setting above, and the weights
are then merged. For the sake of simplicity, we will refer to the
LLMs further pre-trained on ShareGPT dataset as base models.
During training for intent classification task, loss is calculated on
all the model output including those after history queries. During
inference, greedy decoding strategy is used to generate the target
𝑟 part, the prefix "The intent title is " is not generated but instead
appended at the end of the prompt. When the generated label has
no exact match with any 𝑟 in I, gestalt string matching is used to
find the closest one.

HTC with C-LARA. The in-house Hierarchical Text Classification
(HTC) model is a BERT-based model fine-tuned using the combina-
tion of the pseudo-labeled multi-turn data and existing single-turn

data, as shown in Section 4.1. We use AdamW to finetune the HTC
with a learning rate of 5e-6. All tests are run on a single Nvidia
V100 GPU card with 32GB of GPU memory.

4.4 Baseline settings
For a fair comparison, we adopt three methods fine-tuned on HTC
model (M𝑐 ) as our global baselines across two methods:

(1) Single-turn method: where only the last query of a session
is considered byM𝑐 ;

(2) Naive concatenation: all queries are concatenated together
before being fed intoM𝑐 ;

(3) Selective concatenation: where a concatenation selection
model is trained to select the most suitable historical query
with the last query to serve as the input toM𝑐 .

ST on LLM. In SG, except Llama2-7B, we also tried to continue pre-
training the base models on in-domain corpus to strengthen the
language understanding of local languages and the corresponding
slang used, as humans usually converse with the chatbot in a non-
formal way. We term the domain specific base model as Domain-
Llama2-7B. In ID, we switched Llama2-7B model to SeaLLM-7B-
chat [11] which was introduced specifically for languages in South
East Asia.

The ST approach was adapted for supervised intent recognition
using compressed generation targets (𝑟𝑐 ) and cross-lingual labels
(CL_label). These adjustments optimized performance by simplify-
ing the generative task while maintaining semantic integrity. Com-
parisons with baseline methods in Table 2 show that ST achieves
competitive results in English markets but faces challenges in non-
English settings due to limitations in pre-training for low-resource
languages.

HTC with C-LARA. This experiment uses Vicuna-13B as our base
model for pseudo-labeling within LARA and C-LARA. We designed
three pipelines with four prompt templates in [9] to demonstrate
that using C-LARA for pseudo-labeling can effectively improve the
HTC model’s performance in multi-turn classification tasks. The
detailed introduction is listed as follows:

• LARA: Using LARA directly as a classifier.
• LARA-PL: Using LARA as a naive pseudo-labeling tool and
fine-turn HTC model with generated data.

• C-LARA: Useing C-LARA to filter out the noise and generate
high-quality data to fine-tune the HTC model.

4.5 Offline Experiments
Symbol Tuning on LLM. Table 2 illustrates the effectiveness of Sym-
bol Tuning (ST) on LLMs. Compressing the generation target 𝑟
reduces task complexity and improves accuracy by 5.09% in the SG
market. This compression also mitigates hallucination, reducing
instances of unmatched generated labels from 2.5% to 0%.

Interestingly, this technique also stopped LLM hallucination, i.e.
generating label with no match in the I. The hallucination rate
without using compressed 𝑟 is about 2.5%. In ID, which is a non-
English market, we find that cross-lingual label which changes
the generation target to English rather than in the local language
also improved the performance by 2.53%. Using different base
modelswhich were trained specifically on the in-domain corpus or
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Pipeline Model Prompt Self-Consistency BR ID MY PH SG TH TW VN avg

Fine-tuning Single-turn - - 30.98% 52.14% 56.81% 40.21% 51.13% 52.99% 58.07% 65.90% 53.76%
Fine-tuning Naive Concat. - - 50.81% 60.61% 57.02% 47.62% 60.52% 56.97% 65.44% 76.95% 60.08%
Fine-tuning Selective Concat. - - 52.69% 63.23% 60.20% 51.32% 56.99% 57.77% 64.02% 74.10% 60.97%
LARA Vicuna-13B P ✘ 52.69% 61.48% 65.42% 54.50% 65.26% 60.96% 67.14% 77.90% 64.18%
C-LARA Vicuna-13B P ✔ 55.38% 63.58% 65.00% 54.50% 66.21% 63.75% 71.10% 79.24% 65.52%
LARA Vicuna-13B P𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 ✘ 51.88% 60.00% 64.57% 53.97% 65.26% 58.96% 65.44% 74.67% 62.92%
C-LARA Vicuna-13B P𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 ✔ 54.57% 62.62% 65.56% 50.79% 66.76% 62.95% 69.97% 76.76% 64.94%
LARA Vicuna-13B P𝑝𝑟𝑒𝑝𝑒𝑛𝑑 ✘ 54.03% 61.75% 64.50% 53.44% 65.94% 61.55% 66.86% 75.81% 63.97%
C-LARA Vicuna-13B P𝑝𝑟𝑒𝑝𝑒𝑛𝑑 ✔ 53.76% 63.84% 65.70% 52.91% 68.11% 63.15% 69.97% 78.48% 65.65%
LARA Vicuna-13B P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 ✘ 55.65% 62.88% 64.71% 55.03% 65.40% 61.95% 66.86% 78.10% 64.64%
LARA-PL Vicuna-13B P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 ✘ 55.91% 64.19% 64.43% 49.21% 66.49% 61.95% 69.41% 81.14% 65.29%
C-LARA Vicuna-13B P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 ✔ 55.91% 65.33% 66.27% 51.85% 67.16% 63.35% 72.80% 78.86% 66.35%

Table 3: Performance of C-LARA compared to baselines, the average here is weighted on the number of test samples in
each market. The results illustrate that C-LARA with formatted prompts achieves the best average accuracy (66.35%) across
all markets. The results validate our approach’s effectiveness in both English and non-English markets, with significant
improvements over baseline methods.

for the local language also proves to be useful. Domain-Llama2-7B
improves the performance by 1.90% in SG while SeaLLM-7B-chat
improves the performance by 2.53% in ID compared to Llama2-
7B. While the ST approach outperforms the baselines in English
market, it still leaves a lot to be desired in non-English market. This
phenomenon may arise as a result of the ST approach employed for
non-dominant languages during pre-training, which necessitates a
greater quantity or higher quality of data to achieve satisfactory
performance in a task that was not included in the pre-training
phase. This is particularly true when the model lacks knowledge
pertaining to domain intents.

Pseudo-labeling using C-LARA. As demonstrated in Table 3, C-
LARA improves pseudo-label quality through self-consistency val-
idation, resulting in a 1.06% performance gain over LARA. This
validation process identifies and removes approximately 12% of
inconsistent samples, ensuring high-quality synthetic labels. While
this approach requires additional offline training resources, it signif-
icantly lowers deployment costs by relying on a single, lightweight
classification model.

This most probably can be attributed to the advantages of the dis-
criminative method in classification tasks, as training process also
exposed the model to the comprehensive high quality single-turn
dataset. Besides, the pre-trained model used forM𝑐 was also pre-
trained specifically on the in-domain multi-lingual corpus, making
it a strong suit for our multilingual e-commerce setting. C-LARA’s
integration of self-consistency within the pseudo-labeling pipeline
significantly enhances the quality of synthetic labels, resulting in a
1.06% improvement in performance, as indicated in the last row of
Table 3. When the LLM lacks confidence in its ICL responses, minor
changes in the input prompt can significantly alter the output. This
method effectively identifies potential inaccuracies in ICL outputs
for black-box models where direct output scores are unavailable.
Most importantly, this approach, while requiring longer offline
training time, significantly reduces deployment costs to just one
small classification model.

4.6 Online Deployment Evaluation
ST on LLM.. Using the LMDeploy framework, LARA weights were
merged with the 7B base model, enabling faster inference times.

Deployed on a single 32GB V100 GPU, the Symbol Tuning (ST)
approach achieved an average latency of 170ms at 0.5 QPS in the
SG market. In contrast, C-LARAmodels converted to ONNX format
(1.1GB per model) achieved an average latency of 80ms at 1 QPS
on an 8-core CPU machine with 16GB memory, demonstrating
superior scalability and cost-efficiency.

C-LARA. We deploy C-LARA across all eight markets. The models
were first converted to ONNX format, reducing their size to 1.1GB.
Deployed on an 8-core CPU machine with 16GB memory, C-LARA
achieved an average latency of 80ms at 1 QPS, which is less than
half the latency of the ST on LLM method. This deployment signifi-
cantly reduced both costs and complexity, making it more scalable
for industrial applications. Due to its versatility, an Auto-Training
Portal (ATP) ecosystem is built around the LARA-PL method (Fig.
4). ATP enables seamless and continuous improvements for the
chatbot’s multi-turn intent recognition system. Using online chat
logs, local operations teams can update the Knowledge Base (KB)
by adding new intents and crafting example queries. Subsequently,
they can trigger C-LARA for pseudo-labeling multi-turn chat logs,
generating data to train lightweight models. Once training is com-
plete, the models are deployed through the portal for online A/B
testing, creating an iterative cycle of improvement. For fair com-
parisons, the version of the KB (intents and single-turn training
data) was kept consistent across control and test groups.

4.7 Online Performance
We leverage the following two metrics:

(1) Resolution rate (RR)which is measured by the rate of user
completing the answer flow, not transferring to live agent,
and not giving bad rating to the answer.

(2) Customer Service Satisfaction (SCSAT) where users will
be asked about their satisfaction towards our chatbot for
chatbot only sessions (no intervention from live agents).
The score is calculated by # good rated sessions/(# good rated
sessions + # bad rated sessions).

We use the selective concatenation method as the baseline for
all experiments, with paired t-test to evaluate statistical significance.
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Figure 4: Online Deployment of Multi-turn Intent Classi-
fication model demonstrates our production architecture
integrating C-LARA for automated training data generation.
The system handles real-time inference while continuously
improving through automated training.

ST on LLM. In the SG market, ST on LLMs was deployed to 50% of
online traffic for three weeks, yielding approximately 14k chatbot
sessions per group. The test group exhibited a +2.19% improvement
in Customer Service Satisfaction (SCSAT), but Resolution Rate (RR)
declined by -0.11%. Neither result was statistically significant, indi-
cating limited benefits from ST given its resource-intensive nature.

C-LARA. For C-LARA, only the multi-turn dialogue model was re-
placed, while single-turn models remained unchanged. Aggregated
results from over 108k chatbot sessions per group showed statis-
tically significant improvements: Resolution Rate (RR) increased
by +0.78% and Customer Service Satisfaction (SCSAT) by +1.39%
(p-value < 0.05). These gains translate to overall session improve-
ments of RR +0.47% and SCSAT +0.84%, as multi-turn dialogues
comprise 60.60% of total sessions.

Furthermore, adding pseudo-labeled multi-turn data enhanced
single-turn intent recognition. Substituting single-turn dialogue
models with C-LARA models yielded an RR improvement of +0.06%
and a statistically significant SCSAT increase of +0.27%.

5 Ablation Study
5.1 Effect of Target Length
We investigate how the amount of information in ST generation
target affects the intent recognition performance using two rather
extreme approaches and their conversation semantic fluidity.

5.1.1 Longer Target Length . To achieve this, the model is trained
to summarize all queries in Q before outputting the target 𝑟 . For
instance, the new output format of model will be “You are ask-
ing about {𝑠𝑢𝑚𝑚𝑎𝑟𝑦}. So, the intent title is {𝑟𝑛 }". The rationale is
to utilize the summarization ability of LLMs to better understand
the context. For our training data, the summaries are obtained
by prompting the original LLM backbones in a zero-shot manner.
We chose this over increasing the length of 𝑟 statically to impose
more information on the model’s generation target. Table 6 demon-
strates the impact of increasing the target length in Symbol Tuning
(ST). Extending the generation target to include query summaries
decreases performance by 3.82%. While this approach enhances
semantic coherence, excessive information overloads the model,
reducing its ability to focus on the core intent classification task.

5.1.2 Shorter Target Length . The approach of compressing 𝑟 was
inspired by [21]. Hence, we also tried to replace 𝑟s with completely
meaningless symbols, while keeping the generation prefix of “The
intent title is ". Compressing target labels to purely symbolic rep-
resentations results in a significant 8.91% performance drop, as
shown in Table 7. This highlights the importance of preserving
semantic richness in target labels for generative fine-tuning. Ef-
fective compression methods must retain key information from
the original labels to avoid loss in classification accuracy.. Thus,
when compressing 𝑟s, it is important to choose a method that can
preserve the information in original 𝑟s as much as possible.

5.2 Impact of Self-consistency in MTIC
Using our multi-turn test sets, we evaluate the performance of
MTIC with and without self-consistency checking. We remove the
samples with inconsistent outputs and calculate the precision of
the remaining samples. On average, 12% of test samples will be
removed in each market. Incorporating self-consistency checking
into MTIC evaluations improves accuracy across all prompt varia-
tions, as shown in Table 4. By removing approximately 12% of test
samples with inconsistent outputs, this method effectively filters
out erroneous predictions, ensuring higher-quality pseudo-labels
and more reliable results. This ensures the quality of pseudo-labels.

5.3 Effect of Model Size
For fair comparison between LLM ST and C-LARA, we use vicuna-
7b-v1.5 as the base model with prompt P and P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 , without
self-consistency checking. The results of LLM ST method are taken
from the best of each market reported in this paper, including base
models pre-trained on in-domain corpus, so it should have the
advantage over Vicuna-7B-v1.5. Table 5 compares C-LARA and
LLM ST using models of the same size (Vicuna-7B-v1.5) without
self-consistency checking. Despite the simpler pipeline, C-LARA
consistently outperforms LLM ST, avoiding the complexity of multi-
turn sample crafting. However, smaller models exhibit reduced
instruction-following capabilities, as demonstrated by the lower
performance of P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 compared to P. One interesting ob-
servation here is that the performance of C-LARA when using
P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 is now lower than P. LLMs of smaller size could be
weaker in instruction following, and in this sense the semantic
meaning of the labels in demonstrations are more critical. Prepend-
ing meaningless characters before labels can negatively affect the
understanding of labels for smaller LLMs.

6 Related Work
6.1 Synthetic Data Generation
The scarcity of annotated dialogue data, particularly in low-resource
languages, has driven research into synthetic data generation. Borisov
et al. [1] proposed a method leveraging auto-regressive generative
models to create realistic tabular datasets, highlighting their util-
ity in data augmentation. Similarly, Li et al. [6] demonstrated that
synthetic data generated by LLMs can significantly enhance model
performance in classification tasks. Additionally, Tang et al. [18] uti-
lized synthetic data to craft challenging examples for fact-checking,
improving the factual accuracy of LLM outputs.
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Prompt Self-Consistency BR ID MY PH SG TH TW VN avg

P ✘ 52.69% 61.48% 65.42% 54.50% 65.26% 60.96% 67.14% 77.90% 64.18%
P ✔ 58.59% 68.13% 69.93% 56.44% 69.58% 66.75% 71.30% 81.14% 69.11%
P𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 ✘ 51.88% 60.00% 64.57% 53.97% 65.26% 58.96% 65.44% 74.67% 62.92%
P𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 ✔ 56.63% 64.71% 68.48% 55.19% 68.77% 65.59% 71.61% 78.02% 67.27%
P𝑝𝑟𝑒𝑝𝑒𝑛𝑑 ✘ 54.03% 61.75% 64.50% 53.44% 65.94% 61.55% 66.86% 75.81% 63.97%
P𝑝𝑟𝑒𝑝𝑒𝑛𝑑 ✔ 59.49% 66.08% 68.60% 55.90% 68.85% 68.19% 71.79% 81.36% 68.43%
P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 ✘ 55.65% 62.88% 64.71% 55.03% 65.40% 61.95% 66.86% 78.10% 64.64%
P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 ✔ 59.24% 67.01% 69.47% 56.79% 68.81% 68.69% 72.35% 82.93% 69.12%

Table 4: Precision of C-LARA variants after filtering inconsistent predictions demonstrates the effectiveness of self-consistency
checking across different prompt types (P, 𝑃𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐, 𝑃𝑝𝑟𝑒𝑝𝑒𝑛𝑑 , 𝑃𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑). Across all prompt types, accuracy improves by
approximately 4-5%, with P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 achieving the highest precision (69.12%). These results validate the robustness of self-
consistency as a filtering strategy.

Method Prompt ID SG avg

LLM ST - 58.17% 63.23% 60.15%
C-LARA P 60.44% 64.31% 61.96%
C-LARA P𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 59.83% 64.04% 61.48%

Table 5: Results of LARA using 7B LLM.

MKT Model Longer Target Length Accuracy
SG Llama2-7B ✘ 54.82%
SG Llama2-7B ✔ 51.02%

Table 6: Effect of Longer Target Length on LLM ST Classifi-
cation Performance: lengthening targets results in a perfor-
mance drop by 3.82%.

MKT Model Shorter Target Length Accuracy
ID SeaLLM-7B ✘ 55.02%
ID SeaLLM-7B ✔ 46.11%

Table 7: Effect of Shorter Target Length on LLM ST Classifi-
cation Performance: reducing semantically rich targets into
symbols costs a drastic performance drop by 8.91%.

6.2 Modeling Multi-turn Dialogue Context
Multi-turn dialogue modeling is essential for dialogue understand-
ing tasks. Early methods used bidirectional contextual LSTMs [4]
to capture context-aware utterance representations for tasks such
as MultiWOZ intent classification [2]. Other approaches, such as
multi-channel graph convolutional networks, were applied to query
classification in E-commerce [25].

Recent advancements leverage pre-trained language models
(PLMs) as sentence encoders [17], particularly for emotion recogni-
tion in conversations (ERC). For instance, Lee and Lee [5] encoded
both context and speaker memory using PLMs, while Qin et al. [14]
incorporated multi-turn information from utterances and dialogue
structure through fine-tuning. Despite their effectiveness, these
methods depend heavily on multi-turn training datasets, which are
difficult to acquire in real-world e-commerce settings [7]. In con-
trast, our approach employs LLMs within an augmentation-based
pipeline to generate multi-turn data, enabling zero-shot intent clas-
sification using smaller models.

6.3 LLM on text classification
Recent studies have explored the applicability of LLMs across vari-
ous domains. Chae and Davidson [3] investigated LLMs for socio-
logical text classification, demonstrating their potential in social
science research. In financial intent detection, Loukas et al. [10]
analyzed the trade-offs between performance and cost when us-
ing LLMs for text classification. Liu et al. [8] employed GPT-4o to
perform zero-shot classification on multi-level semi-structured text
with retrieval augmentation. Wei et al. [20] highlighted the benefits
of fine-tuning LLMs on domain-specific datasets, improving perfor-
mance in legal document review. Wei et al. [21] introduced symbol
tuning, where natural language labels were replaced with unrelated
symbols during fine-tuning to enhance classification. Our work
differs by compressing longer intent labels into semantically mean-
ingful phrases, enabling easier generation and improving accuracy
for tasks with a large number of classes.

7 Conclusion
Multi-turn intent classification plays a critical role in modern dia-
logue systems. Unlike typical classification tasks, real-world intent
classification often involves varying intent lengths, posing unique
challenges. In this work, we introduced Symbol Tuning to fine-tune
large language models (LLMs) with compressed intents. Our exper-
iments demonstrated that shortening intents improved accuracy
by 5.09% compared to using original intents.

Additionally, we proposed C-LARA, an augmentation-based
pipeline for generating high-quality multi-turn datasets using self-
consistency validation. Training smallermodels with pseudo-labeled
data generated by C-LARA yielded a 1.06% average performance
improvement. Empirically, C-LARA significantly reduces annota-
tion costs by automating pseudo-labeling based on the user’s latest
utterance in dialogue history, improving model iteration efficiency.
Furthermore, training smaller models offers computational effi-
ciency, enabling scalable deployment and online inference.
Future Work. Moving forward, we aim to incorporate features
such as user profiles and order history into C-LARA to support more
diverse dialogue tasks.We also plan to explore cross-lingual transfer
and advanced tokenization techniques to enhance performance in
low-resource languages.
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