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BEHAVIORS OF THE TATE–SHAFAREVICH GROUP OF ELLIPTIC

CURVES UNDER QUADRATIC FIELD EXTENSIONS

by

Asuka Shiga

Abstract. — Let E be an elliptic curve defined over Q. We study the behavior of the Tate–
Shafarevich group of E under quadratic extensions Q(

√
D)/Q. First, we determine the cok-

ernel of the restriction map H1(Gal(Q/Q), E)[2] →
⊕

p
H1(Gal(Qp/Qp), E)[2]. Using this re-

sult, without assuming the finiteness of the Tate–Shafarevich group, we prove that the ratio
#X(E/Q(

√
D))[2]·#2X(E/Q(

√
D))[4]

#X(ED/Q)[2]
can grow arbitrarily large, where ED denotes the quadratic twist

of E by D. For elliptic curves of the form E : y2 = x3 +px with p an odd prime, assuming the finite-
ness of the relevant Tate–Shafarevich groups, we prove two results: first, that X(ED/Q)[2] = 0

for infinitely many square-free integers D, and second, that #X(E/Q(
√

D))[2] ≤ 4 for infinitely

many imaginary quadratic fields Q(
√

D).
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1. Introduction

Let K be a number field and MK be the set of places of K. Let E be an elliptic curve over
K. The Tate–Shafarevich group of E/K is defined as follows:

X(E/K)
def
= Ker

(

H1(GK , E)

⊕

v
resv−→ ⊕

v∈MK
H1(GKv , E)

)

∈ ∈

[f ] 7−→ (
[

f |GKv

]

)v

where Kv is the completion of K at the place v, and GK , GKv are the absolute Galois groups of
K,Kv respectively and resv : H1(GK , E) → H1(GKv , E) is the restriction map of Galois coho-
mology. The Tate–Shafarevich group lives in the global Galois cohomology H1(GK , E), which
is isomorphic to the collection of equivalence classes of torsors, often denoted by WC(E/K),
which is called the Weil–Châtelet group. Note that

⊕

v resv is well-defined. Indeed, if a torsor
C/K has good reduction at v, then its image in H1(GKv , E) vanishes since a genus 1 curve over
a finite field always has a rational point.

Key words and phrases. — Elliptic curve, Tate–Shafarevich group, local global principle.
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The Tate–Shafarevich group is a group that serves as an obstruction to the local-global prin-
ciple for curves of genus 1. It is conjectured to be finite (Tate–Shafarevich conjecture), although
this conjecture has not been proven. By contrast, the n-torsion subgroup of X(E/K), that is,

X(E/K)[n]
def
= {a ∈ X(E/K) | na = 0} = Ker

(

H1(GK , E)[n]
res→ ⊕

v∈MK
H1(GKv , E)[n]

)

is

finite.
Let L = K(

√
D)/K be a quadratic extension. In this paper, we investigate the following

question.
Question. — What are the behaviors of #X(E/L)[2] as a function of D? And how do they
relate to the behaviors of #X(ED/K)[2]? Here, ED/K is the quadratic twist of E/K by D.

In other words, this question examines the increase or decrease of counterexamples to the
local-global principle under field extensions. When a torsor [C/K] ∈ X(E/K) acquires an
L-rational point through the field extension L/K, the image of [C/K] in X(E/L) becomes
0. However, the number of counterexamples to the local-global principle may increase over L,
making the behavior of #X(E/L) relative to #X(E/K) intricate.

H. Yu explicitly expressed
#X(E/L)

#X(ED/K)
in terms of the order of local cohomology and global

cohomology under the assumption that Tate–Shafarevich groups of elliptic curves are finite
( [21]). Qiu provided the order of global cohomology and calculated examples of Yu’s formula
[16]. Independently of H. Yu’s work, Clark proved X(E/L)[n] can be made arbitrarily large by
choosing an appropriate degree n extension L/K (Theorem 3 of [4]). He also mentioned H. Yu’s
work in Remark 3.8 of [4], noting that the case where n = 2 can be derived from Yu’s formula if
we assume the finiteness of the Tate-Shafarevich group. Matsuno provided an alternative proof
for n = 2, K = Q of Clark’s result by providing an inequality of the Selmer group (Proposition
B of [11]). In contrast, it had been known earlier, according to Rohrlich, that X(ED/Q)[2] can
be arbitrarily large when varying D [8]. M. Yu generalized this result to the quadratic number
field with mild condition on elliptic curves [22]. Clark’s result for the case n = 2 follows from
Rohrlich and M. Yu-type results on the unboundedness of X(ED/K)[2]. In the case of K = Q,

more strongly, we prove that
#X(E/Q(

√
D))[2]#2X(E/Q(

√
D))[4]

#X(ED/Q)[2]
is unbounded above.

Theorem 1.1 (Theorem 4.10). — For arbitrary integer r and an elliptic curve over Q, there

exist infinitely many quadratic fields Q(
√
D) such that

#X(E/Q(
√
D))[2]#2X(E/Q(

√
D))[4]

#X(ED/Q)[2]
≥ r.

This theorem directly implies that both
X(E/Q(

√
D))[2]

2

X(ED/Q)[2]
and #X(E/Q(

√
D))[2] can be

arbitrarily large. The presence of 2X(E/Q(
√
D))[4] in the numerator suggests that the behavior

of order 2 elements in the Tate–Shafarevich group under quadratic extensions is more complex
than expected, due to their relationship with order 4 elements. For a comparison between Yu’s
formula and its 2-torsion subgroup version, see Remark 4.12 and Remark 4.13. In a simple case,
we explain how the D in Theorem 4.10 can be chosen to be compatible with the D that makes
X(ED/Q)[2] large. See Corollary 4.15.

In the proof of Theorem 4.10, we use Theorem 3.3 to avoid assuming the finiteness of the
Tate-Shafarevich group.
Theorem 1.2 (Theorem 3.3). — Let E/K be an elliptic curve over K and n be a positive
integer. Then,

X := Coker

(

H1(GK , E)[n]

⊕

v
resv−→ ⊕

v∈MK
H1(GKv , E)[n]

)

∈ ∈

[f ] 7−→ (
[

f |GKv

]

)v
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is a finite group and #X ≤ #Seln(E/K). When n is a prime number, #X = #Seln(E/K)
holds.

In Cassels’ "Arithmetic of curves of genus 1" parts I-VIII, the X in the theorem mentioned
above was represented and studied using the Cyrillic letter Ж (see Appendix 2 of [3]). In
Appendix 2 of [3], it is stated that there exists a duality between Ж and Seln(E/K) when n
is a prime number. Despite the notable elegance of the theorem, citations of this result have
been limited. Considering this, with an eye towards potential generalizations for arbitrary n,
we have provided a detailed proof of this result using arguments that build upon the proof of
the Cassels–Poitou–Tate duality (1.5. of Chapter 1 [5]) and Theorem 3.2.

The Tate–Shafarevich group is considered as an analogue of the ideal class group of number
fields. The 2-torsion subgroup of the ideal class group can be calculated using what we call
genus theory (see Theorem 5.3). According to that, the 2-torsion subgroup of the ideal class

group of Q(
√
D) grows arbitrarily large when D has many prime factors, and becomes small

when D is prime. A similar phenomenon occurs for the Tate-Shafarevich group. The 2-torsion
subgroup of the Tate-Shafarevich group X(E/Q(

√
D))[2] can grow arbitrarily large when D

has many prime factors, as shown in Theorem 4.10. Regarding the possibility of decreasing,
we prove that X(E/Q(

√
D))[2] becomes smaller when D is prime, although we cannot make

it trivial in general. We also prove that X(ED/Q)[2] can be made trivial for infinitely many
square-free integers D, under the assumption that the Tate–Shafarevich group is finite.
Proposition 1.3 (Proposition 5.6). — Let p be an odd prime, and let E : y2 = x3 + px be
an elliptic curve. Assume that Tate–Shafarevich group of elliptic curves are finite.

1. There exist infinitely many imaginary quadratic fieldsK = Q(
√
D) such that #X(E/K)[2] ≤

4. If X(E/Q) contains an element of order 4, then for any quadratic number field

K = Q(
√
D), #X(E/K)[2] 6= 0.

2. There exist infinitely many square-free integers D such that X(ED/Q)[2] = 0.
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2. Notation

Let us fix the notation as follows:

• K: a number field, OK : ring of integers of K.
• MK : the set of all places of K.
• Kv: the completion of K at place v ∈ MK .
• GL: the absolute Galois group of a field L, that is, Gal(L/L).
• For an Abelian group A and an integer n ≥ 2, we define A[n](n-torsion subgroup of A) to

be {a ∈ A | na = 0} and nA to be {na | a ∈ A}.
• For an Abelian group A and a prime number p, we define A[p∞](p-primary part of A) to

be A[p∞] := {a ∈ A|∃n ≥ 0, pna = 0}.
• For a locally compact group A, A∗ is the Pontryagin dual. For a group homomorphism
f : A → B between locally compact group A and B, f∗ : B∗ → A∗ is given by g 7→ g ◦ f .

• For a group homomorphism f : N → M , f(N) is the image of N under f .
• E/K: an elliptic curve defined over K.
• rank(E/K): the Mordell-Weil rank of elliptic curve E/K, ∆E: discriminant of E/K.
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• ED/K: the quadratic twist of E/K by a square-free integer D. Namely, if E/K is the
elliptic curve defined by y2 = x3 +ax+b, then the quadratic twist is an elliptic curve given
by the equation ED : Dy2 = x3 + ax + b. Quadratic twist ED is isomorphic to E over
K(

√
D) but not isomorphic over K. We fix an isomorphism τ : E(L) ∼= ED(L), (x, y) 7→

(x, y√
D

).

• For an elliptic curve E/K, another elliptic curve E′ and a nonzero isogeny φ : E → E′,
the φ-Selmer group of E/K is defined as follows:

Selφ(E/K)
def
= Ker

(

H1(GK , E[φ]) → ∏

v∈MK
H1(GKv , E)[φ]

)

.

When E = E′ and φ = [n] (multiplication-by-n map), we denote its Selmer group by
Seln(E/K).

There exists an exact sequence

(1) 0 → E(K)/nE(K) → Seln(E/K) → X(E/K)[n] → 0

and X(E/K)[n] is finite since n-Selmer group is finite (see Theorem 4.2 in Chapter X of [18]).

3. Local cohomology and Global cohomology

3.1. Switch local to global. — In this section, we determine the cokernel of the restriction
map H1(GK , E)[2] → ⊕

v∈MK
H1(GKv , E)[2] (Theorem 3.3). We denote this cokernel as X in

Theorem 3.3. We prove that X is isomorphic to the dual of 2-Selmer group, which lives in the
global cohomology H1(GK , E[2]).
Theorem 3.1 (cf. [14], (8.6.10), Long Exact Sequence of Poitou–Tate)

Let S be a nonempty set of primes of a number field K and assume that S contains all
infinite places of K. Let KS be the maximal unramified extension of K outside S and GS :=
Gal(KS/K). Let M be a finite GS module and M ′ = Hom(M,µ) where µ is the group of roots
of unity in KS

×. The following 9-term exact sequence exists:

0 H0(GS ,M)
∏

v∈S
H0(GKv ,M) H2(GS ,M

′)∗

H1(GS ,M
′)∗ ∏′

v∈S
H1(GKv ,M) H1(GS ,M)

H2(GS ,M)
⊕

v∈S
H2(GKv ,M) H0(Gs,M

′)∗ 0.

α

β

γ

Here, α, β, and γ are localization maps and
∏′
v is a restricted product with respect to

unramified cohomology H1
un(GKv ,M).

Theorem 3.2 (cf. [7], 7.2, Lemma 2 ). — Let S be a set of places of K containing all infinite
places. Let KS be the maximal unramified extension of K outside S and GS := Gal(KS/K).
Let M be a finite GS-module.

Let p be a prime. If pM = 0 and dimFpM ≤ 2 holds, then

Ker

(

H1(GS ,M)
β→
∏′

v∈S
H1(GKv ,M)

)

= 0.

Proof. — See [ [7], Section 7.2, Lemma 2].
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Theorem 3.3. — Let E/K be an elliptic curve and n be a positive integer. Then,

X := Coker

(

H1(GK , E)[n]

⊕

v
resv−→ ⊕

v∈MK
H1(GKv , E)[n]

)

∈ ∈

[f ] 7−→ (
[

f |GKv

]

)v

is a finite group and #X ≤ #Seln(E/K). When n is a prime number, #X = #Seln(E/K)
holds.
Proof. — Let S be a finite subset of MK containing the infinite places of K and the primes of
bad reduction for E/K.

The exactness of the following sequence forms part of the long exact sequence in the Poitou–
Tate duality (Theorem 3.1) when we set M = E[n].

H1(GS , E[n])
β−→
⊕

v∈S
H1(GKv , E[n])

β∗◦ψ−−−→ H1(GS , E[n])∗

Here, ψ :=
∏

v∈S ψv, where ψv is the isomorphism given by the local Tate duality:

ψv : H1(GKv , E[n]) ∼= H1(GKv , E[n])∗

(see [ [14], Theorem 7.2.6]).
Let ι be the map that makes the following diagram commutative:

0 H1(GS , E[n])
⊕

v∈S H
1(GKv , E[n]) Cokerβ 0

0 H1(GS , E[n])
⊕

v∈S H
1(GKv , E[n]) H1(GS , E[n])∗.

β h

ι

β β∗◦ψ

From the above diagram, ι is injective. Let us consider the following diagram.

Kerβ −−−−→ KerφS




y





y

0 −−−−→ H1(GS , E[n]) H1(GS , E[n])




y





y
β





y
φS

⊕

v∈S H
1(GKv , E)[n]∗

ψ−1◦λ∗

−−−−−→ ⊕

v∈S H
1(GKv , E[n])

λ−−−−→ ⊕

v∈S H
1(GKv , E)[n]

=





y h





y

⊕

v∈S H
1(GKv , E)[n]∗

j−−−−→ Cokerβ.

Here, φS
def
= λ ◦ β and λ :=

⊕

v∈S λv, where λv : H1(GKv , E[n]) → H1(GKv , E)[n] is the map

induced by a short exact sequence 0 → E[n] → E
×n→ E → 0 (see [ [18], Section VIII.2] ).

Note that
⊕

v∈S
H1(GKv , E)[n]∗

ψ−1◦λ∗

→
⊕

v∈S
H1(GKv , E[n])

λ→
⊕

v∈S
H1(GKv , E)[n]

is an exact sequence because

Im(ψv
−1 ◦ λv∗) ∼= Imλv

∗ ∼= (Imλv)
∗ ∼= (H1(GKv , E)[n])∗ ∼= E(Kv)/nE(Kv) ∼= Kerλv

where the isomorphism H1(GKv , E)[n])∗ ∼= E(Kv)/nE(Kv) is given by the restricted Tate local
duality (see [ [19], Proposition 1]).
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By the snake lemma, we obtain the following exact sequence

Kerβ → KerφS →
⊕

v∈S
H1(GKv , E)[n]∗

j→ Cokerβ.

We claim that the following diagram a© is commutative.

Kerβ KerφS
⊕

v∈S H
1(GKv , E)[n]∗ Cokerβ

H1(GK , E[n])∗

j

φS
∗

ι · · · a©.

Indeed, this follows from the following diagram:

⊕

v∈S H
1(GKv , E)[n]∗ Cokerβ

⊕

v∈S H
1(GKv , E[n])∗ H1(GK , E[n])∗

⊕

v∈S H
1(GKv , E[n]) Cokerβ.

j

φS
∗λ∗ ι

β∗

ψ

h

ι	(2)

�(1)

~

To prove the desired commutativity, it is sufficient to prove the commutativity of (1) and (2)
of the above diagram because h ◦ ψ−1 ◦ λ∗ = j. The commutativity of (1) follows directly from
the definition of φS , and (2) is exactly the definition of ι, that is, ι ◦ h = β∗ ◦ ψ.

From the commutativity of the diagram a©, we obtain the following exact sequence:

Kerβ → KerφS →
⊕

v∈S
H1(GKv , E)[n]∗

φS
∗

→ H1(GK , E[n])∗.

There is a canonical isomorphism KerφS ∼= Seln(E/K) (see [ [13], Chapter I, Corollary 6.6]).
By taking its Pontryagin dual, we obtain

H1(GK , E[n]) →
⊕

v∈S
H1(GKv , E)[n] → Seln(E/K)∗ → (Kerβ)∗.

By taking the direct limit lim−→S⊂MK
, we obtain the following exact sequence :

0 → Seln(E/K) → H1(GK , E[n])
φ−→

⊕

v∈MK

H1(GKv , E)[n]
ǫ→ Seln(E/K)∗.

We can conclude that #X ≤ #Seln(E/K) from the following commutative diagram.

0 Seln(E/K) H1(GK , E[n])
⊕

v∈MK
H1(GKv , E)[n] Seln(E/K)∗

0 X(E/K)[n] H1(GK , E)[n]
⊕

v∈MK
H1(GKv , E)[n] X 0.

φ ǫ

Indeed, since X ∼= Cokerφ injects into Seln(E/K), it follows that #X ≤ #Seln(E/K).
When n is a prime number, Kerβ = 0 by Theorem 3.2. Therefore, ǫ is surjective, hence

#X = #Seln(E/K).
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3.2. Local vs Global. — The local cohomology of elliptic curves at bad primes (especially
those with additive reduction) remains mysterious, but we can calculate it at primes of good
reduction. In this section, we prove that we can increase the contributions from local cohomology
while suppressing the contributions from global cohomology.
Theorem 3.4. — Let E/K be an elliptic curve over K. Let L = K(

√
D) be a quadratic

extension of K. Let σ be a generator of Gal(L/K). We define tr : E(L) → E(K) by P 7→ P+P σ.
Then,

#H1(Gal(L/K), E(L)) = #Coker(tr) × 2rank(ED/K)−rank(E/K)

holds. In particular, #H1(Gal(L/K), E(L)) ≤ 2rank(ED/K) × #E(K)[2]
Proof. — For the former, see [ [16], Theorem 1.5]. The latter immediately follows from the fact
that there is a surjection from E(K)/2E(K) to Coker(tr).

Proposition 3.5. — Let L be a quadratic extension of K. Let v ∈ MK be a place that is not
above 2 and let w a place of L above v. Let E/K be an elliptic curve. Let k be the residue
field of Kv and Ẽ/k be the reduction of E/K mod v.

(1) Suppose v is an unramified place of L/K and is a good place of E/K. It holds that
H1(Gal(Lw/Kv), E(Lw)) = 0.

(2) H1(Gal(Lw/Kv), E(Lw)) is a finite group.
(3) Suppose v is a ramified place of L/K and is a good place of E/K. It holds that

#H1(Gal(Lw/Kv), E(Lw)) = #Ẽ(k)[2].

Proof. — (1) See [ [12], Corollary 4.4].
(2) We have an inflation-restriction exact sequence:

0 → H1(Gal(Lw/Kv), E(Lw))
inf−→ H1(GKv , E)

res−−→ H1(GLw , E).

From Tate duality, the dual of this sequence is

E(Lw)
tr→ E(Kv) → H1(Gal(Lw/Kv), E(Lw))∗ → 0.

Thus, H1(Gal(Lw/Kv), E(Lw)) ∼= E(Kv)/tr(E(Lw)) holds (see [ [12], Proposition 4.2] for this
isomorphism and [ [19], equation (12)] for the relation res∗ = tr).

There exists a surjective map from the weak Mordell–Weil group E(Kv)
2E(Kv) to E(Kv)

tr(E(Lw)) . Because
E(Kv)
2E(Kv) ⊂ H1(GKv , E[2]), it is sufficient to prove H1(GKv , E[2]) is finite. Let M = Kv(E[2]).

Then M/Kv is a finite Galois extension. Because H1(GM , E[2]) ∼= (M×/M×2
)2 is finite and

#H1(Gal(M/Kv), E(M)[2]) is finite, we see that H1(GKv , E[2]) is finite because of the exact

sequence 0 → H1(Gal(M/Kv), E(M)[2])
inf−→ H1(GKv , E[2])

res−−→ H1(GM , E[2]).

(3) From (2), it is sufficient to prove #
E(Kv)

tr(E(Lw))
= #Ẽ(k)[2]. There exists an exact sequence:

0 → E1(Kv)

tr(E1(Lw))
→ E(Kv)

tr(E(Lw))
reduction→ Ẽ(k)

2Ẽ(k)
→ 0

where E1 denotes the kernel of reduction. Note that reduction is well-defined since Lw/Kv

is a ramified extension. Let us prove that the group on the left-hand side is trivial. Indeed,
E1(Kv) ∼= Ê(M), where M is the maximal ideal of OK and Ê(M) is the group associated

with the formal group Ê, which is a 2-divisible group. For all a ∈ E1(Kv), there exists b ∈
E1(Kv) such that a = 2b = tr(b). Then we can conclude that #H1(Gal(Lw/Kv), E(Lw))) =

#
E(Kv)

tr(E(Lw))
= #

Ẽ(k)

2Ẽ(k)
= #Ẽ(k)[2].

Remark 3.6. — When L/K is a quadratic extension and there is a choice of w ∈ ML above
v ∈ MK , v splits completely. Since H1(Gal(Lw/Kv), E(Lw)) = 0 in this case, the choice of
w is not an issue. More generally, for a Galois extension L/K of degree n, it can be shown
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that H1(Gal(Lw/Kv), E(Lw)) is independent of the choice of w | v. Similarly to (1) and (2) of
Proposition 3.5, it can be proven that H1(Gal(Lw/Kv), E(Lw)) is a finite group that vanishes
for almost all v.
Theorem 3.7 (cf. J.Hoffstein and W.Luo appendixed by Rohrlich [8])

For any elliptic curve A over Q, there exist infinitely many square-free integers D ∈ Z such
that rank(AD/Q) = 0 and the number of prime factors of D is no greater than 4.
Proposition 3.8. — Let K be a number field. Suppose that there exists a quadratic extension
K(

√
d) of K such that rank(Ad/K) = 0 for arbitrary elliptic curve A over K and the number of

prime factors of d is no greater than some constant a. Then for an arbitrary integer r ∈ Z and
arbitrary elliptic curve E/K, there exist infinitely many quadratic extensions L = K(

√
D)/K

such that

g(D) :=
#
⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

#H1(Gal(L/K), E(L))
≥ r.

Proof. — By Theorem 3.4, it is sufficient to prove there exists infinitely many D such that

#
⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

2rank(ED/K)
≥ r.

For an arbitrary r, there exists an integer R such that 4R−a ≥ r. For this R, there exist infinitely
many prime elements vi(1 ≤ i ≤ R) of OK such that :

(1) split completely in the Hilbert calss field of K(E[2])
(2) E/K has good reduction at vi and not above 2.

For such prime elements v of OK , Kv(E[2]) = Kv since v splits completely in K(E[2]),
thus E(Kv)[2] = E(Kv)[2] injects into Ẽ(kv)[2], and therefore #Ẽ(kv)[2] = 4 where kv is the

residue field of Kv. Thus if v is a ramified prime of quadratic extension L = K(
√
D) of K,

#H1(Gal(Lw/Kv), E(Lw)) = 4 holds by Proposition 3.5. By setting A = Ev1v2···vR
, there exists

a quadratic extension K(
√
DR)/K such that rank(Ev1v2···vRDR

/K) = 0 and the number of prime
factors of DR is no greater than 4. Let us take D as D = v1 · · · vRDR. Because the number of
prime factors of DR is no greater than a, the number of ramified places of K under quadratic
extension L = K(

√
v1v2 · · · vRDR)/K which satisfies condition (1), (2) is R− a or more. Thus,

taking L = K(
√
v1v2 · · · vRDR),

#
⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

2rank(ED/K)
≥ 4R−a

2rank(ED/K)
≥ 4R−a

20
≥ r.

In this configuration, there are infinitely many ways to choose the prime factor v, which means
there are also infinitely many ways to choose D.

Remark 3.9. — In particular, when K = Q, Theorem 3.7 implies that for all r ∈ Z and all
elliptic curves E/K, there exist infinitely many square-free integers D such that g(D) ≥ r. If

we can determine that rank(ED/K) does not grow significantly compared to 4ω(∆ED
), where

ω(∆ED
) is the number of prime factors of ∆ED

, this result can be generalized to cases where
K 6= Q.

4. Increasing X(E/Q(
√
D))[2] and X(ED/Q)[2]

4.1. Trace and twist. — In this section, we investigate the relationship between tr(X(E/L)[2])
and #X(ED/K)[2]. The Galois group naturally acts on X(E/L) by acting on the coefficients
of torsors, and we can explicitly calculate this action cohomologically.
Definition 4.1 (Gal(L/K) acts on X(E/L)). — Let G be a group and H be a normal
finite index subgroup of G. Let M be a G-module. G/H acts on H1(H,M) by (g ∗ X)(h) =
gX(g−1hg). Here, g is a lift of ḡ ∈ G/H in G, and gX(g−1hg) does not depend on the lift
modulo coboundary.

When G = GK and H = GL and M = E, the Galois group Gal(L/K) ∼= G/H acts on
X(E/L)[2] ⊂ H1(GL, E) as described above.
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Definition 4.2 (Corestriction and trace). — In the case [G : H] = 2, let σ be a generator
of G/H. There is a map cor : H1(H,M) → H1(G,M) called corestriction which satisfies
cor ◦ res = [2] and tr = res ◦ cor where tr : H1(H,M) → H1(H,M) be a map defined by
X 7→ X + σ ∗X.

Explicitly, cor : H1(H,M) → H1(G,M) can be expressed as follows.

H1(H,M) → H1(G,M) is given by X 7→
[

g 7→
{

X(g) + (σ ∗X)(g) if g ∈ H,

X(gσ) + (σ ∗X)(gσ) if g ∈ G−H

]

.

This is indeed a trace map if we restrict it to H1(H,M). When G = GK ,H = GL,M = E,
the map cor : H1(GL, E) → H1(GK , E) and tr : H1(GL, E) → H1(GL, E) induce maps cor :
X(E/L)[2] → X(E/K)[2] and tr : X(E/L)[2] → X(E/L)[2].

Proposition 4.3. — #tr(X(E/L)[2]) ≥ #cor(X(E/L)[2])

#H1(Gal(L/K), E(L))
.

Proof. — Since tr = res ◦ cor, there exists a map cor(X(E/L)[2])
res→ tr(X(E/L)[2]). By the

inflation-restriction sequence, Ker(res) is contained in H1(Gal(L/K), E(L)). By applying the
first isomorphism theorem to res, we obtain the inequality.

Theorem 4.4. — Let

〈 , 〉K : X(E/K)[2] × X(E/K)[2] → Z/2Z,

〈 , 〉L : X(E/L)[2] × X(E/L)[2] → Z/2Z

be the Cassels–Tate pairing. Then,

(1) The kernel on each side is X(E/K)[2] ∩ 2X(E/K) = 2X(E/K)[4] and 2X(E/L)[4],
respectively.

(2) 〈a, cor(a′)〉K = 〈res(a), a′〉L.

Proof. — For (1), see [ [19], Theorem 3.2]. See also [ [20], Theorem 15]. For (2), see [
[21],Theorem 8].

Corollary 4.5. —

#cor(X(E/L)[2]) ≥ #X(E/K)[2]

#2X(E/L)[4]#H1(Gal(L/K), E(L))
.

Proof. — By Theorem 4.4 (1), the Cassels–Tate pairing induces non-degenerate pairings

〈 , 〉′
K :

X(E/K)[2]

2X(E/K)[4]
× X(E/K)[2]

2X(E/K)[4]
→ Z/2Z,

〈 , 〉′
L :

X(E/L)[2]

2X(E/L)[4]
× X(E/L)[2]

2X(E/L)[4]
→ Z/2Z.

Let res′ :
X(E/K)[2]

2X(E/K)[4]
→ X(E/L)[2]

2X(E/L)[4]
and cor′ :

X(E/L)[2]

2X(E/L)[4]
→ X(E/K)[2]

2X(E/K)[4]
be the map

induced by res : X(E/K)[2] → X(E/L)[2], cor : X(E/L)[2] → X(E/K)[2] respectively.
By Theorem 4.4 (2), 〈a + 2X(E/K)[4], cor′(a′ + 2X(E/L)[4])〉′

K := 〈a, cor(a′)〉K =
〈res(a), a′〉L =: 〈res′(a+ 2X(E/K)[4]), a′ + 2X(E/L)[4]〉′

L holds.
Therefore, the following diagram is commutative, where the vertical map is an isomorphism

induced by 〈 , 〉′
L. Note that these two vertical arrows are isomorphisms because the induced

pairing is non-degenerate.

X(E/K)[2]

2X(E/K)[4]
res′

−−−−→ X(E/L)[2]

2X(E/L)[4]

∼=




y





y

∼=

(
X(E/K)[2]

2X(E/K)[4]
)∗ −−−−→

cor′∗
(
X(E/L)[2]

2X(E/L)[4]
)∗
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From this commutative diagram,

(2) #cor′(
X(E/L)[2]

2X(E/L)[4]
) = #cor′∗((

X(E/K)[2]

2X(E/K)[4]
)∗) = #res′(

X(E/K)[2]

2X(E/K)[4]
)

holds. Let us consider the following diagram. For simplicity, we abbreviate res : X(E/K)[2] →
X(E/L)[2] as f , and denote by g the map induced by f on 2X(E/K)[4].

0 0 0

0 Kerg 2X(E/K)[4] 2X(E/L)[4] Cokerg

0 Kerf X(E/K)[2] X(E/L)[2]

0 Ker(res′)
X(E/K)[2]

2X(E/K)[4]

X(E/L)[2]

2X(E/L)[4]

0 0

g

f

δ

res′

By applying the snake lemma to this diagram, we obtain an exact sequence:

0 → Kerg → Kerf → Ker(res′) → Imδ → 0.

Because Kerf ⊂ H1(Gal(L/K), E(L)), we obtain

(3)

#Ker(res′) =
#Kerf #Imδ

#Kerg

≤ #H1(Gal(L/K), E(L)) #Cokerg

#Kerg
=

#H1(Gal(L/K), E(L)) #2X(E/L)[4]

#2X(E/K)[4]
.

Here, the last equality holds because of the exactness of

0 → Kerg → 2X(E/K)[4]
g→ 2X(E/L)[4] → Cokerg → 0.

Therefore,

#cor(X(E/L)[2]) ≥ #cor′(
X(E/L)[2]

2X(E/L)[4]
) = #res′(

X(E/K)[2]

2X(E/K)[4]
) (by (2))

=
#X(E/K)[2]

#Ker(res′)#2X(E/K)[4]

≥ #X(E/K)[2]

#2X(E/L)[4]#H1(Gal(L/K), E(L))
(by (3)).

Proposition 4.6. — Let L/K be a quadratic extension and L = K(
√
D). Then,

#tr(X(E/L)[2]) ≥ #X(ED/K)[2]

4rank(E/K)#E(K)[2]2#2X(E/L)[4]

holds.
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Proof. — Let φ : X(E/L) ∼= X(ED/L) be an isomorphism induced by τ : E(L) ∼=
ED(L), (x, y) 7→ (x, y√

D
). The following commutative diagram exists.

X(E/L)
tr−−−−→ X(E/L)

φ





y





y
φ

X(ED/L) −−−−→
1−σ

X(ED/L)

From this diagram, #tr(X(E/L)[2]) = #tr(X(ED/L)[2]) for 2-torsions.
By applying Proposition 4.3, Corollary 4.5, and Theorem 3.4 , we obtain the inequality.

4.2. Main theorem. — Let us consider the inflation-restriction sequence

0 → H1(Gal(L/K), E(L))
inf→ H1(GK , E)

res→ H1(GL, E)Gal(L/K).

Taking the 2-torsion subgroup of this sequence , we obtain an exact sequence

0 → H1(Gal(L/K), E(L))
inf→ H1(GK , E)[2]

res→ H1(GL, E)[2]Gal(L/K) .

Note that H1(Gal(L/K), E(L)) is a 2-torsion group, that is, 2H1(Gal(L/K), E(L)) = 0 because
#Gal(L/K) = 2.

Consider the local-global version of this diagram, and draw the following diagram with exact
rows and columns:

0 0 0

KerF X(E/K)[2] KerH

H1(Gal(L/K), E(L)) H1(GK , E)[2] res(H1(GK , E)[2]) 0

0
⊕

v∈MK

H1(Gal(Lw/Kv), E(Lw))
⊕

v∈MK

H1(GKv , E)[2]
⊕

v∈MK

res(H1(GKv , E)[2])

CokerF X

0 0.

inf

F

res

G H

j

Figure 1. A key diagram

Notably, by Theorem 3.3, X ∼= Sel2(E/K) holds.

Lemma 4.7. — #KerH =
#X(E/K)[2]#

⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

#j(CokerF )#H1(Gal(L/K), E(L))
.

Proof. — By applying the snake lemma,

0 → KerF → X(E/K)[2] → KerH → CokerF → j(CokerF ) → 0.

We obtain #KerH =
#X(E/K)[2]#CokerF

#j(CokerF )#KerF
. The left vertical exact sequence implies

#CokerF

#kerF
=

#
⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

#H1(Gal(L/K), E(L))
, thus the proposition follows.
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In the Figure 1, KerH lives in X(E/L)[2]. Henceforth, we shall prove that the ratio of the
order of X(E/L)[2] to that of KerH is related to #X(ED/K)[2].

KerH

X(E/L)[2]Gal(L/K)

X(E/L)[2]

#tr(X(ED/L)[2])

Figure 2. The gap between KerH and X(E/L)[2]

Lemma 4.8. —
#X(E/L)[2]

#KerH
≥ #tr(X(E/L)[2]).

Proof. — Since KerH ⊂ X(E/L)[2]Gal(L/K) ⊂ X(E/L)[2] and

X(E/L)[2]

X(E/L)[2]Gal(L/K)
∼= (σ − 1)X(E/L)[2] = tr(X(E/L)[2]),

we obtain #X(E/L)[2] ≥ #tr(X(E/L)[2])#KerH.

By combining Lemma 4.7 and Lemma 4.8 and Proposition 4.6, we obtain

#X(E/L)[2] ≥ #tr(X(E/L)[2])#KerH (by Lemma 4.8)

≥ #X(ED/K)[2]

4rank(E/K)#E(K)[2]2#2X(E/L)[4]
#KerH (by Proposition 4.6)

≥ #X(E/K)[2]#X(ED/K)[2]#
⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

4rank(E/K)#E(K)[2]2#j(CokerF )#H1(Gal(L/K), E(L))#2X(E/L)[4]
(by Lemma 4.7).

Because

#j(CokerF ) ≤ #X = #Sel2(E/K)(by Theorem 3.3)

= #
E(K)

2E(K)
× #X(E/K)[2](by exact sequence 1)

= #E(K)[2] × 2rank(E/K) × #X(E/K)[2]

holds, we obtain the following inequality.
Proposition 4.9. — Let E/K be an elliptic curve and let L/K be a quadratic field extension
of a number field. Then,

#X(E/L)[2]#2X(E/L)[4]

#X(ED/K)[2]
≥ 1

#E(K)[2]3 × 23rank(E/K)
· #

⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

#H1(Gal(L/K), E(L))

holds.
Theorem 4.10. — For arbitrary integer r and an elliptic curve over Q, there exist infinitely
many quadratic fields Q(

√
D) such that

#X(E/Q(
√
D))[2]#2X(E/Q(

√
D))[4]

#X(ED/Q)[2]
≥ r.
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Proof. — Proposition 4.9 states that the unboundedness of g(D) implies the unboundedness

of
#X(E/Q(

√
D))[2]#2X(E/Q(

√
D))[4]

#X(ED/Q)[2]
. Remark 3.9 states that g(D) is indeed unbounded

when K = Q. Therefore, we can conclude that
#X(E/Q(

√
D))[2]#2X(E/Q(

√
D))[4]

#X(ED/Q)[2]
is

unbounded above.

Remark 4.11. — In this paper, we restrict our consideration to the case of the 2-
torsion subgroup of the Tate–Shafarevich group. This focus is motivated by the fact that
#X(E/Q(

√
D)[n] = #X(ED/Q)[n]#X(E/Q)[n] where n is an odd number. This is because

Gal(Q(
√
D)/Q) acts on the odd abelian group X(E/Q(

√
D))[n], and thus X(E/Q(

√
D))[n]

decomposes into a direct sum of X(E/Q(
√
D))[n]+ := {a ∈ X(E/Q(

√
D))[n] | σ ∗ a = a} =

X(E/Q)[n] and X(E/L)[n]− := {a ∈ X(E/Q(
√
D))[n] | σ ∗a = −a}. For the definition of the

action denoted by ∗, see Definition 4.1. The isomorphism X(E/Q(
√
D))[n]− ∼= X(ED/Q)[n]

follows from the commutative diagram in the proof of Proposition 4.6 and the isomorphism

X(ED/Q(
√
D))[n]Gal(Q(

√
D)/Q) ∼= X(ED/Q)[n].

Remark 4.12. — Let K be a number field and E/K be an elliptic curve over K. Let L =

K(
√
D) be a quadratic extension of K. H. Yu explicitly expressed the formula for #X(E/L)

under the assumption that the Tate–Shafarevich group of elliptic curves over K are finite, that
is,

#X(E/L)

#X(ED/K)
=

#X(E/K)

#Coker(trace : E(L) → E(K))
· #

⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

#H1(Gal(L/K), E(L))

(see [ [21], Main Theorem]).

Combining Yu’s formula with Remark 3.9, we know that #X(E/Q(
√
D))/#X(ED/Q) is

unbounded from above under the assumption that Tate–Shafarevich group of elliptic curves are
finite.

Compare the following diagram from Yu’s paper with the Figure 1.

0 0 0

KerF ′
X(E/K) KerH ′

H1(Gal(L/K), E(L)) H1(GK , E) res(H1(GK , E)) 0

0
⊕

v∈MK

H1(Gal(Lw/Kv), E(Lw))
⊕

v∈MK

H1(GKv , E)
⊕

v∈MK

res(H1(GKv , E))

CokerF ′ Ê(K)
∗

0 0

inf

F ′

res

G′ H′

j

In this paper, X plays the role that Ê(K)
∗

(Pontryagin dual of profinite completion of

E(K)) plays in the diagram above. However, the explicit formula relating
#X(E/L)[2]

#X(ED/K)[2]
to

#
⊕

v∈MK
H1(Gal(Lw/Kv), E(Lw))

#H1(Gal(L/K), E(L))
, remains unknown.

Remark 4.13. — Whether the ratio
X(E/Q(

√
D))[2]

X(ED/Q)[2]
can become arbitrarily large is a prob-

lem of interest, but no resolution has been reached. If one proves that 2X(E/Q(
√
D))[4] does
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not grow significantly compared to
⊕

pH
1(Gal(Qp(

√
D)/Qp), E(Qp(

√
D))), the proof will be

complete.
Theorem 4.14 (cf. Rohrlich [8]). — For arbitrary integer r ∈ Z and arbitrary E/Q, there
exists a square free integer D such that X(ED/Q)[2] ≥ r.

Let us explain, in a simple case, how the D in Main Theorem Theorem 4.10 and Theorem
4.14 can be chosen compatibly.
Corollary 4.15. — For an arbitrary r ∈ Z and an arbitrary elliptic curve E/Q : y2 =

x3 + ax2 + bx with the condition
b

a2 − 4b
/∈ Q×2

, there exists a square-free integer D such that

#X(E/Q(
√
D))[2]#2X(E/Q(

√
D))[4]

X(ED/Q)[2]
≥ r and #X(ED/Q)[2] ≥ r.

Proof. — E/Q has a Weierstrass form E : y2 = x3 + ax2 + bx and let E′ be E′ : y2 =

x3 − 2ax2 + (a2 − 4b)x. Let φ : E → E′ be (x, y) 7→
(

y2

x2 ,
y(b−x2)
x2

)

be degree 2 isogeny and φ̂ be

its dual.
The following inequality holds because there exists an exact sequence: 0 → E′(Q)[φ̂]/φ(E(Q)[2]) →

Selφ(E/Q) → Sel2(E/Q) (see [17], lemma 9.1).

#X(ED/Q)[2] =
#Sel2(ED/Q)

#ED(Q)/2ED(Q)
≥ #Selφ(ED/Q)

#Selφ̂(E′
D/Q)

× 1

2 × 2rank(ED/Q) ×E(Q)[2]
.

Here,
#Selφ(ED/Q)

#Selφ̂(E′
D/Q)

is what we call the Tamagawa ratio. By Theorem 2.2 of [9],

#Selφ(ED/Q)

#Selφ̂(E′
D/Q)

≥
∏

p|D and p∤∆E

1

2
#

E′
D(Qp)[2]

φ(ED(Qp)[2])

holds. Let h(D) :=
∏

p|D and p∤∆E

1

2
#

E′
D(Qp)[2]

φ(ED(Qp)[2])
, it is sufficient to prove ∀r ∈ Z,∃D: square

free such that
h(D)

2rank(ED/Q)
≥ r and g(D) =

⊕

p∈MQ
H1(Gal(Qp(

√
D)/Qp), E(Qp(

√
D))

2rank(ED/Q)
≥ r.

The calculation of #
E′
D(Qp)[2]

φ(ED(Qp)[2])
is as follows.

• When E(Qp)[2] ∼= Z/2Z and E′(Qp)[2] ∼= Z/2Z × Z/2Z, #
E′
D(Qp)[2]

φ(ED(Qp)[2])
= 4.

• When E(Qp)[2] ∼= Z/2Z × Z/2Z and E′(Qp)[2] ∼= Z/2Z, #
E′
D(Qp)[2]

φ(ED(Qp))[2]
= 1.

• When E(Qp)[2] ∼= Z/2Z and E′(Qp)[2] ∼= Z/2Z or E(Qp)[2] ∼= (Z/2Z)2 and E′(Qp)[2] ∼=
(Z/2Z)2, #

E′
D(Qp)[2]

φ(ED(Qp)[2])
= 2.

For arbitrary r ∈ Z, let us take R such that 2R−4 ≥ r. By the condition
b

a2 − 4b
/∈ Q×2

,

Q(E[2]) 6= Q(E′[2]). By the Chebotarev density theorem, there exist infinitely many primes p
that satisfy the following conditions:

(1) p does not split completely in Q(E[2])/Q, then, E(Qp)[2] ∼= Z/2Z
(2) p splits completely in Q(E′[2])/Q, then, E′(Qp)[2] ∼= Z/2Z × Z/2Z

Take p1, · · · , pR that satisfy the conditions (1) and (2). Take prime numbers l1, · · · , lR that
satisfy the conditions E(Qli)[2] ∼= Z/2Z and li is a good prime of E/Q. There exists a square-
free integer DR with prime factors no greater than 4 such that rank(ED/Q) = 0, where D =

p1 · · · pRl1 · · · lRDR by Theorem 3.7. For this D,
h(D)

2rank(ED/Q)
≥ r and g(D) ≥ r hold.
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5. Decreasing X(E/Q(
√
D))[2] and X(ED/Q)[2]

In this section, we prove that for a prime p, there exist infinitely many quadratic fields K =
Q(

√
D) for the elliptic curve E : y2 = x3+px, such that X(ED/Q)[2] = 0 and #X(E/K)[2] ≤ 4

respectively under the assumption that Tate–Shafarevich group is finite.
Let us recall the theory of the descent using the two 2-isogenies φ and φ̂ as described in [18].

Let E/K be an elliptic defined by E : y2 = x3 + ax(a ∈ Z). Let E′ : y2 = x3 − 4ax. Let

φ : E → E′ be (x, y) 7→
(

y2

x2 ,
y(a−x2)
x2

)

be degree 2 isogeny and φ̂ be its dual. Let

SE/K := {v ∈ MK : E has bad reduction at v, infinite places}.

When we fix E/Q, #S depends on K. Let H1(GK , E[φ];S) be

H1(GK , E[φ];S)
def
= {[σ] ∈ H1(GK , E[φ]) | σ is unramified outside S}

where unramified outside S means restriction of σ to inertia group Iv := Gal(Kv
nr/Kv

nr) at
v /∈ S is trivial. The Selmer group K(S, 2) of a field, which is a finite group, is defined as

K(S, 2)
def
= {d̄ ∈ K×/K×2 | v(d) ≡ 0 mod 2,∀v /∈ S}

The Selmer group Selφ(E/K) is embedded into K(S, 2) via

Selφ(E/K) ⊂ H1(GK , E[φ];S) ∼= K(S, 2)

where the last isomorphism K(S, 2) ∼= H1(GK , E[φ];S) is given by d 7→ [fd : σ 7→
√
d

σ

√
d

]. Here,

(−)σ denotes the action of σ ∈ GK on elements of K. Note that fd is unramified outside S if
only if v(d) ≡ 0 mod 2 for v /∈ S. Here, note that we identify E[φ] ∼= µ2 as a trivial GK -module.

Let Cd be the image of d by the composition K(S, 2) ∼= H1(GK , E[φ];S) ⊂ H1(GK , E[φ]) ։
WC(E/K)[φ]. [ [18], Proposiiton 4.9] shows that Cd is isomorphic over K to a projective closure
of dy2 = d2 − 4ax4 in PK(1, 2, 1). The Selmer group is cut out from K(S, 2) by the condition
that corresponding torsors has a rational points locally at bad primes in S. Let Cd and C ′

d be
the curves defined by the equations dy2 = d2 − 4ax4 and dy2 = d2 + 16ax4, respectively. Then,

Selφ(E/K) ∼=
{

d̄ ∈ K(S, 2)

∣

∣

∣

∣

∣

Cd(Kv) 6= ∅,∀v ∈ S,

Cd : dy2 = d2 − 4ax4

}

.

By replacing a 7→ −4a, we obtain the following.

Selφ̂(E′/K) ∼=
{

d̄ ∈ K(S, 2)

∣

∣

∣

∣

∣

C ′
d(Kv) 6= ∅,∀v ∈ S,

C ′
d : dy2 = d2 + 16ax4

}

.

Remark 5.1. — When we write Cd : dy2 = d2 − 4ax4, it precisely represents the projective
curve obtained by embedding dy2 = d2 − 4ax4 into the weighted projective space P(1, 2, 1).
Simply taking the projective closure in P2 would result in a singular point at [0 : 1 : 0], which
cannot be adopted as a torsor. Therefore, to eliminate the singular point, we glue together two
nonsingular affine curves, C0 : dy2 = d2 − 4ax4 and C1 : dv2 = d2u4 − 4a, using the relation
u = 1

x , v = y
x2 . Specifically, we embed these curves into P(1, 2, 1) as follows: i : C0 → P(1, 2, 1)

given by (x, y) 7→ [x : y : 1] and v : C1 → P(1, 2, 1) given by (u, v) 7→ [1 : v : u]. We then define
the curve Cd in PK(1, 2, 1) as Cd = i(C0) ∪ v(C1). The projective closure of affine part of Cd
has two points

[1 : ±
√

−4a

d
: 0]

at infinity in PK(1, 2, 1).
The following inequality gives an upper bound for the order of X(E/K)[2].

Proposition 5.2. — Let E/K be an elliptic curve. Let φ : E → E′ be an isogeny of degree 2

and φ̂ : E′ → E be the dual isogeny of φ. The following inequality holds:



Behaviors of the Tate-Shafarevich group of elliptic curves under quadratic field extensions 16

dimF2 X(E/K)[2] ≤ dimF2 Selφ(E/K) + dimF2 Selφ̂(E′/K)

− dimF2

E′(K)[φ̂]

φ(E(K)[2])
− dimF2

E(K)

2E(K)
.

Proof. — There exists an exact sequence:

0 → E′(K)[φ̂]/φ(E(K)[2]) → Selφ(E/K) → Sel2(E/K)
φ→ Selφ̂(E′/K)

(see [ [17], lemma 9.1]). Thus,

(4) dimF2 Sel2(E/K) ≤ dimF2 Selφ(E/K) + dimF2 Selφ̂(E′/K) − dimF2

E′(K)[φ̂]

φ(E(K)[2])
.

Therefore,

dimF2 X(E/K)[2]

= dimF2 Sel2(E/K) − dimF2

E(K)

2E(K)
(by exact sequence (1))

≤ dimF2 Selφ(E/K) + dimF2 Selφ̂(E′/K) + dimF2

E(K)

2E(K)
− dimF2

E′(K)[φ̂]

φ(E(K)[2])
(by inequality(4)).

From this point forward, we will limit our discussion to elliptic curves of the form E : y2 =
x3 + px where p is a prime number. In this case, note that #E′

D(Q)[φ̂D ]/φD(ED(Q)[2]) = 2.

Theorem 5.3 (cf. Genus theory, [1, Theorem 8, p. 247]). — Let K = Q(
√
D) be an

imaginary quadratic field and ClK be the ideal class group of K. Then #ClK [2] = 2r−1 holds
where r is the number of prime factors of the discriminant of K.
Lemma 5.4. — Let p be an odd prime, and let E : y2 = x3 + px be an elliptic curve.

Let S := SE/K . Suppose that an imaginary quadratic field K = Q(
√
D) satisfies the following

conditions: |D| 6= p is a prime number such that D ≡ 5 mod 8 and p does not split in K =

Q(
√
D)/Q. Then, we have the following.

(1) #K(S, 2) = 8.
(2) Assume that X(E/K) is finite. Then #X(E/K)[2] ≤ 4.

Proof. — (1) Define a group of S-units as OK,S
× def

= {a ∈ K | v(a) = 0,∀v /∈ S} and define
the S-ideal class group Cl(K,S) as the ideal class group of OK,S. There is the following exact
sequence ( [15], Proposion 12.6):

1 → OK,S
×/OK,S

×2 → K(S, 2) → Cl(K,S)[2] → 1.

To prove #K(S, 2) = 8, let us prove Cl(K,S) = 1 and #O×
K,S/O

×
K,S

2
= 8. Because |D| is a

prime, ClK [2] = 1 by Theorem 5.3. Hence, ClK is an abelian group of odd order. There is a
surjection from ClK to Cl(K,S). Therefore, the order of Cl(K,S) is odd. Hence, Cl(K,S)[2] =
1.

Let us consider OK,S
×/O×

K,S
2
. From Dirichlet’s S-unit theorem, OK,S

× ∼= µ(K) × Z#S−1

where µ(K) is the group of roots of unity. Since D ≡ 5 mod 8, 2 does not split in K, and p does
not split in K by hypothesis, #S = 3. Since K 6= Q(

√
−1),Q(

√
−3), µ(K) = {±1}. From the

above, OK,S
×/O×

K,S
2 ∼= (Z/2Z)3. Therefore, #K(S, 2) = #OK,S

×/O×
K,S

2 × #Cl(K,S)[2] = 8
holds. �

(2) Let dimF2Selφ(E/K) = a and dimF2Selφ̂(E′/K) = b. By (1), a, b ≤ 3. The φ̂-Selmer
group is,

Selφ̂(E′/K) ∼= {d̄ ∈ K(S, 2) | C ′
d(Qp) 6= ∅,∀p ∈ {2, p,∞}}.

When D ≡ 5 mod 8, C ′
2 : 2y2 = 4 + px4 does not have a root in Q2(

√
D) = Q2(

√
5). Note

that Q2(
√

5) = Q2(ζ3) is an unramified extension of Q2, thus 2-adic valuation v2 takes integer
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valuation. If C ′
2 had a Q2(

√
5)-rational point (x, y), looking at the 2-adic valuation v2 of both

sides, we obtain 1 + 2v2(y) = min{2, 4v2(x)}. But the left-hand side is odd and the right-hand

side is even, which is a contradiction. Also, points at infinity of C ′
2 are [1 : ±4

√

p

2
: 0] = [1 :

±4
√

2p : 0] by Remark 5.1. Because
√

2p /∈ Q2(
√

5), there are no points at infinity. Thus, we

obtain that 2 /∈ Selφ̂(E′/K). Thus, b ≤ 2, we can conclude dimF2X(E/K)[2] ≤ a+b−1−1 ≤ 3
by Proposition 5.2. Because dimF2 X(E/K)[2] is even when X(E/K) is finite (see [ [18],
Section X, Remark 6.3]), dimF2X(E/K)[2] ≤ 2 holds.

Lemma 5.5. — Let p be an odd prime, and let E : y2 = x3 + px be an elliptic curve.

(1) When p ≡ 1 mod 4, we take an imaginary quadratic field K = Q(
√
D) that satisfies the

following conditions:
• l := −D 6= p is a prime number,
• D ≡ 1 mod 4,
• p does not split in K = Q(

√
D)/Q.

Assume that X(ED/Q) is finite. Then, X(ED/Q)[2] = 0.

(2) When p ≡ 3 mod 4, we take an imaginary quadratic field K = Q(
√
D) that satisfies the

following conditions:
• l := −D 6= p is a prime number,
• D ≡ 3 mod 4,
• p splits in K = Q(

√
D)/Q.

Assume that X(ED/Q) is finite. Then, X(ED/Q)[2] = 0.

Proof. — First, let us establish the common preliminary setup for both cases (1) and (2). Let
S′ := SED/Q. Since −D is a prime number, S′ = {2, p,−D,∞} and

#Q(S′, 2) = #{(−1)n12n2pn3(−D)n4 | 0 ≤ n1, n2, n3, n4 ≤ 1} = 16.

Let φD : ED → E′
D, (x, y) 7→ ( y

2

x2 ,
y(aD2−x2)

x2 ) be a degree 2 isogeny and φ̂D be dual isogeny. Let

dimF2SelφD (ED/Q) = e,dimF2Selφ̂D(E′
D/Q) = f . Since #Q(S′, 2) = 16, e, f ≤ 4.

Let Td : dy2 = d2 − 4pD2x4 and T ′
d : dy2 = d2 + pD2x4.

The φD-Selmer group and φ̂D-Selmer group are as follows:

SelφD (ED/Q) ∼=
{

d̄ ∈ Q(S′, 2) | Td(Qv) 6= ∅,∀v ∈ {2, p,∞}
}

,

Selφ̂D (E′
D/Q) ∼=

{

d̄ ∈ Q(S′, 2) | T ′
d(Qv) 6= ∅,∀v ∈ {2, p,∞}

}

.

For curves Td and T ′
d, we first determine their points at infinity: By Remark 5.1, the points at

infinity of Td are [1 : ±2D
√

−p
d : 0]. Similarly, the points at infinity of T ′

d are [1,±D
√

p
d , 0].

For both (1) and (2),

(

p
l

)

= −1 holds true. Indeed, when p ≡ 1 mod 4, since p does not split

in Q(
√
D)/Q,

(

D
p

)

= −1, and from the quadratic reciprocity law,

(

l
p

)

·
(

p
l

)

= (−1)
p−1

2
· l−1

2 =

(−1)
p−1

2 and

(

l
p

)

= (−1)
p−1

2 · (−1), we obtain

(

p
l

)

= −1. When p ≡ 3 mod 4,
(

D
p

)

= 1, and

from the quadratic reciprocity law,

(

l
p

)

·
(

p
l

)

= (−1)
p−1

2
· l−1

2 = 1 and

(

l
p

)

= (−1)
p−1

2 = −1,

we obtain

(

p
l

)

= −1.

We prove that TD : y2 = D − 4pDx4, TpD : y2 = pD − 4Dx4, T2pD : y2 = 2pD − 2Dx4, T2D :
y2 = 2D − 2pDx4 do not have Ql-rational points. For each curve, if there exists a Ql-
rational point (x, y), then the Hilbert symbol (A,B)l of A(x2)2 + By2 = 1 must be 1. We
compute the Hilbert symbols mod l for these quadratic forms: For TD : ( 1

D , 4p)l = (p,D)l.

For TpD : ( 1
pD ,

4
p)l = (pD, p)l = (p,D)l. For T2pD : ( 1

2pD ,
1
p)l = (2pD, p)l = (p,D)l. For
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T2D : ( 1
2D , p)l = (2D, p)l = (p,D)l. Since

(

p

l

)

= −1, we have (p,D)l = −1. Therefore, all the

above Hilbert symbols equal −1, which proves that none of these curves have Ql-rational points
in the affine part. Moreover, there are no points at infinity because

√
pl,

√
l,

√
2l,

√
2pl /∈ Ql.

As a consequence, we conclude that D, pD, 2pD, 2D /∈ SelφD(ED/Q).
Note that −p ∈ SelφD(ED/Q) since the points at infinity are [1 : ±2D : 0]. Therefore,

−pD,−D,−2D,−2pD /∈ SelφD (ED/Q). Since we have determined that 8 out of 16 elements of
Q(S′, 2) do not belong to SelφD (ED/Q), if we can show that one of the remaining Td has no
Qv-rational point for some v ∈ S′, then we can prove that e ≤ 2.

Let evaluate f . When d < 0, T ′
d(R) = ∅. Thus, d /∈ Selφ̂D (ED/Q). Affine parts of T ′

2 : 2y2 =
4 + pD2x4, T ′

2pl : 2y2 = 4pl + lx4 and T ′
2p : 2y2 = 4p + D2x4 do not have Q2-rational points

because 1 + 2ord2(y) = min{2, 4ord2(x)} does not hold. Also, note that T ′
2, T

′
2p, T

′
2l, T

′
2pl do not

have points at infinity since either
√

2p,
√

2,
√

2pl nor
√

2l do not belong to Q2. Since we have

shown that 12 out of 16 elements do not belong to Selφ̂D(E′
D/Q), f ≤ 2, if we can show that

one of the remaining Td has no Qv-rational point for some v ∈ S′, then we can prove that f ≤ 1.

In what follows, we prove that both e and f can be reduced by 1 in each of cases (1) and (2).
(1) Let us evaluate e. We claim that T−1 : y2 = −1 + 4pl2x4 does not have Ql-rational

points. Indeed, when x, y ∈ Zl, y
2 ≡ −1 mod l does not hold since

(−1

l

)

= −1. When

vl(x) < 0, vl(y) = 1 + 2vl(x). Set vl(x) := −a (a > 0). We can put x = l−ax′, y = l1−2ay′

where x′, y′ ∈ Zl
×. We obtain y′2 = −l4a−2 + 4px′4 and p should be a square modulo l. This

contradicts the fact that

(

p

l

)

= −1. Thus, vl(x) ≥ 0. In this case, x, y ∈ Zl and we have

already shown that there are no Ql-rational points in this case. There are no points at infinity

since
√
p /∈ Ql. Therefore, −1 /∈ Selφ̂D(E′

D/Q). Since we have shown that 9 out of 16 elements

do not belong to Selφ̂D (E′
D/Q), we can conclude that e ≤ 2.

Let us evaluate f . We claim that T ′
l (Qp) = ∅ where T ′

l : y2 = l + plx4. Indeed, When

p ≡ 1 mod 4,
(

1
l ,−p

)

p
= (−1)

p+1
2 = −1 and there are no points at infinity since

√−pl /∈ Qp.

Thus, l /∈ Selφ̂D (E′
D/Q). Since we have shown that 13 out of 16 elements do not belong to

Selφ̂D(E′
D/Q), we can conclude that f ≤ 1. Thus, dimF2X(ED/Q)[2] ≤ e + f − 1 − 1 ≤

2 + 1 − 1 − 1 = 1. Because dimF2 X(ED/Q)[2] is even, dimF2X(ED/Q)[2] = 0 holds. Thus,
dimF2X(ED/Q)[2] ≤ e+ f − 1 − 1 ≤ 2 + 1 − 1 − 1 = 1. Since dimF2 X(ED/Q)[2] is even (see
[ [18], Remark 6.3]), dimF2X(ED/Q)[2] = 0 holds.

(2) Let us evaluate e. We claim that T−1(Ql) = ∅ where T−1 : y2 = −1 + 4pl2x4. Indeed,

Hilbert symbol
(−1, 4pl2

)

p = (−1, p)p = (−1)
p−1

2 = −1 and there is no points at infinity because
√
p /∈ Ql. Since we have shown that 9 out of 16 elements do not belong to Selφ̂D(E′

D/Q), we
can conclude that e ≤ 2.

Let us evaluate f . Since l ≡ 1 mod 4, affine part of T ′
l : y2 = l + plx4 does not have

Ql-rational points because
(

−p, 1
l

)

l
= (−p, l)l =

(

p

l

)(−1

l

)

= −(−1)
l−1

2 = −1. Also, note

that T ′
l does not have Ql-rational points at infinity because

√
pl does not belong to Ql. Since

we have shown that 13 out of 16 elements do not belong to Selφ̂D (E′
D/Q), f ≤ 1. Thus,

dimF2X(ED/Q)[2] ≤ e + f − 1 − 1 ≤ 2 + 1 − 1 − 1 = 1. Since dimF2 X(ED/Q)[2] is even,
dimF2X(ED/Q)[2] = 0 holds.

Proposition 5.6. — Let p be an odd prime, and let E : y2 = x3 + px be an elliptic curve.
Assume that Tate–Shafarevich group of elliptic curves are finite.
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(1) There exist infinitely many imaginary quadratic fieldsK = Q(
√
D) such that #X(E/K)[2] ≤

4. If X(E/Q) contains an element of order 4, then for any quadratic number field

K = Q(
√
D), #X(E/K)[2] 6= 0.

(2) There exist infinitely many square-free integers D such that X(ED/Q)[2] = 0.

Proof. — (1) By Lemma 5.4, this holds because there exist infinitely many prime numbers −D
such that D ≡ 5 mod 8 and p does not split in K = Q(

√
D)/Q.

Let C ∈ X(E/Q) be an element of order 4. If C is trivial in X(E/Q(
√
D)) for some D, the

order (period), which is 4, would have to divide index, which is 2. This is a contradiciton. Thus
any K cannot trivialize C in X(E/K). This implies X(E/K) has an element of order 2.

(2) By Lemma 5.5, this holds because there exist infinitely many prime numbers −D such

that D ≡ 3 mod 4 and p splits in K = Q(
√
D)/Q. Also, there exist infinitely many prime

numbers −D such that D ≡ 1 mod 4 and p does not split in K = Q(
√
D)/Q.

Example 5.7. — Let p = 17. Using Magma [2], we compute:
K<b>:=QuadraticField(-2);

A:=EllipticCurve([K!0,0,0,17,0]);

Sel2:=TwoSelmerGroup(A); Sel2;

Q := QuadraticTwist(A, -2); // Compute the quadratic twist of A by -2

rank := Rank(Q); // Calculate the rank of the quadratic twist rank;

This computation shows that E : y2 = x3 + 17x satisfies X(E/Q(
√

−2))[2] = 0. Also,
X(E/Q)[2] ∼= Z/2Z × Z/2Z holds (see [ [18], Proposition 6.5]). By the contrapositive of
Proposition 5.4 (2), X(E/Q)[2∞] ∼= Z/2Z × Z/2Z.
Example 5.8. — Let p = 257 be the fourth Fermat prime. Using Magma [2], we compute:

A := EllipticCurve([0,0,0,257,0]);

MordellWeilShaInformation(A: ShaInfo := true);

This computation shows that the Tate–Shafarevich group X(E/Q) of the elliptic curve E :
y2 = x3 +257x has an element of order 4. Thus, by Proposition 5.6 (2), there exists no quadratic

field Q(
√
D) such that X(E/Q(

√
D))[2] = 0.

Remark 5.9. — It remains unknown whether there exist finite extensions L/Q such that
X(E/L)[2] = 0.
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