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DIFFERENTIAL UNIFORMITY OF POLYNOMIALS OF

DEGREE 10

YVES AUBRY

Abstract. We prove that polynomials of degree 10 over finite fields
of even characteristic with some conditions on theirs coefficients have
a differential uniformity greater than or equal to 6 over F2n for all n
sufficiently large.

1. Introduction

Differential uniformity of polynomials over finite fields is a measure of

non-linearity and resistance against differential attacks in cryptography.

Formally, the differential uniformity δFq
(f) of a polynomial f ∈ Fq[x] over

the finite field Fq with q elements is defined as the maximum number of

solutions of the set of equations f(x + α) − f(x) = β where α and β be-

long to Fq with α non-zero (see [7] where it has been first introduced). For

practical cryptographic applications, a particular study has been made over

finite fields of characteristic 2, which will be the framework of our work here.

Polynomials over F2n with low differential uniformity are highly sought af-

ter, especially those with the smallest possible one, namely equal to 2. The

functions associated with these polynomials are called APN (Almost Per-

fect Nonlinear) functions, and exhaustive research suggests that they are

very rare. In fact, Voloch proved in [10] that almost all polynomials have a

differential uniformity essentially equal to their degree. Even better, Aubry,

Herbaut and Voloch in [2] showed that, for a set of specific odd degrees,

not almost all but indeed all polynomials of these degrees have maximal

differential uniformity for n sufficiently large. Moreover, these results have

been extended in [3] to infinitely many explicit even degrees and in [4] to

some trinomials of degree divisible by 4.

The study of the differential uniformity of low-degree polynomials was

conducted by Voloch in [10]. Apart from the trivial case of polynomials of
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2 AUBRY

degrees less than 4, he addressed the cases of degrees 5, 6, and 7 (the case

of degree 8 is reduced to that of lower degrees), and he stopped at degree 9.

The main result of our paper concerns polynomials of degree 10 over

finite fields of even characteristic. The methods developed in [3] and [4],

although applicable to even-degree polynomials, cannot be applied mutatis

mutandis to our situation. Therefore, we are led to develop here a specific

approach that does not rely on the description of the locus of polynomials

with non-distinct critical values, as was the case in [2], [3] and [4].

Precisely, we prove the following results.

Theorem. (Theorem 3.2 and Theorem 4.6) Let f =
∑10

i=0 a10−ix
i ∈ F2n [x]

be a polynomial of degree 10.

1) If

(i) a1a3 6= 0 and,

(ii) TrF2n/F2

(

a1a4+a5
a2
1
a3

)

= 0 and,

(iii) a21a
2
4 + a25 + a71a3 + a41a

2
3 + a21a3a5 + a3a7 6= 0,

then δF2n
(f) ≥ 6 if n is sufficiently large (namely if n ≥ 13).

2) Suppose that a1 = a3 = 0, and suppose that there exists α ∈ F
∗
2n such

that:

(i) c := α2a5+a7
α

6= 0 and the polynomial R3(x) := x3 + bx2 + c2 has all

its roots in F2n where b := α5+αa4+a5
α

,

(ii) and TrF2n/F2

(

α5+αa4+a5
α3

)

= 0,

then δF2n
(f) = 8 if n is sufficiently large (namely if n ≥ 15).

Remark 1.1. Functions which are APN over infinitely many extensions

of the base field are called exceptional APN. Aubry, McGuire and Rodier

conjectured in [1] that, up to a certain equivalence, the Gold functions

f(x) = x2k+1 and the Kasami-Welch functions f(x) = x22k−2k+1 are the

only exceptional APN functions. The results of the present paper imply

that the polynomials of degree 10 satisfying the conditions of our theorem

are a fortiori not exceptional APN: we recover a known result since the

conjecture in the case of polynomials f of degree 2e with e odd and when

f contains a term of odd degree has been proved by Aubry, McGuire and

Rodier in [1].

Section 2 is dedicated to the strategy of introducing a polynomial whose

splitting field produces a Galois extension in which we will prove the ex-

istence of a place which totally splits using Chebotarev’s density theorem.

Section 3 focuses on the first part of the previous theorem and relies on
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Morse polynomial theory to obtain monodromy groups equal to the sym-

metric group. Finally Section 4 concentrates on the second part of the pre-

vious theorem and uses the characterization of the Galois groups of quartic

polynomials through their quadratic and cubic resolvents.

2. Monodromy groups, Morse polynomials and geometric

extensions

Let f(x) =
∑10

i=0 a10−ix
i ∈ Fq[x], where q = 2n, be a polynomial of

degree m = 10 (so a0 is always supposed to be non-zero). Let α ∈ F
∗
q and

consider Dαf(x) = f(x + α) + f(x) the derivative of f with respect to α.

By definition, the differential uniformity of f is given by

δ(f) := max
(α,β)∈F∗

q×Fq

♯{x ∈ Fq | Dαf(x) = β}.

Consider the unique polynomial Lαf such that Lαf (x(x+ α)) = Dαf(x)

(see Proposition 2.3 of [2] for the existence and the unicity of such a poly-

nomial Lαf) and let us denote by d its degree. A simple calculation gives

:

(1) Dαf(x) = (a0α
2 + a1α)x

8 + a3αx
6 + a3α

2x5 + (a3α
3 + a4α

2 + a5α)x
4

+ a3α
4x3 + (a0α

8 + a3α
5 + a4α

4 + a7α)x
2 + (a1α

8 + a3α
6 + a5α

4 + a7α
2)x

+ a0α
10 + a1α

9 + a2α
8 + a3α

7 + a4α
6 + a5α

5 + a6α
4 + a7α

3 + a8α
2 + a9α

and

(2) Lαf(x) = (α2a0 + αa1)x
4 + αa3x

3 + (α6a0 + α5a1 + α2a4 + αa5)x
2

+ (α7a1 + α5a3 + α3a5 + αa7)x

+ α10a0 + α9a1 + α8a2 + α7a3 + α6a4 + α5a5 + α4a6 + α3a7 + α2a8 + αa9.

Then we consider the splitting field F of the polynomial Lαf(x) − t

over the field Fq(t) with t a transcendental element over Fq and we set

F
F
q to be the algebraic closure of Fq in F . We consider now the Galois

groups G = Gal(F/Fq(t)) and G = Gal(F/FF
q (t)) which are respectively

the arithmetic and geometric monodromy groups of Lαf .

If u0, . . . , ud−1 are the roots of Lαf(x) = t, then we will denote by xi a

root of x2 + αx = ui. So the 2d elements x0, x0 + α, . . . , xd−1, xd−1 + α are

the solutions of Dαf(x) = t. Then we consider Ω = Fq(x0, . . . , xd−1) the

compositum of the fields F (xi) and F
Ω
q the algebraic closure of Fq in Ω. We

set also Γ = Gal(Ω/F ) and Γ = Gal(Ω/FF
Ω
q ). Then we have the following

diagram where the constant field extensions from k = F2n are drawn and
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where CF and CΩ stand for the smooth projective algebraic curves associated

to the function fields F and Ω:

k = F2n

k(t)

k(u0)

F = k(u0, . . . , ud−1)

F (xd−1)

Ω

. . .F (x0) FkΩ

kF (t)

kF

kΩ

kΩ(t) P
1
t/k

Ω

CΩ

P
1
u0

/k

P
1
t/k

u0

t = Lαf(u0)

CF

x2
i + αxi = ui Z/2Z

G = Gal(F/k(t)) G

Ḡ

Γ

Ḡ× Γ̄

Γ̄

The purpose here is to apply the Chebotarev density theorem in order

to get the existence of an element β in a finite extension F of F2n such that

the polynomial Dαf(x) + β splits in F[x]. Indeed, the Chebotarev theorem

describes the distribution of places in a Galois extension of number fields or

in a geometric Galois extension of function fields of one variable over a finite

field. It states that for any conjugacy class of the Galois group, there exists

a density of places whose Frobenius automorphism falls within that class.

For an unramified place, the associated conjugacy class, that is the Artin

symbol attached to this place, is reduced to the identity automorphism if

and only if the place splits in the Galois extension.

So the point is to work with a geometric (or regular) Galois extension

Ω/Fq(t), that is with no constant field extension. In other words, we want

to find an α such that G = G and Γ = Γ.

The regularity of the extension Ω/F will be derived from Proposition

4.6 of [2] (and a generalization) and is related to a Trace equation. The

regularity of the extension F/Fq(t), for its part, will come from the theory

of Morse polynomials in Section 3 and from quadratic and cubic resolvents

in Section 4.
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3. The result with a1a3 6= 0

Let f(x) =
∑10

i=0 a10−ix
i ∈ F2n[x] be a polynomial of degree m = 10 with

a1 6= 0 and a3 6= 0. Consider the choice:

α = a1/a0.

Then Formulas (1) and (2) give that the polynomial

Da1
a0

f(x) =
a31a3
a30

x6 + · · ·

has degree 6 and the polynomial

La1
a0

f(x) =
a1a3
a0

x3 +

(

a21a4
a20

+
a1a5
a0

)

x2 +

(

a81
a70

+
a51a3
a50

+
a31a5
a30

+
a1a7
a0

)

x

+
a81a2
a80

+
a71a3
a70

+
a61a4
a60

+
a51a5
a50

+
a41a6
a40

+
a31a7
a30

+
a21a8
a20

+
a1a9
a0

has degree d = 3.

Recall that a polynomial g ∈ F2n [x] is said to be Morse (see the Appendix

of Geyer to the paper [6]) if it has odd degree, if the critical points of g

are non degenerate (i.e. the derivative g′ and the second Hasse-Schmidt

derivative g[2] have no common roots) and if the critical values of g are

distinct (g does not take the same value at different zeros of g′). We have:

Proposition 3.1. Let f =
∑10

i=0 a10−ix
i ∈ F2n [x] be a polynomial of degree

10. If

(i) a1a3 6= 0, and

(ii) a40a
2
1a

2
4 + a60a

2
5 + a71a3 + a20a

4
1a

2
3 + a40a

2
1a3a5 + a60a3a7 6= 0,

then the polynomial La1
a0

f is Morse.

Proof. Let f =
∑10

i=0 a10−ix
i be as in the theorem and set g = La1

a0

f . The

polynomial g has odd degree (its degree is 3) and the critical values of g are

obviously distinct since g′ has degree 2 and thus has only one double root.

Now let us find a necessary and sufficient condition for the critical points

of g to be nondegenerate. We have g′(x) = a1a3
a0

x2 +
a8
1

a7
0

+
a5
1
a3

a5
0

+
a3
1
a5

a3
0

+ a1a7
a0

.

Recall that the Hasse-Schmidt derivative g[2] is defined by the equality

g(t+ u) ≡ g(t) + g′(t)u+ g[2](t)u2 (mod u3) where u and t are independent

variables. Then we get here: g[2](x) = a1a3
a0

x +
a2
1
a4

a2
0

+ a1a5
a0

which has x =
a0a5+a1a4

a0a3
as a root. And this root is also a root of g′ if and only if

a40a
3
1a

2
4 + a60a1a

2
5 + a81a3 + a20a

5
1a

2
3 + a40a

3
1a3a5 + a60a1a3a7 = 0.

Thus condition (ii) ensures that the polynomial g = La1
a0

f is Morse. �
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Theorem 3.2. For n sufficiently large, namely for n ≥ 13, for all polyno-

mials f =
∑10

i=0 a10−ix
i ∈ F2n [x] of degree 10 such that :

(i) a1a3 6= 0 and,

(ii) TrF2n/F2

(

a1a4+a5
a2
1
a3

)

= 0 and,

(iii) a21a
2
4 + a25 + a71a3 + a41a

2
3 + a21a3a5 + a3a7 6= 0,

we have δF2n
(f) ≥ 6.

Proof. Since the differential uniformity of a polynomial is unchanged if it is

multiplied by a non-zero scalar element, one can suppose that f is monic

i.e. a0 = 1. Conditions (i) and (iii) together with Proposition 3.1 imply

that La1f is a Morse polynomial of degree d = 3. But the analogue of the

Hilbert theorem given by Serre in Theorem 4.4.5 of [9] (and detailled in even

characteristic in the Appendix of Geyer in [6]) asserts that the geometric

monodromy group of a Morse polynomial of degree d is the symmetric group

Sd. But since it is contained in its arithmetic monodromy group which is

also a subgroup of Sd, they coincide. Hence we deduce that the extension

F/F2n(t) is geometric.

Moreover, Proposition 4.6 of [2] gives us that the extension Ω/F will be

geometric if there exists x ∈ F2n such that x2 + αx = b1/b0, where the bi’s

are given by Lαf(x) =
∑d

k=0 bd−kx
k. In our case, the equation reduces to

x2+a1x = (a21a4+a1a5)/a1a3. Hilbert’90 theorem implies that the equation

x2+a1x = a1a4+a5
a3

has a solution in F2n if and only if TrF2n/F2

(

a1a4+a5
a2
1
a3

)

= 0,

which is exactly condition (ii) of the theorem.

Thus Proposition 4.6 of [2] implies that the extension Ω/F is geometric.

Then we can apply the effective version of the Chebotarev density theorem

given by Pollack in [8] to get the following lower bound (depending on n,

the degree dΩ of the extension Ω/F2n(t) and the genus gΩ of the function

field Ω) for the number V of places of degree one in F2n(t) which totally

split in Ω (see for more details the proof of Theorem 4.1 of [3]):

V ≥
2n

dΩ
−

2

dΩ
(gΩ2

n/2 + gΩ + dΩ).

If n is sufficiently large, this number is at least one. To be explicit, we

have seen above that G = G = S3 and moreover, by Proposition 4.6 of [2],

we have that Γ = Γ = (Z/2Z)2, so dΩ = 3!× 22 = 24. Hence V ≥ 1 as soon

as 2n − 2gΩ2
n/2 − 2gΩ − 72 > 0.

Now by Lemma 14 of [8] we have gΩ ≤ 1
2
(degDαf−3)dΩ+1 = 37. Hence

if n ≥ 13 we have V ≥ 1 and this gives the existence of β ∈ F2n such that

the polynomial Dαf(x) + β splits in F2n [x] with no repeated factors. The
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differential uniformity of f is thus greater than or equal to the degree of

Dαf , which is 6 in our present case. �

It implies for example that the polynomial f(x) = x10+x9+x7+x3 has

a differential uniformity over F2n greater than or equal to 6 pour n ≥ 13.

Corollary 3.3. All polynomials

f(x) = x10 + a1x
9 + a2x

8 + a3x
7 + a6x

4 + a7x
3 + a8x

2 + a9x+ a10

with a1, a3 in F
∗
2n and a2, a6, a7, a8, a9, a10 in F2n and such that a7 6= a71+a41a3

have a differiential uniformity over F2n greater than or equal to 6 pour n

sufficiently large.

4. The case with a1 = 0 and a3 = 0

Making the choice α = a1/a0 in the previous section gave a polynomial

Dαf of degree 6, so the number of solutions of any equation Dαf(x) = β

could be at most 6. If we choose α 6= a1/a0 then the polynomial Dαf will

be of degree 8 and the equation Dαf(x) = β can have 8 solutions. Let us

study what happens in a particular case of this situation.

Suppose without loss of generality that a0 = 1 and let α ∈ F
∗
2n be such

that α+ a1 6= 0 i.e. α 6= a1. Then, by Formulas (1) and (2), we deduce that

Dαf has degree 8 and Lαf has degree d = 4. The following proposition gives

conditions for the algebraic and geometric monodromy groups of 1
α2Lαf(x)

to be the Klein group Z/2Z× Z/2Z.

Proposition 4.1. Let f =
∑10

i=0 a10−ix
i ∈ F2n [x] be a polynomial of degree

10 with a0 = 1, a1 = a3 = 0. Let α ∈ F
∗
2n and set b := α5+αa4+a5

α
and c :=

α2a5+a7
α

. Suppose that c 6= 0 and that the polynomial R3(x) := x3 + bx2 + c2

factors over F2n as the product of three linear factors (which means that

TrF2n/F2

(

b3

c2

)

= TrF2n/F2
(1) and the roots of the polynomial Q(T ) := T 2 +

c2T + b6 are cubes in F2n (respectively in F22n) if n is even (respectively if

n is odd).

Then the quartic polynomial 1
α2Lαf(x) has algebraic and geometric mon-

odromy groups isomorphic to the Klein group.

Proof. If we suppose that a0 = 1 and a1 = a3 = 0, then we get by Formula

(2), for any α ∈ F
∗
2n :

Lαf(x) = α2x4 + (α6 + α2a4 + αa5)x
2 + (α3a5 + αa7)x

+ α10 + α8a2 + α6a4 + α5a5 + α4a6 + α3a7 + α2a8 + αa9
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We set g := 1
α2Lαf and we consider the irreducible polynomial

g(x)− t =
1

α2
Lαf(x)− t ∈ F2n(t)[x]

(recall that any polynomial P (x) ∈ F2n[x] gives rise to an irreducible poly-

nomial P (x)− t in the ring F2n(t)[x]). We have:

g(x)− t = x4 +
α5 + αa4 + a5

α
x2 +

α2a5 + a7
α

x

+
α9 + α7a2 + α5a4 + α4a5 + α3a6 + α2a7 + αa8 + a9

α
+ t.

So we have

g(x)− t = x4 + bx2 + cx+ d

with b := α5+αa4+a5
α

, c := α2a5+a7
α

and d := α9+α7a2+α5a4+α4a5+α3a6+α2a7+αa8+a9
α

+

t.

The monic quartic polynomial g(x) − t in F2n(t)[x] with no cubic term

is separable if and only if c 6= 0 (see the illustration of Theorem 3.4. of [5])

and its quadratic resolvent R2(x) and its cubic resolvent R3(x) are given by

(see equations (3.4) and (3.5) of [5]):

R2(x) = x2 + c2x+ (b3 + c2)c2

and

R3(x) = x3 + bx2 + c2.

It is well-known thatR2(X) is reducible if and only if TrF2n/F2

(

(b3+c2)c2

c4

)

=

0 i.e. TrF2n/F2

(

b3

c2

)

= TrF2n/F2
(1).

Let us consider now the reducibility of the polynomial R3(x) = x3 +

bx2 + c2. The substitution z = x+ b eliminates the quadratic term: it gives

the equation z3 + b2z + c2 = 0.

Theorem 1 of [11] gives that the polynomial z3 + b2z+ c2 (with c 6= 0) is

reducible if and only if

(i) TrF2n/F2

(

b6

c4

)

6= TrF2n/F2
(1) (in this case the polynomial has a unique

root in F2n),

or

(ii) TrF2n/F2

(

b6

c4

)

= TrF2n/F2
(1) and the roots of the polynomial Q(T ) :=

T 2+ c2T + b6 are cubes in F2n if n is even, or in F22n if n is odd (in this case

the polynomial z3 + b2z + c2 factors over F2n as the product of three linear

factors).

So if α ∈ F
∗
2n is such that TrF2n/F2

(

b6

c4

)

= TrF2n/F2
(1), i.e. TrF2n/F2

(

b3

c2

)

=

TrF2n/F2
(1), and also such that the roots of the polynomial Q(T ) are cubes
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in F2n or in F22n (according as n is even or odd), then the polynomials R2(x)

and R3(x) are reducibles.

Finally, with the hypothesis of the proposition, g(x) − t is a separable

irreducible quartic polynomial of F2n(t)[x] such that its quadratic and cubic

resolvents are reducibles. By Theorem 3.4. of [5], we obtain that the Galois

group Gg of the polynomial g(x)− t = 1
α2Lαf(x)− t, which is the arithmetic

monodromy group of the polynomial g(x) = 1
α2Lαf(x), is isomorphic to the

Klein group Z/2Z× Z/2Z.

Since the polynomial g(x)−t is irreducible over F2n(t), the arithmetic and

the geometric monodromy groups of 1
α2Lαf(x), seen as permutation groups,

are transitive subgroups of the symmetric group S4. It is well-known (see

[5] for example) that the only transitive subgroups of S4 are S4 himself, the

alternate group A4, three conjugate subgroups isomorphic to the dihedral

group D4 of order 8, three conjugate subgroups isomorphic to the cyclic

group Z/4Z and one subgroup isomorphic to the Klein group Z/2Z×Z/2Z.

Since the geometric monodromy group Gg of g(x) = 1
α2Lαf(x) is a nor-

mal subgroup of Gg and a transitive subgroup of S4, we obtain that Gg is

also the Klein group Z/2Z× Z/2Z. �

Remark 4.2. The condition c 6= 0 in the previous theorem is equivalent to

saying that the polynomial g(x)− t := 1
α2Lαf(x)− t ∈ F2n(t)[x] is separable

(see the illustration of Theorem 3.4. of [5]).

Remark 4.3. The condition in the previous theorem saying that the poly-

nomial R3(x) := x3 + bx2 + c2 factors over F2n as the product of three

linear polynomials is equivalent to saying that (see Theorem 1 of [11]):

TrF2n/F2

(

b3

c2

)

= TrF2n/F2
(1) and the roots of the equation T 2 + c2T + b6 are

cubes in F2n (respectively in F22n) if n is even (respectively if n is odd).

Example 4.4. Let f =
∑10

i=0 a10−ix
i ∈ F2n [x] be a polynomial of degree 10

with a0 = 1, a1 = a3 = a4 = a5 = 0 and a7 = 1, i.e. the polynomial f has

the form

f(x) = x10 + a2x
8 + a6x

4 + x3 + a8x
2 + a9x+ a10

with a2, a6, a8, a9, a10 in F2n . Let us show that if n ≡ 0 (mod 4) then there

exists α ∈ F
∗
2n such that the polynomial 1

α2Lαf(x) has algebraic and geo-

metric monodromy groups isomorphic to the Klein group.

Indeed, let α ∈ F
∗
2n and consider, as in the proof of Proposition 4.1, the

irreducible polynomial

g(x)− t :=
1

α2
Lαf(x)− t ∈ F2n(t)[x].
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So we have

g(x)− t = x4 + bx2 + cx+ d

with b := α4, c := 1
α
and d := α9+α7a2+α3a6+α2+αa8+a9

α
+ t.

Since c 6= 0 then, by Remark 4.2, the polynomial g(x) − t is separa-

ble. Moreover, the condition TrF2n/F2

(

b3

c2

)

= TrF2n/F2
(1) in Proposition 4.1

remains to

TrF2n/F2
(α7) = TrF2n/F2

(1) = n (mod 2).

Now the equation T 2 + c2T + b6 = 0 becomes

T 2 +
1

α2
T + α24 = 0.

We are looking for α in F
∗
2n such that the solutions of this equation are cubes

in F2n . Note that these roots belong to F2n if and only if TrF2n/F2
(α28) = 0,

i.e. TrF2n/F2
(α7) = 0.

But one can show that there exists α ∈ F
∗

24 such that the polynomial

T 2 + 1
α2T +α24 has roots which are cubes in F

∗
16 and with TrF

24
/F2

(α7) = 0.

Indeed, take F16 = F2[X ]/(X4+X3+1) = F2(θ) and choose α = θ10. Then

Q(T ) = T 2 + θ10T + 1 = T 2 +
1

(θ10)2
T + (θ10)24 = (T + (θ2)3)(T + (θ3)3)

with

TrF
24

/F2
(α7) = TrF

24
/F2

(θ70) = TrF
24

/F2
(θ10) = TrF

24
/F2

(θ5) = TrF
24

/F2
(α2) = 0.

In conclusion, if f =
∑10

i=0 a10−ix
i ∈ F2n [x] is a polynomial of degree 10

with a0 = a7 = 1 and a1 = a3 = a4 = a5 = 0, and if n ≡ 0 (mod 4) there

exists α ∈ F
∗
2n (since in this case F16 is included in F2n) such that c 6= 0

and, by Remark 4.3, such that the polynomial R3(x) := x3 + bx2 + c2 has

all its roots in F2n. Hence by Proposition 4.1 the polynomial 1
α2Lαf(x) has

algebraic and geometric monodromy groups isomorphic to the Klein group.

Recall that F is the splitting field of the polynomial Lαf(x) − t over

the field F2n(t) and Ω = F2n(x0, . . . , xd−1) is the compositum of the fields

F (xi), where u0, . . . , ud−1 are the roots of Lαf(x) = t and xi are the roots

of x2 + αx = ui.

Now let us give a sufficient condition for the extension Ω/F to be geo-

metric.

Lemma 4.5. Let f =
∑10

i=0 a10−ix
i ∈ F2n[x] be a polynomial of degree 10

with a0 = 1, a1 = a3 = 0. Let α ∈ F
∗
2n and set b := α5+αa4+a5

α
and c :=
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α2a5+a7
α

. Suppose that c 6= 0 and that the polynomial R3(x) := x3 + bx2 + c2

factors over F2n as the product of three linear factors.

Then the extension Ω/F is geometric as soon as the equation x2 +αx =
α5+αa4+a5

α
has a solution in F2n.

Proof. We begin proving that if u is a root of Lαf(x) − t in F , then, for

each place ℘ of F above the place ∞ at infinity of F2n(t), we have that u

has a simple pole at ℘.

Indeed, the field F2n(t)(u) is just the rational function field F2n(u). The

place at infinity P∞ of F2n(u) is the pole of u and it is the place above the

place at infinity ∞ of F2n(t) (which corresponds to the pole of t). Thus the

valuation of u at P∞ is given by vP∞
(u) = −1 and therefore vP∞

(Lαf(u)) =

− deg(Lαf(x)). Since the ramification index e(P∞|∞) of P∞ over ∞ verify:

vP∞
(Lαf(u)) = vP∞

(t) = e(P∞|∞)v∞(t) = −e(P∞|∞)

thus we obtain:

e(P∞|∞) = deg(Lαf(x)) = 4.

But the hypotheses on c and R3(x) imply by Proposition 4.1 that the

Galois extension F/F2n(t) has Galois group the Klein group of order 4 ( the

place at infinity of F2n(t) is then totally ramified in F2n(u)). We conclude

that F = F2n(u) and then u has a simple pole at ℘ = P∞.

Now we show that if J ⊂ {0, 1, 2, 3} is neither empty nor the whole

set then
∑

j∈J uj has a pole at the place at infinity P∞ of F . Since the

coefficient of x3 in the polynomial Lαf is zero (see Formula (2)), we have

that u0 + u1 + u2 + u3 = 0. We are then reduced to show that u0 + u1,

u0+u2 and u0+u3 have a pole at P∞. But we are in the situation where the

Galois extension F/F2n(t) has a Galois group isomorphic to Z/2Z× Z/2Z,

so the following diagram summarize the situation (where k := F2n and all

the extensions have degree 2).

k(t)

k(u0 + u2)

F

k(u0 + u3)k(u0 + u1)
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If we denote by ∞i the place at infinity of F2n(u0+ui), for i = 1, 2, 3, we

have that the ramification index e(P∞|∞i) = e(∞i|∞) = 2 for all i since

∞ is totally ramified in the extension F/F2n(t).

So we have

vP∞
(u0 + ui) = e(P∞|∞i)v∞i

(u0 + ui) = 2× (−1) = −2 ≤ −1

which proves that P∞ is a pole of u0 + ui.

Then, the proof of Proposition 4.6 of [2] remains true with polynomials

of degree 10 with geometric and arithmetic monodromy groups the Klein

group: if there exists x ∈ F2n such that x2 + αx = b1/b0 where the b′is

are defined by 1
α2Lαf(x) =

∑4
i=0 b4−ix

i then Gal (F (x0, x1, x2, x3)/F ) and

Gal
(

FF
Ω
2n(x0, x1, x2, x3)/FF

Ω
2n

)

are isomorphic to (Z/2Z)3, where F
Ω
2n de-

notes the algebraic closure of F2n in Ω and FF
Ω
2n denotes the composi-

tum of the fields F and F
Ω
2n . The coefficients bi’s come from Equation (2):

b1/b0 = α5+αa4+a5
α

, and the existence of a solution in F2n of the equation

x2 + αx = b1/b0 is exactly the last condition of the Lemma. Thus we con-

clude that the extension Ω/F is geometric.

�

Theorem 4.6. Let f =
∑10

i=0 a10−ix
i ∈ F2n [x] be a polynomial of degree 10

with a1 = a3 = 0.

Suppose that there exists α ∈ F
∗
2n such that:

(i) c := α2a5+a7
α

6= 0 and the polynomial R3(x) := x3 + bx2 + c2 has all

its roots in F2n where b := α5+αa4+a5
α

,

(ii) and TrF2n/F2

(

α5+αa4+a5
α3

)

= 0.

Then δF2n
(f) = 8 if n is sufficiently large (namely if n ≥ 15).

Proof. Let f be a polynomial as in the theorem. Looking at its differen-

tial uniformity, one can suppose that f is monic. Condition (i) implies by

Proposition 4.1 that the polynomial 1
α2Lαf(x) has algebraic and geometric

monodromy groups isomorphic to the Klein group. Hence the splitting field

F of the polynomial g(x) := 1
α2Lαf(x)−t is a geometric extension of F2n(t).

Moreover, by Lemma 4.5, the extension Ω/F is geometric as soon as

the equation x2 + αx = α5+αa4+a5
α

has a solution in F2n . By the Hilbert’90

Theorem, this is equivalent to TrF2n/F2

(

α5+αa4+a5
α3

)

= 0, which is precisely

Condition (ii).

Then we use the Chebotarev theorem, as in the proof of Theorem 3.2,

to obtain, if n is sufficiently large (namely here if n ≥ 15), the existence of

β ∈ F2n such that the polynomial Dαf(x) + βα2 splits in F2n[x] with no

repeated factors.
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Thus the differential uniformity of f is equal to the degree of Dαf that

is 8. �

Example 4.7. Let us come back to Example 4.4, and since the differ-

ential uniformity is unchanged if we add an additive polynomial, let us

just consider the polynomial f(x) = x10 + x3 ∈ F2n [x]. We have seen

that, if n ≡ 0 (mod 4), then there exists α ∈ F
∗
16 ⊂ F

∗
2n such that the

polynomial T 2 + 1
α2T + α24 has roots which are cubes in F

∗
16 and with

TrF16/F2
(α7) = TrF16/F2

(α2) = 0. Hence there exists α ∈ F
∗
2n such that the

polynomial 1
α2Lαf(x) has algebraic and geometric monodromy groups iso-

morphic to the Klein group. Moreover the equation x2 + αx = b1
b0

has a

solution in F2n since TrF2n/F2

(

α5+αa4+a5
α3

)

= TrF2n/F2
(α2) = 0. Finally we

conclude by Theorem 4.6 that if n is sufficiently large and n ≡ 0 (mod 4)

then δF2n
(f) = 8.
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