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Abstract

We investigate the affine equivalence (AE) problem of S-boxes. Given two
S-boxes denoted as S1 and S2, we aim to seek two invertible AE transformations
A,B such that S1 ◦ A = B ◦ S2 holds. Due to important applications in
the analysis and design of block ciphers, the investigation of AE algorithms has
performed growing significance.

In this paper, we propose zeroization on S-box firstly, and the AE problem
can be transformed into 2n linear equivalence problems by this zeroization oper-
ation. Secondly, we propose standard orthogonal spatial matrix (SOSM), and the
rank of the SOSM is invariant under AE transformations. Finally, based on the
zeroization operation and the SOSM method, we propose a depth first search
(DFS) method for determining AE of S-boxes, named the AE SOSM DFS algo-
rithm. Using this matrix invariant, we optimize the temporal complexity of the
algorithm to approximately 1

2n
of the complexity without SOSM. Specifically,

the complexity of our algorithm is O(23n). In addition, we also conducted exper-
iments with non-invertible S-boxes, and the performance is similar to that of
invertible S-boxes. Moreover, our proposed algorithm can effectively handle S-
boxes with low algebraic degree or certain popular S-boxes such as namely AES
and ARIA s2, which are difficult to be handled by the algorithm proposed by
Dinur (2018). Using our algorithm, it only takes 5.5 seconds to find out that
the seven popular S-boxes namely AES, ARIA s2, Camellia, Chiasmus, DBlock,
SEED S0, and SMS4 are affine equivalent and the AE transformations of these
S-boxes are provided.

Keywords: S-box, Affine equivalence, Search algorithm, Cryptanalysis
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1 Introduction

S-boxes are indispensable tools in symmetric key algorithms, serving as a crucial com-
ponent for substitution operations. The concept of S-boxes was initially proposed by
Claude Shannon, who first introduced their use in replacing plaintext with ciphertext
in a seminal paper published in 1949 [1]. Proper design of S-boxes is critical in symmet-
ric key algorithms, as the security of cryptographic algorithms depends on the quality
of S-boxes. The non-linear and differential properties of the S-box provide a defense
against linear and differential cryptanalysis, and remain an active research field [2–4].
S-boxes are widely deployed in numerous symmetric key encryption algorithms, includ-
ing Advanced Encryption Standard (AES) [5], Data Encryption Standard (DES) [6],
and Blowfish [7, 8]. Regarding the security of S-boxes and Boolean functions, numerous
scholars have proposed various construction methods [9–12].

The affine equivalence (AE) problem of S-boxes [13, 14] has important applications
in the design and analysis of S-boxes, involving the search for affine transformations
between two S-boxes. AE problem has been used to evaluate the security of sym-
metric key algorithms, and has been widely studied to improve their security [15].
Additionally, the problem has close relations to other types of equivalence, such as
EA-equivalence [16], and CCZ-equivalence [13]. Furthermore, the equivalence problem
can be applied to classify S-boxes and solve the partition problem [13, 17, 18], both
of which carry significant implications for cryptology. The differential [19] and linear
[20] properties of S-boxes are invariant in the AE transformation, and these proper-
ties can help determine the AE. Many researchers have investigated the AE problem
of Boolean functions [21, 22].

In this paper, we aim to determine whether two given S-boxes are affine equivalent
or not. Specifically, let S1 and S2 be two S-boxes mapping n bits to m bits, we aim to
find two affine transformations A and B such that S1 ◦ A = B ◦ S2. If no such affine
transformations exist, S1 and S2 are not affine equivalent.

During the early stages of research in this field, the algorithm proposed by [23]
employed a probabilistic approach to find the solution, and this approach is related
to “to and fro” algorithm [24]. The authors also evaluated the complexity of the lin-
ear equivalence (LE) problem to be O(n32n), which increased to O(n322n) when the
S-boxes satisfy S(0) = 0. To optimize the AE algorithm, the minimum lexicographic
order was utilized, resulting in a complexity of O(n322n). In subsequent research, the
algorithm presented by [25] utilized the Boolean functions of S-boxes to study the prop-
erties of affine equivalent S-boxes. This approach led to the identification of a solution
based on rank tables, with a complexity of O(n32n). Regarding the recent research
on the AE algorithm, Anne Canteaut et al. [26] investigates the AE of quadratic
functions and provides an analysis of its computational complexity. Specifically, the
authors demonstrate that the total computational complexity of the algorithm is
approximately O(22n(n2 +m2)ω), where ω is the exponent of matrix multiplication.

The algorithm introduced in [25] delivers better performance than [23], albeit with
the caveat that it is only applicable to S-boxes whose algebraic degree [27] exceeds
n−2. And even in cases where the algebraic degree exceeds n−2, the algorithm cannot
guarantee the determination of the corresponding affine equivalent transformations
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under AE. Moreover, for some popular S-boxes that have higher security on the web,
this algorithm fails to provide a feasible AE transformation.

To address the issues of the above algorithms, we propose a novel deterministic
algorithm that consistently provides the correct result, and can deal with S-boxes
with degree less than n − 2. Based on the collected experimental measurements, the
complexity of our algorithm is approximately O(23n).

Our approach begins by transforming the AE problem to LE problems via the
zeroization operation at first. Specifically, based on 2n ways to transform an S-box
into a zero-point S-box, we only need to consider 2n LE problems. Then, we propose
the standard orthogonal spatial matrix (SOSM) to describe the linear property of
S-boxes, as the rank of the SOSM is an invariant for the AE transformation. The
SOSM of an S-box can capture the linear property of the S-box, and this property
is formally described and proven through the Theorem 1. Although the definition of
HDIM in [28] is similar to this one, it has not been utilized for the AE problem and
is defined specifically for permutations. In contrast, our proposed definition allows
for more flexibility in generating high-dimensional elements and is even applicable for
non-invertible S-boxes. Based on the zeroization operation and SOSM method, we
propose the AE SOSM DFS algorithm to determine the AE of S-boxes, which can
also be applied to non-invertible S-boxes. It is worth noting that we do not apply
Gaussian elimination to determine the invertibility of A and B. Instead, we use an
array to record the occurrence of values in these affine transforms. In this manner,
we can judge the invertibility of A and B in real time, with a temporal complexity of
O(1). By doing so, we can significantly reduce the number of computational branches,
as described above.

The rest of the paper is organized as follows. In Section 3, we describe the trans-
formation process in detail. In Section 4, we introduce the orthogonal spatial matrix
(OSM) method, and we use the SOSM to initialize the relationship of A and B. In
Section 5, we present a deterministic algorithm using the zeroization operation and
SOSM method for the AE problem. In Section 6, We conducted experimental evalua-
tions of our algorithm on popular S-boxes on the sage website, random S-boxes, and
S-boxes with low algebraic degree, and compared its performance with algorithms in
[23, 25]. Through our experiments, we have identified that seven S-boxes, namely AES,
ARIA s2 [29], Camellia [30], Chiasmus [31], DBlock [32], SEED S0 [33], and SMS4
[34], exhibit affine equivalence, and we provide the AE transformations in Appendix
A.

2 Preliminaries

Given a vector x = (x(0), x(1), ..., x(n−1))T ∈ GF (2)n, where GF (2) represents the
binary field, the S-box S : GF (2)n → GF (2)m can be employed to map x into another
vector y = (y(0), y(1), ..., y(m−1))T ∈ GF (2)m. Both x and y can be represented by
n-bit and m-bit binary integers, respectively. The addition between two vectors in
GF (2)n is performed by computing their bitwise exclusive or (XOR) value. Similarly,
the addition operation between two variables is represented by the XOR value of them.
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Truth table. Let S : GF (2)n → GF (2)m denote an S-box. The S-box can be repre-
sented by a 2n ×m truth table TS , where each element in the i-th row and the j-th
column of the table corresponds to the j-th bit of the output S(i) in binary form. The
truth table is expressed as TS(i, j)(i = 0, 1, ..., 2n − 1, j = 0, 1, ...,m− 1).

Input negation and output negation. Given an S-box S : GF (2)n → GF (2)m.
The input negation operation can transform S(x) into S′(x) = S(x + a), while the
output negation operation can transform S(x) into S′(x) = S(x)+b, where a ∈ GF (2)n

and b ∈ GF (2)m are constant vectors.

Invertible affine transformation and AE of S-boxes. Let x ∈ GF (2)n be a
vector and A : GF (2)n → GF (2)n be a transformation. If A can be represented as
A(x) = L(x) + c, where L is an invertible linear transformation represented by an
n× n invertible matrix over GF (2) and c is a constant vector, then A is an invertible
affine transformation. Given two S-boxes S1 and S2, if there exist two invertible affine
transformations A and B such that S1 ◦ A = B ◦ S2, then S1 and S2 are said to be
affine equivalent.

3 Zeroization operation

In this section, we introduce the zeroization method, which allows us to convert the AE
problem into linear equivalence problems, leading to a simplification of the problem.

Zeroization operation of the S-box. An S-box S is a zero-point S-box if S(0) =
0. To determine whether two S-boxes S1 and S2 are affine equivalent, we seek two
invertible affine mappings L1 ∈ GF (2)n×n, L2 ∈ GF (2)m×m and c1 ∈ GF (2)n, c2 ∈
GF (2)m such that S1(L1(x)+c1) = L2(S2(x))+c2. However, enumerating all possible
values of c1 and c2 to judge the linear equivalence of the resulting S-boxes leads to
a complexity of 2n+m times the complexity of the LE problem, which is prohibitive
for large n. To overcome this challenge, we introduce the zeroization operation, which
transforms an S-box into a zero-point S-box by operating on c1 and c2. By enumerating
all possible zeroization operations, we can transform one S-box into a zero-point S-
box and compare it with the other S-box in its zero-point form. This reduces the
complexity of the algorithm to 2n times linear equivalence algorithm.

Using input negation and output negation operations, we can transform the
equation S1(L1(x) + c1) = L2(S2(x)) + c2 into the following form:

S1(L1(x) + c1) + S1(0) = L2(S2(x)) + c2 + S1(0). (1)

Then, by letting x = L−1
1 (c1), we know that S1(0) = L2(S2(L

−1
1 (c1)))+ c2, and by

using the output negation operation, we can denote S1(x) + S1(0) as S
′
1(x). Thus, we

obtain the following expression:

S′
1(L1(x) + c1) = L2(S2(x) + S2(L

−1
1 (c1))). (2)

In the above equation, the term c2 has been removed, and further equation yields
the following expression:

4



S′
1(L1(x)) = L2(S2(x+ L−1

1 (c1)) + S2(L
−1
1 (c1))). (3)

Under the input and output negation, we also represent S2(x + L−1
1 (c1)) +

S2(L
−1
1 (c1)) as S

′
2(x). Thus, we have

S′
1(L1(x)) = L2(S

′
2(x)). (4)

Based on this, we can determine that both S′
1 and S′

2 are zero-point S-boxes. By
transforming the original S-boxes S1 and S2 into zero-point S-boxes S′

1 and S′
2, we

have simplified the problem. To solve the AE problem, we can enumerate all possible
values of c1 ∈ {0, 1}

n, and determine whether S′
1 and S′

2 are linearly equivalent. This
approach reduces the problem to a linear equivalence problem with a cost of 2n loops,
which can be solved using a linear equivalence algorithm. We discuss the details of the
linear equivalence algorithms in subsequent sections.

4 Transformation of S-box based on SOSM

In this section, we develop the definition of orthogonal spatial matrix and focus on
the SOSM and its associated properties. Subsequently, we apply SOSM to transform
S-boxes into new ones that can be judged with more necessary constraints.

Definition 1. (Orthogonal spatial matrix) Given an S-box mapping S :
GF (2)n → GF (2)m, a set of k linearly independent vectors G = {x0, x1, ..., xk−1 ∈
GF (2)n} can be selected (0 < k ≤ n). Using this set, we can construct a new
m × k matrix M(S,G), where the (i, j)-th element of the matrix is given by∑

y∈W⊥(xj)
TS(y, i), i.e., M(S,G)i,j =

∑
y∈W⊥(xj)

TS(y, i). We refer to this matrix as

a k-orthogonal spatial matrix (k-OSM). In the special case when k = n, the matrix is
referred to as an orthogonal spatial matrix (OSM).

The present definition is of a general nature, and as such, we proceed to introduce
a particular instance of OSM, which is better suited to embody the linear property
and establish the relationship between the original affine transformations A and B.

Definition 2. (Standard orthogonal spatial matrix) Consider an S-box S :
GF (2)n → GF (2)m. Let G = {e0, e1, . . . , en−1} be a set of orthonormal basis vectors,
where ei represents the i-th unit vector. Then, the OSM associated with S and G is
the standard orthogonal spatial matrix (SOSM), denoted by M(S).

The SOSM is an AE invariant, and we use its property in our algorithm, which
can be characterized by Theorem 1.

Theorem 1. Let S1 and S2 be two S-boxes defined on GF (2)n and GF (2)m, respec-
tively, and for each column of TS1 and TS2 , the number of 0s and 1s are both even. If
there exist invertible affine transformation matrices L1 ∈ GF (2)n×n, L2 ∈ GF (2)m×m,
c1 ∈ GF (2)n, and c2 ∈ GF (2)m such that S1(L1(x) + c1) = L2(S2(x)) + c2 for all
x ∈ GF (2)n, then we have the relation M(S1) · (L

T
1 )

−1 = L2 ·M(S2).
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Remark 1. Theorem 1 is employed to solve the case in which the sequence com-
prising 0s and 1s is of even parity, which is different from the applicability of the
properties of HDIM in [28]. For any bijective S-box, the condition is certainly satisfied.
Consequently, in subsequent sections, all S-boxes satisfy this constraint naturally.

Before presenting the proof of Theorem 1, we provide some useful lemmas.

Lemma 1. Let S : GF (2)n → GF (2)m be an S-box, and for each column of TS ,
the number of 0s and 1s are both even. For any a ∈ GF (2)n and b ∈ GF (2)m, a
new S-box S′ : GF (2)n → GF (2)m can be obtained by S′(x) = S(x + a) + b. Then,
M(S) = M(S′).

Proof of Lemma 1. To prove this lemma, we consider the following two cases, which
are S′(x) = S(x+ a) and S′(x) = S(x) + b.

Case 1. S′(x) = S(x+ a)
Using Definition 2, we have M(S)i,j =

∑
y∈W⊥(ej)

TS(y, i). Since S′(x) = S(x +

a), we have TS′(y, i) = TS(y + a, i). Then, M(S′)i,j =
∑

y∈W⊥(ej)
TS′(y, i) =∑

y∈W⊥(ej)
TS(y + a, i) =

∑
y+a∈W⊥(ej)

TS(y, i). Thus, we only need to prove that∑
y+a∈W⊥(ej)

TS(y, i) =
∑

y∈W⊥(ej)
TS(y, i). To prove this proposition, we only con-

sider the j-th bit of a. If the j-th bit of a is 0, we have that y and y+a belong toW⊥(ej)
simultaneously or not at all, and then

∑
y+a∈W⊥(ej)

TS(y, i) =
∑

y∈W⊥(ej)
TS(y, i).

On the other hand, if the j-th bit of a is 1, there is only one item between y and
y + a belonging to W⊥(ej), and then

∑
y+a∈W⊥(ej)

TS(y, i) =
∑

y/∈W⊥(ej)
TS(y, i).

Because there are even number of 0s and 1s in the i-th column of TS, we
have that

∑
y/∈W⊥(ej)

TS(y, i) =
∑

y∈W⊥(ej)
TS(y, i). Then,

∑
y+a∈W⊥(ej)

TS(y, i) =∑
y∈W⊥(ej)

TS(y, i), and the lemma holds.

Case 2. S′(x) = S(x) + b
In this case, we first decompose b into a binary vector form: (b(0), b(1), ..., b(m−1))T ,

and express b as a linear combination of e0, e1, . . . , em−1, i.e., b =
∑m−1

i=0 b(i) · ei.
Then, we have M(S′)i,j =

∑
y∈W⊥(ej)

TS′(y, i) =
∑

y∈W⊥(ej)
(TS(y, i) + b(i)) =∑

y∈W⊥(ej)
TS(y, i) = M(S)i,j .

By proving the lemma in above cases, we prove that M(S) = M(S′) under S′(x) =
S(x+ a) + b. �

Lemma 2. Consider two S-boxes S1, S2 : GF (2)n → GF (2)m, and for each column
of TS1 and TS2 , the number of 0s and 1s are both even. If there exist invertible linear
transformations L1 ∈ GF (2)n×n and L2 ∈ GF (2)m×m such that S1 ◦ L1 = L2 ◦ S2,
then we have M(S1) · (L

T
1 )

−1 = L2 ·M(S2).

Proof of Lemma 2. Following a similar approach as in the previous proof, we only
need to consider two cases: S1 ◦ L1 = S2 or S1 = L2 ◦ S2.
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Case 1. S1 ◦ L1 = S2

To begin with, in the first case, we need to show that M(S1) ·(L
T
1 )

−1 = M(S2). We
decompose L1 into a product of elementary column transformation matrices. Accord-
ing to basic linear algebra, we can write L1 as E(1) · E(2) · · · · · E(p), where each E(i)

denotes an elementary transformation matrix. An elementary transformation matrix
E(i,j) is a matrix that adds the i-th column to the j-th column.

It can be easily shown that E(i,j) = E−1
(i,j), and we now explore whatM(S1)◦(L

T
1 )

−1

means. To this end, we first prove that M(S1 ◦ E(i,j)) = M(S1) · E
T
(i,j).

According to Definition 2, we have that M(S1)k,l =
∑

y∈W⊥(el)
TS1(y, k). We then

decompose y into its binary components (y(0), y(1), . . . , y(n−1)). We observe that the
action of E(i, j) on y results in a modification of the i-th component of y by adding
its j-th component, i.e., E(i, j) · y = (y(0), y(1), . . . , y(i) + y(j), . . . , y(j), . . . , y(n−1))
assuming i < j. To prove M(S1 ◦ E(i,j)) = M(S1) · E

T
(i,j), we divide this proposition

into two cases.
First, for l 6= i, we need to prove

∑
E(i,j)·y∈W⊥(el)

TS1(y, k) =
∑

y∈W⊥(el)
TS1(y, k).

We find this equation apparently holds because E(i,j) does not affect the l-th compo-

nent of y and thus E(i,j) · y ∈W⊥(el) if and only if y ∈W⊥(el). Second, for l = i, we
need to prove

∑
E(i,j)·y∈W⊥(el)

TS1(y, k) =
∑

y∈W⊥(el)
TS1(y, k)+

∑
y∈W⊥(ej)

TS1(y, k).

We consider that E(i,j) ·y ∈W⊥(el) if and only if y(j) = 0 and y ∈ W⊥(el) or y
(j) = 1

and y ∈ W⊥(el) ∩W⊥(ej). Therefore, we have

∑

E(i,j)·y∈W⊥(el)

TS1(y, k) =
∑

y∈W⊥(el)∩W⊥(ej)

TS1(y, k) +
∑

y/∈W⊥(el)∪W⊥(ej)

TS1(y, k)

= (
∑

y∈W⊥(el)∩W⊥(ej)

TS1(y, k) +
∑

y∈W⊥(el)−W⊥(ej)

TS1(y, k))

+ (
∑

y/∈W⊥(el)∪W⊥(ej)

TS1(y, k) +
∑

y∈W⊥(el)−W⊥(ej)

TS1(y, k))

=
∑

y∈W⊥(el)

TS1(y, k) +
∑

y/∈W⊥(ej)

TS1(y, k).

Since each column of TS1 contains an even number of zeros and ones, we have∑
y/∈W⊥(ej)

TS1(y, k) =
∑

y∈W⊥(ej)
TS1(y, k), and thus

∑
E(i,j)·y∈W⊥(el)

TS1(y, k) =∑
y∈W⊥(el)

TS1(y, k) +
∑

y∈W⊥(ej)
TS1(y, k).

We have established that M(S1 ◦ E(i,j)) = M(S1) · E
T
(i,j). Specifically, we have

M(S2) = M(S1 ◦L1) = M(S1 ◦E
(1) ◦E(2) ◦ ... ◦E(p)) = M(S1) · (E

(1))T · (E(2))T · ... ·
(E(p))T = M(S1) · (E

(p) · E(p−1) · E(1))T = M(S1) · (L
−1
1 )T .

Case 2. S1 = L2 ◦ S2

Our objective is to show that M(L2 ◦ S2) = L2 ·M(S2), where L2 is a product of
elementary column transformation matrices E(1), E(2), ..., E(p), and S2 is a Boolean

7



function. We begin by proving that M(E(i,j) ◦S2) = E(i,j) ·M(S2) for any elementary
column transformation matrix E(i,j). By examining the truth table of E(i,j) ◦ S2,
we observe that TE(i,j)◦S2 = E(i,j) · TS2 , since the transformation only involves two
swapped columns of the truth table.

Using the definition of the SOSM and the fact that TE(i,j)◦S2 = E(i,j) ·TS2, we can
conclude that M(E(i,j) ◦ S2) is obtained by adding the j-th row of M(S2) to the i-th
row of M(S2). Therefore, we have shown that M(E(i,j) ◦S2) = E(i,j) ·M(S2), and then

M(L2 ◦S2) = M(E(1) ◦E(2) ◦ ...◦E(p) ◦S2) = E(1) ·E(2) · ... ·E(p) ·M(S2) = L2 ·M(S2).

With the combination of above cases, we prove that M(S1) · (L
T
1 )

−1 = L2 ·M(S2).
�

Proof of Theorem 1. By applying above Lemmas 1 and 2, we know that
M(S1(L1(x) + c1) + c2) = M(S1) · (L

T
1 )

−1(x) and M(L2(S2)(x)) = L2 ·M(S2)(x)
for all x ∈ GF (2)n. Therefore, we have M(S1) · (L

T
1 )

−1(x) = L2 ·M(S2)(x) for all
x ∈ GF (2)n. �

In conclusion, we have shown that if two S-boxes S1 and S2 are affine equivalent,
then their SOSMs M(S1) and M(S2) are related by the equation M(S1) ·(L

T
1 )

−1(x) =
L2 · M(S2)(x) for all x ∈ GF (2)n. This result provides an important insight into
the relationship between the linear properties of S-boxes that are related by affine
transformations.

Transformation of S-boxes using SOSM. Based on linear algebra, we can perform
a series of row-column linear transformations on a given matrix L to obtain a special

form

(
Er O
O O

)
, where r is the rank of L and Er is the r × r identity matrix.

According to Theorem 1, we have Rank(M(S1)) = Rank(M(S2)), and we can
set r to be the rank of M(S1). Furthermore, there exist invertible matrices A1, A2 ∈
GF (2)n×n and B1, B2 ∈ GF (2)m×m such that B1 ·M(S1) · A1 = B2 ·M(S2) · A2 =(
Er O
O O

)
. The matrices A1, A2, B1, B2 can be computed efficiently using Gaussian

elimination.
Next, we can construct two new S-boxes S̃1 and S̃2 as follows: S̃1 = B1◦S1◦(A

T
1 )

−1

and S̃2 = B2 ◦ S2 ◦ (A
T
2 )

−1. It can be shown that S̃1 and S̃2 are affine equivalent if
and only if S1 and S2 are affine equivalent. Therefore, we only need to test for AE
between S̃1 and S̃2.

Based on SOSM, we transform S-boxes S1, S2 into new ones S̃1, S̃2. Next, if they
satisfies that S̃1(L1(x)+ c1) = L2(S̃2(x))+ c2, we explore the relation between L1 and
L2.

To describe the relation of L1 and L2, we express L1 and L2 as blocked matrices:

L1 =

(
L
(11)
1 L

(12)
1

L
(21)
1 L

(22)
1

)
, L2 =

(
L
(11)
2 L

(12)
2

L
(21)
2 L

(22)
2

)
,
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where L
(11)
1 , L

(11)
2 are r × r matrices and r is the rank of the SOSMs of S1 and S2.

Then, the dimensions of the other blocks are also determined accordingly.

After obtaining S̃1, S̃2, we proceed to deduce the relationship equations between
the sub-block matrices of L1 and L2, and the following theorem can explain it.

Theorem 2. Let S̃1 and S̃2 be two affine equivalent S-boxes (GF (2)n → GF (2)m)
obtained by transformations based on SOSM, and suppose that there exist L1 ∈
GF (2)n×n, L2 ∈ GF (2)m×m, c1 ∈ GF (2)n, and c2 ∈ GF (2)m such that S̃1(L1(x) +

c1) = L2(S̃2(x)) + c2. Then, we have ((L
(11)
1 )T )−1 = L

(11)
2 and L

(21)
1 = L

(21)
2 = O.

Proof of Theorem 2. We have M(S̃1(L1(x) + c1)) = M(L2(S̃2(x)) + c2), and by

Theorem 1, we obtainM(S̃1)·(L
T
1 )

−1 = L2·M(S̃2). SinceM(S̃1) = M(S̃2) =

(
Er O
O O

)
,

we obtain the following equation:

(
Er O
O O

)
=

(
L
(11)
2 L

(12)
2

L
(21)
2 L

(22)
2

)
·

(
Er O
O O

)
·

(
(L

(11)
1 )T (L

(21)
1 )T

(L
(12)
1 )T (L

(22)
1 )T

)
. (5)

By solving this equation, we obtain the following expression:





L
(11)
2 · (L

(11)
1 )T = Er

L
(21)
2 · (L

(11)
1 )T = O

L
(11)
2 · (L

(21)
1 )T = O

L
(21)
2 · (L

(21)
1 )T = O

. (6)

It is evident that both L
(11)
2 and (L

(11)
1 )T are invertible, implying that L

(21)
1 =

L
(21)
2 = O. �

5 The AE algorithm based on SOSM

In this section, we present our AE algorithm. Based on the transformations elaborated
in Section 3 and 4, we have developed AE SOSM DFS algorithm that can search all
the solution spaces and assure the result is absolutely correct, and this algorithm is
far more efficient than the general DFS algorithm without SOSM.

Firstly, using the SOSM method and the zeroization operation, the problem is
tranformed to some linear equivalence problems, and the algorithm for solving the AE
problem is called AE SOSM DFS algorithm (algorithm 1).

Algorithm 1 AE SOSM DFS Algorithm

1: Calculate the SOSM of S1 and S2 (M(S1) and M(S2))
2: Calculate the rank of M(S1) and M(S2), denoted by r1 and r2
3: if r1 6= r2 then
4: Reject the AE of S1 and S2

5: end if

9



6: Transform S1 and S2 into new S-boxes S̃1 and S̃2 such that M(S̃1) =

M(S1),M(S̃2) = M(S2)

7: Initialize a new S-box such that S′
1(x) = S̃1(x) + S̃1(0)

8: Success← False
9: for every vector a ∈ GF (2)n do

10: Initialize a new S-box such that S′
2(x) = S̃2(x+ a) + S̃2(a)

11: Execute the LE SOSM DFS algorithm to check the linear equivalence of S′
1

and S′
2

12: if Success = True then
13: break
14: end if
15: end for
16: if Success = True then
17: Accept the AE of S1 and S2 and return AE transformations
18: else
19: Reject the AE of S1 and S2

20: end if

We have successfully transformed the problem of AE into that of linear equivalence.
In the subsequent step, we introduce the LE SOSM DFS algorithm to solve the linear
equivalence problem.

To be convenient to express the vector whose bits after the r-th bit are all 0s, we
define a new definition as follows.

Definition 3. (Suffix function) Given a vector x ∈ GF (2)n, the suffix function suf
with respect to r and x, is defined by

suf(x, r) =

{∏n−1
i=r (x(i) + 1), r 6= n

1, r = n
,

where x(i) is the i-th component of x.
According to Theorem 2, there exist relations between input vectors of L1 and L2,

and we use the following lemma to optimize our LE algorithm.

Lemma 3. Suppose S1 and S2 are two zero-point S-boxes which are transformed using
SOSM, and there exist affine transformations L1 and L2 such that S1 ◦L1 = L2 ◦ S2.
Let x ∈ GF (2)n and y ∈ GF (2)m be the input vectors of L1 and L2, respectively, and
it satisfies that suf(x, r) = 1, suf(y, r) = 1. Then, we have

((x)r)
T · (y)r = ((L1(x))r)

T · (L2(y))r, (7)

where (x)r denotes the r-dimensional vector obtained by retaining the first r bits of x.

Proof of Lemma 3. It is possible to express ((L1(x))r)
T · (L2(y))r as ((x)r)

T ·
((L1)r)

T · (L2)r · (y)r, where Lr refers to the matrix that retains only the first r rows

10



and the first r columns of L. According to Theorem 2, we have ((L1)r)
T · (L2)r = Er,

and hence, equation (7) is established. This attribute enables us to eliminate numerous
branches in our algorithm. �

Using lemma 3, we can easily check whether L1 and L2 are satisfied with Theorem
2, because checking two vectors costs less than two matrices.

Let us consider how to solve linear equivalence problems, and it is to find the
relation S1 ◦ L1 = L2 ◦ S2, where S1 and S2 are zero-point S-boxes (GF (2)n →
GF (2)m) that have been transformed using SOSM. Similar to the algorithm in [23],
we utilize CL1 , CL2 to record checked vectors of L1, L2 respectively, and NL1 , NL2 to
record new vectors that are required to check. Subsequently, we utilize sets VL1 , VL2 to
record the values that have assigned and determine whether the value space has been
utilized fully without Gaussian elimination. When we get the value of a new vector on
the mapping L1 or L2, we can deduce additional information about these mappings.
We continuously process the vectors in sets NL1 and NL2 until there is no point in
NL1 , NL2. By this way, if we put a new point to NL1 or NL2 and then we can calculate
the value of more points. The specific processing procedure is denoted by Work.

1: procedure Work(L1, L2)
2: while NL1 6= ∅ or NL2 6= ∅ do
3: while NL1 6= ∅ do
4: pick x ∈ NL1

5: if x /∈ CL1 then
6: if suf(x, r) = 1 then
7: if CheckL2(x) = False then
8: Reject← True
9: end if

10: end if
11: for x′ ∈ CL1 do
12: if (x + x′) ∈ NL1 and L1(x + x′) 6= L1(x) + L1(x

′) or (L1(x) +
L1(x

′)) ∈ VL1 then
13: Reject← True
14: end if
15: L1(x+ x′)← L1(x) + L1(x

′), VL1 ← VL1 ∪ {L1(x+ x′)}
16: if S2(x+ x′) /∈ CL2 and S2(x+ x′) /∈ NL2 then
17: if S1(L1(x) + L1(x

′)) ∈ VL2 then
18: Reject← True
19: end if
20: L2(S2(x+ x′))← S1(L1(x) + L1(x

′)), VL2 ← VL2 ∪ {S1(L1(x) +
L1(x

′))}
21: end if
22: end for
23: end if
24: NL1 ← NL1 \ {x}, NL2 ← S2(x+ CL1) \ CL2 , CL1 ← CL1 ∪ (x + CL1)
25: end while

11



26: while NL2 6= ∅ do
27: pick y ∈ NL2

28: if y /∈ CL2 then
29: if suf(y, r) = 1 then
30: if CheckL1(y) = False then
31: Reject← True
32: end if
33: end if
34: for y′ ∈ CL2 do
35: if (y + y′) ∈ NL2 and L2(y + y′) 6= L2(y) + L2(y

′) or (L2(y) +
L2(y

′)) ∈ VL2 then
36: Reject← True
37: end if
38: L2(y + y′)← L2(y) + L2(y

′), VL2 ← VL2 ∪ {L2(y + y′)}
39: if S−1

2 (y + y′) /∈ CL1 and S−1
2 (y + y′) /∈ NL1 then

40: if S−1
1 (L2(y) + L2(y

′)) ∈ VL1 then
41: Reject← True
42: end if
43: L1(S

−1
2 (y + y′)) ← S−1

1 (L2(y) + L2(y
′)), VL1 ← VL1 ∪

{S−1
1 (L2(y) + L2(y

′))}
44: end if
45: end for
46: end if
47: NL2 ← NL2 \ {y}, NL1 ← S−1

2 (y + CL2) \ CL1 , CL2 ← CL2 ∪ (y + CL2)
48: end while
49: if |CL1 | = 2n and |CL2 | = 2m then
50: Success← True
51: break
52: end if
53: end while

Remark 2. It is imperative to note that if the flag Reject becomes true, the cur-
rent judgment should be terminated, and due to the probability of non-invertibility
of S1, S2, we consider preimages S−1

1 , S−1
2 as: S−1

1 (x) = {y ∈ GF (2)n : x =
S1(y)}, S

−1
2 (x) = {y ∈ GF (2)n : x = S2(y)}, which may be empty or multiple elements

in them. While assigning values to new vectors, we should verify the equation (7). To
achieve this, the Check function, as described in the procedure Work, is utilized.
However, it is worth noting that the exhaustive verification of all points that charac-
terize in another mapping may prove to be excessively time-consuming. To address
this issue, we use a novel technique that optimizes this process.

The X-OR basis technique. This technique is highly valuable for our algorithm,
and we explicate its main idea in the following straightforward manner.

Consider a given set of x ∈ GF (2)n. Our objective is to obtain a set of linearly
independent vectors. If we exhaustively explore each vector in the set and utilize a new
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set for recording already-encountered vectors and their linear expansions, followed by
verifying whether a new vector has already appeared, the complexity of this method
would be O(2n) in the worst case. In order to mitigate the complexity of seeking
linearly independent vectors, the X-OR basis technique employs a vector consisting of
n vectors to record the current set of linearly independent vectors. When a new vector
is ready to be inserted into the X-OR basis, we can employ the present vectors to assess
whether the new vector is represented by them. If the new vector is not represented
by them, we can insert it, and the complexity of insertion is optimized to O(n).

The INITIAL and INSERT operations of the X-OR basis are outlined.

1: procedure INITIAL
2: for i in range [0, n− 1] do
3: set basis(i) to empty vector
4: end for
5:

6: procedure INSERT(x)
7: for i in range [0, n− 1] do
8: if the i-th bit of x is 0 then
9: continue

10: end if
11: if basis(i) is empty vector then
12: basis(i)← x
13: break
14: end if
15: x← x+ basis(i)
16: end for

With the aid of this technique, we can rapidly verify the equation in Lemma 3
while assigning values to L1 or L2. Specifically, we can verify whether ((x1)r)

T ·(x2)r =
((L1(x1))r)

T ·(L2(x2))r holds between the new vector x1 of L1 (or L2) and the vectors
x2 in the X-OR basis of L2 (or L1).

Taking the X-OR basis of L2 as a case study, the procedure for this operation are
in procedure Check.

1: procedure CheckL2(x1)
2: for i in range [0, r − 1] do
3: if basis(i) 6= 0 then
4: val1 ← x1 + basis(i), val2 ← L1(x1) + L2(basis(i))
5: flag ← 0
6: while val1 6= 0 and val2 6= 0 do
7: flag← flag + val1 mod 2 + val2 mod 2
8: val1 ← val1 / 2, val2 ← val2 / 2
9: end while

10: if flag 6= 0 then
11: return False
12: end if
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13: end if
14: end for
15: return True

Constrained by the cardinality of the set of vectors, the temporal complexity of
the algorithm is O(r2).
The LE SOSM DFS algorithm. We initialize sets C,N, V before every attempt.
Once NL1 and NL2 are empty, we will traverse the value of a new minimum point
of L1 or L2 (the priority of point vectors can be determined based on their binary
representation values, where those with lower values are favored due to their higher
likelihood of satisfying the condition suf(x, r) = 1). Expanding upon the algorithm
presented in reference [23], we see that the initial linear equivalence algorithm, which
exhibits a temporal complexity of O(n322n) for verifying the zero-point S-boxes. Upon
iterating the equivalence algorithm for 2n instances, the total temporal complexity of
the AE algorithm amounts to O(n323n). However, according to [26], the computational
complexity can be multiplied by a factor 2n in worst cases.

We utilize a Depth First Search (DFS) algorithm to search for the solution. The
current traversal value, v, necessitating assignment is subject to a validity check,
whereby values falling outside the permissible range are promptly rejected. We can
use a tree structure to represent the search process, and the efficiency of this DFS
algorithm depends on the size of this tree.

The use of SOSM accelerates the search process of above DFS algorithm, resulting
in significant pruning of numerous branches. In light of the dependence between L1 and
L2 for the first r (r > 0) bits, the calculation complexity of the first r bits can be seen
as the optimization of SOSM. To be convenient to analyze the complexity, we assume
that n = m. Additionally, according to reference [35], as n approaches infinity, the
probability that a random n×n Boolean matrix has rank r is approximately given by
the expression βr = 2−(r−n)2 ·α ·Πn−r

i=0 (1−1/2i)−2, where α = Π∞
i=1(1−1/2i) ≈ 0.288,

and we know that the rank of SOSM is probably in proximity to n. Furthermore, we
assume that r = n, and then we observe the variation in obtaining the value of a novel
point vector. For example, when n = 4, if we add a new point vector to the check set,
the resulting distribution of the check set may be like Figure 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

Not in AddedNewly added

Fig. 1 The difference of check set

We denote the previous check set as CL1 , CL2 . After adding a new point vector,
CL1 , CL2 can be updated iteratively until no further vectors can be added, and we
denote new check sets as C′

L1
, C′

L2
. By each step of adding point vector, we can know

that the quantity of new linearly independent equation (7) is log2 |C
′
L1
| · log2 |C

′
L2
| −

log2 |CL1 | · log2 |CL2 |. Based on the parity of equation (7), we make the assumption
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that the probability of equation (7) holding is 1/2. Then, the probability of accept-
ing this step by SOSM method is approximately 1

2
log2 |C′

L1
|·log2 |C′

L2
|−log2 |CL1

|·log2 |CL2
|
=

2
log2 |CL1

|·log2 |CL2
|

2
log2 |C′

L1
|·log2 |C′

L2
|
, and the total probability of accepting from initial check set is

1

2
log2 |C′

L1
|·log2 |C′

L2
|
(multiply the probability of every step). In other words, the SOSM

method can reduce the temporal complexity of the original DFS algorithm by a factor
of 1

2α(n) in average, where α(n) denotes a funtion related to n and has a value greater
than 1. This function exhibits a tendency towards linearity with respect to n, and
our observations from experiments of Section 6.2 indicate a complexity reduction by
a factor of 1

2n by using SOSM method.
The process of LE SOSM DFS algorithm is presented in Algorithm 2.

Algorithm 2 LE SOSM DFS Algorithm

Input: S-boxes S1, S2

Output: If S1 and S2 are affine equivalent, accept them and give the transformation
L1, L2. If not, reject it.

1: Success← False, Reject← False
2: L1(0) ← 0, L2(0) ← 0, CL1 ← {0}, CL2 ← {0}, VL1 ← {0}, VL2 ← {0}, NL1 ←

∅, NL2 ← ∅

3: v ← 0
4: while Success 6= True do
5: if Reject = True then
6: Recover all the sets, X-OR basis and v such that change in the last level
7: v ← v + 1(set v to next value)
8: if v = 2n then
9: go back to last while directly (e.q. continue)

10: end if
11: Reject← False
12: else
13: v ← 0
14: end if
15: Pick a non-valued point x with minimum lexical order of L1

16: if suf(x, r) = 0 and suf(v, r) = 0 or suf(x, r) = 1 and suf(v, r) = 1 and
CheckL2(x) = True then

17: L1(x)← v, NL1 ← NL1 ∪ x, VL1 ← VL1 ∪ v
18: else
19: Pick a non-valued point y with minimum lexical order of L2

20: if suf(y, r) = 0 and suf(v, r) = 0 or suf(y, r) = 1 and suf(v, r) = 1 and
CheckL1(y) = True then

21: L2(y)← v, NL2 ← NL2 ∪ y, VL2 ← VL2 ∪ v
22: else
23: Reject← True
24: end if
25: end if
26: Work(L1, L2)
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27: end while
28: if Success = True then
29: Accept the linear equivalence of S1 and S2

30: return L1 and L2

31: else
32: Reject the linear equivalence of S1 and S2

33: end if

Remark 3. In order to prune as much as possible, we give priority to dealing with
x or y that satisfy the suf function equal to 1. Due to smaller degree of freedom of
these points, we can get solution faster than seeking with no rules.

6 Experiments and Results

Based on the Section 5, we have devised AE SOSM DFS algorithm based on SOSM
for AE, and in this section, we examine its performance.

6.1 Applications on some of the popular S-boxes

We implement the AE algorithms in [23] and [25] respectively, and they are referred to
in context as the ACAB and Dinur algorithms. The ACAB algorithm used here aims
to find the S-box with the smallest lexicographical order among all the S-boxes that
are linearly equivalent. Although they are applicable for determining random data,
the Dinur algorithm is unable to handle some popular S-boxes or S-boxes with low
algebraic degree, and we conduct experimental evaluations on popular S-boxes mainly.

We present the utilization of our algorithm to analyze some popular S-boxes from
the sage website. Our algorithm and the ACAB algorithm can process these S-boxes,
but the Dinur algorithm is ineffective in handling these particular S-boxes.

This particular dataset on the website is frequently cited because its S-boxes
exhibit favorable security properties. We inspected a total of 703 pairs of 8-bit
S-boxes, comprising 38 distinct ones, including AES, Anubis, ARIA s2, BelT, Camel-
lia, Chiasmus, CLEFIA S0, Crypton 0 5, Crypton 1 0 S0, CS cipher, CSA, CSS,
DBlock, E2, Enocoro, Fantomas, FLY, Fox, Iceberg, iScream, Kalyna pi0, Khazad,
Kuznyechik, Lilliput-AE, MD2, newDES, Safer, Scream, SEED S0, SKINNY 8, Skip-
jack, SNOW 3G sq, SMS4, Turing, Twofish p0, Whirlpool, Zorro, ZUC S0.

The AE SOSM DFS algorithm spend 4015 seconds to solve the AE problem of the
703 pairs of S-boxes, and 21 pairs of them exhibit AE. Nevertheless, in our experimen-
tal evaluations, the ACAB algorithm spent 15467 seconds finishing this task, and the
Dinur algorithm is unable to derive a feasible solution. The using time and number of
successful tests of these algorithms are presented in Table 1.
Remark 4. Regarding the Dinur algorithm, we have observed that when the non-
linearity of an S-box reaches a high level, its symbolic rank tends to become unitary.
Taking AES as an example, when we set d = n− 2, the symbolic rank of AES exhibits
a specific pattern characterized by the occurrence of (8,7) tuples. As a result, in the
subsequent flow of the Dinur algorithm, all of its high-support HSMs are identified
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Table 1 The using time and number of successful tests
comparison of the AE SOSM DFS, ACAB and Dinur algorithms
on 703 pairs of popular S-boxes

AE SOSM DFS ACAB Dinur
Time(s) 4015 15467 218

Number of successful tests 21 21 0

within the same HG, rendering it impossible to establish a unique HSM. Because
of this, the affine transformation cannot be uniquely determined. After setting d to
n− 1, we observed that although the classification of symbolic ranks becomes diverse,
it is still not possible to collect a sufficient number of unique HSMs to solve for the
coefficients of affine equivalent transformations.

We find out that seven of the S-boxes, specifically AES, ARIA s2, Camellia, Chi-
asmus, DBlock, SEED S0, and SMS4, are actually affine equivalent to each other, and
the affine transformations are displayed in Appendix A.

6.2 Statistical analysis of randomized data

The variable Count is introduced in this study to represent the number of checkpoint
operations executed by algorithm. As Count increases, the traversal branches of the
algorithms also increase proportionally, thereby allowing for the assessment of the
effectiveness of different algorithms. In each case of n (4 ≤ n ≤ 10), 100 pairs of affine
equivalent S-boxes are randomly generated and tested by AE SOSM DFS algorithm.

Using above random data to test the complexity, we get log2(Count) and show
them in Table 2, and the AE SOSM DFS algorithm guarantees the correctness of the
obtained results.

In addition, we will also investigate the impact on algorithm efficiency when remov-
ing the SOSM matrix optimization and zeroizations. The results are also shown in
Table 2.

Table 2 The Count (log2) between the AE SOSM DFS algorithm
and its counterparts without SOSM and zeroizations on random
permutations

n AE SOSM DFS Without SOSM Without zeroizations
4 9.15 14.02 11.89
5 12.34 17.60 15.21
6 15.25 21.73 18.08
7 18.48 25.39 21.51
8 21.37 28.59 24.31
9 24.08 31.77 27.30
10 27.57 35.34 30.40
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Remark 5. According to above experiences, we analyze the total complexity of
AE SOSM DFS algorithm is approximately O(23n), and for random data, it accu-
rately identifies the AE transformation. For random permutations, the Dinur algorithm
exhibits higher efficiency compared to our algorithm, but the ACAB algorithm spend
additional time finding the linear representation. Further detailed information is pro-
vided in Appendix B. By comparing these methods without SOSM or zeroizations,
we have observed that the AE SOSM DFS algorithm is effective in reducing the num-
ber of branches. In the previous sections, we analyzed the total complexity of the
AE SOSM DFS algorithm is approximately 1

2n of the complexity of the algorithm
without SOSM. The absence of zeroization does not impact the complexity of the algo-
rithm, but it leads to a higher constant factor. The complexity is consistent with the
findings displayed in Table 2. Upon reviewing Figure 2, it becomes apparent that the
implementation of the SOSM and zeroization method expedites the process of solution
searching.

4 5 6 7 8 9 10
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Fig. 2 Complexity reduction from AE SOSM DFS to cases without SOSM and zeroizations

Additionally, our algorithm effectively addresses the AE problem for non-invertible
S-boxes with an even distribution of 0s and 1s within each column of their respective
truth tables. We develop a experiment on non-invertible S-boxes. Specifically, assuming
that n = m, we generate 100 pairs of non-invertible S-boxes that satisfies above
conditions, and for each input vector x of the S-box S we randomly generate a output
vector y ∈ GF (2)n. Then, we use AE SOSM DFS algorithm to determine their AE.
The results of these experiments are presented in Table 3.
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Table 3 The accuracy rate (AR)
and average complexity (Count) for
AE SOSM DFS algorithm on
non-invertible S-boxes

n AR(%) Average Count

4 100 279 ≈ 28.12

5 100 2835 ≈ 211.46

6 100 29083 ≈ 214.82

7 100 215443 ≈ 217.71

8 100 2550164 ≈ 221.28

9 100 26537542 ≈ 224.66

10 100 318024656 ≈ 228.24

Remark 6. Our experimental results show that the performance of AE SOSM DFS
algorithm on non-invertible S-boxes is similar to the performance on invertible S-boxes,
and we are able to provide the correct AE transformation for all the data.

6.3 Exploring the Algebraic Degree of S-Boxes

Algebraic degree (AD) is a crucial indicator in evaluating the cryptographic strength
of S-boxes. It measures the maximum degree of coordinate functions. In this study,
we investigate the performance of our algorithm on S-boxes with different algebraic
degrees.

The AD of certain extensively utilized S-boxes is as follows: 7 for AES [36] and
ZUC S1 [37], 6 for CLEFIA S0 [30] and SKINNY 8 [38], 5 for FLY [39] and ZUC S0
[37], and 4 for CSS [40]. To expand upon the analysis of AD’s effect on our algorithm’s
performance, for each one of the above seven S-boxes, we randomly generate 100 S-
boxes that are affine equivalent to it, and then use AE SOSM DFS to test the AE.
The results are displayed in table 4.

Table 4 The results of AE SOSM DFS on S-boxes with
different ADs

Basic S-box AR(%) Average Count

AES (AD = 7) 100 6975337 ≈ 222.73

CLEFIA S0 (AD = 6) 100 415633368 ≈ 228.63

CSS (AD = 4) 100 1898323 ≈ 220.85

FLY (AD = 5) 100 360088920 ≈ 228.42

SKINNY 8 (AD = 6) 100 229660269 ≈ 227.77

ZUC S0 (AD = 5) 100 51865198 ≈ 225.62

ZUC S1 (AD = 7) 100 6583764 ≈ 222.65

We can see the performance of AE SOSM DFS algorithm may not be impacted
much on S-boxes with low ADs, and the overall optimization performance remains
notably effective. However, the Dinur algorithm is not capable of handling S-boxes
with a low degree.
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7 Conclusions

In this paper, we present an efficient algorithm for seeking AE between S-boxes. By
selectively pruning branches, our algorithm achieves lower complexity than direct
transformation checking. Further optimization opportunities may arise through the
development of more effective pruning strategies. By using DFS algorithm with
zeroization operation and SOSM method, our algorithm demonstrates a high degree
of adaptability, thereby facilitating the fitting of S-boxes across a diverse range of
scenarios.
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A The affine transformation between some S-boxes.

We determine the AE of AES, ARIA s2, Camellia, Chiasmus, DBlock, SEED S0 and
SMS4, and it takes approximately 5.5 seconds on the laptop to check they are affine
equivalent to each other and give the AE transformations. Upon substitution of S1

with AES and S2 with the other aforementioned S-boxes, the affine transformation
coefficients in S1(L1(x) + c1) = L2(S2(x)) + c2 are as follows.

(1) AES (S1) and ARIA s2 (S2)

(L1 | c1) =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




(L2 | c2) =




0 1 0 1 0 0 1 0 0
1 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 0 0
1 1 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 0 1
1 1 0 1 1 1 1 0 0
1 0 0 0 1 1 0 1 0




(2) AES (S1) and Camellia (S2)
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(L1 | c1) =




1 0 1 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0
1 0 1 0 0 1 1 0 0
1 0 0 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0




(L2 | c2) =




1 1 1 1 1 0 0 0 1
0 1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 1 1
1 1 1 1 0 1 1 1 0
1 0 1 0 0 0 0 1 1
1 1 1 0 0 1 1 0 0
1 1 1 0 0 0 1 0 0
1 1 1 0 0 1 0 0 0




(3) AES (S1) and Chiasmus (S2)

(L1 | c1) =




1 1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0 0
1 0 1 0 0 1 1 0 1
1 0 1 0 1 1 0 0 1
0 0 1 0 1 0 0 0 1
1 1 1 1 0 0 0 0 1
0 1 1 1 0 0 0 0 0
0 1 0 0 1 0 1 1 1




(L2 | c2) =




0 0 1 0 1 0 1 1 0
1 1 1 1 1 0 1 1 1
0 1 1 1 1 1 1 0 0
0 1 1 0 0 1 0 1 0
1 1 0 0 1 1 1 1 1
0 0 1 1 0 1 1 0 1
0 1 0 1 1 0 0 0 0
1 0 0 1 1 0 1 1 0




(4) AES (S1) and DBlock (S2)

(L1 | c1) =




1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0 0
1 1 1 1 1 1 1 1 0




(L2 | c2) =




0 0 0 1 1 1 0 1 0
1 0 0 1 0 0 1 1 0
0 0 1 0 1 1 0 1 0
1 1 1 1 1 1 1 1 0
0 1 1 1 0 0 0 0 0
1 0 1 1 0 1 1 1 0
1 1 0 1 0 1 1 1 1
0 0 1 1 1 0 1 1 0




(5) AES (S1) and SEED S0 (S2)

(L1 | c1) =




0 1 1 1 0 0 0 0 0
0 0 1 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 1 0 1 1 1 0 0
1 0 1 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0




(L2 | c2) =




1 0 1 0 1 0 1 0 1
1 1 0 1 1 1 0 0 1
1 0 1 0 1 0 0 1 1
1 0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1 0
1 1 1 0 0 0 1 0 0
1 1 1 0 1 1 0 1 1
1 0 1 0 0 0 1 1 0




(6) AES (S1) and SMS4 (S2)

(L1 | c1) =




1 1 0 0 1 0 0 0 1
1 0 0 1 1 0 0 0 1
1 0 1 1 1 0 1 0 0
1 0 1 0 0 0 0 0 1
1 0 0 0 1 1 0 0 1
0 1 1 0 0 1 0 0 1
0 1 0 0 1 1 0 0 0
1 0 0 1 0 1 0 1 1




(L2 | c2) =




1 1 0 0 0 1 0 0 0
1 0 1 0 0 0 1 0 1
0 0 0 1 1 1 1 0 1
1 0 0 0 1 0 0 0 1
1 0 0 1 0 1 1 1 0
1 1 0 1 0 0 0 0 1
0 1 1 0 1 1 1 0 1
0 1 1 0 0 0 0 0 0



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B The possible limitation with the ACAB algorithm

By randomly generating a permutation [2,7,3,4,1,0,6,5] with n = 3, we can determine
that its smallest LE representation is [1,0,2,3,4,6,5,7]. However, it may be a challenge
for the ACAB algorithm to discover this LE representation by a small number of
guesses [26] due to the presence of numerous sections with variable values in sets A
and B. As a result, when executing the ACAB algorithm, it is possible to obtain
alternative representations such as [1,0,2,4,3,5,6,7] or [1,0,2,3,4,6,5,7].

According to the ACAB algorithm, we perform the following assignments: A(1) = 5
and B(1) = 2. These assignments yield SR(1) = 0 and SR(0) = 1. In the subsequent
step, if we assign A(2) = 6 and B(2) = 6, we obtain SR(2) = 2, resulting in the correct
linear representation. However, there is not a unique way to achieve SR(2) = 2. For
example, if we assign A(2) = 1 and B(2) = 7, we can still obtain that SR(2) = 2.
However, upon further analysis, we find that A(3) = A(1) ⊕ A(2) = 4 and B(3) =
B(1) ⊕ B(2) = 5. Consequently, SR(3) = (B−1 ◦ S ◦ A)(3) = B−1(1) 6= 3, but based
on the previously established correct linear representation, it can be inferred that
SR(3) = 3. Therefore, this alternative assignment does not correspond to the correct
linear representation.

Therefore, when n is large, obtaining the correct result solely through a small num-
ber of attempts becomes challenging. In order to ensure the identification of feasible
solutions, it will take more time thorough exploration.
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