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QUANTUM KKL-TYPE INEQUALITIES REVISITED

YONG JIAO, WENLONG LIN, SIJIE LUO, AND DEJIAN ZHOU

Abstract. In the present paper, we develop the random restriction method
in the quantum framework. By applying this method, we establish the quan-
tum Eldan-Gross inequality, the quantum Talagrand isoperimetric inequality,
and related quantum KKL-type inequalities. Our results recover some recent
results of Rouzé et al. [22] and Jiao et al. [11], which can be viewed as al-
ternative answers to the quantum KKL conjecture proposed by Motanaro and
Osborne in [18].

1. Introduction

Motivated by problems from complexity theory, geometric functional analysis,
and computer science, numerous remarkable results have been developed in the
hypercube framework, making Boolean analysis one of the most active areas in
discrete Fourier analysis, combinatorial optimization, and related fields in the past
decades. To state results, we begin with recalling basic concepts and notions in
hypercube setting. For fixed n ∈ N, let {−1, 1}n be the hypercube equipped with
the uniform probability measure µn, and let Lp({−1, 1}n) be the associated Lp

space for 1 ≤ p ≤ ∞. In the sequel, we will use the shorthand notation [n] :=
{1, 2, · · · , n}. For each j ∈ [n], the j-th influence of f : {−1, 1}n → R is given by

Infj(f) = µn({x ∈ {−1, 1}n| f(x) 6= f(x⊕j)}),
where x⊕j means flipping the j-th variable of x, i.e. for x = (x1, · · · , xn) ∈ {−1, 1}n,

x⊕j = (x1, · · · , xj−1,−xj , xj+1, · · · , xn).

The total influence of f is defined by Inf(f) =
∑

j∈[n] Infj(f), which is often used to

measure the complexity of the function f . To illustrate the analytic property of the
j-th influence of f , we now recall the j-th partial derivative of the f : {−1, 1}n → R

as follows:

(1.1) dj(f)(x) :=
f(x)− f(x⊕j)

2
, x ∈ {−1, 1}n.

In particular, for each Boolean function f : {−1, 1}n → {−1, 1}, it is easy to
compute that

(1.2) Infj(f) = ‖dj(f)‖pLp({−1,1}n), ∀1 ≤ p < ∞, j ∈ [n].

Bounding the (total) influence of f in terms of the variance of f is one of the
essential themes of Boolean analysis, which is closely related to specific types of
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functional inequalities on the hypercube. In particular, the Poincaré inequality on
the hypercube can be stated as follows (see e.g. [19, p. 36]):

(1.3) var(f) := ‖f − Eµn(f)‖2L2({−1,1}n) ≤
n∑

j=1

‖dj(f)‖2L2({−1,1}n),

where Eµn(f) is referred as the expectation of f with respect to the uniform measure
µn. Hence, combining (1.2) with (1.3) leads to the following lower bound

max
j∈[n]

Infj(f) ≥
1

n
,

for each balanced Boolean function f , that is, a Boolean function with var(f) = 1.
However, in many aspects, the Poincaré inequality far from be sharp. In the

remarkable paper [12], Kahn, Kalai and Linial strengthened the Poincaré inequal-
ity in a fundamental way, which leads to the following inequality: there exists a
universal constant C > 0 such that

(1.4) max
j∈[n]

Infj(f) ≥ C
log(n)

n
,

for every balanced Boolean function f . More precisely, Kahn, Kalai and Linial [12]
established the following functional inequality elegantly.

Theorem 1.1 (Kahn-Kalai-Linial). There exists a universal constant C > 0 such
that the following holds

(1.5) var(f) ≤ C

∑n
j=1 ‖dj(f)‖2L2({−1,1}n)

log
(
1/maxj∈[n] ‖dj(f)‖2L2({−1,1}n)

) ,

for every function f : {−1, 1}n → R.

Due to the fundamental role in Boolean analysis, (1.4) (or, (1.5)) is now known as
the KKL inequality, and we refer to [19] to interesting applications of the inequality.
One of significant improvements of the KKL inequality is the Talagrand (L1-L2-)
influence inequality established in [24].

Theorem 1.2 (Talagrand). There exists a universal constant C > 0 such that for
each function f : {−1, 1}n → R the following holds

(1.6) var(f) ≤ C
n∑

j=1

‖dj(f)‖2L2({−1,1}n)

1 + log(‖dj(f)‖L2({−1,1}n)/‖dj(f)‖L1({−1,1}n))
.

By (1.2), it is clear that the Talagrand influence inequality (1.6) implies the KKL
inequality (1.4). Since then, the KKL inequality, the Talagrand influence inequality,
and their extensions become one of the fundamental tools in Boolean analysis, geo-
metric functional analysis, computer science, and related fields. We refer interested
readers to [3, 5, 7, 14, 20] for further information and the extensive bibliographies
therein.

More recently, motivated by a conjecture of Talagrand [25], Eldan and Gorss
[6] (see also [7]) applied stochastic analysis techniques to prove the following result
known as the Eldan-Gross inequality.
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Theorem 1.3 (Eldan-Gross). There exists a universal constant C > 0 such that
the following inequality holds
(1.7)

var(f)

√√√√log

(
1 +

e∑n
j=1 ‖dj(f)‖2L1({−1,1}n)

)
≤ C

∥∥∥∥∥∥∥




n∑

j=1

|dj(f)|2



1/2
∥∥∥∥∥∥∥
L1({−1,1}n)

,

for every Boolean function f : {−1, 1}n → {−1, 1}.
Notably, the Eldan-Gross inequality (i.e., Theorem 1.3) unifies the KKL inequal-

ity (i.e., Theorem 1.1) and Talagrand’s isoperimetric inequality [23, Theorem 1.1],
making Theorem 1.3 into one of the most efficient tools in Boolean analysis. For
some new proofs of (1.7), we refer the interested reader to [1, 8, 10, 21].

It is worthwhile to mention that the original proofs of the KKL inequality and the
Talagrand influence inequality rely on the hypercontractivity principle and the heat
semigroup theory on hypercubes, while the proof of the Eldan-Gross inequality uti-
lizes methods from stochastic analysis which is of different nature of the semigroup
approach. Recently, the random restriction method has been viewed as a valu-
able tool for proving functional inequalities in the hypercube setting. Specifically,
Kelman et al. [14] applied this method to give a unified proof of the KKL inequal-
ity (1.4) and the Talagrand influence inequality (1.6), along with some extensions.
Eldan et al. [7] reproved the Eldan-Gross inequality (1.7) and the Talagrand isoperi-
metric inequality (i.e., [23, Theorem 1.1]) via the random restriction technique. We
refer the interested reader to [16, 15, 14, 8] for further recent developments of the
Fourier random restriction method in Boolean analysis.

In the present paper, motivated by the quantum KKL conjecture and related
problems, we aim to develop the random restriction method to the noncommutative
(or quantum) settings and apply such method to establish some quantum analogies
of (1.4), (1.6) and (1.7).

In the quantum setting, the n-folds tensor product of M2×2(C) equipped with
normalized trace, denoted by (M2n , tr) for short, is viewed as the noncommutative
correspondence of n-dimensional hypercube ({−1, 1}n, µn). For each j ∈ [n], let
dj be the j-th partial derivative operator on M2n (see Sect. 2 for the definition).
Recall from [18, Definition 3.1] that an element T ∈ M2n is said to be Boolean if
T is self-adjoint and unitary, that is, T ∗ = T and T ∗T = 1. In [18, Proposition
11.1], Montanaro and Osborne derived a quantum analogy of the Talagrand influ-
ence inequality (1.6) via the quantum hypercontractivity principle. However, due
to some intrinsic differences between classical and quantum hypercubes, the quan-
tum Talagrand influence inequality can not generally lead to the quantum KKL
inequality. On the other hand, Montanaro and Osborne [18, Proposition 11.5] ap-
plied some Fourier analysis techniques to derive a quantum KKL inequality for
concrete quantum Boolean functions T fulfilling ‖dj(T )‖L1(M2n ) = ‖dj(T )‖2L2(M2n )

for each j ∈ [n]. Such observations lead them conjecture the following problem,
known as the quantum KKL conjecture.

Conjecture 1.4 (Quantum KKL conjecture). There exists a universal constant
C > 0 such that for each n ∈ N and quantum Boolean function T the following
holds

max
j∈[n]

‖dj(T )‖2L2(M2n ) ≥
Cvar(T ) log(n)

n
.
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Recently, Rouzé, Wirth and Zhang [22] provided an alternative answer of the
quantum KKL conjecture invoking the geometric influence of quantum Boolean
functions. Notably, the main tools of their approach to the quantum KKL conjec-
ture is the following quantum Talagrand-type inequality [22, Theorem 3.6], which
was derived via the semigroup method.

Theorem 1.5 (Rouzé-Wirth-Zhang). There exists a universal constant C > 0 such
that for each n ∈ N and 1 ≤ p < 2 the following holds

var(T ) ≤
(

C

2− p

) n∑

j=1

‖dj(T )‖pLp(M2n )(1 + ‖dj(T )‖pLp(M2n))

1 + log+(1/‖dj(T )‖pLp(M2n ))
,

for every self-adjoint T ∈ M2n with ‖T ‖L∞(M2n ) ≤ 1.

By Theorem 1.5, one can easily derive the quantum KKL inequality invok-
ing the Lp-influences in the following manner: There exists a universal constant
C > 0 such that for each 1 ≤ p < 2 and quantum Boolean function T , we have

maxj∈[n] ‖dj(T )‖pLp(M2n ) ≥ (2−p)C log(n)
n for every n ∈ N. More recently, Jiao,

Luo and Zhou [11] investigate the quantum KKL conjecture in the canonical anti-
commuting (CAR) algebra framework. More precisely, we established the non-
commutative Eldan-Gross inequality via the fermion oscillator semigroup theory
and applied the noncommutative Eldan-Gross inequality to derive the following
two types of noncommutative KKL inequalities. Let {Qj}nj=1 be n-configuration

observables and CAR algebra Acar,n be the ∗-algebra generated by {Qj}nj=1.

Theorem 1.6 (Jiao-Luo-Zhou). There exists a universal constant C > 0 such
that, for each ε ∈ (0, 1) and each balanced Boolean function T ∈ Acar,n, one of the
following inequalities holds:

(i) maxj∈[n] ‖dj(T )‖2L2(Acar,n)
≥ Cε log(n)

n ;

(ii) maxj∈[n] ‖dj(T )‖L1(Acar,n) ≥ C
n(1+ε)/2 .

To derive a noncommutative KKL inequality in the CAR algebra setting invoking
L2-influence, we introduce the index for balanced Boolean function in Acar,n and
proved the following result; see [11, Theorem 6.7].

Theorem 1.7. For each n ∈ N and every balanced Boolean function T with
ind(T ) < 2, there exists a constant Cind(T ) > 0 (depending only on the index)
such that

max
j∈[n]

‖dj(T )‖2L2(Acar,n)
≥ Cind(T ) log(n)

n
,

where the definition of ind(T ) will be given in Section 5.

Furthermore, it has been shown in [11, Remark 6.5] that the CAR algebra coun-
terpart of the KKL inequality (for L2-influence) fails for general balanced Boolean
functions. Precisely, let T := 1√

n

∑n
j=1 Qj , and it is easy to see that T is a bal-

anced Boolean function in Acar,n such that ‖dj(T )‖2L2(Acar,n)
= 1

n for each j ∈ [n],

which disproves the KKL conjecture in the CAR algebra setting. Nevertheless, the
quantum KKL conjecture of Montanaro and Osborne remains open.

In the present paper, we continue to explore quantum functional inequalities
which are closely related to the quantum KKL conjecture. On the one hand, due to
the fundamental role of the random restriction method in hypercubes, we develop
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the random restriction technique in the quantum setting. On the other hand,
inspired by Kelman et al. [14], Rouzé et al [22] and Jiao et al. [11], we will derive
and recover all mentioned inequalities in the quantum setting via the quantum
random restriction technique. The main results of the present paper are outlined
as follows.

As the first main result of our random restriction technique, we establish the
following dimension free quantum KKL inequality.

Theorem 1.8. There exists a universal constant K > 0 such that for each 1 ≤ p <
2 and each T ∈ M2n with 0 ≤ T ≤ 1, the following holds

(1.8) max
j∈[n]

‖dj(T )‖pLp(M2n ) ≥
1

4
exp

{
−
(

K

2− p

)
·
∑n

j=1 ‖dj(T )‖pLp(M2n )

var(T )

}
.

Analogous to the approach presented in [14], we derive the following quantum
KKL inequality (invoking Lp-influence) via Theorem 1.8, which was recently proved
by Rouzé et al. [22, Theorem 3.9]. And we show in Remark 4.4 that the following
KKL-type inequality fails for p = 2 even in the commutative case. Hence, Theorem
1.9 may be the best possible quantum KKL-type inequality for bounded elements.

Theorem 1.9. There exists a universal constant C > 0 such that for every 1 ≤
p < 2 and T ∈ M2n with 0 ≤ T ≤ 1, the following holds

max
j∈[n]

‖dj(T )‖pLp(M2n ) ≥ C
(2 − p)var(T ) log (n)

n
.

The second main ingredient of this paper consists of the following two quantum
isoperimetric inequalities, which can be used to derive the quantum counterpart of
KKL-type inequalities presented in [11, Sect. 6].

Theorem 1.10 (Quantum Talagrand-type isoperimetric inequality). There exists
a universal constant K > 0 such that for each projection T ∈ M2n the following
holds

(1.9) var(T )

√
log

(
1

var(T )

)
≤ K

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )|2



1/2
∥∥∥∥∥∥∥
L1(M2n )

.

Combing Theorem 1.10 and estimations on the Fourier spectrum of projection T ∈
M2n , we establish the quantum Eldan-Gross inequality as follows.

Theorem 1.11 (Quantum Eldan-Gross inequality). There exists a universal con-
stant K > 0 such that for each projection T ∈ M2n the following holds

var(T )

√√√√log

(
1 +

1∑n
j=1 ‖dj(T )‖2L1(M2n )

)
≤ K

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )|2



1/2
∥∥∥∥∥∥∥
L1(M2n )

.

The proofs of above theorems are provided in Section 4 and Section 5. As the
applications of the quantum Eldan-Gross inequality, we establish quantum version
of Theorem 1.6 and Theorem 1.7 in Section 5. Due to intrinsic differences between
quantum and classical hypercubes, additional efforts must be made to overcome
difficulties that arise from these differences when employing the random restriction
method; see the proof of Proposition 5.2 for instance.
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The rest of this paper is organized as follows. In Section 2, we present the
necessary background and results in the quantum setting, including basic proper-
ties of the quantum Ornstein-Uhlenbeck semigroup, quantum hypercontractivity,
and its equivalence to the quantum logarithmic Sobolev inequality. In Section 3, we
introduce the quantum Fourier random restriction technique and provide some fun-
damental estimations on the Fourier spectrum for elements in M2n . This method
and the associated estimates are frequently used to derive inequalities throughout
the paper. From Section 4 to Section 5, we provide proofs of the previously pre-
sented theorems by combining the quantum random restriction technique with the
quantum semigroup method. Additionally, we derive the corresponding quantum
KKL-type inequality in the respective sections.

Remark 1.12. After completing this work, we learned that Blecher, Gao and Xu
[2] developed a similar random restriction technique and applied it to investigate
KKL inequality and high order extension of the Talagrand influence inequality in
the quantum setting. Precisely, Theorem 1.8 with p = 1 is proved independently by
Blecher et al. in [2].

Throughout the paper, n be a fixed positive integer and [n] := {1, 2, 3 . . . , n}.
For a parameter p, we denote Kp the positive constant depending only on the
parameter p (it may vary from line to line). We use the notation A ≈p B to stand
that KpA ≤ B ≤ CpA for some positive constants Kp and Cp (depending only
on the parameter p), and we drop the subscript p if the constants are universal.
Notations R and C are the fields of real and complex numbers, respectively, and
we let (M2(C), tr) be the algebra of all 2 × 2 complex matrices equipped with the
normalized trace tr.

2. Preliminaries

In this section, we collect concepts and background that will be used throughout
the paper.

2.1. The quantum hypercube. Denote by (M2(C), tr) the algebra of 2× 2 com-
plex matrices equipped with the normalized trace tr and the unit 12 (i.e., the
2 × 2 identity matrix). The quantum analogue of the hypercube {−1, 1}n is
M2(C)

⊗n ∼= M2n(C) equipped with the normalized trace trn := tr⊗n (simply
denoted by (M2n , tr) if no confusion arise) and the unit 1 := 1⊗n

2 . For every
1 ≤ p ≤ ∞, the noncommutative Lp space generated by M2n , denoted by Lp(M2n),
is the space M2n equipped with the norm

‖T ‖Lp
:=

{
(tr(|T |p))1/p , if 1 ≤ p < ∞,

maxj∈[n] sj(T ), if p = ∞,

where {sj(T )}nj=1 is the set of singular values of T . The variance of T ∈ M2n is
defined by

var(T ) := tr(|T |2)− |tr(T )|2 = ‖T − tr(T )‖2L2
.

Following [18], we recall the concept of quantum Boolean functions in M2n .

Definition 2.1 ([18]). An element T ∈ M2n is said to be a quantum Boolean
function if T is self-adjoint (i.e., T ∗ = T ) and unitary (i.e., TT ∗ = T ∗T = 1). A
quantum Boolean function T ∈ M2n is said to be balanced if tr(T ) = 0.
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Remark 2.2. It is clear that the concept of quantum Boolean functions and projec-
tions are equivalent in the following sense. For a given quantum Boolean function
T ∈ M2n , S := 1+T

2 is a projection in M2n , that is, S∗ = S = S2. Conversely,
for a given projection S ∈ M2n , it follows that T := 2S − 1 is a quantum Boolean
function in M2n . Hence, we will ignore the difference between quantum Boolean
functions and projections in M2n .

Using the Pauli matrices, we represent elements in M2n by their Fourier ex-
pansion, which is a quantum counterpart of the Walsh expansion for functions on
{−1, 1}n. Recall that the Pauli matrices as follows:

σ0 =

(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 i
−i 0

)
.

For s = (si)
n
i=1 ∈ {0, 1, 2, 3}n, set

σs = σs1 ⊗ · · · ⊗ σsn .

Clearly, {σs}s∈{0,1,2,,3}n are quantum Boolean functions which forms an orthonor-
mal basis in L2(M2n). Hence, each T ∈ M2n can be uniquely represented by

T =
∑

s∈{0,1,2,3}n

T̂ (s)σs,

where T̂ (s) is the Fourier coefficient defined by T̂ (s) = tr(σ∗
s
T ).

For each j ∈ [n] and α ∈ {1, 2, 3}, we let eαj := (0, . . . , 0, α, 0 . . . , 0) where α
appears in the j-th position. For each s ∈ {0, 1, 2, 3}n, j ∈ [n] and α ∈ {1, 2, 3},
define s ⊕ eαj (resp. s⊖ eαj ) by

s⊕ eαj := (s1, . . . , sj−1, sj + α, sj , . . . , sn)
(
resp. s⊖ eαj := (s1, . . . , sj−1, sj − α, sj+1, . . . , sn)

)
.

For any d ∈ [n], the Rademacher projection is defined by

Rad≤d(T ) =
∑

s∈{0,1,2,3}n

|supp(s)|≤d

T̂ (s)σs,

where T =
∑

s∈{0,1,2,3}n T̂ (s)σs.

2.2. Hypercontractivity, influence and the modified Log-Sobolev inequal-

ity. Here we collect analytic tools such as the hypercontractivity of the quantum
Ornstein-Uhlenbeck semigroup, basic properties of influences, and the curvature
condition in quantum hypercubes. For s ∈ {0, 1, 2, 3}n, we define supp(s) :=
{j ∈ [n] : sj 6= 0} and |supp(s)| stand for the number of non-zero sj ’s, that is,
|supp(s)| = #{j ∈ [n] : sj 6= 0}. Let L : M2 → M2 defined by

(2.1) L(A) := A− tr(A)12,

and

(2.2) e−tL(A) := e−tA+ (1 − e−t)tr(A)12.

In viewing of (2.1) and (2.2), we have

L(σj) =

{
σj , if j 6= 0;

0, otherwise,
and e−tL(σj) =

{
e−t(σj), if j 6= 0;

σ0, otherwise.
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For each stabilizer operator σs, let

Pt(σs) = e−tL(σs1 )⊗ · · · ⊗ e−tL(σsn).

The infinitesimal generator of the semigroup {Pt}t≥0 is given by

L(σs) := lim
t→0

σs −
(
e−tL

)⊗n
(σs)

t
= |s|σs,

for each stabilizer operator σs. In the sequel, we denote {Pt}t≥0 by {e−tL}t≥0 to
emphasize the generator L. It is clear that for each T ∈ M2n we have

L(T ) =
∑

s∈{0,1,2,3}n

|s|T̂ (s)σs

and
e−tL(T ) =

∑

s∈{0,1,2,3}n

e−t|s|T̂ (s)σs.

For j ∈ [n], the j-th partial differential operator (or, quantum bit-flip map) is
defined by

(2.3) dj := 1
⊗(j−1)
2 ⊗ (12 − tr)⊗ 1

⊗(n−j)
2

Thanks to the Fourier expansion of T ∈ M2n , we obtain the following explicit
formula for partial differential operators. For each j ∈ [n] and T ∈ M2n , we have

(2.4) dj(T ) =
∑

s∈{0,1,2,3}n

T̂ (s)dj(σs) =
∑

s∈{0,1,2,3}n

sj 6=0

T̂ (s)σs.

Moreover, it is easy to verify that {dj}nj=1 are orthogonal projections on L2(M2n)

such that L =
∑n

j=1 dj . By [18] (or, [17, Corollary 2]), the quantum Ornstein-

Uhlenbeck semigroup {e−tL}t≥0 fulfills the optimal hypercontractivity as follows:
for each 1 < p ≤ q < ∞, we have

(2.5)
∥∥e−tL∥∥

Lp→Lq
= 1 if and only if t ≥ 1

2
log

(
q − 1

p− 1

)
.

The equivalence between the hypercontractivity of semigroup and the logarithmic
Sobolev inequality has been established by Gorss in his seminal paper [9]. Hence,
repeat the same treatments of Gorss, we can deduce the following (L2-)logarithmic
Sobolev inequality from (2.5) (the proof is also same to [4, Theorem 5.3]).

Lemma 2.3 (Log-Sobolev). For each T ∈ M2n , we have

2

n∑

j=1

‖dj(T )‖2L2
≥ tr

[
|T |2 log

(
|T |2

)]
− ‖T ‖2L2

log
(
‖T ‖2L2

)
.

Motivated by the quantum KKL-type inequalities invoking Lp-influences with
1 ≤ p < ∞, we derive the following (Lp-) modified logarithmic Sobolev inequality.

Lemma 2.4 (Modified Log-Sobolev inequality). Let 1 ≤ p < 2. Then, for each
T ∈ M2n with |T | ≤ 1, we have

2

n∑

j=1

‖dj(T )‖2L2
≥ −Kp‖T ‖L2‖T ‖

p
2

Lp
− ‖T ‖2L2

log
(
‖T ‖2L2

)
,

where Kp = 4
(2−p)e .
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Proof. By the Cauchy-Schwarz inequality, we obtain

(2.6) tr
[
−|T |2 log(|T |2)

]
≤ ‖T ‖L2

[
tr
(
|T |2 log2

(
|T |2

))] 1
2 .

Let Kp := 4
(2−p)e . Then, it is clear that

K2
pt

p ≥ t2 log2
(
t2
)
, ∀t ∈ [0, 1].

Hence, it follows from the functional calculus of |T | that
K2

p |T |p ≥ |T |2 log2
(
|T |2

)
, T ∈ M2n .

Therefore,

(2.7)
[
tr
(
|T |2 log2(|T |2)

)] 1
2 ≤ Kp‖T ‖

p
2

Lp
.

Combining (2.6), (2.7) and the Log-Sobolev inequality (i.e., Lemma 2.3), we get
the desired result. �

To derive the isoperimetric inequality in Section 5, we need the following facts
regarding as the curvature condition of the quantum Ornstein-Uhlenbeck semigroup
{e−tL}t≥0.

Proposition 2.5. Keep the notations as previous subsection. Then, for each T ∈
M2n , we have

(i) L(T ∗T )− L(T )∗T − T ∗L(T ) = −2
n∑

j=1

(dj(T ))
∗(dj(T ));

(ii) (dje
−tL(T ))∗(dje

−tL(T ) ≤ e−2te−tL ((dj(T ))
∗(dj(T ))), for each j ∈ [n];

(iii)
n∑

j=1

(dje
−tL(T ))∗(dje

−tL(T )) ≤ e−2te−tL

(
n∑

j=1

(dj(T ))
∗(dj(T ))

)
.

Proof. The proof is analogous to the classical case, which can be verified via the
Fourier expansion and the Gronwall-type inequality. Hence, we provide the proof of
(ii) for the reader’s convenience, and leave the details of (i) and (iii) to the reader.
For each j ∈ [n] and 0 ≤ s ≤ t, we define

Λ(s) := e−(t−s)L
[∣∣dje

−sL(T )
∣∣2
]
= e−(t−s)L

[(
dje

−sL(T )
)∗ (

dje
−sL(T )

)]
.

Differentiating Λ(s) and applying (i) we obtain that

Λ′(s) = L
[
e−(t−s)L

((
dje

−sL(T )
)∗ (

dje
−sL(T )

))]

− e−(t−s)L
[(
Ldje

−sL(T )
)∗ (

dje
−sL(T )

)]

− e−(t−s)L
[(
dje

−sL(T )
)∗ (Ldje

−sL(T )
)]

= e−(t−s)L
[
L
((

dje
−sL(T )

)∗ (
dje

−sL(T )
))

−
(
Ldje

−sL(T )
)∗ (

dje
−sL(T )

)

−
(
dje

−sL(T )
)∗ (Ldje

−sL(T )
) ]

≤ −2e−(t−s)L
[(
dje

−sL(T )
)∗ (

dje
−sL(T )

)]

= −2Λ(s).

(2.8)
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Define F (s) := e2sΛ(s) and note that (2.8) entails F ′(s) ≤ 0 for all 0 ≤ s ≤ t.
Therefore,

e2tΛ(t)− Λ(0) = F (t)− F (0) =

∫ t

0

F ′(s) ds ≤ 0.

Rearranging the inequality yields that Λ(t) ≤ e−2tΛ(0), that is,
∣∣dje

−tL(T )
∣∣2 ≤ e−2te−tL

[
|dj(T )|2

]
.

�

We conclude this subsection with the following well-known Paley-Zygmund in-
equality, and we include the proof for the reader’s convenience.

Lemma 2.6 (Paley-Zygmund inequality). For each positive T ∈ M2n , we have

(2.9) tr
[
1[δ‖T‖L1 ,∞)(T )

]
≥ (1− δ)2

‖T ‖2L1

‖T ‖2L2

, 0 < δ < 1.

Proof. Since the desired inequality only invokes one positive element, it follows from
the spectral theory that the inequality is essentially the classical Paley-Zygmund
inequality. For positive T ∈ M2n , we have

‖T ‖L1
= tr

[
1[δ‖T‖L1 ,∞)(T ) · T

]
+ tr

[
1[0,δ‖T‖L1)

(T ) · T
]

≤ tr
[
1[δ‖T‖L1 ,∞)(T )

]1/2
‖T ‖L2 + δ‖T ‖L1

(2.10)

where we used the the Cauchy-Schwarz inequality. Rearranging (2.10) yields the
desired inequality. �

2.3. Lp-influences and related basic properties. For j ∈ [n], 1 ≤ p < ∞ and
T ∈ M2n , denote the j-th Lp-influence of T by

Infpj (T ) := ‖dj(T )‖pLp
,

and the total Lp-influence of T by

Infp :=

n∑

j=1

‖dj(T )‖pLp
.

The L1-influence is usually called the geometric influence in some literature. For
p = 2, we will simply denote the j-th L2-influence and the total L2-influence of
T by Infj(T ) and Inf(T ), respectively. Hence, by (2.4), it follows that for each
T ∈ M2n , we have

Infj(T ) =
∑

s∈{0,1,2,3}n

sj 6=0

|T̂ (s)|2,

and
Inf(T ) =

∑

j∈[n]

Infj(T ) =
∑

s∈{0,1,2,3}n

|supp(s)|T̂ (s)2.

The following elementary facts can be deduced from the contraction of conditional
expectations and the noncommutative Hölder inequality.

Proposition 2.7. For 1 ≤ p ≤ 2 and T ∈ M2n with ‖T ‖L∞ ≤ 1 we have

(i) for each j ∈ [n], we have ‖dj(T )‖L∞ ≤ 1,
(ii) for each j ∈ [n], we have Infj(T ) ≤ Infpj (T ).
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Proof. (i) For each j ∈ [n], we define S : M2 → M2 by

S(T ) :=

(
0 −i
i 0

)
T t

(
0 −i
i 0

)
,

where T t stands for the transpose of T . It is clear that

S(σ0) = σ0 and S(σl) = −σl

for l ∈ {1, 2, 3}. We further define Sj := 1
⊗(j−1)
2 ⊗ S ⊗ 1

⊗(n−j)
2 . Hence, it is clear

that

dj(T ) =
1

2
(T − Sj(T )) , for T ∈ M2n .

Since the matrix

(
0 −i
i 0

)
is unitary and the norm ‖ · ‖Lp is unitary invariant for

every p ∈ (0,∞], it follows that ‖Sj(T )‖L∞
= ‖T ‖L∞. Therefore, we have

‖dj(T )‖L∞ =
1

2
‖T − Sj(T )‖L∞

≤ ‖T ‖L∞,

which proves the first claim.
(ii) For each j ∈ [n], we have

Infj(T ) = ‖dj(T )‖2L2
≤ ‖|dj(T )|p‖L1 · ‖|dj(T )|2−p‖L∞ ≤ ‖dj(T )‖pLp

,

where we used 1 ≤ p < 2 and ‖dj(T )‖L∞ ≤ 1. �

3. The Noncommutative Random Restrictions and Related Estimates

In this section, motivated by [14], we introduce a noncommutative random re-
striction technique, which is one of the efficient toolkits of establishing functional
inequalities in the quantum hypercube.

For each subset J = {j1, · · · , jk} ⊆ [n], we order it in the increasing order, that
is, j1 < j2 < · · · < jk, and let MJ be the ∗-sub-algebra of M2n such that M2

only appears in the ji-th position for 1 ≤ i ≤ k. Hence, there exists a conditional
expectation EMJ from M2n onto MJ . More precisely, EMJ has the following explicit
formula.

Proposition 3.1 (Conditional Expectation). For each J ⊆ [n], we have

EMJ (T ) :=
∑

supp(s)⊆J

T̂ (s)σs, ∀ T ∈ M2n .

We now introduce the random restriction operator as follows.

Definition 3.2 (Restrictions). For each J ⊆ [n] and j ∈ [n], let Jc := [n] \ J and
define the restriction operator RJ

j : M2n → M2n by setting

RJ
j (T ) :=

{
EMJc∪{j}

(dj(T )), j ∈ J

0, j ∈ Jc.

The following essential property regarding the explicit formula for the restriction
operator acting on an element is easily deduced from the formula of conditional
expectations (i.e., Proposition 3.1) and the Fourier expansion of partial derivatives
(2.4). The proof is left to the interested reader.
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Lemma 3.3. Let J ⊆ [n] and T ∈ M2n . For each j ∈ [n], we have

RJ
j (T ) =

∑

supp(s)⊆Jc

α∈{1,2,3}

T̂ (s ⊕ eαj )σs⊕eαj
.

Applying Lemma 3.3, we obtain the following corollary.

Corollary 3.4. Let T ∈ M2n and a fixed subset J ⊆ [n].

(i) For each j ∈ J , we have

n∑

k=1

‖dk(R
J
j (T ))‖2L2

=
∑

k∈Jc

‖dk(R
J
j (T ))‖2L2

+ ‖dj(R
J
j (T ))‖2L2

.

(ii) We have that ∑

j∈J

‖RJ
j (T )‖2L2

≤ var(T ).

(iii) For each k ∈ Jc, we have
∑

j∈J

‖dk(R
J
j (T ))‖2L2

≤ ‖dk(T )‖2L2
.

Proof. We only show item (iii), and leave the easy verification of (i) and (ii) to the
reader. By Lemma 3.3, we have

∑

j∈J

‖dk(R
J
j (T ))‖2L2

=
∑

j∈J

tr

∣∣∣∣∣∣∣∣

∑

supp(s)⊆Jc,
sk 6=0,α∈{1,2,3}

T̂ (s⊕ eαj )σs⊕eαj

∣∣∣∣∣∣∣∣

2

≤
∑

supp(̃s)⊆J

tr

∣∣∣∣∣∣∣∣

∑

sk 6=0
supp(s)⊆Jc

T̂ (s⊕ s̃)σs⊕s̃

∣∣∣∣∣∣∣∣

2

=
∑

supp(̃s)⊆J

∑

sk 6=0
supp(s)⊆Jc

∣∣∣T̂ (s ⊕ s̃)
∣∣∣
2

=
∑

sk 6=0

∣∣∣T̂ (s)
∣∣∣
2

= ‖dk(T )‖2L2
.

�

Several basic properties regarding the Lp-norm of the restriction operator and
its relation to the influence are collected as follows.

Lemma 3.5. Let J ⊆ [n] and T ∈ M2n with ‖T ‖L∞ ≤ 1.

(i) For each j ∈ [n], we have ‖RJ
j (T )‖pLp

≤ ‖dj(T )‖pLp
, 1 ≤ p ≤ ∞.

(ii) For each j ∈ [n], we have ‖RJ
j (T )‖2L2

≤ ‖RJ
j (T )‖pLp

, 1 ≤ p ≤ 2.

(iii) We have
∑

j∈J Inf
(
RJ

j (T )
)
≤ var(T ) + Inf(T ).

Proof. (i) It follows from the definition of restriction operator that

(3.1) ‖RJ
j (T )‖Lp = ‖EMJc∪{j}

(dj(T ))‖Lp ≤ ‖dj(T )‖Lp.
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For (ii), it suffices to note that

‖RJ
j (T )‖2L2

= ‖|RJ
j (T )|p|RJ

j (T )|2−p‖L1

≤‖|RJ
j (T )|p‖L1 · ‖|RJ

j (T )|2−p‖L∞ ≤ ‖RJ
j (T )‖pLp

,

where the last inequality follows from (3.1) and Proposition 2.7 (i).
(iii) By items (i) and (iii) in Corollary 3.4, we have

Inf(T ) =
∑

k∈[n]

‖dk(T )‖2L2
≥
∑

k∈Jc

‖dk(T )‖2L2
≥
∑

k∈Jc

∑

j∈J

‖dk(R
J
j (T ))‖2L2

=
∑

j∈J

(
∑

k∈Jc

‖dk(R
J
j (T ))‖2L2

)
=
∑

j∈J

(
n∑

k=1

‖dk(R
J
j (T ))‖2L2

− ‖dj(R
J
j (T ))‖2L2

)
.

Applying Proposition 2.7 (i) again, we get

Inf(T ) ≥
∑

j∈J

(
n∑

k=1

‖dk(R
J
j (T ))‖2L2

− ‖RJ
j (T )‖2L2

)

=
∑

j∈J

Inf(RJ
j (T ))−

∑

j∈J

‖RJ
j (T )‖2L2

≥ −var(T ) +
∑

j∈J

Inf(RJ
j (T )),

where the last inequality follows from Corollary 3.4 (ii). �

To investigate the Fourier spectrum of a given T ∈ M2n , we introduce the fol-
lowing notations, which are inspired from their Boolean counterparts.

Definition 3.6. For each T ∈ M2n and for d ∈ [n], define

W=d(T ) :=
∑

|supp(s)|=d

T̂ (s)
2
,

W≥d(T ) :=
∑

|supp(s)|≥d

T̂ (s)2,

and

W≈d(T ) :=
∑

d≤|supp(s)|<2d

T̂ (s)
2
.

Remark 3.7. It is clear that every random set J ⊆ [n], formed by each point
selected with probability δ, corresponds to a vector in ({0, 1}n, µδ), where

µδ({x}) = δ
∑n

j=1 xj (1− δ)
n−∑n

j=1 xj , x = (xj)
n
j=1 ∈ {0, 1}n.

If there is no confusion arises, we will simply write J ∈ ({0, 1}n, µδ) for a random
set J (with selecting probability δ).

Lemma 3.8. Let d ∈ Z+ and T ∈ M2n with ‖T ‖L∞ ≤ 1. Then

EJ


∑

j∈J

‖RJ
j (T )‖2L2


 ≥ 1

8
W≈d[T ],

where EJ is the expectation taking with respect to the random subset J with selecting
probability 1

d . Hence, there exists J0 ⊆ [n] such that
∑

j∈J0
‖RJ

j (T )‖2L2
≥ 1

8W≈dT .
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Proof. Using Lemma 3.3 and the orthogonality of {σs}s∈{0,1,2,3}n , we have

EJ


∑

j∈J

‖RJ
j (T )‖2L2


 = EJ



∑

j∈J

∑

supp(s)⊆Jc

α∈{1,2,3}

|T̂ (s⊕ eαj )|2




= EJ


 ∑

s∈{0,1,2,3}n

|T̂ (s)|21{J:|supp(s)∩J|=1}




=
∑

s∈{0,1,2,3}n

|T̂ (s)|2µ 1
d
{J : |supp(s) ∩ J | = 1}

≥
∑

d≤|supp(s)|<2d

|T̂ (s)|2µ 1
d
{J : |supp(s) ∩ J | = 1}.

(3.2)

For the case d = 1 with d ≤ |supp(s)| < 2d, we have |supp(s)| = 1, and hence,

(3.3) µ 1
d
{J : |supp(s) ∩ J | = 1} =

1

d
= 1.

For the case d > 1 with d ≤ |supp(s)| < 2d, we have

µ 1
d
{J : |supp(s) ∩ J | = 1} =

(
1− 1

d

)|supp(s)|−1( |supp(s)|
d

)

≥ inf
d>1

(
1− 1

d

)2d−1

≥ 1

8
.

(3.4)

Substituting (3.3) and (3.4) to (3.2) yields the desired result. �

Lemma 3.9. Let T ∈ M2n with 0 ≤ T ≤ 1. Then, for 1 ≤ p < 2 and J ⊆ [n], we
have

Inf(T ) + var(T ) ≥ 1

2

∑

j∈J

‖RJ
j (T )‖2L2

log


 1

max
j∈J

‖dj(T )‖pLp




− Kp

2

√∑

j∈J

‖RJ
j (T )‖2L2

√
Infp(T ),

where Kp = 4
(2−p)e .

Proof. For each J ⊆ [n], by Lemma 3.5(iii) and Lemma 2.4, we have

Inf(T ) + var(T )

≥1

2

∑

j∈J

(
‖RJ

j (T )‖2L2
log

(
1

‖RJ
j (T )‖2L2

)
−Kp

√
‖RJ

j (T )‖2L2

√
‖RJ

j (T )‖
p
Lp

)

≥1

2

∑

j∈J

‖RJ
j (T )‖2L2

log

(
1

‖RJ
j (T )‖2L2

)
− Kp

2

√∑

j∈J

‖RJ
j (T )‖2L2

√∑

j∈J

‖RJ
j (T )‖

p
Lp

,

where the last inequality is due to the Cauchy-Schwarz inequality. The desired
assertion now follows from Lemma 3.5 (i) and (ii). �
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Choosing J = J0 as in Lemma 3.8, we can relate the term
∑

j∈J

∥∥RJ
j (T )

∥∥2
L2

with W≈d(T ) and obtain the following corollary.

Corollary 3.10. Let 1 ≤ p < 2 and T ∈ M2n with 0 ≤ T ≤ 1. Then the following
holds

Inf(T )+ var(T ) ≥ 1

16
log

(
1

maxj∈[n] ‖dj(T )‖pLp

)
W≈dT − Kp

16

√
Infp(T )

√
W≈d(T ),

where Kp = 4
(2−p)e .

4. Proofs of Theorem 1.8 and Theorem 1.9

The proof of Theorem 1.8 is a little bit lengthy, which relies on sequence lemmas
regarding decomposition of the Fourier spectrum. Hence, we will postpone the
proof of Theorem 1.8 and show how it can be used to deduce Theorem 1.9 at first.
Our method presented below is essential inspired by the approach in [14].

Proof of Theorem 1.9. Assume Infp(T ) ≥ var(T ) log(n)
192e2Kp

(Kp is the same as in Theo-

rem 2.4). Noting that Infp(T ) =
∑n

j=1 ‖dj(T )‖pLp
, it follows that

max
j∈[n]

‖dj(T )‖pLp
≥ var(T ) log(n)

192e2Kpn
.

If Infp(T ) < log(n)var(T )
192e2Kp

, then, by Theorem 1.8, we have

max
j∈[n]

‖dj(T )‖pLp
≥ 1

4
√
n
≥ log(n)

4n
≥ var(T ) log(n)

4n
≥ var(T ) log(n)

4n
.

This completes the proof. �

To prove Theorem 1.8, we need a sequence of technical lemmas, which are nec-
essary estimations on the Fourier spectrum. We now begin by introducing the
operator δL on M2n via functional calculus of the non-negative generator L for
δ ∈ [0, 1]. More precisely, by the Fourier expansion, we have

δL(T ) =
∑

s∈{0,1,2,3}n

δ|supp(s)|T̂ (s)σs,

where T =
∑

s∈{0,1,2,3}n T̂ (s)σs ∈ M2n . The operator δL is one of the key in-

gredients of decomposing the Fourier spectrum of T . In the next proposition, we
represent the operator δL in terms of conditional expectation.

Proposition 4.1. For each T ∈ M2n , we have δL(T ) = EJ [EMJ (T )], where J is a
random set in [n] corresponds to vector in ({0, 1}n, µδ).

Proof. It is clear that

EJ (EMJ (T )) = EJ




∑

supp(s)⊆J

T̂ (s)σs




=
∑

s∈{0,1,2,3}n

µδ{J ∈ {0, 1}n : supp(s) ⊆ J}T̂ (s)σs

=
∑

s∈{0,1,2,3}n

δ|supp(s)|T̂ (s)σs.
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�

Lemma 4.2. Let 1 ≤ p < 2, T ∈ M2n with 0 ≤ T ≤ 1, and let D = {2k}k∈Z+ . For

each d ∈ D, we set Hd(T ) = (1− 1
2d)

L(T )− (1− 1
d )

L(T ). Then we have

(i) for each d ∈ D, |Hd(T )| ≤ 1;
(ii) for each d ∈ D and j ∈ [n], ‖dj(Hd(T ))‖pp ≤ 2p‖dj(T )‖pLp

;

(iii) for each s ∈ {0, 1, 2, 3}n with d ≤ |supp(s)| < 2d, we have |T̂ (s) | ≥ |Ĥd (s) | ≥
1
4 |T̂ (s) |;

(iv)
∑

d∈D
var(Hd(T )) =

∑
d∈D

‖Hd(T )‖2L2
≤ var (T ) and

∑

d∈D

Inf(Hd(T )) ≤ Inf(T ).

Proof. (i) Note that by Proposition 4.1, for each δ ∈ [0, 1], δL(T ) = EJ [EMJT ]
which implies 0 ≤ δL(T ) ≤ 1. It follows that

|Hd(T )| =
∣∣∣∣(1−

1

2d
)L(T )− (1 − 1

d
)L(T )

∣∣∣∣ ≤ 1.

(ii) Using Proposition 4.1 and the Jensen inequality, we have

‖dj(δ
L(T ))‖pLp

= ‖dj(δ
L(T ))‖pLp

= ‖dj(EJ (EMJ (T )))‖pLp

= ‖EJ(EMJ (dj(T )))‖pLp

≤ EJ‖dj(T )‖pLp
= ‖dj(T )‖pLp

.

Moreover, we have

‖dj(Hd(T ))‖pLp
=

∥∥∥∥dj

(
(1 − 1

2d
)L(T )− (1− 1

d
)L(T )

)∥∥∥∥
p

Lp

≤ 2p‖dj(T )‖pLp
.

(iii) By the definition of Hd, we have

|Ĥd (s) | =
((

1− 1

2d

)|supp(s)|
−
(
1− 1

d

)|supp(s)|)
|T̂ (s)|.

It is clear that |Ĥd (s) | ≤ |T̂ (s)| for each s ∈ {0, 1, 2, 3}n with d ≤ |supp(s)| < 2d.
On the other hand side, we have

(
1− 1

2d

)|supp(s)|
−
(
1− 1

d

)|supp(s)|
≥
(
1− 1

2d

)2d

≥ 1

4
,

where we used d < |supp(s)| < 2d in the last inequality.
(iv) By the definition of Hd again, we have the following

∑

d∈D

‖Hd(T )‖2L2
=
∑

d∈D

∑

s∈{0,1,2,3}n

((
1− 1

2d

)|supp(s)|
−
(
1− 1

d

)|supp(s)|)2

|T̂ (s) |2,

and ∑

d∈D

Inf(Hd(T ))

=
∑

d∈D

∑

s∈{0,1,2,3}n

|supp(s)|
((

1− 1

2d

)|supp(s)|
−
(
1− 1

d

)|supp(s)|)2

|T̂ (s) |2.
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Note that

∑

d∈D

((
1− 1

2d

)|supp(s)|
−
(
1− 1

d

)|supp(s)|)2

≤
(
∑

d∈D

(
1− 1

2d

)|supp(s)|
−
(
1− 1

d

)|supp(s)|)2

≤ 1,

and we complete the proof. �

By Lemma 4.2 (iii), it follows that

(4.1) W≈d(Hd(T )) ≥
1

16
W≈d(T ).

Before turning into the proof of the main theorem in this section, we provide the
following lemma which is motivated by [14, Lemma 29].

Lemma 4.3. Let D = {2k}k∈Z+ . For each T ∈ M2n with 0 ≤ T ≤ 1 and 1 ≤ p < 2,
define

D≥ :=
{
d ∈ D : W≈d(T ) ≥

var (T )
2

16Infp(T )

}
.

Then we have ∑

d∈D≥

W≈d(T ) ≥
1

2
var (T ) .

Proof. On the one hand, taking d0 = 4Infp(T )
var(T ) , we get that

(4.2)

∑

d≥d0

W≈d(T ) =
∑

|supp(s)|≥d0

|T̂ (s)|2

≤ 1

d0

∑

|supp(s)|≥d0

|supp(s)||T̂ (s)|2

≤ 1

d0

∑

s∈{0,1,2,3}n

|supp(s)||T̂ (s)|2

=
Inf(T )

d0
=

Inf(T )var (T )

4Infp(T )
≤ 1

4
var (T ) ,

where the last inequality is due to Proposition 2.7 (ii).
On the other hand, by the fact |{d ∈ D : d ≤ d0}| ≤ log (d0) and the definition

of D≥, we get

(4.3)
∑

d<d0,d/∈D≥

W≈d(T ) ≤ log (d0)
var (T )

2

16Infp(T )
=

log(d0)

4d0
var(T ) ≤ 1

4
var (T ) .

Combining (4.2) and (4.3), we have
∑

d∈D≥

W≈d(T ) =
∑

d∈D

W≈d(T )−
∑

d/∈D≥

W≈d(T )

≥ var(T )−
∑

d≥d0

W≈d(T )−
∑

d<d0,d/∈D≥

W≈d(T ) ≥
1

2
var(T ).

This completes the proof. �
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Now we are at the position to give a proof of Theorem 1.8 in detail.

Proof of Theorem 1.8. Take T ∈ M2n . We assume that

(4.4) max
j∈[n]

‖dj(T )‖pLp
< e−1040Kp

Infp(T )
var(T) ,

with Kp = 4
(2−p)e . For d ∈ D≥, we have

Infp(T )

var (T )
W≈d(T ) ≥

1

4

√
Infp(T )

√
W≈d(T ).

Using Corollary 3.10, (4.1), (4.4), and Lemma 4.2 (ii), we get that
(4.5)

Inf(Hd(T )) + var(Hd(T )) ≥
1

16
log

(
1

maxj∈[n] ‖dj(Hd(T ))‖pLp

)
W≈d(Hd(T ))

− Kp

16

√
Infp(Hd(T ))

√
W≈d(Hd(T ))

≥ 1

256
log

(
1

maxj∈[n] ‖dj(Hd(T ))‖pLp

)
W≈d(T )

− Kp

64

√
Infp(Hd(T ))

√
W≈d(T )

≥ 65Kp

16

Infp(T )

var (T )
W≈d(T )−

Kp

16

√
Infp(T )

√
W≈d(T )

≥ 4Kp
Infp(T )

var (T )
W≈d(T ).

Combining Lemma 4.2 (iv), (4.5) with Lemma 4.3 yields that

2Infp(T ) ≥ 2Inf(T ) ≥ Inf(T ) + var(T ) ≥
∑

d∈D≥

Inf(Hd(T )) +
∑

d∈D≥

var(Hd(T ))

≥ 4Kp
Infp(T )

var (T )

∑

d∈D≥

W≈d(T ) ≥ 2Kp
Infp(T )

var (T )
var (T ) ≥ 8

e
Infp(T ),

which is a contradiction. �

The following counterexample demonstrates the failure of Theorem 1.8 for the
case p = 2 even in the commutative hypercube setting, which means that, for
bounded elements, the dimension free KKL inequality invoking Lp-influences with
1 ≤ p < 2 may be the best possible.

Remark 4.4. Define f : {0, 1}n → [0, 1] as follows

f :=
1

2
+

1

2n

n∑

j=1

rj ,

where {rj}nj=1 is an i.i.d. Rademacher sequence. Then, we have

‖dj(f)‖2L2
=

1

4n2
, ∀j ∈ [n],

and

var(f) = Inf(f) =
1

4n
,
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which disproves Theorem 1.8 for the case p = 2 in the hypercube setting.

We conclude this section with some comments on the quantum Talagrand in-
fluence inequality. Firstly, combining the idea in [14] with the random restriction
treatment presented in Section 4, we can derive the following quantum Talagrand
influence inequality.

Theorem 4.5 (Quantum Talagrand influence inequality). For 1 ≤ p < 2, there
exists a constant Cp > 0 depending only on p, such that for each T ∈ M2n with
0 ≤ T ≤ 1, we have

(4.6) var(T ) ≤ Cp

n∑

j=1

‖dj(T )‖pLp

log
(
1/‖dj(T )‖pLp

)

where Cp = O
(

1
(2−p)2

)
as p → 2.

After completing our paper, we learned that Blecher et al. [2] have obtained a
similar quantum Talagrand influence inequality with some interesting higher-order
extensions. Therefore, we have chosen not to include the detailed proof of Theorem
4.5 here and instead refer interested readers to [2] for the proof. Secondly, the

constant Cp = O
(

1
(2−p)2

)
appeared in the quantum Talagrand influence inequality

is not the best possible. However, at this time of writing, we can not apply the

random restriction method to achieve the constant Cp = O
(

1
2−p

)
as stated in The-

orem 1.5. Finally, we shall mention here that (4.6) is a straightforward consequence
of Theorem 1.5 by using Proposition 2.7 (i).

5. Quantum Eldan-Gross inequality

In this section, we aim to derive a quantum Eldan-Gross inequality via the
random restriction technique, and apply it to obtain several quantum KKL-type
inequalities. Our approach of the quantum Eldan-Gross inequality is inspired by
the techniques developed by Keller and Kinder [13] and Eldan et al. [8].

5.1. Estimate on Fourier spectrum. This subsection aims to establish the fol-
lowing noncommutative analogue of [13, Lemma 5]. For T ∈ M2n and J ⊆ [n], we
denote MJ(T ) :=

∑
j∈J ‖dj(T )‖2L1

and M(T ) :=
∑n

j=1 ‖dj(T )‖2L1
.

Theorem 5.1. For d ≥ 1 and projection T ∈ M2n , if M(T ) ≤ e−2d, then we have

∑

|supp(s)|=d

T̂ (s)2 ≤ 6e

d

(
2e

d

)d

M(T )

(
log

(
d

M(T )

))d

.

The key ingredient in the proof of Theorem 5.1 is the following technical result,
which is a noncommutative analogue of the estimate in [13, eq. (12)].

Proposition 5.2. Let T ∈ M2n be a projection with M(T ) ≤ e−2d. Then, for each
J ⊆ [n], we have

∑

j∈J

∑

supp(s)⊆Jc,
|supp(s)|=d−1,α∈{1,2,3}

|T̂
(
s⊕ eαj

)
|2 ≤ 6

(
2e

d

)d

MJ(T )

(
log

(
1

MJ(T )

))d

.
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Since the proof of Proposition 5.2 is a little bit lengthy, we will postpone its
proof, and turn to demonstrate how it can be used to prove Theorem 5.1 at first.
Recall that we identify random subset J with the vector in ({0, 1}n, µ 1

d
), where

µ 1
d
({x}) =

(
1

d

)∑n
j=1 xj

(
1− 1

d

)n−∑n
j=1 xj

, x = (xj)
n
j=1 ∈ {0, 1}n.

Proof of Theorem 5.1. Firstly, note here that for each s ∈ {0, 1, 2, 3}n with |supp(s)| =
d, we know the probability of J such that s = u⊕ eαj with j ∈ J and supp(u) ⊆ Jc

is
(
d
1

)
· 1
d(1− 1

d )
d−1 = (1− 1

d)
d−1 ≥ 1

e . Hence,

EJ




∑

supp(s)⊆Jc,|supp(s)|=d−1
j∈J,α∈{1,2,3}

T̂
(
s⊕ eαj

)2


(5.1)

=

(
1− 1

d

)d−1 ∑

s∈{0,1,2,3}n,
|supp(s)|=d

T̂ (s)2 ≥
(
1

e

) ∑

s∈{0,1,2,3}n,
|supp(s)|=d

T̂ (s)2.

Secondly, assume Proposition 5.2 holds and note that x 7→ x log( 1x)
d is a concave

function on (0, ed). Then it follows from the assumption M(T ) ≤ e−2d and the
Jensen inequality that

(5.2)

EJ


6
(
2e

d

)d


∑

j∈J

‖dj(T )‖2L1



(
log

(
1∑

j∈J ‖dj(T )‖2L1

))d



≤6

(
2e

d

)d

EJ



∑

j∈J

‖dj(T )‖2L1





(
log

(
1

EJ (
∑

j∈J ‖dj(T )‖2L1
)

))d

=6

(
2e

d

)d (
M (T )

d

)(
log

(
d

M (T )

))d

,

where we used EJ(1J (j)) =
1
d in the last equality. Hence, combing (5.1), (5.2) with

Proposition 5.2 yields the desired inequality. �

We conclude this subsection with the following noncommutative analogue of [8,
Theorem 3.4].

Theorem 5.3. Suppose that T ∈ M2n is a projection. Then

(5.3)
∑

1≤|supp(s)|≤ 1
10 log(1/M(T ))

T̂ (s)2 ≤ 12eM(T )2/5.

Proof. For the given projection T , recall here that

W=l(T ) =
∑

|supp(s)|=l

|T̂ (s)|2.
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For 1 ≤ d ≤ 1
10 log(1/M(T )), we have M(T ) ≤ e−10d, and then it follows from

Theorem 5.1 that

W1≤d≤ 1
10 log(1/M(T ))(T )

=

⌈ 1
10 log(1/M(T ))⌉∑

l=1

W=l(T )

≤6eM(T )

⌈ 1
10 log(1/M(T ))⌉∑

l=1

1

l

(
2e

l

)l(
log

(
l

M(T )

))l

=6eM(T )

⌈ 1
10 log(1/M(T ))⌉∑

l=1

1

l

(
2e

l

)l

(log(l) + log(1/M(T )))
l

≤6eM(T )

(
4e log(1/M(T ))

l

)l



⌈ 1

10 log(1/M(T ))⌉∑

l=1

1

l


 ,

(5.4)

where we used log(l) ≤ log(1/M(T )) for 1 ≤ l ≤ 1
10 log(1/M(T )) in the last in-

equality.

Note that the function l 7→
(

4e log(1/M(T ))
l

)l
is increasing for l ∈ [1, 4 log(1/M(T ))].

Hence, we estimate (5.4) as follows

W1≤d≤ 1
10 log(1/M(T ))(T ) ≤ 6eM(T )(40e)

1
10 log(1/M(T ))

⌈ 1
10 log(1/M(T ))⌉∑

l=1

1

l

≤ 6eM(T )1/2
⌈ 1

10 log(1/M(T ))⌉∑

l=1

1

l

≤ 6eM(T )1/2
(
log log

(
1

M(T )1/10

)
+ 1

)

≤ 12eM(T )2/5,

(5.5)

where we used 40e ≤ e5 and
∑⌈ 1

10 log(1/M(T ))⌉
l=1

1
l ≤ log log

(
1

M(T )1/10

)
+ 1 in the

second and third inequalities, respectively. �

5.2. The quantum Talagrand-type isoperimetric inequality. In this subsec-
tion, we apply the semigroup technique to derive Theorem 1.10. The proof of the
theorem relies on the following inequalities, which are of independent interest. The
first key ingredient in our proof is the following quantum Buser-type inequality.

Theorem 5.4 (Quantum Buser-type inequality). For each t ≥ 0 and 1 ≤ p ≤ 2,
the following inequality holds for every T ∈ M2n

∥∥T − e−tL(T )
∥∥
Lp

≤
√
2t

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )
2|




1/2
∥∥∥∥∥∥∥
Lp

.

To establish Theorem 5.4, we need the following sequence of lemmas, which are
noncommutative analogies to their commutative correspondences.
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Theorem 5.5 (Local Reverse Poincaré inequality). For each T ∈ M2n , we have

(e2t − 1)

n∑

j=1

|e−tLdj(T )|2 ≤ e−tL(|T |2)− |e−tL(T )|2.

Proof. On the one hand, applying Proposition 2.5 (iii), we get

(5.6) e−sL




n∑

j=1

∣∣∣dje
−(t−s)L(T )

∣∣∣
2


 ≥ e2s

n∑

j=1

|dje
−tL(T )|2,

for every 0 ≤ s ≤ t.
On the other hand,

e−tL(T ∗T )− (e−tL(T ))∗(e−tL(T ))

=

∫ t

0

∂

∂s
e−sL

[(
e−(t−s)L(T )

)∗ (
e−(t−s)L(T )

)]
ds

=

∫ t

0

−Le−sL
(∣∣∣e−(t−s)L(T )

∣∣∣
2
)
+ e−sL

((
e−(t−s)L(T )

)∗
Le−(t−s)L(T )

)

+ e−sL
((

Le−(t−s)L(T )
)∗

e−(t−s)L(T )
)

ds

=

∫ t

0

e−sL
[
− L

(
|e−(t−s)L(T )|2

)
+ e−(t−s)L(T )

(
Le−(t−s)L(T )

)∗

+
(
Le−(t−s)L(T )

)∗
e−(t−s)L(T )

]
ds

=2

∫ t

0

e−sL




n∑

j=1

∣∣∣dje
−(t−s)L(T )

∣∣∣
2


 ds,

(5.7)

where the last line follows from Proposition 2.5 (i).
Combining (5.6) and (5.7) yields that

e−tL(|T |2)− |e−tL(T )|2 =2

∫ t

0

e−sL




n∑

j=1

∣∣∣dje
−(t−s)L(T )

∣∣∣
2


 ds

≥2

∫ t

0

e2s
n∑

j=1

∣∣dje
−tL(T )

∣∣2 ds

=

n∑

j=1

∣∣dje
−tL(T )

∣∣2
∫ 2t

0

es ds

=(e2t − 1)

n∑

j=1

∣∣dje
−tL(T )

∣∣2 ,

which is the desired inequality. �

Thanks to the local reverse Poincaré inequality (i.e., Theorem 5.5), we obtain
the following gradient estimate that is dual to the quantum Byser-type inequality.
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Lemma 5.6. For each T ∈ M2n and 2 ≤ p ≤ ∞, we have
∥∥∥∥∥∥∥




n∑

j=1

∣∣dje
−tL(T )

∣∣2



1/2
∥∥∥∥∥∥∥
Lp

≤ 1√
2t
‖T ‖Lp, t ≥ 0.

Proof. Since e2t − 1 ≥ 2t, it follows from the reverse local Poincaré inequality (i.e.,
Theorem 5.5) that for each t ≥ 0 we have

2t

n∑

j=1

|dje
−tL(T )|2 ≤ e−tL(|T |2)− |e−tL(T )|2 ≤ e−tL(|T |2),

which further implies




n∑

j=1

∣∣dje
−tL(T )

∣∣2



1/2

≤ 1√
2t

(
e−tL(T ∗T )

)1/2
.

Therefore, we have
∥∥∥∥∥∥∥




n∑

j=1

∣∣dje
−tL(T )

∣∣2



1/2
∥∥∥∥∥∥∥
Lp

≤ 1√
2t

∥∥e−tL(|T |2)
∥∥1/2
Lp/2

≤ 1√
2t
‖T ‖Lp,

where the last inequality is due to the fact that p/2 ≥ 1 and

∥∥e−tL(|T |2)
∥∥1/2
Lp/2

≤
∥∥|T |2

∥∥1/2
Lp/2

= ‖T ‖Lp.

�

We now prove the quantum Buser-type inequality via duality.

Proof of Theorem 5.4. Since, for each t ≥ 0,

T − e−tL(T ) = −
∫ t

0

∂

∂s
e−sL(T ) ds =

n∑

j=1

∫ t

0

dje
−sL(T ) ds.

Hence, for every 1 ≤ p ≤ 2, there exists u ∈ Lp′ with ‖u‖Lp′
= 1, 1

p + 1
p′ = 1, and

∥∥T − e−tL(T )
∥∥
Lp

= tr


u ·




n∑

j=1

∫ t

0

dje
−sL(T ) ds






=

∫ t

0

n∑

j=1

tr
(
u ·
(
dje

−sL(T )
))

ds

=

∫ t

0

n∑

j=1

tr
((
dje

−sL(u)
)
· (dj(T ))

)
ds

≤
∫ t

0

∥∥∥∥∥∥∥




n∑

j=1

|dje
−sL(u∗)|2




1/2
∥∥∥∥∥∥∥
Lp′

·

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )
2|




1/2
∥∥∥∥∥∥∥
Lp

ds.
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Thanks to Lemma 5.6, we obtain that

∥∥T − e−tL(T )
∥∥
Lp

≤
∫ t

0

1√
2s

ds ‖u‖Lp′

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )
2|




1/2
∥∥∥∥∥∥∥
Lp

≤
√
2t

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )
2|




1/2
∥∥∥∥∥∥∥
Lp

.

�

Before turning to the Talagrand-type inequality, we show the following two ele-
mentary lemmas.

Lemma 5.7. For each projection T ∈ M2n and t ≥ 0, we have

var(T ) ≤
∥∥T − e−tL(T )

∥∥
L1

+ var
(
e−tL/2(T )

)
.

Proof. Let T ∈ M2n be a projection. It follows from the trace preserving of
{e−tL}t≥0 that

var
(
e−tL/2(T )

)
= tr(T · e−tL(T ))− tr(T )2, ∀ t ≥ 0.

Note that var(T ) = tr(T )− tr(T )2. Therefore, we have

var(T )− var
(
e−tL/2(T )

)
= tr(T − T · e−tL(T ))

= tr
(
T (T − e−tL(T ))

)

≤
∥∥T (T − e−tL(T ))

∥∥
L1

≤ ‖T − e−tL(T )‖L1.

The desired assertion follows. �

Lemma 5.8. Let T ∈ M2n be a projection. For each d ∈ N, we have
∥∥∥∥∥∥∥




n∑

j=1

|dj(T )|2



1/2
∥∥∥∥∥∥∥
L1

≥ 1

4

√
dW≥d(T ).

Proof. Fix d ∈ N. Applying Lemma 5.7 (with t = 1
d ), we get

∥∥∥T − e−
L
d (T )

∥∥∥
L1

≥ var(T )− var
(
e−

L
2d (T )

)

=
∑

|supp(s)|≥1

(1 − e−
|supp(s)|

d )T̂ (s)2

≥
∑

|supp(s)|≥d

(1− e−
|supp(s)|

d )T̂ (s)2

≥ (1− e−1)W≥d(T ) ≥
1

2
W≥d(T ).
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By Theorem 5.4, we have
∥∥∥∥∥∥∥




n∑

j=1

|dj(T )|2



1/2
∥∥∥∥∥∥∥
L1

≥
√

d

2

∥∥∥T − e−
L
d (T )

∥∥∥
L1

≥
√
d

4
W≥d(T ).

�

Before providing the proof of the quantum Talagrand-type isoperimetric inequal-
ity, i.e., Theorem 1.10, we derive the following moment comparison lemma via
hypercontractivity of the semigroup {e−tL}t≥0 (see [18, Theorem 46]).

Lemma 5.9 (moment comparison). Let T ∈ M2n with degree at most k. For every
r ≥ 2, we have

‖T ‖Lr ≤ (r − 1)k/2 ‖T ‖L2.

Proof. Note that T is of degree at most k, that is, T =
∑

|supp(s)|≤k T̂ (s)σs. For

each r ≥ 2, take t0 = log(r−1)
2 . Applying the hypercontractivity of {e−tL}t≥0 (see

(2.5) above), we have ∥∥∥e−
log(r−1)

2 L(T )
∥∥∥
Lr

≤ ‖T ‖L2,

which implies

‖T ‖Lr =
∥∥∥e−t log(r−1)

2 L ◦ et
log(r−1)

2 L(T )
∥∥∥
Lr

≤
∥∥∥et

log(r−1)
2 L(T )

∥∥∥
L2

.

Now the desired inequality follows from the fact
∥∥∥e

log(r−1)
2 L(T )

∥∥∥
2

L2

=
∑

|supp(s)|≤k

elog(r−1)|supp(s)||T̂ (s)|2 ≤ (r − 1)k‖T ‖2L2
.

�

Proof of Theorem 1.10. We first consider the case var(T ) ≥ e−16. Note that var(T ) =
W≥1(T ) and √

log

(
1

var(T )

)
≤ 4.

It follows from Lemma 5.8 (with d = 1 there) that

var(T )

√
log

(
1

var(T )

)
≤ 4W≥1(T ) ≤ 16

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )|2



1/2
∥∥∥∥∥∥∥
L1

.

Now we deal with the case var(T ) ≤ e−16. Let

d :=

⌈
1

16
log

(
1

var(T )

)⌉
.

For such d, we claim that

(5.8) W≥d(T ) ≥
1

2
var(T ).
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Once the claim is proved, applying Lemma 5.8, we have
∥∥∥∥∥∥∥




n∑

j=1

|dj(T )|2



1/2
∥∥∥∥∥∥∥
L1

≥ 1

4

√
1

16
log

(
1

var(T )

)
W≥d(T ) ≥

1

32
var(T )

√
log

(
1

var(T )

)
.

This is the desired assertion.
It remains to verify the claim. Since T ∈ M2n is a projection, it follows that

var(T ) = tr(T )(1 − tr(T )) ≤ e−16. We assume without loss of generality that
tr(T ) < 1

2 ; otherwise, it suffices to replace T by 1− T . Hence,

(5.9) 2var(T ) = 2tr(T )(1− tr(T )) ≥ tr(T ).

Write

Rad≤d(T ) =
∑

|supp(s)|≤d

T̂ (s)σs.

By the Hölder inequality, Lemma 5.9 and (5.9), we deduce that

W≤d(T ) = tr (T ·Rad≤d(T )) ≤ ‖T ‖4/3 · ‖Rad≤d(T )‖L4

≤ 3d/2‖Rad≤d(T )‖L2‖T ‖L4/3
= 3d/2‖Rad≤d(T )‖L2tr(T )

3/4

≤ 3d/2 · 23/4‖Rad≤d(T )‖L2var(T )
3/4 = 3d/2 · 23/4W≤d(T )

1/2var(T )3/4.

Note that 3d/2 ≤ ed ≤ var(T )−1/16 and var(T ) ≤ e−16. We have

W≤d(T )
1/2 ≤ 23/4var(T )3/4

var(T )1/16
≤ var(T )1/223/4e−3 ≤ 1

2
var(T )1/2,

which further implies

W≥d(T ) ≥ var(T )−W≤d(T ) ≥
3

4
var(T ) ≥ 1

2
var(T ).

We have verified the claim (5.8), and the proof is complete. �

5.3. The quantum Eldan-Gross inequality and KKL-type inequalities. In
this subsection, we provide a details proof of the quantum Eldan-Gross inequality
and apply it to deduce two quantum KKL-type inequalities and a stability result
for the quantum KKL theorem with respect to the L1-influences.

Proof of Theorem 1.11. Let T be a projection inM2n and denoteM(T ) :=
∑n

j=1 ‖dj(T )‖2L1

for simplicity. If M(T ) ≥ var(T )15, it follows that

var(T )

√
log

(
1 +

1

M(T )

)
≤ var(T )

√
log

(
1 +

1

var(T )10

)

≤ 4var(T )

√
log

(
1

var(T )

)
,

(5.10)

where we used var(T ) ≤ 1
4 (i.e., maxα∈[0,1] α − α2 ≤ 1

4 ) in the second inequality.
Apply Theorem 1.10 to (5.10) yields the desired quantum Eldan-Gross inequality
for the case M(T ) ≥ var(T )15.
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If M(T ) ≤ var(T )15, we let d = 1
10 log(1/M(T )) and apply Theorem 5.3 to get

that
(5.11)

∑

1≤|supp(s)|≤ 1
10 log(1/M(T ))

T̂ (s)2 ≤ 12e ·M(T )2/5 ≤ 12e · var(T )6 ≤
(
12e

45

)
var(T ),

where we used var(T ) ≤ 1
4 in the last inequality. By (5.11), it follows that

(5.12) W>d(T ) = var(T )−
∑

1≤|supp(s)|≤d

T̂ (s)2 ≥
(
1− 12e

45

)
var(T ) ≥ 1

2
var(T ).

Combining Lemma 5.8 and (5.12), we get that

var(T )

√
log

(
1 +

1

log(M(T ))

)
≤ K

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )|2



1/2
∥∥∥∥∥∥∥
L1

,

where we used 1 + log(1/M(T )) ≤ 2 log(1/M(T )) when M(T ) ≤ var(T )15 ≤ 1/230.
�

The following definition is motivated by Definition 2.1 and Remark 2.2.

Definition 5.10. A projection T ∈ M2n is called balanced if var(T ) = 1
4 .

As the first application of our noncommutative Eldan-Gross inequality, we derive
the following KKL-type inequality in the CAR algebra, which is essentially due to
Rouzé, Wirth and Zhang [22].

Theorem 5.11 (Rouzé-Wirth-Zhang). For each balanced projection T ∈ M2n ,
there exists a universal constant C > 0, such that

max
j∈[n]

‖dj(T )‖L1 ≥ C
√
log(n)

n
.

Proof. For each balanced projection T ∈ M2n , we apply Theorem 1.11 to get

1

4

√
log(1 +

1∑n
j=1 ‖dj(T )‖2L1

) ≤ K

∥∥∥∥∥∥

n∑

j=1

|dj(T )|2
∥∥∥∥∥∥

1/2

L1/2

≤ K

n∑

j=1

‖dj(T )‖L1,(5.13)

where K > 0 is a universal constant. It follows from (5.13) that

(5.14)
1

16
≤ (KnB)2

log
(
1 + 1

nB2

) ,

where B = maxj∈[n] ‖dj(T )‖L1.

Choose a positive constant C such that 16KC < 1. If M ≥ C
√

log(n)

n , there is

nothing to prove. We assume B <
C
√

log(n)

n from now on. Choose a sufficient large
n such that

n

C2 log(n)
− n1/2 + 1 > 0.
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It follows from B <
C
√

log(n)

n that

(5.15)
(KnB)2

log
(
1 + 1

nB2

) <
K2C2 log(n)

log
(
1 + n

C2 log(n)

) .

Note that 4
√
2KC < 1 and n

C2 log(n) − n1/2 + 1 > 0 imply that

(5.16) (4KC)2 log(n) <
1

2
log(n) < log

(
1 +

n

C2 log(n)

)
.

Substituting (5.16) to (5.15) entails that

(KnB)2

log
(
1 + 1

nB2

) <
K2C2 log(n)

log
(
1 + n

C2 log(n)

) <
1

16
,

which contradicts to (5.14). �

As the second application of the noncommutative Eldan-Gross inequality, we
derive the following quantum KKL-type inequality, which is of independent interest.

Theorem 5.12. There exists a universal constant C > 0 such that for every ε ∈
(0, 1) and balanced projection T ∈ M2n , one of the following inequalities holds:

(i) maxj∈[n] ‖dj(T )‖2L2
≥ Cε log(n)

n ;

(ii) maxj∈[n] ‖dj(T )‖L1 ≥ C
n(1+ε)/2 .

Proof. For each ε > 0 and balanced projection T ∈ M2n , by the quantum Eldan-
Gross inequality (i.e., Theorem 1.11), there exists a universal constant K > 0 such
that

1

4

√√√√log

(
1 +

1∑n
j=1 ‖dj(T )‖2L1

)
≤ K

∥∥∥∥∥∥∥




n∑

j=1

|dj(T )|2



1/2
∥∥∥∥∥∥∥
L1

≤ K




n∑

j=1

‖dj(T )‖2L2




1/2

.

(5.17)

We assume from now on that

(5.18)

n∑

j=1

‖dj(T )‖2L2
≤ ε log(n)

16K2

for sufficient large n; otherwise, we obtain

max
j∈[n]

‖dj(T )‖2L2
≥ ε log(n)

16K2n
.

Substituting the assumption (5.18) to (5.17) yields

1

4

√√√√log

(
1 +

1∑n
j=1 ‖dj(T )‖2L1

)
≤
√
ε log(n)

4
,

which further implies
1∑n

j=1 ‖dj(T )‖2L1

≤ nε,
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and consequently,
1

n(1+ε)/2
≤ max

j∈[n]
‖dj(T )‖L1.

It remains to choose C = min{ 1
16K2 , 1} to obtain the desired result. �

In order to apply Theorem 5.12 to obtain another KKL-type inequality, we in-
troduce the concept of index for elements in M2n as follows. For each T ∈ M2n , we
define

ind(T ) := inf{α ≥ 0 : ‖dj(T )‖αL1
≤ ‖dj(T )‖2L2

, ∀ j ∈ [n]}.
Lemma 5.13. For each balanced projection T ∈ M2n , we have ind(T ) ∈ [1, 2].

Proof. For balanced projection T ∈ M2n , we note that

(5.19) ‖dj(T )‖L1 ≤ ‖T ‖L1 =
1

2
< 1, ∀ j ∈ [n].

If ind(T ) > 2, there exists ind(T ) ≥ α > 2 and some j0 ∈ [n] such that

‖dj0(T )‖αL1
> ‖dj0(T )‖2L2

≥ ‖dj0(T )‖2L1
.

This implies that ‖dj0(T )‖α−2
L1

> 1, which contradicts to (5.19). Hence, ind(T ) ≤ 2.
It remains to show that ind(T ) ≥ 1. Indeed, since dj is a contraction, it follows

from (5.19) that

‖dj(T )‖2L2
≤ ‖dj(T )‖L1

‖dj(T )‖L∞
≤ ‖dj(T )‖L1

< 1.

On the other hand, since ‖dj(T )‖αL1
is decreasing on α by (5.19), we infer that

ind(T ) ≥ 1. �

We now conclude this subsection with the following quantum KKL-type inequal-
ity invoking L2-influence.

Theorem 5.14. For each n ∈ N and balanced projection T ∈ M2n with ind(T ) < 2,
there exists a constant Cind(T ) > 0 depending on the index of T such that

(5.20) max
j∈[n]

‖dj(T )‖2L2
≥ Cind(T ) log(n)

n
.

Proof. Choose positive α such that ind(T ) ≤ α < 2 and set δ = 2−α
4 , ε = 2−α

2α .
By Theorem 5.12, there exists a universal constant C > 0 such that one of the
following inequalities holds

(i) maxj∈[n] ‖dj(T )‖2L2
≥ Cε log(n)

n ;

(ii) maxj∈[n] ‖dj(T )‖L1 ≥ C
n(1+ε)/2 .

If the first situation holds, there is nothing to prove. We assume from now on that
item (ii) holds, that is,

(5.21) max
j∈[n]

‖dj(T )‖L1 ≥ C

n(1−δ)/α
,

where we used the fact ε = 2−2δ−α
α . Since ‖dj(T )‖αL1

≤ ‖dj(T )‖2L2
, it follows from

(5.21) that

max
j∈[n]

‖dj(T )‖2L2
≥ Cα

n1−δ
≥ (2 − α)Cα log(n)

4n
.

Choosing Cind(T ) = min{C(2−α)
2α , (2−α)Cα

4 } yields the desired inequality. �
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Remark 5.15. There exists a quantum Boolean function T ∈ M2n with ind(T ) = 2
such that the quantum KKL inequality holds for L2-influence; see [18, Proposition
11.5]. However, as shown in [11, Remark 6.5], this is not the case in the CAR
algebra setting.

Our final application of Theorem 1.11 is the following stability result for the
quantum KKL-type inequality (invoking L1-influences), which is quantum analogy

of [8, Corollary 3.5]. For each T ∈ M2n , we define that |∇(T )| :=
(∑n

j=1 |dj(T )|2
)1/2

.

Corollary 5.16. Suppose that there exists a constant C1 > 0 such that for each
projection T ∈ M2n the following holds

(5.22) max
j∈[n]

‖dj(T )‖L1 ≤ C1 log(n)var(T )

n
.

Then there exist constant C2 > 0 such that

tr
[
1
( 1
2var(T )

√
log(n),∞)

(|∇(T )|)
]
≥ C2var(T ).

Proof. By assumption (5.22) and Proposition 2.7 (i), we have

tr
[
|∇(T )|2

]
=

n∑

j=1

‖dj(T )‖2L2
≤

n∑

j=1

‖djT ‖L1 ≤ C1 log(n)var(T ).(5.23)

According to the assumption, there exists a universal constant K1 > 0 such that

(5.24)

n∑

j=1

‖dj(T )‖2L1
≤ C2

1 log
2(n)var(T )2

n
≤ K1√

n
,

where we used var(T ) ≤ 1
4 for the projection T ∈ M2n . Using Theorem 1.11 and

(5.24), there exists K2 > 0 such that

(5.25) ‖∇(T )‖L1
≥ 1

K
var(T )

√√√√log

(
1 +

1∑n
j=1 ‖dj(T )‖2L1

)
≥ K2var(T )

√
log(n).

By the Paley-Zygmund inequality (2.9), there exists a constant C2 > 0 such that

tr
[
1
( 1
2 var(T )

√
log(n),∞)

(|∇(T )|)
]
≥

‖∇(T )‖2L1

4tr[|∇(T )|2] ≥ C2var(T ),

where the last inequality follows from a combination of (5.23) and (5.25). �

5.4. Proof of Proposition 5.2. The proof of Proposition 5.2 relies on the follow-
ing technical lemmas. Firstly, with the moment comparison lemma (i.e., Lemma
5.9) at hand, we can derive the following deviation inequality. Although this devi-
ation inequality is well-known, we include its proof for the convenience of readers.

Lemma 5.17. There exists universal constant K > 0 such that for each T ∈ M2n

with degree at most d ∈ N and ‖T ‖L2 ≤ 1, we have

tr
[
1[t,∞)(|T |)

]
≤ K exp

{
−d · t2/d

4e

}
, for all t > 0.
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Proof. Applying the assumption ‖T ‖L2 = 1 and Lemma 5.9 it follows that

(5.26) ‖T ‖rLr
≤ rdr/2 for each r ≥ 1.

Let α = d
4e , and we now show that tr

[
exp(α|T |2/d)

]
< ∞. Indeed, by the Taylor

expansion and the Stirling formula k! ∼ kk
√
sπk

ek , we get that

tr
[
exp(α|T |2/d)

]
=

∞∑

k=0

αk‖T ‖2k/dL2k/d

k!

≤
∞∑

k=0

(
2α
d

)k · kk
k!

≤ K1

∞∑

k=0

(
2eα

d

)k

= 2K1 < ∞,

where we used (5.26) and the Stirling formula in the second and the third inequality,
respectively. Therefore, by the Chebyshev inequality, we have that for each t > 0
the following holds

tr[1(t,∞)(|T |)] ≤ e−αt2/d · tr
[
exp(α|T |2/d)

]
≤ K exp

{
−d · t2/d

4e

}
.

�

Applying the functional calculus for positive element in M2n , we obtain the
following integral representation lemma.

Lemma 5.18. Let S, T ∈ M2n . If T is positive, then

tr(ST ) =

∫ ∞

0

tr
(
S · 1(t,∞)(T )

)
.

Proof. By the functional calculus of T , it is clear that T =
∫∞
0 1T ((t,∞))dt. We

apply the integral representation of T to the tr(ST ) entails that

tr(ST ) = tr

(
S ·
∫ ∞

0

1(t,∞)(T )dt

)
=

∫ ∞

0

tr
(
S · 1(t,∞)(T )

)
dt,

where the last equality follows from the linearity of tr. �

We also need the following estimate from [13, Lemma 12].

Lemma 5.19. Let d ≥ 1 be a positive integer and t0 > (4e)
d
2 . Then we have

∫ ∞

t0

t2 · exp
{
−d · t2/d

2e

}
dt ≤ 5et

3− 2
d

0 exp

{
−d · t2/d0

2e

}
.

We shall prove Proposition 5.2 in details. We here explain some notation we
use below. For each s = (s1, , · · · , sn) ∈ {0, 1, 2, 3}n, it is viewed an element in
{0, 1, 2, 3}n+1 via

s̃ = (s1, · · · , sn, 0).
To simplify symbols, we still write s instead of s̃. Hence, for each s ∈ {0, 1, 2, 3}n,
the summation s⊕ eαn+1 is read as follows

s⊕ eαn+1 := s̃⊕ eαn+1 ∈ {0, 1, 2, 3}n+1, α ∈ {0, 1, 2, 3}.
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For each s ∈ {0, 1, 2, 3}n, we set

sjy = (s1, · · · , sj−1, 0, sj+1, · · · , sn, sj) ∈ {0, 1, 2, 3}n+1,

i.e., we remove the original sj to the n+1-position and replace the original sj with
0. By the same spirit, for each s ∈ {0, 1, 2, 3}n, σs̃ = σs⊗12 is viewed as an element
in M2n+1 . For simplicity, we still write σs instead of σs̃.

In what follows, let d ≥ 1 be fixed, T ∈ M2n and J ⊆ [n]. For j ∈ J , define

(5.27) Tj :=
∑

supp(s)⊆Jc

|supp(s)|=d−1

∑

α∈{1,2,3}
T̂ (s ⊕ eαj )σs⊕eαn+1

,

(5.28) Tcopy,j :=
∑

s∈{0,1,2,3}n

sj=0

T̂ (s)σs⊕e0n+1
+

∑

s∈{0,1,2,3}n

sj 6=0

T̂ (s)σsjy ,

and

(5.29) T̃j :=
∑

s∈{0,1,2,3}n

sj=0

T̂ (s)σs⊕e0n+1

︸ ︷︷ ︸
T̃j,L

+
∑

s∈{0,1,2,3}n

sj 6=0

T̂ (s)σ
s⊕e

sj
n+1

︸ ︷︷ ︸
T̃j,R

.

Then, Tj , Tcopy,j and T̃j are elements in M2n+1 .

Define Ψj : M2n ⊗12 → M
⊗j−1
2 ⊗12⊗M

⊗n−j
2 by setting: for each s = (sj)

n
j=1 ∈

{0, 1, 2, 3}n,
σs ⊗ 12 7→ σsjy .

It is clear that Ψj is an ∗-isomorphism from M2n ⊗ 12 onto M
⊗j−1
2 ⊗ 12 ⊗M

⊗n−j
2

with

Ψj(T ⊗ 12) = Tcopy,j

and

Ψj (dj(T ⊗ 12)) = dn+1(Tcopy,j)

Hence, we have
(5.30)

‖dn+1(Tcopy,j)‖L1
= ‖Ψj (dj(T ⊗ 12))‖L1

= ‖dj(T ⊗ 12)‖L1
= ‖dj(T )‖L1

.

The next several technical lemmas provide necessary information of Tj, Tcopy,j

and T̃j , which are key ingredients of proving Proposition 5.2.

Lemma 5.20. Let T ∈ M2n and J ⊆ [n]. For each j ∈ J , we have

EJc∪{n+1}
(
Aj T̃j

)
= EJc∪{n+1} (dn+1(Tcopy,j)) ,

where T̃j and Tcopy,j are as in (5.29) and (5.28), and Aj is given by

(5.31) Aj =
∑

α∈{1,2,3}
σeαj

.

Proof. For fixed j ∈ J , according to the definition of conditional expectation, we
note that for each s̃ ∈ {0, 1, 2, 3}n+1, if s̃i 6= 0 for some i ∈ J , then

(5.32) EJc∪{n+1}(σs̃) = 0.
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From this, we immediately deduce that EJc∪{n+1}
(
Aj T̃j,L

)
= 0, where T̃j,L is as

in (5.29). Thus,

(5.33)

EJc∪{n+1}
(
Aj T̃j

)
= EJc∪{n+1}

(
Aj T̃j,R

)

=
∑

α∈{1,2,3}

∑

s{0,1,2,3}n

sj 6=0

T̂ (s)EJc∪{n+1}
(
σeαj

· σ
s⊕e

sj
n+1

)

=
∑

α∈{1,2,3}

∑

supp(s)⊆Jc∪{j}
sj 6=0

T̂ (s)EJc∪{n+1}
(
σeαj

· σ
s⊕e

sj
n+1

)

=
∑

supp(s)⊆Jc∪{j}
sj 6=0

T̂ (s)σsjy ,

where we used (5.32) twice in last two equality.
On the other hand side, it follows from (2.4) that

dn+1(Tcopy,j) =
∑

s∈{0,1,2,3}n

sj 6=0

T̂ (s)σsjy .

Hence, by (5.32) again,

EJc∪{n+1} (dn+1(Tcopy,j)) =
∑

supp(s)⊆Jc∪{j}
sj 6=0

T̂ (s)σsjy .

The desired assertion follows from the above argument. �

Lemma 5.21. Let T ∈ M2n and J ⊂ [n]. For each j ∈ J , we have

∑

supp(s)⊆Jc

|supp(s)|=d−1,α∈{1,2,3}

|T̂ (s ⊕ eαj )|2 =
(
tr
[
T j ·Aj T̃j

])2
,

where T j = Tj/‖Tj‖L2, Tj, T̃j and Aj are referred to (5.27), (5.29) and (5.31),
respectively.

Proof. Take j ∈ J . From the orthogonality of {σs}s∈{0,1,2,3}n+1 in L2(M2n+1), it is
not hard to see that for each s ∈ {0, 1, 2, 3}n and α ∈ {1, 2, 3},

〈
σs⊕eαn+1

, Aj T̃j,L

〉
= 0,

where T̃j,L is as in (5.29). It follows that
〈
Tj, Aj T̃j

〉
=
〈
Tj , Aj(T̃j,L + T̃j,R)

〉
=
〈
Tj , Aj T̃j,R

〉

=
∑

supp(s′)⊆Jc

|supp(s′)|=d−1

∑

s∈{0,1,2,3}n

sj 6=0

∑

α′,α∈{1,2,3}
〈T̂ (s′ ⊕ eα

′

j )σ
s′⊕eα

′
n+1

, T̂ (s)σeαj
· σ

s⊕e
sj
n+1

〉

=
∑

supp(s′)⊆Jc

|supp(s′)|=d−1

∑

α′∈{1,2,3}
|T̂ (s′ ⊕ eα

′

j )|2,
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where in the second equality we used the orthogonality of {σs}s∈{0,1,2,3}n+1 in
L2(M2n+1). To verify the desired assertion, it suffices to note that

‖Tj‖2L2
=

∑

supp(s′)⊆Jc

|supp(s′)|=d−1

∑

α′∈{1,2,3}
|T̂ (s′ ⊕ eα

′

j )|2.

�

Lemma 5.22. Let T ∈ M2n and J ⊆ [n]. For each j ∈ J and t0 > 0, we have

∫ t0

0

tr
[
1(t,∞)(

∣∣T j

∣∣) ·
∣∣∣EJc∪{n+1}

(
Aj T̃j

)∣∣∣
]
dt ≤ t0 ‖dj(T )‖L1

where T j = Tj/‖Tj‖2, Tj, T̃j and Aj are referred to (5.27), (5.29) and (5.31),
respectively.

Proof. It follows from Lemma 5.20 that
∫ t0

0

tr
[
1(t,∞)(

∣∣T j

∣∣) ·
∣∣∣EJc∪{n+1}

(
Aj T̃j

)∣∣∣
]
dt

≤t0
∥∥EJc∪{n+1}(dn+1(Tcopy,j))

∥∥
L1

≤ t0 ‖dn+1(Tcopy,j)‖L1
,

where the second inequality is due to the fact that conditional expectation is
bounded on Lp, 1 ≤ p ≤ ∞. The desired inequality follows from (5.30). �

Lemma 5.23. Let T ∈ M2n and J ⊆ [n]. For each j ∈ J and t0 > (2e)
d
2 , we have

∫ ∞

t0

tr
[
1(t,∞)(

∣∣T j

∣∣) ·
∣∣∣EJc∪{n+1}

(
Aj T̃j

)∣∣∣
]
dt

≤
√
5et

1− 1
d

0 exp

{
−d · t2/d0

4e

}



∑

supp(s)⊆Jc∪{j}
sj 6=0

|T̂ (s)|2




1/2

,

where T j = Tj/‖Tj‖2, Tj, T̃j and Aj are referred to (5.27), (5.29) and (5.31),
respectively.

Proof. Applying the Cauchy-Schwarz inequality twice, we get
∫ ∞

t0

tr
[
1(t,∞)(

∣∣T j

∣∣) ·
∣∣∣EJc∪{n+1}

(
Aj T̃j

)∣∣∣
]
dt

≤
(∫ ∞

t0

1

t2
dt

)1/2

·
(∫ ∞

t0

t2 ·
(
tr
[
1(t,∞)(

∣∣T j

∣∣) ·
∣∣∣EJc∪{n+1}

(
Aj T̃j

)∣∣∣
])2

dt

)1/2

≤ 1√
t0

(∫ ∞

t0

t2tr
[
1(t,∞)(T j)

]
dt

)1/2

·
∥∥∥EJc∪{n+1}

(
Aj T̃j

)∥∥∥
L2

.

Combining Lemma 5.17 and Lemma 5.19, we have

∫ ∞

t0

t2tr
[
1(t,∞)(T j)

]
dt ≤ 5et

3− 2
d

0 exp

{
−d · t2/d0

2e

}
.



QUANTUM KKL-TYPE INEQUALITIES REVISITED 35

Furthermore, according to (5.33), we have
∥∥∥EJc∪{n+1}

(
Aj T̃j

)∥∥∥
2

L2

=
∑

supp(s)⊆Jc∪{j}
sj 6=0

|T̂ (s)|2, for each j ∈ J.

The desired assertion follows. �

We now are ready to provide the proof of Proposition 5.2.

Proof of Proposition 5.2. For a given projection T ∈ M2n , it is clear that ‖T ‖2 ≤ 1.

We assume without loss of generality that T =
∑

s∈{0,1,2,3}n T̂ (s)σs. For each j ∈ J ,

by Lemma 5.21, we have
∑

supp(s)⊆Jc

|supp(s)|=d−1,α∈{1,2,3}

|T̂ (s⊕ eαj )|2 =
(
tr
[
T j · Aj T̃j

])2

=
(
tr
[
EJc∪{n+1}(T j ·Aj T̃j)

])2

=
(
tr
[
T jEJc∪{n+1}(Aj T̃j)

])2
,

where we used that each conditional expectation preserves trace and EJc∪{n+1}(Tj) =
Tj (this follows from the definition of Tj as in (5.27)). Using Lemma 5.18 we have
(
tr
[
T jEJc∪{n+1}(Aj T̃j)

])2
≤
(
tr
[
|T j | · |EJc∪{n+1}(Aj T̃j)|

])2

=

{∫ ∞

0

tr
[
1(t,∞)(

∣∣T j

∣∣) · |EJc∪{n+1}(Aj T̃j)|
]
dt

}2

≤ 2

{∫ t0

0

tr
[
1(t,∞)(

∣∣T j

∣∣) · |EJc∪{n+1}(Aj T̃j)|
]
dt

}2

+ 2

{∫ ∞

t0

tr
[
1(t,∞)(

∣∣T j

∣∣) · |EJc∪{n+1}(Aj T̃j)|
]
dt

}2

:= 2Y1,j(T )
2 + 2Y2,j(T )

2,

where t0 > 0 is chosen to satisfy

(5.34) exp

{
−d · t2/d0

2e

}
=
∑

j∈J

‖dj(T )‖2L1
= MJ(T ).

Note here that (5.34) and the assumption M(T ) ≤ e−2d imply that

t20 =

(
2e

d

)d(
log

(
1

MJ(T )

))d

and t0 ≥ (4e)
d
2 .

We conclude from the above argument that

(5.35)
∑

j∈J

∑

supp(s)⊆Jc

|supp(s)|=d−1,α∈{1,2,3}

|T̂ (s⊕ eαj )|2 ≤ 2
∑

j∈J

Y1,j(T )
2 + 2

∑

j∈J

Y2,j(T )
2.

By Lemma 5.22, we have

∑

j∈J

Y1,j(T )
2 ≤ t20

∑

j∈J

‖dj(T )‖2L1
=

(
2e

d

)d

MJ(T )

(
log

(
1

MJ(T )

))d

.
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Using Lemma 5.23, we have

∑

j∈J

Y2,j(T )
2 ≤ 5et

2− 2
d

0 exp

{
−d · t2/d0

2e

}
∑

j∈J

∑

supp(s)⊆Jc∪{j}
sj 6=0

|T̂ (s)|2

= 5et
− 2

d
0

(
2e

d

)d

MJ(T )

(
log

(
1

MJ(T )

))d∑

j∈J

∑

supp(s)⊆Jc∪{j}
sj 6=0

|T̂ (s)|2

≤ 2

(
2e

d

)d

MJ(T )

(
log

(
1

MJ(T )

))d

.

Here we also used the fact (note that T is a projection, and hence ‖T ‖L2 ≤ 1)
∑

j∈J

∑

supp(s)⊆Jc∪{j}
sj 6=0

|T̂ (s)|2 ≤ ‖T ‖2L2
≤ 1.

Substituting the estimates of
∑

j∈J Y
2
1,j and

∑
j∈J Y

2
2,j to (5.35), we get

∑

j∈J

∑

supp(s)⊆Jc

|supp(s)|=d−1,α∈{1,2,3}

|T̂ (s⊕ eαj )|2 ≤ 6

(
2e

d

)d

MJ(T )

(
log

(
1

MJ(T )

))d

.

This completes the proof of the proposition. �
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