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We study the entanglement entropy in quasiparticle states where certain unit patterns are excited
repeatedly and sequentially in momentum space. We find that in the scaling limit, each unit pattern
contributes independently and universally to the entanglement, leading to a volume-law scaling of the
entanglement entropy. This characteristic of volume-law entanglement fragmentation is numerically
confirmed in both fermionic and bosonic chains. We derive an analytical formula for fermions, which
can also be applied to the spin-1/2 XXZ chain with appropriate identifications.

I. INTRODUCTION

Quantum entanglement has been instrumental in vari-
ous areas of physics, such as quantum information theory,
condensed matter physics, and high-energy physics [1–6].
Notably, entanglement adheres to distinct scaling laws in
various phases of quantum systems, which allows it to
serve as an indicator of quantum phase transitions [7, 8].
In the context of one-dimensional quantum spin chains
with energy gaps, the ground state entanglement entropy
typically conforms to the area law. Conversely, in crit-
ical spin chains, the ground state entropy adheres to a
logarithmic law, with the proportionality constant being
related to the central charge [9–13].

The study of the time evolution of entanglement en-
tropy following a quantum quench in many-body systems
[14] has motivated research into entanglement entropy in
excited states. This includes both low-energy states [15–
33], where the entropy adheres to either the area law or
logarithmic law, and high-energy states [34–40], where
the entropy typically aligns with the volume law. In [41–
46], the average entanglement entropy across the spec-
trum has been employed to characterize the universal
properties of chaotic and integrable systems.

Entanglement of excited states in integrable mod-
els can often be understood in terms of quasiparticles
[14, 47, 48]. When a finite number of quasiparticles with
large energy and significant momentum differences are
excited, a semiclassical picture can describe the entan-
glement entropy [25–28]. For earlier related works, see
[18, 20, 23]. On the other hand, when the momentum
differences between the excited quasiparticles are small,
there are strong coherence effects among the quasiparti-
cles, which results in significant corrections to the semi-
classical picture of the entanglement entropy [31–33].

In this paper, we study the entanglement entropy in
states with a large number of quasiparticles, where cer-
tain unit patterns are excited sequentially and repeatedly
in the momentum space. We consider a subsystem con-
sisting of a consecutive block within circular quantum
systems, including both free and interacting fermionic
and bosonic chains, as well as spin-1/2 XXZ chains. Gen-
erally, the entanglement entropy in such states follows a
volume law. In [15], analytical expressions were obtained
for fermionic chains in cases where the subsystem size

is much smaller than the size of the entire system. In
the case of free fermionic chains, we obtain analytical ex-
pressions for subsystems of arbitrary sizes, which, in the
scaling limit, also apply to interacting fermionic chains
and spin-1/2 XXZ chains.
We discover that the coherence among quasiparticles

enables the entanglement entropy to be decomposed into
separate contributions from distinct parts, each compris-
ing a few sites in the coordinate space and the corre-
sponding unit pattern quasiparticles in the momentum
space. In essence, the volume-law entanglement entropy
breaks down into components that correspond to the
quasiparticle entanglement entropy of much smaller sys-
tems. This universal phenomenon of volume-law entan-
glement fragmentation could be useful for establishing
robust entanglement, which is crucial for applications in
quantum information processing and quantum computa-
tion.

II. FREE FERMIONS

A chain of L free fermions has the Hamiltonian

H =

L∑
j=1

(
a†jaj −

1

2

)
, (1)

with the fermionic modes aj and a†j satisfying

{aj1 , aj2} = {a†j1 , a
†
j2
} = 0 and {aj1 , a

†
j2
} = δj1j2 . The

excited states with translational invariance are generated
by the global modes

b†k =
1√
L

L∑
j=1

a†je
2πijk

L , bk =
1√
L

L∑
j=1

aje
− 2πijk

L , (2)

with the momentum k = 0, 1, . . . , L − 1. We use the set
of excited modes K = {k1, k2, . . .} to denote the corre-
sponding excited energy eigenstate |K⟩.
For a subsystem A of LA consecutive sites in a chain of

total length L in state |K⟩, one has the reduced density
matrix (RDM) ρA,K = trĀ(|K⟩⟨K|), from which one gets
the Rényi entropy and entanglement entropy

S
(n)
L,LA,K = − 1

n− 1
log trA(ρ

n
A,K),

SL,LA,K = −trA(ρA,K log ρA,K). (3)
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The entanglement entropy is just the n → 1 limit of the

Rényi entropy S
(1)
L,LA,K = SL,LA,K .

In the free fermionic chain, one has [10, 11, 49, 50]

S
(n),fer
L,LA,K = − 1

n− 1
log det[Cn

L,LA,K + (1− CL,LA,K)n],

Sfer
L,LA,K = trA[−CL,LA,K logCL,LA,K

− (1− CL,LA,K) log(1− CL,LA,K)], (4)

where the LA × LA matrix has entries

[CL,LA,K ]j1j2 = ⟨a†j1aj2⟩K = hL,j2−j1,K , (5)

with j1, j2 = 1, 2, · · · , LA and the correlation function

hL,j,K =
1

L

∑
k∈K

e
2πijk

L . (6)

Note that S
(n),fer
L,0,K = S

(n),fer
L,L,K = 0.

A. Fully occupied states

We first consider the case that K is composed of
the repetition of a unit pattern in the whole momen-
tum space. The unit pattern has l consecutive sites in
the momentum space, in which the excited modes are
κ. The whole system has L = pl sites, and we de-
note the excited modes of the whole momentum space
as K and use the shorthand K = pκ. Explicitly, we have
K =

⋃p−1
a=0(κ+ al). For instance, there are states

l = 2, κ = {0}, p = 4 : K = {0, 2, 4, 6},
l = 3, κ = {0, 1}, p = 2 : K = {0, 1, 3, 4}, (7)

which can be denoted schematically as

•◦•◦•◦•◦, ••◦••◦, (8)

with the filled circles denoting the excited modes and the
empty circles denoting the modes that are not excited.

From (6) we get the correlation function

hpl,j,pκ = δ(j mod p)=0hl,j/p,κ, (9)

which is possibly nonvanishing only when j is an inte-
ger multiple of p. The L × L correlation matrix of the
whole system CL,L,K can be written as a matrix with
l × l blocks, with each block being proportional to the
p × p identity matrix. The LA × LA correlation matrix
CL,LA,K for the LA-sized subsystem is just the first LA

rows and the first LA columns of CL,L,K .
We parameterize the subsystem length as LA = αp+a,

with α = 0, 1, · · · , l − 1 and a = 0, 1, · · · , p − 1, and the
corresponding correlation matrix CL,LA,K is similar to

Cpl,αp+a,pκ ∼ Cl,α+1,κ ⊕ · · ·︸ ︷︷ ︸
a

⊕Cl,α,κ ⊕ · · ·︸ ︷︷ ︸
p−a

. (10)

This indicates that the RDM could be written as

ρpl,αp+a,pκ ∼ ρl,α+1,κ ⊗ · · ·︸ ︷︷ ︸
a

⊗ ρl,α,κ ⊗ · · ·︸ ︷︷ ︸
p−a

. (11)

There are p copies of the unit pattern κ, and each copy is
effectively confined in a circle of l sites. The subsystem
has LA = αp + a sites, and they are effectively com-
posed of subsystems of the p copies of the small systems.
An example scheme of the entanglement fragmentation
is shown in Fig. 1.

⇔

FIG. 1. Example scheme of the entanglement fragmentation.
Each pair of concentric circles symbolizes a system. The
larger circle represents the spatial configuration, where red
and blue points denote the complementary subsystems. The
smaller circle depicts the momentum configuration, with filled
purple points indicating excited modes and hollow points rep-
resenting unexcited modes. For this illustration, we have set
the parameters to L = 15, LA = 7, α = 1, a = 2, p = 5, l = 3,
and κ = {0}.

From the RDM (11), we get the decomposition of the
Rényi entropy and entanglement entropy

S
(n),fer
pl,αp+a,pκ = aS

(n),fer
l,α+1,κ + (p− a)S

(n),fer
l,α,κ . (12)

This inspired us to define the contributions to the entan-
glement from each unit pattern as

s
(n),fer
l,κ (x) ≡

S
(n),fer
pl,xpl,pκ

p
, (13)

which is the building block for all the results in the paper.
Explicitly, we have

s
(n),fer
l,κ (x) = yS

(n),fer
l,α+1,κ + (1− y)S

(n),fer
l,α,κ , (14)

with the parameters

α ≡ ⌊lx⌋ ∈ {0, 1, · · · , l − 1},
y ≡ (lxmod1) ∈ [0, 1). (15)

Note that these formulas are exact, valid for any p, l, α,

a, and κ. Furthermore, the function s
(n),fer
l,κ (x) is inde-

pendent of p. For finite l and large p, i.e. l ≪ p, the
Rényi entropy and entanglement entropy (12) follow the

volume law. Generally, the formula s
(n),fer
l,κ (x) is a piece-

wise function of x ∈ (0, 1) with l pieces, each piece has
length 1

l , and within each piece the function is linear.
We use |κ| to denote the number of excited quasiparti-

cles in the set κ. In the special limit, |κ| ≪ l, the formula
(14) becomes

lim
l→+∞

s
(n),fer
l,κ (x) = lim

l→+∞
S
(n),fer
l,xl,κ . (16)
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In the same limit, the formula (13) becomes

lim
l→+∞

s
(n),fer
l,κ (x) = lim

l→+∞

S
(n),fer
pl,xpl,pκ

p
. (17)

The results of (16) and (17) should be the same and this
is consistent with the fact, found in [31–33] that quasipar-
ticles with large momentum differences have independent
contributions to the entanglement.

For κ = {0}, with l = 2, 3, · · · , there are [18, 20, 23,
25, 26]

S
(n),fer
l,lA,{0} = − 1

n− 1
log

[( lA
l

)n

+
(
1− lA

l

)n]
,

Sfer
l,lA,{0} = − lA

l
log

lA
l
−
(
1− lA

l

)
log

(
1− lA

l

)
,(18)

with which the formula (12) is the same as the comb
entropy defined in [51] after one takes the position-
momentum duality [52, 53]. For κ = {k1, k2} with

l = 3, 4, · · · , the analytical formulas for S
(n),fer
l,lA,κ can be

found in [31–33]. Examples of the expression (14) for the
entanglement entropy from each unit pattern are shown
in Fig. 2.
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FIG. 2. The formula (14) of the contribution to the entangle-
ment entropy from each unit pattern in the momentum space
of a free fermionic chain.

B. Partially occupied states

In the excited states, the unit pattern κ of length l
can be repeated p times in the momentum space and
these repeated patterns only occupy a finite ratio of the
whole momentum space, leaving the rest of the momen-
tum space unoccupied. We call such state partially oc-
cupied states. For example, we may have

l = 2, κ = {0}, p = 2, L = 12 : K = {0, 2}, (19)

l = 3, κ = {0, 1}, p = 2, L = 12 : K = {0, 1, 3, 4},

which may be denoted as

•◦•◦◦◦◦◦◦◦◦◦, ••◦••◦◦◦◦◦◦◦. (20)

In the scaling limit, we conjecture that each unit pat-
tern still contributes independently to the entanglement
entropy, and there is

S
(n),fer
L,xL,pκ ≈ ps

(n),fer
l,κ (x), (21)

with the universal function s
(n),fer
l,κ (x) being defined in

(13) and taking the form (14). We further get

lim
L→+∞

S
(n),fer
L,xL,pκ

L
= zs

(n),fer
l,κ (x), (22)

with the definition

z ≡ lim
L→+∞

p

L
∈
[
0,

1

l

]
. (23)

It is easy to confirm the formula (22) numerically.

C. States with mixed occupancy

We also consider more general states, in which different
unit patterns are excited in different parts of the momen-
tum space. The parts with different unit patterns may
be adjacent or disjoint in the momentum space, and all
the excited parts together may or may not occupy the
entire spectrum. Since the relative positions of the dif-
ferent patterns are not important, we denote such states
shorthand as K =

⋃r
i=1(piκi). Each excited part is char-

acterized by the length of the unit pattern li, the mode
of the unit pattern κi, and the number of repetitions pi.
In the scaling limit, we define

zi ≡ lim
L→+∞

pi
L
. (24)

Of course, there is
∑r

i=1 zili ∈ (0, 1].
For example, we may have the unit pattern with l1 = 2

and κ1 = {0} excited in the momentum space [0, L
3 − 1],

and the unit pattern with l2 = 3 and κ2 = {0, 1} excited
in the momentum space [L2 ,

3L
4 − 1]. For L = 24, such a

state has the excited modes

K = (3κ1)
⋃

(2κ2) = {0, 2, 4, 6, 12, 13, 15, 16}, (25)

and it can be denoted as

•◦•◦•◦•◦◦◦◦◦••◦••◦◦◦◦◦◦◦ . (26)

In such a state with mixed occupancy, we conjecture
that each unit pattern still makes an independent and
universal contribution to the entanglement entropy

S
(n),fer
L,xL,

⋃r
i=1(piκi)

≈
r∑

i=1

pis
(n),fer
li,κi

(x), (27)

which leads to

lim
L→+∞

S
(n),fer
L,xL,

⋃r
i=1(piκi)

L
=

r∑
i=1

zis
(n),fer
li,κi

(x). (28)

This is the main result of this paper. We have expressed
the volume-law many-body entanglement entropy as the
sum of few-body entanglement entropies. It is easy to
confirm the formula (28) numerically. The results are
also the same as those in the limit LA ≪ L found in [15].
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III. INTERACTING FERMIONS

The numerical verification of formulas (22) and (28) in
free fermionic chains motivates us to further conjecture
that these formulas still hold true in integrable interact-
ing fermionic chains. By applying the Jordan-Wigner
transformation, the transverse field Ising chain, given by

H = −1

2

L∑
j=1

(
σx
j σ

x
j+1 + hσz

j

)
, (29)

is transformed into a fermionic chain with nearest-
neighbor interactions. This model is solvable, as shown in
[54, 55], and the entanglement entropy can be calculated
following the methods outlined in [10, 11, 15]. We have
carried out extensive numerical verifications of formulas
(22) and (28) in the Ising chain, thereby confirming the
aforementioned conjecture.

IV. SPIN-1/2 XXZ CHAIN

The spin-1/2 XXZ chain has the Hamiltonian

H = −1

4

L∑
j=1

(
σx
j σ

x
j+1 + σy

j σ
y
j+1 +∆σz

jσ
z
j+1

)
, (30)

with periodic boundary conditions for the Pauli matrices
σα
L+1 = σα

1 , α = x, y, x. The excited states in the XXZ
chain can be obtained from the coordinate Bethe ansatz
[56–59].

We consider the energy eigenstates |I⟩ with an exten-
sive number of magnons, which are labeled by the Bethe
numbers I = {I1, I2, · · · }. For example, there may be a
length l unit pattern ι = {0} excited in the whole or part
of the space of the Bethe numbers [0, L−1], with the num-
ber of repetitions being p. When ∆ = 2, this corresponds
to a length l − 1 unit pattern κ = {0} with repetition p
in the momentum space. We obtain the Rényi entropy
and entanglement entropy

S
(n),XXZ
L,xL,pι ≈ ps

(n),fer
l−1,κ (x), (31)

which is numerically checked in Fig. 3.
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FIG. 3. Entanglement entropy in states with an extensive
number of magnons in the XXZ chain (symbols) is compared
with the corresponding analytical formula from the fermionic
chain (blue dashed lines).

V. FREE BOSONS

A chain of free bosons has the Hamiltonian

Hbos =

L∑
j=1

(
a†jaj +

1

2

)
, (32)

with the bosonic modes aj and a†j satisfying [aj1 , aj2 ] =

[a†j1 , a
†
j2
] = 0 and [aj1 , a

†
j2
] = δj1j2 . In an energy eigen-

state, the entanglement entropy can be obtained from
the subsystem mode method [33], and the Rényi entropy
could be obtained from the permanent formula derived
in [32] using the wavefunction method [25, 26, 60, 61].
We consider the entanglement entropy in a state with

repeated unit patterns in the bosonic chain. Following
(13) in the fermionic chain, we define

s
(n),bos
l,κ (x) ≡ lim

p→+∞

S
(n),bos
pl,xpl,pκ

pl
. (33)

Following (14), one might naively expect that the func-

tion s
(n),bos
l,κ (x) takes the form

s
(n),naive
l,κ (x) ≡ yS

(n),bos
l,α+1,κ + (1− y)S

(n),bos
l,α,κ , (34)

with the definitions of α and y given in (15). How-
ever, numerical results show that while the function

s
(n),bos
l,κ (x) is well-defined, it differs from the naive ex-

pectation s
(n),naive
l,κ (x). We present numerical examples

in Fig. 4.
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FIG. 4. The entanglement entropy in free bosonic
chains (symbols) is contrasted with the naive expectation

s
(n),naive
l,κ (x) (34) (red dashed lines). In each panel, the blue

dashed line represents the interpolation of the results corre-
sponding to the maximum L.

VI. INTERACTING BOSONS

Similarly to (28) in the fermionic chain, we conjecture
that in the free and interacting bosonic chains, there is

lim
L→+∞

S
(n),bos
L,xL,

⋃r
i=1(piκi)

L
=

r∑
i=1

zis
(n),bos
li,κi

(x), (35)
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with the definition of zi in (24) and the definition of

s
(n),bos
li,κi

(x) in (33). We consider the harmonic chain

H =
1

2

L∑
j=1

[
p2j +m2q2j + (qj − qj+1)

2
]
, (36)

with the periodic boundary condition qL+1 = qj and
the commutation relations [qj1 , qj2 ] = [pj1 , pj2 ] = 0 and
[qj1 , pj2 ] = iδj1j2 . The harmonic chain is essentially a
chain of bosons with nearest-neighbor interactions. The
above conjecture could be easily checked by numerically
calculating the Rényi entropy in excited energy eigen-
states following the wavefunction method [25, 26, 62, 63].

VII. DISCUSSIONS

We have studied the entanglement entropy in quasi-
particle states that exhibit repeated and sequential unit
patterns in momentum space. We found that each unit
pattern contributes independently and universally to the
entanglement in the scaling limit, leading to a volume-

law scaling of entanglement entropy. Numerical simu-
lations confirmed these findings, demonstrating volume-
law entanglement fragmentation in both fermionic and
bosonic chains. We derived an analytical formula for
free fermions that is applicable not only to interacting
fermions in the scaling limit but also, with certain iden-
tifications, to the spin-1/2 XXZ chain.
It was suggested in [25] to harness the entanglement of

quasiparticles for quantum information purposes. How-
ever, the entanglement among a small number of quasi-
particles is delicate and susceptible to environmental dis-
ruptions. The results presented in this paper imply that
by successively exciting repeated patterns in momentum
space, it is possible to create a robust volume-law entan-
glement of quasiparticles.

ACKNOWLEDGEMENTS

The author thanks Olalla A. Castro-Alvaredo and
M. A. Rajabpour for reading a previous versions of the
draft and helpful comments and discussions. JZ acknowl-
edgements support from the National Natural Science
Foundation of China (NSFC) grant number 12205217.

[1] L. Amico, R. Fazio, A. Osterloh and V. Vedral,
Entanglement in many-body systems, Rev. Mod. Phys.
80, 517 (2008), [arXiv:quant-ph/0703044].

[2] J. Eisert, M. Cramer and M. B. Plenio, Area laws for
the entanglement entropy - a review, Rev. Mod. Phys.
82, 277–306 (2010), [arXiv:0808.3773].

[3] P. Calabrese, J. Cardy and B. Doyon, Entanglement
entropy in extended quantum systems, J. Phys. A:
Math. Gen. 42, 500301 (2009).

[4] N. Laflorencie, Quantum entanglement in condensed
matter systems, Phys. Rept. 646, 1 (2016),
[arXiv:1512.03388].

[5] M. Rangamani and T. Takayanagi, Holographic
Entanglement Entropy, Lect. Notes Phys. 931, 1–246
(2017), [arXiv:1609.01287].

[6] E. Witten, APS Medal for Exceptional Achievement in
Research: Invited article on entanglement properties of
quantum field theory, Rev. Mod. Phys. 90, 045003
(2018), [arXiv:1803.04993].

[7] A. Osterloh, L. Amico, G. Falci and R. Fazio, Scaling of
entanglement close to a quantum phase transition,
Nature 416, 608–610 (2002),
[arXiv:quant-ph/0202029].

[8] T. J. Osborne and M. A. Nielsen, Entanglement in a
simple quantum phase transition, Phys. Rev. A 66,
032110 (2002), [arXiv:quant-ph/0202162].

[9] C. Holzhey, F. Larsen and F. Wilczek, Geometric and
renormalized entropy in conformal field theory, Nucl.
Phys. B 424, 443 (1994), [arXiv:hep-th/9403108].

[10] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev,
Entanglement in Quantum Critical Phenomena, Phys.
Rev. Lett. 90, 227902 (2003),
[arXiv:quant-ph/0211074].

[11] J. I. Latorre, E. Rico and G. Vidal, Ground state
entanglement in quantum spin chains, Quant. Inf.
Comput. 4, 48 (2004), [arXiv:quant-ph/0304098].

[12] V. Korepin, Universality of Entropy Scaling in One
Dimensional Gapless Models, Phys. Rev. Lett. 92,
096402 (2004), [arXiv:cond-mat/0311056].

[13] P. Calabrese and J. L. Cardy, Entanglement entropy
and quantum field theory, J. Stat. Mech. (2004) P06002,
[arXiv:hep-th/0405152].

[14] P. Calabrese and J. L. Cardy, Evolution of entanglement
entropy in one-dimensional systems, J. Stat. Mech.
(2005) P04010, [arXiv:cond-mat/0503393].

[15] V. Alba, M. Fagotti and P. Calabrese, Entanglement
entropy of excited states, J. Stat. Mech. (2009) P10020,
[arXiv:0909.1999].

[16] F. C. Alcaraz, M. I. Berganza and G. Sierra,
Entanglement of low-energy excitations in Conformal
Field Theory, Phys. Rev. Lett. 106, 201601 (2011),
[arXiv:1101.2881].

[17] M. I. Berganza, F. C. Alcaraz and G. Sierra,
Entanglement of excited states in critical spin chians, J.
Stat. Mech. (2012) P01016, [arXiv:1109.5673].

[18] I. Pizorn, Universality in entanglement of quasiparticle
excitations, arXiv:1202.3336.

[19] F. H. L. Essler, A. M. Läuchli and P. Calabrese,
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