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ON A BIRCH AND SWINNERTON-DYER TYPE CONJECTURE FOR THE

HASSE-WEIL-ARTIN !-FUNCTIONS IN CHARACTERISTIC ? > 0

WANSU KIM, KI-SENG TAN, FABIEN TRIHAN, AND KWOK-WING TSOI

Abstract. Given an abelian variety � over a global function field  of characteristic
? > 0 and an irreducible complex continuous representation k of the absolute Galois
group of  , we obtain a BSD-type formula for the leading term of Hasse–Weil–Artin !-
function for (�,k ) at B = 1 under certain technical hypotheses. The formula we obtain
can be applied quite generally; for example, it can be applied to the ?-part of the leading
term even whenk is weakly wildly ramified at some place under additional hypotheses.

Our result is the function field analogue of the work of D. Burns and D.Macias Castillo
[BMC24], built upon the work on the equivariant refinement of the BSD conjecture by
D.Burns, M. Kakde and the first-named author [BKK]. To handle the ?-part of the leading
term, we need the Riemann–Roch theorem for equivariant vector bundles on a curve
over a finite field generalising the work of S. Nakajima [Nak86], B. Köck [Köc04], and
H. Fischbacher-Weitz and B. Köck [FWK09], which is of independent interest.
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1. Introduction

In [Tat68], Tate gave a uniform formulation of the conjecture of Birch and Swinnerton-
Dyer (or the BSD conjecture) for abelian varieties over global fields of any characteristic.
Furthermore, for a Jacobian of a curve over a global function field of characteristic ? > 0,
the “prime-to-? part” of the full conjecture (including the leading term formula up to ?-
power ambiguity) was obtained assuming finiteness of a certain object closely related to
the Tate–Shafarevich group; see [Tat68, Theorem 5.2] for further details. It is now known
that for an abelian variety� over a global function field the full BSD conjecture follows
from the finiteness ofX(�/ ){ℓ}, the ℓ-primary part of the Tate–Shafarevich group for
some prime ℓ; see Kato–Trihan [KT03] for the precise result, and its introduction for the
history. We note that the ?-part of the argument in [KT03] heavily relies on the theory
of ?-adic cohomology, as anticipated by Tate [Tat68, p. 438].

In thework of D. Burns, M. Kakde and the first-named author [BKK], we formulated an
equivariant refinement of the BSD conjecture for abelian varieties over a global function
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field of characteristic ? > 0 in the spirit of the Equivariant Tamagawa Number Conjec-
ture for motives over a number field. Given an abelian variety � over a global function
field  and a finite Galois extension !/ , the equivariant BSD conjecture [BKK, Conjec-
ture 4.3] refines the BSD conjecture for�/! by predicting that the “derived Galois module
structure” of arithmetic invariants of�/! should encode the (suitably normalised) leading
terms of Hasse–Weil–Artin !-functions at B = 1 attached to � and complex irreducible
characters of� ≔ Gal(!/ ), as well as certain “algebraic relations” thereof.1 (To forum-
late the conjecture we need certain perfect complexes of integral Galois modules, which
we refer to as the “derived Galois module structure”.)

In this paper, we consider the following natural question.

Question 1.1. Let � be an abelian variety over a global function field  , and we choose
a complex irreducible characterk of the absolute Galois group of  . Assuming finiteness
of the relevant Tate–Shafarevich group, can we get an explicit formula of the (suitably
normalised) the leading term of the Hasse–Weil–Artin !-function attached to (�,k ) at
B = 1 (possibly imposing additional hypotheses that are not too restrictive)?

Note that the equivariant refinement of the BSD conjecture is known up to torsion
in relative K0 assuming a suitable finiteness condition on the Tate–Shafarevich group;
cf [BKK, Theorem 4.10]. In fact, ignoring such torsion ambiguity does not affect indi-
vidual leading terms, though we may lose algebraic relations among them. However,
loc. cit. does not completely resolve the question; in fact, the resulting formula depends
on the “derived Galois-module structure” of certain perfect complexes, so it is not explicit
enough. (See Corollary 6.15 for the precise statement.) Nonetheless, one take [BKK, The-
orem 4.10] and Corollary 6.15 as a starting point, and manage to extract some non-trivial
and explicit formula on the leading term at B = 1 of !-function attached to (�,k ) under
some additional technical hypotheses; cf. Assumption 7.2.

Let us briefly indicate the nature of Assumption 7.2. Recall that the equivariant BSD
conjecture [BKK, Conjecture 4.3] involves two perfect complexes: a kind of Selmer com-
plex for �/!, and a coherent cohomology of a certain equivariant vector bundle. Our
additional hypotheses are mainly to simplify the “Selmer complex term”, clearly inspired
by the number field analogue of our result obtained by D. Burns and D. Macias Castillo
(cf. [BMC24], especially the set of hypotheses at the beginning of §6). Our main work is
to control the “coherent cohomology term” (or rather, the ramification correction to the
local volumes, so to speak) under a mild hypothesis – namely, Assumption 7.2(3) – and
thereby obtain a formula for the ?-part of the leading term in a satisfying generality. If
� has semistable reduction at all places of  , then our main result can be applied if k
has tame ramification at worst (or even, we allow “shallow wild ramification”) assuming
finiteness of a suitable Tate–Shafarevich group.

Let us set up the notation for more detailed introduction. In the setting of Question 1.1,
let !/ be a finite Galois extension with � ≔ Gal(!/ ) such that k factors through � .
Suppose that k can be defined over a number field � ⊂ C, and we fix the underlying �-
vector space+k for the representationk . Let / be the set of places of consisting exactly
of the places ramified in !/ and the bad reduction places for �.

We consider the Hasse–Weil–Artin !-function !* (�,k, B) without Euler factors at /
as in (6.9), where* denotes the set of places of  away from / . We normalise its leading
term ℒ* (�,k ) at B = 1 as (6.10) so that we have ℒ* (�,k ) ∈ �× . In particular, for any
place _ of � it makes sense to consider the _-adic valuation E_

(
ℒ* (�,k )

)
.

If _ is a place over ℓ coprime to |� | (which applies to all but finitely many places of
�), then E_

(
ℒ* (�,k )

)
is quite easy to describe since the group ring Zℓ� is rather simple

in terms of homological algebra; cf. Proposition 7.13. For a place _ of � over a prime

1See [BKK, Proposition 4.8] for an example of algebraic relations implied by the equivariant BSD conjecture
when !/ is a ?-extension.
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ℓ dividing |� | however, one cannot really expect an explicit description of E_
(
ℒ* (�,k )

)
without imposing an additional assumption for (�,k ) to simplify the homological algebra
involved. And unsurprisingly, it requires much harder extra work to handle places _ over
? , the characteristic of  , when ? divides |� |.

Theorem 1.2 (Cf. Theorem 7.12). In addition to the above setting, suppose that X(�/!)
is finite. Choose a prime ℓ that does not divide any of |�(!)tors |, |�C (!)tors | and |A! (:F) |,
whereA! is the Néron model of �/! and :F is the residue field at a placeF of ! above some
E ∈ / . If ℓ = ? then we assume that � has semistable reduction at all places of  and the
extension !/ is at worst weakly ramified at each place in the sense of Definition 2.6. Then
for any place _ of � above ℓ we have

ℒ* (�,k )O�,_ = vol/ (�/ )degk · loc/! (�,k ) ·
Reg

k

_

|� |Aalg (k )
· Chark

(
X

∨
k,_ (�/!)

)
,

where O�,_ is the _-adic completion of O� , Regk_ is the k -twisted regulator for � (cf. Defin-

ition 7.9) and Aalg(k ) is the rank of the “k -part of �(!)” (6.12). Lastly, Char
(
X

∨
k,_

(�/!)
)

is the characteristic ideal (7.11) of X∨
k,_

(�/!) (7.1c), and vol/ (�/ ) and loc/! (�,k ) are
?-power integers defined in Theorem 7.12.

We actually obtain a result in a more general setting where� has semistable reduction
at all places of ! (instead of  ), !/ is at worst weakly ramified at each place, and !/ 
is tamely ramified at all places of  where � has non-semistable reduction. The formula
becomes more complicated in this generality, and we refer to the main body of the text.

If we choose ! =  (so k is the trivial character and � = Q), then Theorem 1.2 is
compatible with the ℓ-part of the classical BSD formula [KT03, (1.8.1)]; indeed, in the
setting of of Theorem 7.12 we have loc/! (�,k ) = 1 and vol/ (�/ ) is the ?-part of
vol

( ∏
E∈/ �( E)

)
, using the notation of loc. cit. In general, the?-power integer loc/! (�,k ),

given by an explicit local formula, can be thought of as the “ramification correction” to
the volume term. In fact, we have loc/! (�,k ) = 1 if the ramification index of !/ at each
place is a power of ? (including the case where !/ is unramified everywhere). If the
ramification index of !/ at each place divides ? − 1 and degk = 1 then we have

log?
(
loc/! (�,k )

)
=
dim�

|� |
∑
F

9F,k [:F : F?],

where F runs through all places of ! ramified over  , and 9F is determined so that the
inertia subgroup atF acts onm 9F

F /m 9F+1
F via the restriction ofk , wheremF is themaximal

ideal of O-! corresponding to F . (See Remarks 7.14 and 4.19 for further details.) We
believe that the explicit formula for loc/! (�,k ) is new even when !/ is cyclic and tame.

We note that for abelian varieties defined over a number field, an analogous result was
obtained by D. Burns and D. Macias Castillo (cf. [BMC24, Proposition 7.3]), which clearly
inspired our result.

Let us now list some of the main ingredients of the proof. Let c : -! → - denote
the covering of smooth projective curves corresponding to !/ , and let /! ⊂ -! be the
closed subset consisting of places over / . Let A! be the Néron model over -! of �/!.

Let us specialise to the case where ℓ = ? , which is the main case of interest. To
apply [BKK, Theorem 4.10] one needs to choose a suitable �-stable subbundle L ⊆
Lie(A!) (−/!) such that RΓ(-!,L) is a perfect F?�-complex. The choice of such L could
a priori be very inexplicit, but we show that we can take L = Lie(A!) (−/!) provided
that the following conditions are satisfied; cf. Assumption 7.2(3).

Assumption 1.3. • !/ is weakly ramified at all places (cf. Definition 2.6), and
• if !/ is wildly ramified at a place E of  then � has semistable reduction at E .
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See Corollary 5.8(3) and Proposition 6.6(2) for the precise statement. Note that the
main ingredient of the proof is Köck’s local integral normal basis theorem for weakly
ramified extensions [Köc04, Theorem 1.1], which we recall in Theorem 2.11.

Suppose that Assumption 1.3 is valid, and set L = Lie(A!) (−/!). Then we get a ?-
adic Selmer complex with support condition SC/! ,? (�, !/ ) ∈ Dperf (Z?�) following the
construction of [BKK, Proposition 3.7(i)], and under the assumption of Theorem 1.2 one
can compute its “k -isotypic parts” by the same argument as [BMC24, Proposition 7.3(ii)];
cf. Proposition 7.10.

By the equivariant BSD conjecturemodulo torsion, it remains to compute thek -isotypic
part of RΓ(-!, Lie(A!) (−/!))∨. This can be achieved using the following result.

Theorem 1.4 (Cf. Theorem 3.2, Corollary 5.8). Set L ≔ Lie(A!) (−/!) and view it as
a �-equivariant vector bundle on -! . If Assumption 1.3 is satisfied, then RΓ(-!,L) can
be represented by a two-term complex [�0 → �1] for some projective F?�-modules �0,�1.
Furthermore, we have an explicit formula for

[�0] − [�1] − j (L� ) [F?�] ∈ K0(F?�)

in terms of the inertia action on the completed stalk L̂F at each F ∈ /! . (Here, j (L� ) =
log? (|H0 (-,L� ) |/|H1(-,L� ) |).)

The precise formula is quite complicated, and we refer to the main body of the text.
The statement can be divided into two steps. By analysing the Néron models over -!

and - , we deduce a certain local property of L in terms of ramification at each F ∈ /!
(cf. Corollary 5.8). And for�-equivariant vector bundles on -! satisfying the same local
property satisfied by L, we prove a kind of “equivariant Riemann–Roch theorem”; cf.
Theorem 3.2. When-! → - is a tame�-cover of curves over an algebraically closed field
: , then the Euler characteristic of a �-equivariant vector bundle L in K0(:�) was com-
puted modulo [:�] by S. Nakajima [Nak86, Theorem 2]. The rank-1 case of the equivari-
ant Riemann–Roch theorem was obtained by Fischbacher-Weitz and Köck [FWK09, §3,
Theorem 12] (built upon the case of curves over algebraically closed field [Köc04, The-
orem 4.5]). We give a commongeneralisation of these arguments to obtain the equivariant
Riemann–Roch theorem sufficient for the proof of our main result, Theorem 1.2.

By Theorem 1.4 we can compute the k -isotypic part of RΓ(-!,L)∨, and compare it
with the volume term and loc/! (�,k ). In case where � admits non-semistable reduction
at some place of  , the volume term needs to be corrected by analysing the behaviour of
Néron models over tame extensions; cf. Proposition 5.5 and Theorem 7.12.

Let us outline the contents of the paper. In §2 we collect various results for semi-
linear representations of decomposition groups, including Köck’s local integral normal
basis theorem. In §3 we formulate and prove the “Riemann–Roch theorem for equivari-
ant vector bundles” (cf. Theorem 3.2). In §4 we review the relative  0-groups and re-
interpret Theorem 3.2 using relative  0-group. In §5 we collect various results on Néron
models (including the behaviour under tame ramification) and show that the equivariant
Riemann–Roch theorem can be applied to Lie(A!) (−/!) under Assumption 1.3. In §6 we
review the equivariant refinement of the BSD conjecture in [BKK], and in §7 we give a
proof of the main theorem (cf. Theorem 7.12). In §8 we give some examples in which our
main theorem can be applied unconditionally.

Notation and Conventions 1.5. For any commutative ring ' (necessarily with 1) and
for any group � , we let '� denote the group ring of � over '. We may write ' [�] for
'� if there is any risk of confusion.

By a �-representation k , we mean a finite-dimensional C-linear �-representation. Let
+k denote the (left) C�-module underlying k . As a standard fact, there exists an ��-
module +k,� for some number field � ⊂ C such that we have a C�-isomorphism C ⊗�
+k,� � +k . We will also use +k to refer to +k,� if there is no risk of confusion.
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By )k = )k,O� , we denote a (chosen) �-stable O� -lattice in +k . By abuse of notation,
we also let k denote the ring homomorphisms Z� → EndO� ()k ) and Q� → End� (+k )
defined by the �-action on )k and +k .

We write (−)∗ for the linear dual, and (−)∨ for the Pontryagin dual. For )k as above,

we regard ) ∗
k
and)∨

k
as right O��-modules. We write ǩ for the contragredient ofk .

For any ring � (necessarily with 1 but not necessarily commutative), we let D(�) de-
note the derived category of complexes of �-modules, and Dperf (�) for the triangulated
full subcategory of perfect complexes of �-modules. For any�• ∈ Dperf (�), we define its
Euler characteristic as follows:

(1.6) j� (�•) ≔
∑
8

(−1)8 [�8] ∈ K0(�),

where K0 (�) is the Grothendieck group of the category of finitely generated projective
�-modules and [�8 ] ∈ K0 (�) denote the class of�8 .

2. Review of local integral normal basis theorems

In this section, we collect various standard results on lattices in semilinear Galois mod-
ules for finite extensions of local fields, following Chinburg [Chi94] and Köck [Köc04].

Let  E be a complete discrete valuation field with perfect residue field :E of character-
istic ? > 0. Let OE and mE respectively denote the valuation ring and its maximal ideal.
We fix a finite Galois extension !F/ E with valuation ring OF , maximal ideal mF , and
residue field :F . Set �F ≔ Gal(!F/ E), and write �F and %F for the inertia and wild
inertia subgroups, respectively. (Although the results in this section are purely local, we
will later apply them in the setting where !F/ E arises from some global extension !/ 
via completing atF | E .)

By semilinear�F-representation overOF , wemean a finite freeOF-module,F equipped
with semilinear �F-action.

Lemma 2.1. For a semilinear �F-representation,F over OF the following are equivalent.

(1) ,F is free as an OE [�F]-module;
(2) ,F is projective as an OE [�F]-module;

(3) ,F is cohomologically trivial for�F (i.e., the Tate cohomology Ĥ
8 (�,,F) is trivial

for each degree 8).

Proof. Note that,F ⊗OF !F is free as an  E [�F]-module by standard Galois descent,
so the equivalence of (1) and (2) follows from [Swa60, Corollary 6.4]. The equivalence
between (2) and (3) is standard as,F is projective as OF-module.2 �

Let us now recall the following “higher-rank version” of the local integral normal basis
theorem in the tame setting, which is essentially due to Chinburg.

Proposition 2.2. Let,F be a semilinear �F-representation over OF . Then,F is free as
an OE [�F]-module if and only if it is cohomologically trivial for �F . In particular, if !F/ E
is tame then any semilinear �F-representation over OF is free as an OE [�F]-module.

Proof. The case when !F/ E is unramified is standard; cf. [Nak84, §2, Lemma 1]. To
handle the general case, it suffices, by Lemma 2.1, to show that,F is cohomologically
trivial for�F if and only if it is cohomologically trivial for �F . And since by the unramified
case, �F

F is cohomologically trivial for�F/�F (being a semilinear�F/�F-lattice overO�FF ),
the desired claim follows from the inflation-restriction sequence for the Tate cohomology.
The claim for the tame case now follows since anyOE [�F]-module cohomologically trivial
for �F when |�F | is prime to ? . �

2The proof of the Z�-projectivity criterion [Ser79, Chap IX, §5, Theorem 7] can be repeated to show the '�-
projectivity criterion for any Dedekind domain '. This is also implicitly proved in [Chi94, Proposition 4.1].
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We next classify the inertia action on any semilinear�F-representation over OF in the
tame case. For this let us first describe all the mod? absolutely irreducible representations
of �F , without assuming tameness.

Definition 2.3. Let \F : �F → :×F be the character corresponding to the natural �F-action
on mF/m2

F ; in other words, choosing a uniformiser sF ∈ mF we have

\F (6) ≡ 6sF/sF mod<F ∀6 ∈ �F .
The �F-action onm=

F/m=+1
F is given by \=F .

Remark 2.4. Note that \F induces an inclusion �F/%F ↩→ :×F , so the order of \F is |�F/%F |.
Furthermore, since %F acts trivially on any simple :F [�F]-module, any simple :F [�F]-
module is isomorphic to exactly one ofm=

F/m=+1
F for = ∈ Z/(|�F/%F |).

Lemma2.5. Suppose that !F/ E is tame, and let,F be a rank-3 semilinear�F-representation
over OF . Then there exist integers =F,1, · · · , =F,3 ∈ {0, · · · , |�F | − 1}, unique up to ordering,
such that we have a :F [�F]-module isomorphism

,F ⊗OF :F �
3⊕
8=1

(m−=F,8
F /m−=F,8+1

F ).

Furthermore, the above isomorphism can be lifted to an isomorphism

,F �

3⊕
8=1

m
−=F,8
F .

of semilinear �F-representations over OF .

Proof. By tameness, the group ring :F [�F] is semi-simple and its simple modules are
described in Remark 2.4. Therefore, one can find a :F-basis 4̄1, · · · , 4̄3 of,F ⊗OF :F such
that �F acts on 4̄8 via \

−=F,8
F for 0 6 =F,8 < |�F |. We choose a lift 48 ∈,F of 4̄8 for each 8 ,

and set

4′8 ≔
1

|�F |
∑
6∈�F

\
=F,8
F (6) · (648 ).

Then each 4′8 ∈ ,F lifts 4̄8 and satisfies 64′8 = \
−=F,8
F (6)4′8 for any 6 ∈ �F . Therefore,,F

can be written as a direct sum of �F-stable OF-submodules OF4′8 , which is isomorphic to
m

−=F,8
F as a semilinear �F representation over OF . �

If !F/ E is wildly ramified, then the Galois module structure of a semilinear �F-
representation over OF could be quite complicated in general. Instead, we focus on the
case where,F is of rank 1. To proceed, we need the following definition.

Definition 2.6. We say that !F/ E is weakly ramified if the second lower-index ramific-
ation subgroup �F,2 is trivial.

Recall that for any non-negative integer B , we set

�F,B ≔ {6 ∈ �F | 6sF ≡ sF mod mB+1
F }

for some (or equivalently, any) uniformiser sF ∈ mF . Note that �F = �F,0 and %F = �F,1.
Clearly, unramified or tamely ramified extensions are weakly ramified. Much less ob-

vious examples of weakly ramified extensions are those obtained by the completion of a
finite Galois cover c : -! → - of ordinary3 curves over a perfect field of characteristic
? > 0; cf. [Nak87, Theorem 2(i)].

Being weakly ramified imposes a strong condition on the inertia group �F as follows.

3A curve over a field of characteristic ? > 0 is defined to be ordinary if the genus and the ?-rank coincides.
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Lemma 2.7. For any finite Galois extension !F/ E we have
�F = %F ⋊�F

where %F is a ?-group and �F is a cyclic group of prime-to-? order. Furthermore, if !F/ E
is weakly ramified, then %F is an elementary ?-group and the conjugation action of �F on
%F \ {1} is faithful.
Proof. The properties can be deduced from Proposition 9 and the corollaries of Proposi-
tion 7 in [Ser79, Chap IV, §2]. �

Remark 2.8. The choice of the lift�F of �F/%F is far from canonical if %F is a proper non-
trivial subgroup of �F , but different choices of�F are conjugate to each other. Indeed, by
direct computation we have

(2.9) �F ∩ (6�F6−1) = {1} ∀6 ∈ %F \ {1};
cf. the proof of Lemma 4.2 in [Köc04]. By simple countingwe obtain �F\%F =

⊔
6∈%F (6�F6−1\

{1}), so in particular any lift of �F/%F in �F is of the form 6�F6
−1 for a unique 6 ∈ %F .

Lemma2.10. For any finite Galois extension !F/ E , any indecomposable projective:F [�F]-
module is isomorphic to exactly one of

"F ( 9 ) ≔ Ind�F
�F

(
(m 9

F/m 9+1
F ) |�F

)
for 9 ∈ Z/(|�F |).

Furthermore, "F ( 9 ) is a :F [�F]-projective cover of m 9
F/m 9+1

F , so it does not depend on the
choice of �F up to isomorphism.

If !F/ E is weakly ramified, then we have

"F ( 9 ) |�F � (m 9
F/m 9+1

F ) ⊕ :F [�F]⊕
|%F |−1
|�F | .

Proof. Note that the radical rad(:F [�F]) of :F [�F] is generated by the augmentation ideal
of :F [%F]. Furthermore, we have an :F [�F]-module isomorphism

"F ( 9 )/rad(:F [�F]) = "F ( 9 )%F � m
9
F/m 9+1

F .

Then essentially by theNakayama lemma,"F ( 9 ) is a:F [�F]-projective cover ofm 9
F/m 9+1

F ;
cf. [CR81, Theorem (6.23)]. Indecomposability of "F ( 9 ) follows from being a projective
cover of a simple :F [�F]-module. Since :F [�F] �

⊕
9 "F ( 9 ), any non-zero projective

:F [�F]-module contains a copy of some"F ( 9 ). Finally, the last claim is proved in [Köc04,
Lemma 4.2]. �

Let us now recall the local integral normal basis theorem due to Köck:

Theorem 2.11 (Köck [Köc04, Theorem 1.1]). The local fractional ideal m−=
F for = ∈ Z

is free of rank 1 as an OE [�F]-module if and only if !F/ E is weakly ramified and = ≡
−1 mod |%F |.

If !F/ E is tame (i.e., we have |%F | = 1) then the theorem asserts that any fractional
ideal m−=

F is projective as an OE [�F]-module, which is consistent with Proposition 2.2.

Remark 2.12. The higher-rank generalisation of Theorem 2.11 (or rather, the wildly rami-
fied analogue of Lemma 2.5) could be quite complicated. To illustrate, let !F/ E be any
finite Galois extension (not necessarily weakly ramified) and choose a semilinear �F-
representation, ′

F over OF . (We do not require, ′
F to be projective as OE [�F]-module.)

Then OF [�] ⊗OF ,
′
F , with � acting diagonally, is a semilinear �F-representation over

OF that is free as a OE [�F]-module; indeed, the following OF-linear isomorphism

Ind�F1 , ′
F � OF [�] ⊗OF ,

′
F

∼→ OF [�] ⊗OF ,
′
F

(
∑
6∈�F

066) ⊗ G ↦→
∑
6∈�F

(066) ⊗ 6G

is �F-equivariant.
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3. Eqivariant Riemann–Roch for weakly ramified covering

Let : be a perfect field of characteristic ? > 0. Let - be a smooth projective geometric-
ally connected curve over : , with its function field denoted by . For any finite extension
! of  , we write -! denote the normalisation of - in Spec! equipped with the covering
map c : -! → - . (We do not require -! to be geometrically connected over : .) Let |- |
and |-! | respectively denote the set of closed points of - and -! .

From now on, suppose that !/ is Galois with group� , so c is a�-covering. Choosing
E ∈ |- | andF ∈ c−1 (E), we obtain theGalois extension !F/ E via completion. We employ
the same notation as in §2.

We next study the “equivariant Euler characteristic” of the cohomologyof�-equivariant
vector bundles on-!; i.e., a locally freeO-! -modulewith semilinear�-action. Given such
E, we may represent RΓ(-!, E) as a complex of :�-modules (eg, by choosing a �-stable
Čech covering). If we have RΓ(-!, E) ∈ Dperf (:�), then we write

(3.1) j:� (E) ≔ j:� (RΓ(-!, E)) ∈ K0 (:�),
where the right hand side is defined in (1.6).

Given a finite Galois cover c : -! → - , we let / ram
!

(respectively, /wild
!

) denote the
locus in -! where c is ramified (respectively, wildly ramified).

We are now ready to state the equivaiant Riemann–Roch theorem, which generalises
the results of Nakajima [Nak86], Köck [Köc04] and Fischbacher-Weitz andKöck [FWK09].

Theorem 3.2. Let c : -! → - be a �-cover that is weakly ramified everywhere. Let E be

a �-equivariant vector bundle on -! , and suppose that for any F ∈ /wild
!

we have

(3.2a) ÊF �
rk E⊕
8=1

m
−=F,8
F where =F,8 ≡ −1 mod |%F | for any 8

as a semilinear �F-representation over OF . Then the following properties hold.

(1) We can representRΓ(-!, E) by a complex of finitely generated projective:�-modules

in degrees [0, 1]. In particular, we have RΓ(-!, E) ∈ Dperf (:�).
(2) For anyF ∈ / ram

!
and 8 ∈ {1, · · · , rk E}, define ;F,8 to be the unique integer satisfy-

ing

(3.2b) ;F,8 ≡
1 + =F,8
|%F |

− 1 mod |�F/%F | and 0 6 ;F,8 < |�F/%F |,

where =F,8 ’s are as in (3.2a) for F ∈ /wild
!

, and as in Lemma 2.5 ifF ∉ /wild
!

.4

Then we have the following equality in K0(:�) ⊗ Q
(3.2c) j:� (E) = −(rk E)[# (c)] + [,� (E)] + Ind�1

(
j: (E� )

)
,

where E� is the �-invariants of E, which is a vector bundle on - , and

[# (c)] ≔ 1

|� |
∑

F∈/ ram
!

|%F |
|�F /%F |−1∑

9=1

9 ·
[
Ind��F

(
"F ( 9 )

)]
and

[,� (E)] ≔
∑

F∈/ ram
!

1

[� : �F]

rk E∑
8=1

;F,8∑
9=1

[
Ind��F

(
"F (− 9 )

)]
.

Here,"F ( 9 ) is defined in Lemma 2.10.

Note that formula (3.2c) is generalises the rank-1 case stated in [FWK09, §3, The-
orem 12], which is built upon [Köc04, Theorem 4.5]. When : = :̄ and c is tame, then
S. Nakajima [Nak86, Theorem 2] obtained (3.2c) modulo Ind�1

(
j: (E� )

)
.

Before we give a proof, let us make a few remarks.

4Note that for F ∈ / ram
!

\ /wild
!

, we have ;F,8 = =F,8 as we have |%F | = 1 and 0 6 =F,8 < |�F | .
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Remark 3.3. As the notation suggests, [# (c)] and [,� (E)] respectively come from fi-
nitely generated projective :�-modules # (c) and,� (E). Indeed, this is a byproduct of
the rank-1 case of the formula; cf. Theorem 11 and Theorem 12(a) in [FWK09, §3]. In par-
ticular, formula (3.2c) holds in K0(:�) since K0 (:�) is torsion-free (being a free abelian
group). In the intended application, we only need formula (3.2c) in K0(:�) ⊗ Q.

Remark 3.4. In the setting of Theorem 3.2, if we have �F = %F for allF ∈ / ram
!

(e.g., if �
is a ?-group), then clearly both [# (c)] and [,� (E)] are trivial so formula (3.2c) reduces
to

j:� (E) = Ind�1
(
j: (E� )

)
.

Remark 3.5. Applying the Hirzeburch–Riemann–Roch theorem to compute j: (E� ) (cf.
Theorem (4.11) and Exa 4.1.1 in [Har77, Appendix A]), we obtain

Ind�1
(
j: (E� )

)
=

(
(rk E) · (1 − gen ) + deg(E� )

)
[:�],

where gen is the genus of - . (Note also that rk(E� ) = rk E.)

Example 3.6. The local assumption (3.2a) may look artificial, but it is a common gener-
alisation of the tame case (cf. Lemma 2.5) and the following class of examples. Let F
be a rank-3 vector bundle on - , and let �! =

∑
F∈ |-! | =FF be a �-equivariant divisor

of -! . Then E ≔ (c∗F )(�!) is a �-equivariant vector bundle and we clearly have a
�F-equivariant OF-linear isomorphism

(3.6a) ÊF � (m−=F
F )⊕3 ,

as we have a natural�F-equivariant isomorphism (c∗F )F̂ � F̂c (F ) ⊗Oc (F) OF . Further-
more, we have E� � F (� ) where � satisfies

(
O-! (�!)

)�
= O- (� ). More explicitly,

we can apply [Köc04, Lemma 1.4(a)] to obtain � =
∑
E∈ |- | =EE where for each E ∈ |- |

we set =E = −1 + ⌈=Ẽ+1|�Ẽ | ⌉ for some (or equivalently, any) Ẽ ∈ c−1 (E).
Now, assume that c is weakly ramified everywhere. Then Theorem 3.2 can be applied

to E = (c∗F )(�!) provided that the coefficient =F at each F ∈ /wild
!

satisfies =F ≡
−1 mod |%F |, in which case we have =F,8 = =F for all 8 .

Let us further specialise to the case when E = (c∗F )(−/!) for some reduced�-stable
closed subscheme /! ⊂ -! containing / ram

!
. In that case, we have ;F,8 = |�F/%F | − 1

for any F ∈ / ram
! and 8 , and E� = F (−/ ) where / ⊂ - is the reduced image of /! .

Therefore, formula (3.2c) reduces to the following

j:�
(
(c∗F )(−/!)

)
=
rkF
|� |

∑
F∈/ ram

!

|�F /%F |−1∑
9=1

9 |%F | ·
[
Ind��F

(
"F (− 9 )

)]
(3.6b)

+
(
(rkF ) · (1 − gen − deg(/ )) + deg(F )

)
[:�] .

For the rest of the section we give a proof of Theorem 3.2.

Proof of Claim (1) of Theorem 3.2. The proof is essentially contained in the proof of
Theorem 2.1(a) in [Köc04], which is the rank-1 case of our statement. Indeed, by Köck’s

theorem (Theorem 2.11) our assumption 3.2a implies that ÊF is cohomologically trivial
for �F for anyF ∈ |-! |, so by Proposition 2.2 it follows that the following completed stalk

(c∗E)̂E �
⊕

F∈c−1 (E)
ÊF � Ind��Ẽ ÊẼ,

is OE [�]-free at any E ∈ |- |. (Here, Ẽ ∈ c−1 (E) is any point above E .) By the stand-
ard result (cf. [CR06, Corollary (76.9)]), the Zariski stalk (c∗E)E is O-,E [�]-free, so we
may apply [Chi94, Theorem 1.1] to obtain :�-perfectness of RΓ(-!, E) � RΓ(-,c∗E).
Finally, RΓ(-!, E) can be represented by a two-term perfect :�-complex thanks to the
cohomology vanishing outside degrees [0, 1]. �
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Digressions to Brauer characters. Even if |� | is not invertible in : , there is a version
of character theory for finitely generated :̄�-modules; namely, Brauer characters. (Here,
:̄ denotes the algebraic closure of : .) We will recall the minimal background needed in
the proof, and for further details we refer to [CR81, §18] or [Ser77, Ch 18].

We choose a complete discrete valuation field � of characteristic 0 with residue field
:̄ . For any subset ( ⊂ � stable under conjugation, set

(3.7) Cl� (() ≔ {q : ( → � | q is invariant under conjugation}.

Let �? -reg denote the set of elements of � with prime-to-? order, which is stable un-
der conjugation. Then for any finitely generated :̄�-module " , let Bch" ∈ Cl� (�? -reg)
denote the Brauer character in the sense of [CR81, Def (17.4)]. It is easy to check that
Bch" (1) = dim:̄ (") and Bch:̄� (6) = 0 for any 6 ≠ 1. If" admits a lift to an ��-module
"̃� (e.g., if" is projective), thenwe have Bch" = ch"̃� |�? -reg , which we take as a working

definition; cf. [CR81, Proposition (17.5)(iv)].5

Let us now recall a few basic properties. The construction of Brauer characters nat-
urally extends to the Grothendieck group G0 (:̄�) of finitely generated :̄�-modules, in-
ducing an isomorphism G0(:̄�) ⊗ � → Cl� (�? -reg); cf. [CR81, Theorem (17.9)]. There
is a natural homomorphism 2 : K0(:̄�) → G0 (:̄�), which turns out to be injective with
finite cokernel; cf. [CR81, Theorem (21.22)]. By abuse of notation, for ["] ∈ K0(:̄�) we
let Bch[" ] denote Bch2 ( [" ] ) . As K0 (:̄�) and G0 (:̄�) are free abelian groups, we obtain
the following:

Proposition 3.8. The homomorphism Bch(−) : K0(:̄�) → Cl� (�? -reg) is injective.

We record the following lemma, which should be well known.

Lemma 3.9. For finitely generated projective :̄�-modules" and"′, we have Bch" (6) =
Bch"′ (6) for any 6 ≠ 1 if and only if ["] − ["′] is an integer multiple of [:̄�] in K0(:̄�).

Proof. Suppose that an element [# ] ∈ K0 (:̄�) satisfies Bch[# ] (6) = 0 for any 6 ≠ 0. We
first claim that |� | divides Bch[# ] (1) = dim:̄ ( [# ]). The lemma easily follows from this
claim for [# ] = ["] − ["′] via Proposition 3.8.

For each prime divisor ℓ of |� |, choose a Sylow ℓ-subgroup �ℓ of � . Note that the re-
striction [# ] |�ℓ defines an element in K0(:̄ [�ℓ ]) as the restriction preserves projectivity,
and we have Bch[# ] |�ℓ = (Bch[# ]) |�ℓ .

If ℓ ≠ ? then we have �ℓ ⊂ �? -reg and Bch[# ] |�ℓ = ch[#̃� ] |�ℓ where [#̃� ] ∈
K0(��) is the lift of [# ]. By the standard character theory in characteristic 0, we have
dim� ( [#̃� ]�ℓ ) = dim:̄ ( [# ])/|�ℓ |, which is an integer. If ℓ = ? then K0(:̄ [�?]) is the free
abelian group generated by [:̄ [�?]] as :̄ [�?] is a local ring. In particular, |�? | divides
dim:̄ ( [# ]). This shows that |� | divides dim:̄ ( [# ]). �

Remark 3.10. Lemma 3.9 cannot be extended to G0(:̄�) in general. For example, if �
admits a normal Sylow ?-subgroup % ≠ {1}, then we have Bch:̄ [�/% ] (6) = 0 for any

6 ∈ �? -reg \ {1}. Then the Brauer characters of :̄ [�/%]⊕|% | and :̄� coincide, but :̄ [�/%]
is not even projective as a :̄�-module.

Proof of Claim (2) of Theorem 3.2: The case where : is algebraically closed. In
the setting of Theorem 3.2, assume that : = :̄ so we have �F = �F . Choose � = 〈6〉 for
some 6 ∈ �? -reg \ {1}, a cyclic subgroup of prime-to-? order. Let c� : -! → -!� denote
the natural projection, which is a everywhere tame � -covering.

The following lemma generalises the tame case [Nak86, p 120], and the main idea of
proof can be read off from the proof of Theorem 3.1 and Theorem 4.3 of [Köc04].

5One may refer to [Ser77, §18.1] instead, where Bch" is called the modular character.
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Lemma 3.11. In the above setting, we have the following elements in K0(:� )
[# (c)] |� − [# (c� )] and [,� (E)] |� − [,� (E)]

are integer multiples of [:� ].

Proof. For any F ∈ / ram
!

, let �F ≔ �F ∩ � . Then by the Mackey formula [CR06, The-
orem (44.2)]6, we have

[Ind��F "F ( 9 )] |� =
∑

B∈�\�/�F

[
Ind��BF

(
"BF ( 9 ) |�BF

)]

=
1

|� |
∑

B∈�/�F
|�BF | ·

[
Ind��BF

(
"BF ( 9 ) |�BF

) ]
.

Choosing�BF to contain�BF , which is possible by Remark 2.8, it follows from Lemma 2.10
that

(3.12) "BF ( 9 ) |�BF � (\�BF) 9 ⊕ (: [�BF])⊕
|%BF |−1
|�BF | [�BF :�BF ]

,

where \�BF = \BF |�BF .
Let =�F,8 = ;

�
F,8 be the integers defined in Lemma 2.5 for E viewed as an � -equivariant

vector bundle. Then clearly we have

(3.13) ;�F,8 ≡ ;F,8 ≡ =F,8 mod |�F |

possibly up to reordering ;�F,8 ’s. Therefore we have

[,� (E)] |� =
∑

F∈/ ram
!

1

[� : �F]

rk E∑
8=1

;F,8∑
9=1

[
Ind��F

(
"F (− 9 )

)]
|�

=
∑

F∈/ ram
!

1

[� : �F]

rk E∑
8=1

;F,8∑
9=1

[
Ind��F

(
"F (− 9 ) |�F

)]

≡
∑

F∈/ ram
!

1

[� : �F]

rk E∑
8=1

;�F,8∑
9=1

[
Ind��F

(
(\�F )− 9

) ]
=,� (E) mod [:� ],

where the last congruence uses (3.12), (3.13) and : [�F] �
⊕

9∈Z/( |�F | ) (\�F ) 9 .
The computation of [# (c)] |� is quite similar except that we use∑

06 9< |�F /%F |
9≡ 90 mod |�F |

9 |%F | ·
[
Ind��F ("F ( 9 ))

]
|� ≡ 90 |�F | ·

[
Ind��F

(
(\�F ) 90

)]
mod [:� ]

for any 0 6 90 < |�F |. �

Corollary 3.14. Theorem 3.2(2) holds if : = :̄ .

Proof. We first show that j:� (E) ≡ − rk(E) [# (c)] + [,� (E)] + 2 [:�] for some 2 ∈ Z.
By Lemma 3.9, we can proceed by comparing the values of Brauer characters at each
6 ∈ �? -reg \ {1}. Now applying Lemma 3.11 to� ≔ 〈6〉 for any 6 ∈ �? -reg \ {1}, it suffices
to prove the claim for c� : -! → -!� as we have j:� (E)|� = j:� (E). However, the
claim for c� is already obtained in [Nak86, Theorem 2].

Note that (j:� (E))� = j: (E� ) in K0 (:). We next claim that [# (c)]� = [,� (E)]� =

0; indeed, we have by the Frobenius reciprocity that(
Ind��F ("F ( 9 ))

)�
�

(
Ind��F (\

9
F |�F )

)�
� Hom�F (1, \

9
F |�F ),

6When all the modules involved are projective (as in our setting), one may alternatively obtain the mod ?
Mackey formula by lifting to characteristic 0.
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which is zero if and only if 9 . 0 mod |�F/%F |. This shows that 2 [:�] = [Ind�1 (j: (E� ))],
which implies formula (3.2c). �

We are now ready to conclude the proof.

Proof of Claim (2) of Theorem 3.2: The general case. Wenow allow: to be any per-
fect field. By injectivity of the scalar extension map K0(:�) → K0 (:̄�), we may verify
formula (3.2c) in K0(:̄�).

Let c̄ : -! → - denote the base change of c to :̄ , and let E denote the pull back of E
to -! . We choose a connected component -

◦
! of -! , with c̄

◦
≔ c̄ |

-
◦
!
. Let �◦ denote the

stabiliser of -
◦
! . By Corollary 3.14, we have the following formula in K0(:̄ [�◦])

j:̄ [�◦ ]
(
E|
-

◦
!

)
= −(rk E) · [# (c̄◦)] + [,�◦

(
E|
-

◦
!

)
] + Ind�

◦
1

(
j:̄ (E

� )
)
.

(Note that E� = (E|
-

◦
!
)�◦

.) We next claim that Ind��◦ of the above formula coincides with

the scalar extension to :̄ of formula (3.2c) for E.
Firstly, the following equality holds in K0 (:̄�)

j:�
(
RΓ(-!, E)

)
⊗: :̄ = j:̄�

(
RΓ(-!, E)

)
= Ind��◦

(
j:̄�◦

(
RΓ(-◦

!, E|- ◦
!
)
) )
.

Similarly, we have Ind��◦ Ind�
◦

1

(
j:̄ (E

� )
)
= Ind�1

(
j: (E� )⊗: :̄

)
in K0(:̄). Lastly, it remains

to show

[# (c)] ⊗: :̄ = Ind��◦ [# (c̄◦)] and [,� (E)] ⊗: :̄ = Ind��◦ [,�◦
(
E|
-

◦
!

)
],

which can be deduced from (m 9
F/m 9+1

F ) ⊗: :̄ �
⊕

F̄ m
9
F̄/m

9+1
F̄ where F̄ runs through the

closed points in -! over F . (More details can be found in the proof of Theorem 11 and
Theorem 12 in [FWK09, §3].) Hence, formula (3.2c) is valid after the scalar extension to
:̄ , as desired. �

Remark 3.15. Assume that : = :̄ , and let c : -! → - be a connected �-cover over : ,
not necessarily weakly ramified everywhere. Then for any �-equivariant vector bundle
E (for which RΓ(-!, E) may not be a perfect :�-complex), Köck [Köc04, Theorem 3.1]
showed7

∑
8

(−1)8 BchH8 (-! ,E) = 2
′ · Bch:� − 1

|� |
∑
F∈ |- |

|%F |
|�F /%F |−1∑

9=1

9 · Ind��F
(
Bch

m
9
F ÊF/m 9+1

F ÊF
)
,

where

2′ = 1 + gen + 1

|� | deg(E) −
rk E
2|� |

∑
F∈ |-! |

(
( [�F : %F] − 1) (|%F | + 1) +

∑
B>2

(|�F,B | − 1)
)
.

By Proposition 3.8, the verification of formula (3.2c) over :̄ reduces to comparing with
the Brauer character of the right hand side of (3.2c) with the above formula. (This is
how the rank-1 case of Theorem 3.2(2) is proved when : = :̄ in [Köc04, Theorem 4.3].)
In our proof of Theorem 3.2(2), we study the value of Bchj:� (E) (6) at any 6 ≠ 1 and
concluded the proof via a simple and conceptual argument using (j:� (E))� = j: (E� )
and Lemma 3.9. This proof avoids evaluating the Brauer character at 6 = 1. Alternatively,
one can explicitly compare the Brauer character value at 6 = 1 for both sides of (3.2c),

7This formula is generalised to the case where : is any perfect field in [FWK09, §4, Theorem 16], but there is
an obvious typo in the coefficient of Bch: � that makes it inconsistent with [Köc04, Theorem 3.1] when : = :̄ .
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using the theorems of Hirzeburch–Riemann–Roch and Riemann–Hurwitz, as well as the
following computation

deg(E) − |� | deg(E� ) =
∑

F∈/ ram
!

rk E∑
8=1

(
|%F | (;F,8 + 1) − 1

)
,

which equals
∑
F∈/ ram

!

∑rk E
8=1 =F,8 if we have chosen 0 6 =F,8 < |�F | for allF ∈ / ram

!
and 8 .

This way, one can also show the compatibility of (3.2c) with [Köc04, Theorem 3.1] over
:̄ . (We note that the coefficient 2′ of Bch:� in the above formula may not coincide with
the coefficient 2 of [:�] in K0 (:�) due to the subtlety explained in Remark 3.10.)

4. Relative K-theory of group rings

In this section, we review the Euler characteristics in the relative K0-group (cf.Def 4.8),
and obtain some explicit computation for equivariant vector bundles (cf. Corollary 4.15).

Let us consider the following general setup. Let � be either a number field or a (pos-
sibly archimedean) local field of characteristic 0, and fix a Dedekind domain ' contained
in �. (We usually set � = Frac('), but we also allow � = R and ' = Z.) We fix a finite-
dimensional semi-simple �-algebra � together with an '-order A ⊂ �. (In the intended
setting, we consider A = '� and � = �� for a finite group� .) Thanks to the assumption
on �, the reduced norm map K1(�) → Z (�)× is injective, where Z (�) is the centre of �.
We view K1(�) as a subgroup of Z (�)× ; cf. [CR87, Theorem (45.3)].

We recall the explicit description of the abelian group K0(A, �) in terms of generators
and relations, following [Swa68, p 215]:

generators: the isomorphism classes of triples [%, \,&], where % and& are finitely

generated projective A-modules, \ : � ⊗' %
∼→ � ⊗' & is an isomorphism of �-

modules, with respect to the obvious notion of isomorphisms (cf. [Swa68, p 214]);
relations: generated by the following

[%, \,&] + [% ′, \ ′, & ′] = [% ⊕ % ′, \ ⊕ \ ′,& ⊕ & ′] and(4.1)

[%, \, % ′] + [% ′, \ ′, % ′′] = [%, \ ′ ◦ \, % ′′] .

The relative 0-group fits into the natural localisation sequence (cf. [Swa68, Theorem15.5];
in particular, we have the following connecting homomorphism

(4.2a) mA,� : K1(�) //K0(A, �) ,

which, in our setting, turns out to be the restriction of the following map:

(4.2b) XA,� : Z (�)×
0 ↦→[A,0,A]

//K0(A, �) .

Example 4.3. Suppose that A is a PID and � = FracA is a finite extension of �. Then the
natural map �× → K0(A, �), sending 0 ∈ �× to [A, 0,A], induces an isomorphism

�×/A× �
//K0(A, �) .

(This essentially follows from the structure theorem of finitely generated modules over
PID. In fact, given [%, \,&] we choose an A-basis of % and & so that \ can be represented
by a diagonal matrix, and the relations (4.1) yield [%, \,&] = [A, 0,A] where 0 is the de-
terminant of the matrix representation of \ , showing surjectivity. Injectivity can be seen
by keeping track of the effect of relations on “determinants”; cf. [Swa68, Lemma 15.8].)

Now, let �′ be another global or local field containing �, and choose a Dedekind sub-
domain '′ ⊂ �′ containing '. We choose an �-algebra homomorphism

k : � → �′
≔ End�′ (+k )
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for some finite-dimensional �′-vector space +k . Fix an '′-lattice )k of +k such that k
restricts to a map A → A′

≔ End'′ ()k ), which we also denote byk .
For a (left) A-module" , we define the following '′-module

(4.4) ["]k ≔ ) ∗
k ⊗A ",

where we view the '′-linear dual) ∗
k
as a ('′,A)-bimodule viak . Clearly, if % is a project-

ive A-module then [%]k is also a projective '′-module, so we get a group homomorphism

(4.5) dk : K0(A, �) // K0('′, �′);
[%, \,&] ✤ // [%, \,&]k =

[
[%]k , [\ ]k , [&]k

]
.

Alternatively, this map can be obtained the following composition

K0 (A, �) K0(A′, �′) K0('′, �′)
k∗ �

,

wherek∗ is induced by the scalar extensionA′⊗A (−), and the second arrow by theMorita
equivalence; cf. [BF01, §3.5].

Let us record the following basic properties of dk .

Lemma 4.6. Choose an �-algebra mapk : � → �′ = End�′ (+k ) and an '′-lattice)k ⊂ +k
such thatk (A) is contained in A′

≔ End'′ ()k ), as above.
(1) The map dk : K0(A, �) → K0('′, �′) depends only on k : � → �′ = End�′ (+k ),

not on the choice of '′-lattice )k ⊂ +k .
(2) We have the following commutative diagram

K1(�)

mA,�

��

Nrdk
// �′× K1(�′)�

oo

m'′,�′

��

K0 (A, �)
dk

// K0('′, �′)

,

where Nrdk is the map K1 (�) ↩→ Z (�)× → Z (�′)× = �′× induced byk .

Proof. Let ) ′
k
be another '′-lattice of +k such that End'′ () ′

k
) contains k (A), and choose

U ∈ �′× such that ) ′
k
= U ()k ). Then for any A-module" we have an isomorphism

) ′∗
k

⊗A " ) ∗
k
⊗A "

U ∗⊗id"
,

inducing an isomorphism of triples ) ′∗
k

⊗A (%, \,&) ∼→ ) ∗
k
⊗A (%, \,&) for any triple

(%, \,&) representing an element of K0(A, �).
Claim (2) also follows from the straightforward diagram chasing. �

For �• ∈ Dperf (A), a trivialisation over � (or an �-trivialisation) means an �-linear
isomorphism

(4.7) ℎ :
⊕
8 even

H8 (� ⊗' �•) ∼→
⊕
8 odd

H8 (� ⊗' �•).

By semi-simplicity of�, one can naturally extend ℎ to an isomorphism
⊕

8 even �⊗'�8
∼→⊕

8 odd � ⊗' �8 , also denoted by ℎ.

Definition 4.8. Given a perfect A-complex with �-trivialisation (�•, ℎ), we define its
Euler characteristic jA,� (�•, ℎ) ∈ K0(A, �) as follows:

jA,� (�•, ℎ) ≔
[ ( ⊕
8 even

�8
)
, ℎ,

(⊕
8 odd

�8
)]
.

Immediately, jA,� (�•, ℎ) only depends on the isomorphism class of�• in Dperf (A).
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If�• is a perfectA-complex such that � ⊗'�• is acyclic, then we let jA,� (�•, 0) denote
the Euler characteristic with respect to the unique �-trivialisation on�• (i.e., the zero map
between the zero modules).

The formation of jA,� (−) is functorial with respect to dk (4.5); indeed, given a perfect
A-complex with �-trivialisation (�•, ℎ), we have

(4.9) dk
(
jA,� (�•, ℎ)

)
= j'′,�′ ( [�•]k , [ℎ]k ),

where [ℎ]k is the �′-trivialisation induced on [�•]k ≔ ) ∗
k
⊗A �

• via ℎ.

Example 4.10. If A is a DVR with normalised valuation E�, then let E� also denote the
following isomorphism

E� : K0(A, �) �
//Z sending [A, 0,A] ↦→ E� (0).

In that case, for any�• ∈ Dperf (A) with all H8 (�•) torsion we have

E�
(
jA,� (�•, 0)

)
=

∑
8

(−1)8+1 lengthA
(
H8 (�•)

)
.

Now, let p be a non-zero principal prime ideal of ', and write : ≔ '/p. Given �•
:
∈

Dperf (A/pA), we abusively write

jA,� (�•
: , 0) ≔ jA,� (�•

A
, 0)

where �•
A
is a perfect A-complex quasi-isomorphic to �•

:
. (Note that � ⊗' �•

A
is clearly

acyclic.) In this case, we have another notion of Euler characteristic; namely, jA/pA (�•
:
) ∈

K0(A/pA), which can be related to jA,� (�•
:
, 0) as follows. Define a homomorphism

zA/pA : K0(A/pA) //K0(A, �)

by sending a finitely generated projective A/pA-module %: , viewed also as a complex
concentrated in degree 0, to

zA/pA (%: ) ≔ jA,� (%: , 0) = [%̃, s−1, %̃],

where %̃ is a projective A-module lifting %: and s is a generator of p; indeed, %: is quasi-

isomorphic to a two-term complex [%̃ s−→ %̃] concentrated in degree [−1, 0], so its Euler
characteristic is as above. One can show (by straightforward computation) that this ex-
tends to any �•

:
∈ Dperf (A/pA); that is,

jA,� (�•
: , 0) = zA/pA

(
jA/pA (�•

: )
)
.

Furthermore, given k : A → End'′ ()k ) as before such that '′ is a DVR whose maximal
ideal p′ contains p, we also have

(4.11) dk
(
jA,� (�•

: , 0)
)
= j'′,�′ () ∗

k ⊗L
A
�•
: , 0) = z'′/p′

(
j'′/p′ () ∗

k /p)
∗
k ⊗A/pA �

•
: )

)
.

Lemma 4.12. In the above setting, choose an algebraic closure :̄ of : and a :-embedding

'′/p′ ↩→ :̄ . Set)
∗
k ≔ ) ∗

k
⊗'′ :̄ and define

mk : K0(A/pA)
)
∗
k ⊗A/pA (−)

//K0(:̄)
dim:̄

�

//Z .

Then for any �•
:
∈ Dperf (A/pA) we have

E�′
(
dk

(
jA,� (�•

: , 0)
))

= −4p′ |p ·mk
(
jA/pA (�•

: )
)
,

where E�′ (−) is the normalised valuation on �′ ≔ Frac'′ and 4p′ |p is the ramification index.
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Proof. By Example 4.10 and (4.11), we have

E�′
(
dk

(
jA,� (�•

: , 0)
))

=
∑
8

(−1)8+1 length'′

(
H8

(
) ∗
k /p)

∗
k ⊗A/pA �

•
:

))

=
∑
8

(−1)8+1 length'′

(
) ∗
k /p)

∗
k ⊗A/pA �

8
)

= 4p′ |p ·
∑
8

(−1)8+1 dim:̄

(
)
∗
k ⊗A/pA �

8
)
= −4p′ |p ·mk

(
jA/pA (�•

: )
)
,

as desired. �

Remark 4.13. In Lemma 4.12, the normalised valuation of dk
(
jA,� (�•

:
, 0)

)
changes if we

replace )k by the scalar extension under a finite ramified ring extension, but the forma-

tion of the fractional ideal a whose normalised valuation equals that of dk
(
jA,� (�•

:
, 0)

)
commutes with any finite scalar ring extensions.

Now consider a �-cover c : -! → - and a �-equivariant vector bundle E in -! that
satisfies the conditions in Theorem 3.2. We also assume that the constant field : of - is
finite with characteristic ? . For simplicity we write

(4.14) j�? (E) ≔ jZ?�,Q? (RΓ(-!, E)∨, 0) ∈ K0(Z?�,Q?�),

which makes sense as RΓ(-!, E)∨ ∈ Dperf (F?�). Here, RΓ(-!, E)∨ denotes the Pontry-
agin dual (or equivalently, the F?-linear dual) with the contragredient �-action. To mo-
tivate this choice, see Theorem 6.14. For ℓ ≠ ? , we set j�ℓ (E) = 0 in K0 (Zℓ�,Qℓ�).

Let �′ be a finite extension of Q? with valuation ring '′ = O�′ and residue field :′.
Pick a �-stable O�′ -lattice )k in a finitely generated �′�-module +k , so we get a map
k : Z?� → End'′ ()k ). We now apply Lemma 4.12 to A = Z?� and p = (?) to obtain the
following corollary.

Corollary 4.15. Let c : -! → - be a �-cover that is weakly ramified everywhere. For
each F ∈ / ram

!
, choose �F ⊆ �F so that we have �F = %F ⋊ �F (cf. Lemma 2.7). We write

\�F ≔ \F |�F .
Let : be the finite constant field of - , and fix a :-embedding :F ↩→ :̄ for eachF ∈ / ram

! .

Finally, fix an embedding :′ ↩→ :̄ and set )k ≔ :̄ ⊗O�′ )k .

(1) For any F ∈ / ram
!

and 9 ∈ Z/(|�F |), we have

mk,F ( 9 ) ≔ mk
(
Ind��F "F ( 9 )

)
=

[:F :F? ]−1∑
0=0

dim:̄

(
)k [\ 9?

0

�F
]
)
,

Here, )k [\B�F ] for B ∈ Z is the maximal subspace of)k where �F acts via \B
�F

.

(2) Let E be a�-equivariant vector bundle -! that satisfies the condition (3.2a) for any
F ∈ /wild

!
. Then we have

−E�′
(
dk

(
j�? (E)

))
= E�′ (?) ·

[
[: : F?] · dim:̄

(
)
∗
k ⊗: j:

(
E�

) )
+ ramE (k )

]

where

ramE (k ) ≔
1

|� |
∑

F∈/ ram
!

rk E∑
8=1

©­
«
−|%F | ·

|�F |−1∑
9=1

9 ·mk,F (− 9 ) + |�F | ·
;F,8∑
9=1

mk,F ( 9 )
ª®
¬
.

Here, mk,F ( 9 ) is defined in (1), and ;F,8 ’s are as in (3.2b).
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Proof. By transitivity of inductions, we have Ind��F "F ( 9 ) � Ind��F
(
(m 9

F/m 9+1) |�F
)
; cf.

Lemma 2.10. Since )
∗
k ⊗F? Ind��F (\

9

�F
) is a projective :̄�-module,8 we have

(4.16) )
∗
k ⊗F?� Ind��F

(
(m 9

F/m 9+1) |�F
)
�

(
)
∗
k ⊗F? Ind��F

(
(m 9

F/m 9+1) |�F
) )�

� Hom:̄�

(
)k , :̄ ⊗F? Ind��F

(
(m 9

F/m 9+1) |�F
))
� Hom:̄ [�F ]

(
)k , :̄ ⊗F? (m 9

F/m 9+1)
)
,

where the last isomorphism is the Frobenius reciprocity. To conclude, observe that

:̄ ⊗F? (m 9
F/m 9+1

F ) �
[:F :F? ]−1⊕

8=0

:̄ ⊗Fr8? ,:F
(m 9

F/m 9+1
F ),

where Fr? is the ?th power map and�F acts on :̄⊗Fr8? ,:F
(m 9

F/m 9+1
F ) via \ 9?

8

F . In particular,

the last term in (4.16) is the direct sum of the multiplicity spaces for \
9?8

F , and thus the
displayed equation in claim (1) follows.

For any :-vector space + , we have

)
∗
k ⊗F?� Ind�1 + � )

∗
k ⊗F? + � () ∗

k ⊗: + )⊕[: :F? ] .

Note also that "F ( 9 )∨ � "F (− 9 ), where "F ( 9 )∨ is the Pontryagin dual with contra-
gredient �F-action. Claim (2) now follows from Theorem 3.2(2) and Lemma 4.12. �

We conclude the section with some remarks on Corollary 4.15.

Remark 4.17. In Corollary 4.15(1), we have)k [\B�F ] � )
ss
k [\B�F ] as:F [�F] is semi-simple,

which shows that mk,F ( 9 ) depends only on 9 ∈ Z/(|�F |) and +k , not on the choice of
)k ⊂ +k . In particular, the formula in Corollary 4.15(2) is independent of the choice of
)k ⊂ +k .

Remark 4.18. The right hand side of the formula in Corollary 4.15(2) can be divided into
two parts – the first terms involves degk ≔ dim�′ +k and the Euler characteristic of

E� , and the second term ramE (k ) measures the “local ramification” of)
ss
k and E (that is,

)
ss
k |�F and ;F,8 ’s for anyF ∈ / ram

!
).

Let us now consider the special case of E = c∗F (−/!) where F is a vector bundle on
- and /! = c−1 (/ ) for some closed subset / ⊂ |- | containing the ramification locus for
c . Then as in (3.6b), the formula in Corollary 4.15(2) can be made more explicit using the
following formula:

dim:̄

(
)
∗
k ⊗: j:

(
E�

) )
= (degk ) ·

(
(rkF ) ·

(
1 − gen − deg(/ )

)
+ deg(F )

)
;

ramE (k ) =
rk E
|� |

∑
F∈/ ram

!

|�F/%F |−1∑
9=1

[:F :F? ]−1∑
0=0

9 |%F | · dim:̄

(
)k [\ 9?

0

�F
]
)
,

where deg(/ ) = ∑
E∈/ [:E : :].

Remark 4.19. Let us make ramE (k ) more explicit in some special cases. Firstly, if we have
�F = %F for allF ∈ / ram

!
(e.g., if � is a ?-group or c is étale), then we have ramE (k ) = 0

for anyk and E (cf. Remark 3.4).
Now, suppose that c is tame everywhere and degk = 1. We also specialise to the case

when E = c∗F (−/!) as in Remark 4.18. For any F ∈ / ram
!

, let 3F denote the smallest

positive integer such that ?3F ≡ 1 mod |�F |. (Note that 3F divides [:F : F?].) For each

8One can show projectivity by realising )
∗
k ⊗F? Ind��F (\ 9

�F
) as a direct summand of Ind�1 (:F ⊗F? )

∗
k ) .
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0 = 0, · · · , 3F −1, let 9 (0)
k,F

denote the integer in {0, · · · , |�F | −1} such that �F acts on)k |�F

via \
9
(0)
k,F

·?0
F . Then we have

(4.19a) ramE (k ) =
rk E
|� |

∑
F∈/ ram

!

3F−1∑
0=0

9
(0)
k,F

·
[:F : F?]
3F

.

If furthermore |�F | divides ? − 1 for any F ∈ / ram
!

(which follows if |� | divides ? − 1),

then setting 9k,F = 9
(0)
k,F

we obtain

(4.19b) ramE (k ) =
rk E
|� |

∑
F∈/ ram

!

9k,F · [:F : F? ] .

5. Review of Néron models and base change

We use the setting of §3. Fix an abelian variety � over  , and let A denote the Néron
model of � over - . For the pull back �! of � over !, we let A! denote the Néron model,
and writeA-! ≔ A×- -! . The connected Néron models are denoted asA◦,A◦

! , etc. Let
�C denote the dual abelian variety of �, and similarly define AC , AC,◦ , etc. We maintain
this setting for the rest of the paper.

By the Néron mapping property, the�-action on -! lifts to a�-action onA! , and we
get a natural �-equivariant homomorphism A-! → A! extending the identity map on
the generic fibre. Furthermore, we have the following proposition.

Proposition 5.1. Let * ′ ⊂ - be the maximal open subscheme such that the natural map
A◦
-!

|* ′
!
→ A◦

! |* ′
!
is an isomorphism, where* ′

! ≔ c−1 (* ′).
(1) The cokernel of the natural inclusion

Lie(A-! ) � c∗ Lie(A) Lie(A!)

is supported exactly on -! \* ′
! .

(2) A closed point E ∈ |- | lies in* ′ if either !/ is unramified at E or � has semistable
reduction at E .

(3) Suppose furthermore that !/ is tamely ramified at all places in - ′ \* ′. Then the
natural map Lie(A) → Lie(A!)� is an isomorphism.

Proof. Fix a place E ∈ |- |, and choose a placeF ∈ |-! | over E . We set

AOE ≔ A ×- SpecOE, A!,OF ≔ A! ×-! SpecOF , and AOF ≔ A ×- SpecOF .
We similarly define A◦

OE , etc. By standard properties of Néron models, we have E ∈ * ′

if and only if the natural map A◦
OF → A◦

!,OF is an isomorphism, and * ′ contains the

unramified locus for !/ ; cf. §1.2, Proposition 4 and §7.2, Corollary 2 in [BLR90]. If A◦
OE

is a semi-abelian scheme, then E ∈ * ′ by [BLR90, §7.4, Corollary 4]). This proves (2).
If !F/ E is tamely ramified, then by [Edi92, Theorem 4.2] we have a natural isomorph-

ism

AOE
�

//
(
ResOF/OE A!,OF

)�F
of group schemes over OE , where ResOF/OE A!,OF denotes the Weil restriction of scalars.
Since the Lie algebra of ResOF/OE A!,OF coincides with Lie(A!) (OF) viewed as an OE-
module, it follows that the natural map Lie(A) → Lie(A!)� induces an isomorphism on
the completed stalks at all tame places E ∈ |- |. Since this map induces an isomorphism
on the restriction to * ′ by (2), we obtain (3) by the standard descent argument.

To prove (1), we need to show that the natural map A◦
OF → A◦

!,OF is isomorphic

if and only if Lie(A-! ) (OF) ↩→ Lie(A!) (OF) is isomorphic. The “only if” direction is

clear, so suppose that we have Lie(A-! ) (OF)
∼→ Lie(A!) (OF). Then the natural map

A◦
OF → A◦

!,OF is étale by smoothness of the source and the target (cf. [BLR90, §2.2,
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Corollary 10]), so it is an open immersion by Zariski’s main theorem (cf. [BLR90, §2.3,
Theorem 2′]). Since all the fibres of A◦

!,F
over SpecOF is connected, the desired claim

now follows. �

Set BOE ≔ ResOF/OE A!,OF , and denote its special fibre by B:E . Let A!,:F be the
special fibres of A!,OF . Then have a natural �F-equivariant surjective map

(5.2) B:E Res:F/:E A!,:F

with smooth connected unipotent kernel denoted by F1B:E ; indeed, this can be seen by
realising B:E as theWeil restriction of scalars for a nilpotent thickening OF ⊗OE :E ։ :F ;
cf. [Edi92, §5.1] or [CGP15, Proposition A.5.12].

We retain the setting that - is defined over a perfect field : of characteristic ? > 0, so
:E is perfect as well. Then F1B:E is a vector group over :E by [CGP15, Corollary B.2.7];
i.e., it is a direct product of copies of G0 .

Proposition 5.3. In the above setting, if !F/ E is tame then the short exact sequence (5.2)
induces the following short exact sequence

(5.3a) 0
(
F1B:E

)�F (
B:E

)�F
� A:E

(
Res:F/:E A!,:F

)�F 0 ,

which induce the following isomorphism

(5.3b)
(
Lie(A!) (:F)

)�F
� coker

((
Lie(A!) (mF/m |�F |

F )
)�F

↩→ Lie(A)(:E)
)
.

Moreover,
(
F1B:E

)�F is a vector group over :E and the sequence (5.3a) remains exact on
:E-points.

Proof. Suppose that we know the sequence (5.3a) is exact and that
(
F1B:E

)�F is a vector
group. Then the isomorphism (5.3b) is a direct consequence of the short exact sequence
of Lie algebras induced from (5.3a), and the sequence (5.3a) remains exact on :E-points
since H1(:E, (F1B:F )�F ) is trivial by the Hilbert normal basis theorem.

It remains to show that the sequence (5.3a) is exact and that
(
F1B:E

)�F is a vector
group, both of which can be checked after base change to :F . Set  ′

F ≔ (!F)�F , and let
O′
F denote its valuation ring. Then as O′

F is a finite étale extension of OE , we have

BOE ×Spec OE SpecO′
F � Res(OF⊗OE O′

F )/O′
F
A!,OF �

∏
�F/�F

(
ResOF/O′

F
A!,OF

)
,

where the natural�F-action is the extension of the natural �F-action on ResOF/O′
F
A!,OF

so that �F acts transitively on the factors. Therefore, by taking �F-invariants we get

(BOE )�F ×Spec OE SpecO′
F �

(
ResOF/O′

F
A!,OF

) �F .
If we let B:F denote the special fibre of ResOF/O′

F
A!,OF , then we can also show that

(F1B:E )�F ×Spec :E Spec:F � (F1B:F )�F .
Therefore, to prove the proposition we may replace  E with  ′

F and suppose �F = �F .
Now, suppose that !F/ E is totally ramified, so we write B:F and A:F for B:E and

A:E . Then by tameness, |�F | acts invertibly on the vector group F1B:F , which yields the
following short exact sequence of smooth :F-group schemes

0
(
F1B:F

) �F (
B:F

) �F
� A:F

(
A!,:F

) �F 0 .

Clearly,
(
F1B:F

) �F is still a vector group. This concludes the proof. �

Corollary 5.4. In the same setting as in Proposition 5.3, if A◦
!,O is semi-abelian then we

have (F1B:E )�F � ℛD (A◦
:E
), the unipotent radical of the neutral component of A:E .
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Proof. Since A◦
!,:F

is semi-abelian (hence, with trivial unipotent radical), the unipotent

radical of the neutral component of
(
Res:F/:E A!,:F

)�F is also trivial, so the exact se-
quence (5.3a) identifies (F1B:E )�F with the unipotent radical of A◦

:E
. �

Now, choose a dense open subscheme * ⊂ - contained in both the good reduction
locus for �/ and the unramified locus for c , and set *! ≔ c−1 (* ). Let / ≔ - \* and
/! ≔ -! \*! respectively denote the reduced complements.

Proposition 5.5. We make the same assumption as in Proposition 5.1(3), and let / and /!
be as above. Then we have natural inclusions

(5.5a) Lie(A)(−/ )
(
Lie(A!) (−/!)

)�
Lie(A)(−(/ ∩* ′)) .

that restrict to isomorphisms over * ′, and the cokernel of the first inclusion is supported
exactly on - \* ′. Furthermore, we have

(5.5b)
Lie(A)(−(/ ∩* ′))(
Lie(A!) (−/!)

)� �
⊕
E∉* ′

(
Lie(A!) (:Ẽ)

)�Ẽ ,
where we choose a preimage Ẽ ∈ c−1 (E) for each E ∉ * ′.

Remark 5.6. The last displayed equation is independent of the choice of Ẽ since we have(
Lie(A!) (:Ẽ)

)�Ẽ
�

(⊕
F |E

Lie(A!) (:F)
)�
.

Proof of Proposition 5.5. We use the notation from Proposition 5.3 and its proof. By Pro-

position 5.1(3), we have a natural isomorphism Lie(A)(−/ ) |* ′ �
(
Lie(A!) (−/!)

)� |* ′ .
For any E ∉ * ′ we have(

Lie(A)(−(/ ∩* ′)
)̂
E(

Lie(A)(−/ ))
)̂
E

�
Lie(A)(OE )
Lie(A)(mE)

� Lie(A)(:E),

and the preimage of Lie(F1B:Ẽ )�Ẽ in Lie(A)(OE ) can be naturally identified with the

completed stalk of
(
Lie(A!) (−/!)

)�
at E . Thus we get the desired inclusions of vector

bundles. Furthermore, we have

Lie(A)(−(/ ∩* ′))(
Lie(A!) (−/!)

)� �⊕
E∉* ′

Lie(A)(:E)
Lie(F1B:Ẽ )�Ẽ

�

⊕
E∉* ′

(
Lie(A!) (:Ẽ)

)�Ẽ ,
where the last isomorphism follows from Proposition 5.3.

Lastly, we show that Lie(A)(:E) �
(
Lie(A!) (:Ẽ)

)�Ẽ for any E ∉ * ′ and Ẽ | E ; i.e., the
cokernel of Lie(A)(−/ ) ↩→

(
Lie(A!) (−/!)

)�
is supported exactly on - \* ′. Indeed, if

we have Lie(A)(:E) �
(
Lie(A!) (:Ẽ)

)�Ẽ , then it follows that the following composition

Lie(A)(:E) ⊗:E :Ẽ �
(
Lie(A!) (:Ẽ)

)�Ẽ ⊗:E :Ẽ ↩→ Lie(A!) (:Ẽ)
is an isomorphism for the dimension reason. Hence, by the Nakayama lemma, the natural
map c∗ Lie(A) → Lie(A!) is isomorphic at Ẽ , so E ∈ * ′ by Proposition 5.1(1). This
concludes the proof. �

Under the same setting as in Proposition 5.1(3), choose integers AF,8 ∈ {0, · · · , |�F | −1}
for any F ∈ / ′

!
so that Lie(A!) (:F) �

⊕
8 (m

−AF,8
F /m−AF,8+1

F ); cf. Lemma 2.5. Then one
can shows that

(5.7) dim:E

(
Lie(A!) (:Ẽ)

)�Ẽ = 3 ′Ẽ = ��{8 such that AF,8 = 0}
�� .

Let us record the following immediate corollary.

Corollary 5.8. Under the same assumption as in Proposition 5.5, the following properties
hold.
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(1) If � is an elliptic curve, then we have
(
Lie(A!) (−/!)

)� ∼→ Lie(A)(−(/ ∩* ′)).
(2) We have

deg
( (
Lie(A!) (−/!)

)� )
= deg

(
Lie(A)(−(/ ∩* ′))

)
−

∑
E∉* ′

[:E : :] · dim:E

(
Lie(A!) (:Ẽ)

)�Ẽ ,
where we choose Ẽ ∈ c−1 (E) for each E ∉ * ′.

(3) Suppose additionally that !/ is weakly ramified everywhere. Then the�-equivariant
vector bundle Lie(A!) (−/!) satisfies the condition (3.2a), so Theorem 3.2 holds. Fur-
thermore, we can compute ;F,8 ’s defined in (3.2b) as follows:

;F,8 =




|�F/%F | − 1, ∀ 8 ifF ∈ / ram
!

\ / ′
!
;

AF,8 − 1 ifF ∈ / ′
! and AF,8 ≠ 0;

|�F/%F | − 1 ifF ∈ / ′
! and AF,8 = 0,

where AF,8 ’s are defined in (5.7).

Proof. Claim (1) can be deduced from the statement on the cokernels of the inclusions
in (5.5a) in Proposition 5.5, noting that all the vector bundles involved are line bundles.
Claim (2) is clear from Proposition 5.5.

Suppose that !/ is weakly ramified everywhere and we want to verify (3.2a) for
E = Lie(A!) (−/!), which is a local condition at each F ∈ /wild

!
. Since the natural

inclusion Lie(A-! ) (−/!) ↩→ Lie(A!) (−/!) restricts to an isomorphism over * ′
! , the

completed stalk of Lie(A!) (−/!) at eachF ∈ * ′
! is�F-equivariantly isomorphic tom⊕3

F

with 3 = dim(�); cf. (3.6a). Now, the condition (3.2a) follows since the assumption of
Proposition 5.5 implies that /wild

!
⊆ /! ∩ * ′

! . It also implies that ;F,8 ≡ −1 mod |%F |
for any F ∈ / ram

!
∩ * ′

! . The computation of ;F,8 is clear for F ∉ * ′
! , so Claim (3) now

follows. �

Example 5.9. The assumption in Corollary 5.8(3) is satisfied if !/ is weakly ramified
everywhere, � has semistable reduction at all places of !, and !/ is tame at all places in
 where� does not have semistable reduction. In that case, |- \* ′ | is precisely the set of
places of non-semistable reduction for �. As a special case, if � has semistable reduction

at all places in  then by Proposition 5.5 we have Lie(�) (−/ ) ∼→
(
Lie(A!) (−/!)

)�
.

6. Review of Eqivariant BSD and Hasse–Weil–Artin !-values

We introduce a certain perfect Ẑ�-complex encoding the integral Galois module struc-
ture of the arithmetic invariants of �/!, and review the main result of [BKK] on the
equivariant BSD conjecture. We maintain the setting of §5, and additionally assume that
: is a finite field of characteristic ? . In particular, !/ is an arbitrary finite Galois exten-
sion of global function fields.

For eachF ∈ /! , we set

A◦
! (mF) ≔ ker

(
A◦
! (OF) → A◦

! (:F)
)
,

which is a �F-stable pro-? open subgroup of �(!F). Following [KT03, §2.2], we let
RΓar,/! (*!,A!,tors) ∈ � (Z�) denote the mapping fibre of

(6.1) RΓfl(*!,A!,tors) ⊕
( ⊕
F∈/!

A◦
! (mF)

L
⊗ Q/Z

)
[−1]

⊕
F∈/!

RΓfl(Spec!F,A!,tors) .

We will often write ŜC/! = ŜC/! (�, !/ ).
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Definition 6.2. We set

ŜC/! (�, !/ ) ≔
(
RΓar,/! (*!,A!,tors)

)∨ [−2] ∈ D(Ẑ�),
where (−)∨ is the Pontryagin dual. For any prime ℓ (allowing ℓ = ?), we write

SC/! ,ℓ (�, !/ ) ≔ ŜC/! (�, !/ ) ⊗Ẑ Zℓ ∈ � (Zℓ�).

We will often write ŜC/! = ŜC/! (�, !/ ) and SC/! ,ℓ = SC/! ,ℓ (�, !/ ) for simplicity.

Proposition 6.3 (cf. [KT03, §2.5]). We have H8 (ŜC/! ) = 0 for 8 ∉ [0, 2]. Furthermore, if
X(�/!) is finite, then we have

H0(ŜC/! ) � �C (!) ⊗ Ẑ
and a long exact sequence

0 //SelQ/Z(�/!)∨ //H1(ŜC/! ) //
⊕
F∈/!

(A! (:F))∨ // (�(!)tors)∨ //H2(ŜC/! ) //0 .

Proof. Apply [KT03, §2.5, §2.3] to + = (A◦
! (mF))F∈/! , noting that �(!F)/A◦

! (mF) �
A! (OF)/A◦

!
(mF) � A! (:F). �

By Schneider’s result [Sch82, p 509], we have a non-degenerate�-equivariant pairing

(6.4) 〈 , 〉�/! ≔ (log?)−1 · 〈 , 〉�/!,NT : �(!) ×�C (!) → Q,
where 〈 , 〉�/!,NT is the Néron–Tate height pairing.

Definition6.5. For any prime ℓ (allowing ℓ = ?), wewriteℎℓ : �C (!)⊗Qℓ → (�(!) ⊗ Qℓ )∗
for the Qℓ�-isomorphism induced by 〈 , 〉�/! . If in addition X(�/!) is finite, then we in-
terpret ℎℓ as a Qℓ�-isomorphism

ℎℓ : H0 (SC/!,ℓ ⊗ZℓQℓ )
�

//H1 (SC/! ,ℓ ⊗ZℓQℓ ) .

Therefore, ℎℓ defines the Qℓ-trivialisation in the sense of (4.7) if X(�/!) is finite and
SC/! ,ℓ is a perfect Zℓ�-complex. The following proposition gives a sufficient condition
for the Zℓ�-perfectness.

Proposition 6.6. (1) If ℓ ≠ ? then we have SC/!,ℓ ∈ Dperf (Zℓ�).
(2) Suppose that !/ is weakly ramified everywhere, and if !/ is wildly ramified at

E ∈ / then the natural map A◦ ×- SpecOF → A◦
! ×-! SpecOF is an isomorph-

ism. (In other words, the condition for Corollary 5.8(3) is valid.) Then we have

ŜC/! (�, !/ ) ∈ Dperf (Ẑ�), and hence, SC/! ,? ∈ Dperf (Z?�).

Before we prove the proposition, let us make the following remark.

Remark 6.7. Proposition 6.6 is a special case of [BKK, Proposition 3.7(i)], built upon the
argument in [KT03, §6]. To explain, by [BKK, Proposition 3.4, Proposition 3.7(i)] one
constructs a perfect Ẑ�-complex ŜC+! using carefully chosen family of �F-stable open
compact subgroups +! ≔ (+F ⊂ A◦

! (mF))F∈/! , equipped with a distinguished triangle

in � (Ẑ�)

ŜC+! // ŜC/! //
⊕
F∈/!

(
A◦
! (mF)/+F

)∨ [−1] // (+1) .

(In [BKK, Proposition 3.7(i)], ŜC+! is denoted as RΓar,+! (*!,A!,tors)∨ [−2].) AsA◦
! (mF)/+F

is a ?-group for eachF ∈ /! , it easily follows that the natural map ŜC+! ⊗Ẑ Zℓ → SC/! ,ℓ
is a quasi-isomorphism, proving Proposition 6.6(1). To prove Proposition 6.6(2), we have
to show that the choice +! = (A◦

! (mF))F∈/! makes ŜC+! a perfect Ẑ�-complex under
the additional assumption in the statement, which we explain in the proof.

Without the additional assumption in Proposition 6.6(2), the choice of +! that make
ŜC+! perfect is quite inexplicit and hard to work with. Therefore, we state Proposition 6.6
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in a restrictive setting where there is a preferred explicit choice of +! . See Remark 7.17
for further discussions.

Proof of Proposition 6.6. Claim (1) is already proven in Remark 6.7, so let us prove claim (2)
in the setting of (2). By the proof of Proposition 3.7(i) in [BKK], we need to show that the
continuous �F-action on A◦

! (mF) is cohomologically trivial, which is equivalent to the
cohomological triviality of Lie(A!) (mF) for�F by the proof of Lemma 6.1 and Lemma6.2
in [KT03]. (See also the proof of Lemma 3.4 in [BKK].) But by Corollary 5.8(3), we have
�F-equivariant isomorphisms of OF-modules

Lie(A!) (mF) � Lie(A)(OE ) ⊗OE mF � m
⊕ dim(�)
F ,

for any F ∈ /! where !/ is weakly and wildly ramified, so the desired cohomological
triviality follows from Köck’s local integral normal basis theorem (cf. Theorem 2.11). �

Notation 6.8. Let Ir(�) denote the set of isomorphism classes of (complex) irreducible
�-representations, and choose a number field � ⊂ C over which anyk ∈ Ir(�) is defined.
For each k ∈ Ir(�), let +k be the corresponding ��-module, and choose a �-stable O� -
lattice )k ⊂ +k . For any place _ of �, we write

+k,_ ≔ +k ⊗� �_ & )k,_ ≔ )k ⊗O� O�,_ .

We obviously extend the above notation for any �-representation k .

For any�-representationk , let !* (�,k, B) be the Hasse–Weil–Artin !-series for (�,k )
without Euler factors away from* ;9 i.e., choosing a place _ | ℓ of � with ℓ ≠ ? we have

(6.9) !* (�,k, B) ≔
∏
E∈ |* |

det �_
(
1 − |:E |1−B FrobE | +ℓ (�) ⊗Qℓ +k,_

)−1
,

where FrobE is the geometric Frobenius at E . It is sometimes useful to apply the change of
variable C = ?−B and set /* (�,k, C) = !* (�,k, B).

Recall that by the Lefschetz trace formula we have

/* (�,k, C) =
2∏
8=0

det �_

(
1 − ?C · Frob? | H8ét,2 (* ×Spec F? SpecF? ,+ℓ (�) ⊗Qℓ +k,_)

) (−1)8+1
,

where Frob? is the geometric ?-Frobenius. Moreover, we have /* (�,k, C) ∈ � (C) that is
independent of the choice of _, and there is an analogous formula for _ | ? recovering
/* (�,k, C) via rigid cohomology. (For more details, see [BKK, Theorem 8.2].)

For any �-representation k , set

Aan(k ) ≔ ordB=1!* (�,k, B) = ordC=?−1/* (�,k, C) and(6.10)

ℒ* (�,k ) ≔
!∗
*
(�,k, 1)

(log?)Aan (k )
= lim
C→?−1

/* (�,k, C)
(1 − ?C)Aan (k )

∈ �× .

We recall the following result; cf. [BKK, Proposition 5.6].

Proposition 6.11. (1) For any field automorphism g of C, we have

g (/* (�,k, C)) = /* (�, g ◦k, C) and g (ℒ* (�,k )) = ℒ* (�,g ◦k ),

where we view /* (�,k, C) ∈ C(C).
(2) There exists an element ℒ* (�, !/ ) ∈ K1(Q�) interpolating ℒ* (�,k )’s in the

following sense: for any �-representation k , we have

Nrdk (ℒ* (�, !/ )) = ℒ* (�,k ).

9Sometimes it can be convenient to allowk to be reducible as we do (such as the regular representation), which
is harmless as we have !* (�,k ′ ⊕k ′, B ) = !* (�,k ′, B ) · !* (�,k ′′, B ) .
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Proof. Claim (1) follows from Eq (2) in the proof of Proposition 2.2 in [BKK] (or altern-
atively, see the proof of Proposition 5.6 in [BKK]). Identifying Z (C�) � ∏

k ∈Ir(� ) C, we
set

ℒ* (�, !/ ) ≔
(
ℒ* (�,k )

)
k ∈Ir(� ) ∈ Z (C�)

× .

It follows from [BKK, Proposition 5.6] that ℒ* (�, !/ ) ∈ K1 (Q�) = Z (Q�)× ∩ K1(R�).
This element clearly satisfies the interpolation property for anyk ∈ Ig(�), hence for any
�- representation k . �

Fork ∈ Ir(�), the algebraick -rank of � is defined as follows:

(6.12) Aalg(k ) ≔ dim�

(
Hom�� (+k , � ⊗ �C (!))

)
.

Recall the following standard result.

Theorem 6.13 (cf. [KT03], [BKK, Theorem 8.2]). The following are equivalent.

(1) The ℓ0-primary part of X(�/!) is finite for some prime ℓ0.
(2) X(�/!) is finite.
(3) We have Aan(k ) = Aalg(k ) for anyk ∈ Ir(�).
We conclude this section by recalling the following theorem from [BKK]. For any

prime ℓ , wewrite m�ℓ ≔ mZℓ�,Qℓ : K1(Qℓ�) → K0 (Zℓ�,Qℓ�) and j�ℓ (�•, ℎ) ≔ jZℓ�,Qℓ (�•, ℎ) ∈
K0(Zℓ�,Qℓ�); cf. (4.2a) and Def 4.8.
Theorem 6.14 (cf. [BKK, Theorem 4.9]). Suppose that the ℓ0-primary part of X(�/!) is
finite for some prime ℓ0.

(1) For any prime ℓ ≠ ? , the following formula

m�ℓ
(
ℒ* (�, !/ )

)
− j�ℓ

(
SC/! ,ℓ , ℎℓ

)
defines a torsion element in K0(Zℓ�,Qℓ�).

(2) Under the assumption as in Corollary 5.8(3), the following formula

m�?
(
ℒ* (�, !/ )

)
− j�?

(
SC/! ,ℓ , ℎ?

)
+ j�?

(
Lie(A!) (−/!)

)
defines a torsion element in K0(Z?�,Q?�). Here, j�? (E) for a�-equivariant vector
bundle E is defined in (4.14).

Proof. This theorem essentially follows from [BKK, Theorem 4.9, Proposition 5.6], which
we now explain in details. Using the notation of [BKK, Proposition 5.6], the image of
jBSD
�,Q

(�,+!) in K0 (Zℓ�,Qℓ�) is equal to j�ℓ
(
SC/! ,ℓ , ℎℓ

)
by Proposition 6.6 and Remark 6.7.

(We allow ℓ = ? under the addition assumption as in the statement.) The image of
jcoh
�

(�,+!) in K0 (Zℓ�,Qℓ�) is equal to j�ℓ
(
Lie(A!) (−/!)

)
since the vector bundle L!

attached to +! = (A◦
! (mF))F∈/! in [BKK, §3.5] is exactly Lie(A!) (−/!). (In loc. cit. we

assumed that +F ⊆ A◦
-!

(mF) due to the way we construct cohomologically trivial +F’s,
but the same proof can be extended verbatim to+F = A◦

! (mF) and L! = Lie(A!) (−/!).)
Lastly, j

sgn
�

(�) is 2-torsion by definition. By [BKK, Theorem 4.9], the formula in [BKK,
Proposition 5.6(ii)] holds up to torsion, and hence the theorem follows. �

We apply Theorem 6.14 to deduce a result on the normalised leading term ℒ* (�,k ).
To state it, let us introduce some notation, which is a slight adaptation of §4. Fix a place
_ | ℓ of � and a �-representation k . Set

d
k

_
: K0(Zℓ�,Qℓ�) //K0(O�,_ , �_)

E_
//Z ,

where the first map is induced by A = Zℓ�
k
−→ EndO�,_ ()k,_).

We also introduce the following integers

jBSD/! ,_
(�,k ) ≔ d

k

_

(
j�ℓ (SC/!,ℓ , ℎℓ )

)
& jcoh/! ,_

(�,k ) ≔ d
k

_

(
j�ℓ

(
Lie(A!) (−/!)

) )
,

where we set j�ℓ
(
Lie(A!) (−/!)

)
= 0 for ℓ ≠ ? .
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Corollary 6.15. Suppose that the ℓ0-primary part of X(�/!) is finite for some prime ℓ0.
Fix a place _ | ℓ of �, and letk be a �-representation. Then we have

E_
(
ℒ* (�,k )

)
= jBSD/! ,_

(�,k ) − jcoh/! ,_
(�,k )

if either ℓ ≠ ? , or ℓ = ? and the same assumption as in Corollary 5.8(3) holds.

Proof. By construction ofℒ* (�, !/ ) and Lemma 4.6(2), we have

(dk
_
◦ m�ℓ )

(
ℒ* (�, !/ )

)
= E_

(
ℒ* (�,k )

)
.

The corollary can now be obtained by applying d
k

_
to the formulae in Theorem 6.14. �

Remark 6.16. In the above setting, jcoh
/! ,_

(�,k ) has already been computed in Corollary 4.15(2),

so to make E_
(
ℒ* (�,k )

)
explicit, it remains to compute jBSD

/! ,_
(�,k ) in terms of arithmetic

invariants of �/ (as integral Galois modules). This step turns out to be quite subtle, and
in the next section we carry it out under certain simplifying assumptions depending on ℓ;
cf. Assumptions 7.2. In particular, even though a more general version of Theorem 6.14(2)
is obtained in [BKK, Theorem 4.9, Proposition 5.6] involving some inexplicit choice+! as
in Remark 6.7, the resulting general formula for E_

(
ℒ* (�,k )

)
seems difficult to make

explicit. See Remark 7.17 for further discussions.

7. The BSD-like formula for Hasse–Weil–Artin !-values

Assuming the finiteness ofX(�/!), we shall express jBSD
/! ,_

(�,k ) in terms of the Galois

module structure of�(!),�C (!) andX(�/!) under a certain set of assumptions satisfied
for almost all primes ℓ under _, and thereby obtain the formula for E_

(
ℒ* (�,k )

)
. We also

introduce a stronger assumption to handle ℓ = ? . We closely follow the proof in Burns–
Castillo [BMC24, Proposition 7.3], which proves an analogous result over a number field.

Notation 7.1. For a Zℓ�-module" we set

["]k,_ ≔ HomO�,_ ()k,_ ,O�,_ ⊗Zℓ ")� � ) ∗
k,_ ⊗Zℓ� ", and(7.1a)

["]k
_
≔ HomO�,_ ()k,_ ,O�,_ ⊗Zℓ ")� = HomO�,_ [� ] ()k,_ ,O�,_ ⊗Zℓ ").(7.1b)

We extend these definitions to Zℓ�-complexes. If + is a Qℓ�-module andk ∈ Ir(�) then
we have [+ ]k,_ � [+ ]k

_
and its �_-dimension is the multiplicity ofk in + .

If" is a finitely generated Z�-module, then we abusively write ["]k,_ for [" ⊗Zℓ ]k,_
and similarly define ["]k

_
.

Lastly, we set

(7.1c) X
∨
k,_ (�/!) ≔ ker

(
[SelQℓ /Zℓ (�/!)∨]k,_ ։ [(�(!) ⊗ Qℓ/Zℓ )∨]k,_

)
.

To motivate the notation, note that by right exactness of [−]k,_ we have a natural right
exact sequence

[X(�/!)∨]k,_ [SelQℓ /Zℓ (�/!)∨]k,_ [(�(!) ⊗ Qℓ/Zℓ )∨]k,_ 0 ,

andX∨
k,_

(�/!) is the image of [X(�/!)∨]k,_ in [SelQℓ/Zℓ (�/!)∨]k,_ . In particular, if ℓ is
prime to |� | then we have [X(�/!)∨]k,_

∼→ X
∨
k,_

(�/!). Note also thatX∨
k,_

(�/!) is fi-
nite ifX(�/!) is finite, inwhich caseX∨

k,_
(�/!) is the torsion part of [SelQℓ/Zℓ (�/!)∨]k,_ .

To compute jBSD
/! ,_

(�,k ), we need to compute the cohomology of [SC/! ,ℓ ]k,_ in terms of

the arithmetic invariants of �/!, which naturally involves some Hochschield–Serre-type
spectral sequence. To make the spectral sequence sufficiently degenerate, we introduce
the following conditions for (�, !/ , /!) and a prime ℓ .

Assumption 7.2. For (�, !/ , /!) and ℓ as above, suppose the following conditions hold.
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(1) Neither �(!) nor �C (!) have any non-trivial ℓ -torsion.
(2) For any F ∈ /! , there is no non-trivial ℓ-torsion in A! (:F) � �(!F)/A◦

!
(mF).

(3) If ℓ = ? , thenwe assume that!/ is weakly ramified everywhere,� has semistable
reduction at all places of !, and !/ is tamely ramified at all places E ∈ / where
� does not have semistable reduction. (Cf. Example 5.9.)

Condition (2) can be rephrased as ℓ dividing neither |A◦
! (:F) | nor the local Tamagawa

number |�(!F)/A◦
! (OF) |.

Given (�, !/ , /!), Assumption 7.2 is clearly satisfied for all but finitely many primes
ℓ , but it is most interesting for ℓ = ? , especially when ? divides [! :  ]. In §8 we will
present some non-trivial examples of (�, !/ , /!) where Assumption 7.2 is satisfied for
ℓ = ? and X(�/!) is finite.

Condition (3) of Assumption 7.2 may look stronger than the assumption to ensure
SC/! ,? ∈ Dperf (Z?�) in Proposition 6.6(2), but the following lemma shows that these two
conditions are equivalent under Assumption 7.2(2) for ℓ = ? .

Lemma 7.3. (1) Assumption 7.2(2) for ℓ = ? implies that �! has semistable reduction
at all places of !.

(2) For any torus ) over a finite field :′ of characteristic ? , the order of ) (:′) is prime
to ? . In particular, if �! has totally toric degeneration at all places in /! , then
Assumption 7.2(2) is satisfied for ℓ = ? if ? does not divide |�(!F)/A◦

!
(OF) | for

any F ∈ /! .

Proof. Set A◦
!,:F

≔ A◦
! ×- Spec:F , which is a semi-abelian variety if and only if

the unipotent radical ℛD (A◦
!,:F

) is trivial. Since any connected commutative unipo-
tent algebraic group over a perfect field is a vector group (cf. [CGP15, Corollary B.2.7]),
ℛD (A◦

!,:F
) (:F) is a non-trivial ?-group wheneverℛD (A◦

!,:F
) is non-trivial. This shows

Claim (1).
To prove (2), recall that for any :′-torus ) we have a short exact sequence of :′-tori

1 → ) ′ → ( → ) → 1

where ( = Res:′′/:′ G
3
< for some finite extension :′′/:′. (This is a standard fact; see

[HK21, pp 8–9] for the proof.) It now follows that ) (:′) is of prime-to-? order since it is
a quotient of ( (:′) = (:′′× )3 by surjectivity of the Lang isogeny. If �! has totally toric
degeneration atF ∈ /! , then we just showed that ? ∤ |A◦

! (:F) | sinceA◦
!,:F

is a torus. �

Let us now record the effect of Assumption 7.2 on the cohomology of [SC/! ,ℓ ]k,_ .

Lemma 7.4. Suppose that the ℓ0-primary part ofX(�/!) is finite for some ℓ0, and Assump-

tion 7.2 is satisfied for ℓ . Then SC/! ,ℓ can be represented by a two-term complex [%0 3−→ %1]
of finitely generated projective Zℓ�-modules concentrated in degrees [0, 1]. Furthermore, the
following properties are valid for any�-representation k .

(1) H0 ( [SC/! ,ℓ ]k,_) � [�C (!)]k
_
, which is torsion-free.

(2) H1 ( [SC/! ,ℓ ]k,_) � [SelQℓ /Zℓ (�/!)∨]k,_ , whose torsion part and maximal torsion-
free quotient are respectively X

∨
k,_

(�/!) and [(�(!) ⊗ Qℓ/Zℓ )∨]k,_ ; cf. (7.1c).

Proof. (Compare with the proof of Proposition 7.3(ii) in [BMC24].) By Proposition 6.3 and
Assumption 7.2 for ℓ , we have H0(SC/! ,ℓ ) � �C (!) ⊗ Zℓ , which is torsion-free, and
H8 (SC/! ,ℓ ) = 0 for 8 ≠ 0, 1. The Zℓ�-perfectness (cf. Prop. 6.6) now implies that SC/! ,ℓ

can be represented by a two-term perfect Zℓ�-complex [%0 3−→ %1].
As ) ∗

k,_
⊗Zℓ %8 is also a cohomologically trivial O�,_�-module, the norm map induces

a natural O�,_-linear isomorphism #� : [%8 ]k,_
∼→ [%8 ]k

_
for 8 = 0, 1. Therefore, we have
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the following commutative diagram with exact rows

(7.5) [%0]k,_
[3 ]k,_

//

#� �

��

[%1]k,_ //

#� �

��

[H1]k,_ // 0

0 // [H0]k
_

// [%0]k
_ [3 ]k

_

// [%1]k
_

,

where H8 ≔ H8 (SC/! ,ℓ ). Now the lemma follows, noting that [(�(!) ⊗ Qℓ/Zℓ )∨]k,_ �(
[�(!) ⊗ Zℓ ]ǩ_

)∗
is torsion-free. �

Remark 7.6. For any �_�-module +_ andk ∈ Ir(�), we have an isomorphism

(7.7) (+ ∗
k,_

⊗�_ +_)� + ∗
k,_

⊗�_ +_ (+ ∗
k,_

⊗�_ +_)� ,

�

where the first map is the natural inclusion and the second the natural projection. Then
the norm map #� : +_ → +_ induces

(+ ∗
k,_

⊗�_ +_)� (+ ∗
k,_

⊗�_ +_)�

(+ ∗
k,_

⊗�_ +_)� ,
#�

�

(7.7)

|� |

where the right diagonal map is multiplication by |� |.
Applying this observation to +_ = H8 (SC/! ,ℓ ) ⊗Zℓ �_ , we obtain the following com-

mutative diagram

(7.8)

H8 ( [SC/!,ℓ ]k,_) H8 ( [SC/!,ℓ ]k,_) ⊗ �_ H8 ( [SC/! ,ℓ ]
k

_
) ⊗ �_

H8 ( [SC/!,ℓ ]
k

_
) H8 ( [SC/!,ℓ ]

k

_
) ⊗ �_ .

� #� #��

�

(7.7)

|� |

where the left vertical isomorphism is induced by the isomorphism

[SC/!,ℓ ]k,_ [SC/! ,ℓ ]
k

_�

#�

given by (7.5). For 8 = 0 the left horizontal arrow in (7.8) coincides with the isomorphism

#� : H0( [SC/! ,ℓ ]k,_) [�C (!)]k
_

�

in Lemma 7.4(1). We use this observation in the computation of jBSD
/! ,_

(�,k ); cf. Proposi-
tion 7.10.

We now introduce thek -twisted regulator, following [BMC24, §7.2.2].

Definition 7.9. We maintain the setting of Lemma 7.4, and fix a place _ | ℓ of �. Given
k ∈ Ir(�), choose O�,_-bases (48 )8=1,··· ,Aalg (k ) of [�(!)]

ǩ

_
, and (4̌ 9 ) 9=1,··· ,Aalg (k ) [�C (!)]k

_
,

respectively. (We refer to §6.8 for the abuse of notation ["]k,_ and ["]k
_
when " is a

finitely generated Z�-module.)
we define thek -twisted regulator to be

Reg
k

_
≔ det

(
〈48 , 4̌ 9 〉�/!

)
.
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Note that Reg
k

_
is independent of the choice of O�,_-bases only up to O×

�,_
-multiple, so

E_ (Regk_ ) is a well-defined integer.
Consider an �_-linear isomorphism

ℎk ≔ [�C (!)]k
_
⊗ �_

∼→
(
[�(!)]ǩ

_

)∗ ⊗ �_ � [�(!)∗]k,_ ⊗ �_
by sending 4̌ 9 to the functional 〈−, 4̌ 9 〉�/! . If the ℓ-primary part ofX(�/!) is finite, then
we can interpret ℎk as an �_-trivialisation of [SC/! ,ℓ ]k,_ by Lemma 7.4.

Proposition 7.10. Suppose that the ℓ0-primary part ofX(�/!) is finite for some ℓ0, and fix
a place _ of � above a prime number ℓ that satisfies Assumption 7.2. Then for anyk ∈ Ir(�),
we have

jBSD/! ,_
(�,k ) = E_

(
Regk

_
/|� |Aalg (k )

)
+ lengthO�,_

(
X

∨
k,_ (�/!)

)
.

Proof. Recall that jBSD
/! ,_

(�,k ) = E_
(
jO�,_,�_ ( [SC/! ,ℓ ]k,_, [ℎℓ ]k,_)

)
. So we proceed by mak-

ing explicit [SC/! ,ℓ ]k,_ and [ℎℓ ]k,_ .
By Lemma 7.4 we represent SC/! ,ℓ � [%0 3−→ %1], and we have

[SC/! ,ℓ ]k,_ �
[
[%0]k,_

3k
// [%1]k,_

]
,

where 3k = [3]k,_ . Write H8
k
≔ H8 ( [SC/! ,ℓ ]k,_), and set H1

k,tf to be the maximal torsion-

free quotient of H1
k
. Choose a decomposition

[%0]k,_ = H0
k ⊕&0

k and [%1]k,_ = H1
tf ⊕&

1
k ,

so that 3k factorises as follows:

3k : [%0]k,_ &0
k

&1
k

[%1]k,_,
3&k

where3& is an injective mapwith coker(3&k ) �X
∨
k,_

(�/!). Now, we can express [ℎℓ ]k,_
as follows

[ℎℓ ]k,_ : H0
k,�_

⊕&0
k,�_

H1
k,�_

⊕&1
k,�_

(ℎ̃k ,3&k )

for some �_-isomorphism ℎ̃k : H0
k,�_

∼→ H1
k,�_

, where the subscript �_ stands for the

scalar extension. Therefore, we have

jBSD/! ,_
(�,k ) = [H0

k , ℎ̃k ,H
1
k,tf ] + [&0

k , 3&k ,&
1
k ] .

Recall that by Example 4.10 we have

E_ ( [&0
k , 3&k , &

1
k ]) = lengthO�,_

(
coker(3&_ )

)
= lengthO�,_

(
X

∨
k,_ (�/!)

)
,

so to prove the proposition it remains to compute E_ ( [H0
k
, ℎ̃k ,H1

k,tf ]). By Lemma 7.4 and

Remark 7.6, we have the following commutative diagram of isomorphisms

[�C (!)]k
_
⊗ �_ H0

k,�_
H1
k,�_

[�C (!)]k
_
⊗ �_ [�(!)∗]k,_ ⊗ �_ .

|� | #�

(7.7) ℎ̃k

�

ℎk

Since (7.7) identifies H0
k
with |� |−1 · [�C (!)]k,_ in [�C (!)]k,_ ⊗ �_ , we have[

H0
k , ℎ̃k ,H

1
k,tf

]
=

[
[�C (!)]k

_
, |� |−1 · ℎk , [�(!)∗]k,_

]
=

[
O�,_ , |� |−Aalg (k ) · Regk_ , O�,_

]
,

where the second equality uses the choice of O�,_ -bases as in Def 7.9. �
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For any finite torsion O�,_ -module "_ , we let Char_ ("_) denote the characteristic
ideal of"_ . One can show that

(7.11) Char_ ("_) = p
lengthO�,_ ("_ )
_

,

where p_ is the maximal ideal of O�,_ .
Let us write / = /1⊔/2 where /2 is the reduced complement of* ′ defined in Propos-

ition 5.1; i.e., E ∉ /2 if and only if A◦
-!

and A◦
! are isomorphic at E . If � has semistable

reduction at all places of ! then /2 is the set of places of  where � has non-semistable
reduction.

We are now ready to state our main result.

Theorem 7.12. Fix a place _ of � above a prime number ℓ , and suppose that the same
assumption as in Corollary 6.15 is valid (that is, we assume that the ℓ0-primary part of
X(�/!) is finite for some ℓ0, and if ℓ = ? then we assume that !/ is weakly ramified
everywhere and tamely ramified over /2). Then for any k ∈ Ir(�), we have the following
equality of fractional ideals:

(7.12a) ℒ* (�,k ) · O�,_ =

(
vol/1 (�/ )∏

E∈/2

�� Lie(A!) (:Ẽ)�Ẽ
��
)degk

· loc/! (�,k ) · p
jBSD
/!,_

(�,k )
_

where we choose Ẽ ∈ c−1 (E) for each E ∈ /2. Here, loc/! (�,k ), vol/1 (�/ ) ∈ ?Z are
respectively defined by

log?
(
loc/! (�,k )

)
≔ ramLie(A! ) (−/! ) (k ) and(7.12b)

vol/1 (�/ ) ≔ -
(
Lie(�) (A )/Lie(�) ( )

)−1 · ∏
E∈/1

-E

(
A◦ (mE)

)
(7.12c)

with respect to the Haar measure -E on Lie(�) ( E) and - ≔
∏
E
-E as in [KT03, §1.6, §1.7].

In particular, if Assumption 7.2 is valid for ℓ then we have

(7.12d) ℒ* (�,k ) · O�,_ =(
vol/1 (�/ )∏

E∈/2

�� Lie(A!) (:Ẽ)�Ẽ
��
)degk

· loc/! (�,k ) ·
Regk

_

|� |Aalg (k )
· Char_ (X∨

k,_ (�/!)).

Proof. By Corollary 6.15 we have ℒ* (�,k ) · O�,_ = p
jBSD
/!,_

(�,k )−j coh
/!,_

(�,k )
_

. Since we have

vol/1 (�/ ) =
| H0 (-,Lie A(−/1 ) ) |
| H1 (-,Lie A(−/1 ) ) |

by [KT03, §3.7], it follows from Corollary 4.15 and Corol-

lary 5.8(2) that

−jcoh/! ,_

(
�,k

)
= E_

©­
«
(

vol/1 (�/ )∏
E∈/2

�� Lie(A!) (:Ẽ)�Ẽ
��
)degk

· loc/! (�,k )
ª®
¬

for any place _ of � over ℓ . If Assumption 7.2 is valid for ℓ then the formula (7.12d)
immediately follows from the computation of jBSD

/! ,_
(�,k ) in Proposition 7.10. �

If ℓ does not divide |� | then any Zℓ�-module is cohomologically trivial so the functor
[−]k,_ is exact for any place _ above ℓ . In particular, we have

H8
(
[SC/! ,ℓ ]k,_

)
� [H8 (SC/! ,ℓ )]k,_ and X

∨
k,_ (�/!) ≔ [X(�/!)∨]k,_ .

Therefore, we immediately obtain the following proposition even when Assumption 7.2
does not hold for ℓ .
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Proposition 7.13. Suppose that the ℓ0-primary part of X(�/!) is finite for some ℓ0, and
we fix a place _ of � over a prime ℓ not dividing |� |. Then for anyk ∈ Ir(�), we have

(7.13a) jBSD/! ,_
(�,k ) = E_

(
Regk

_
/|� |Aalg (k )

)
+ lengthO�,_

(
X

∨
k,_ (�/!)

)
− lengthO�,_

(
[�(!)∨tors]k,_

)
− lengthO�,_

(
[�C (!)tors]k,_

)
+

∑
E∈/

lengthO�,_

([⊕
F |E

A! (:F)∨
]
k,_

)
.

Furthermore, we have

(7.13b) ℒ* (�,k ) · O�,_ =

(
vol/1 (�/ )∏

E∈/2

�� Lie(A!) (:Ẽ)�Ẽ
��
)degk

· loc/! (�,k ) ·
Reg

k

_

|� |Aalg (k )

×
Char_ (X∨

k,_
(�/!)) · ∏E∈/ Char_

([ ⊕
F |E A! (:F)∨

]
k,_

)
Char_ ( [�(!)∨tors]k,_) · Char_ ( [�C (!)tors]k,_)

,

Proof. The formula (7.13a) is immediate from Proposition 6.3 by the exactness of [−]k,_ ,
and (7.13b) follows from (7.12a) and (7.13a). Note that if ? does not divide |� | then !/ 
is tame at all places so (7.12a) holds for any place _ | ? of �. �

Remark 7.14. We can make loc/! (�,k ) more explicit in some cases; cf. Remark 4.19. For
example, if !/ is either a ?-extension or unramified everywhere, then loc/! (�,k ) = 1
for anyk ∈ Ir(�). If !/ is cyclic and tame everywhere � has semistable reduction at all
places of , then one gets a simpler formula for loc/! (�,k ). If� has semistable reduction
at all places of ! but admits non-semistable reduction at some place of (so /2 ≠ ∅), then
we need to compute A Ẽ,8 ’s as in (5.7) for a preimage Ẽ ∈ c−1 (E) of each E ∈ /2. In principle,
loc/! (�,k ) should be computable in any explicit examples.

Let us make a few remarks on the formulae in Theorem 7.12 and Proposition 7.13.

Remark 7.15. In the proof of Theorem 7.12 we used the interpretation of vol/1 (�/ ) in
terms of the Euler characteristic of Lie(A)(−/1), so we have

(7.15a) log |: |
(
vol/1 (�/ )

)
=

dim: j:
(
LieA(−/1)

)
= dim(�) ·

(
1 − gen − deg(/1)

)
+ deg(LieA),

where gen is the genus of - . The same equality holds for vol/ (�/ ) with / in place
of /1. If � is an elliptic curve, then we have deg(LieA) = − deg(Δ)/12 where Δ is the
global discriminant; cf. [Tan95, p 325, eq (9)].

Next, let us show

(7.15b)
vol/1 (�/ )∏

E∈/2

�� Lie(A!) (:Ẽ)�Ẽ
�� = -

(
Lie(�) (A )
Lie(�) ( )

)−1
·
∏
E∈/

-E

(
A◦
! (mẼ)�Ẽ

)

for the Haar measure as in [KT03, §1.6, §1.7]; in other words, this expression roughly

measures the volume of
( ∏

F∈/! A◦
! (mF)

)�
. In fact, observe that

(7.15c)
vol/1 (�/ )∏

E∈/2

�� Lie(A!) (:Ẽ)�Ẽ
�� = vol/ (�/ )

∏
E∈/2

·
�� Lie(A)(:E)

���� Lie(A!) (:Ẽ)�Ẽ
�� .

Now, for any place E of  where !/ is tamely ramified at worst, Proposition 5.3 yields

(7.15d)

�� Lie(A)(:E)
���� Lie(A!) (:Ẽ)�Ẽ
�� = �� ( Lie(F1B:E ) (:E))�Ẽ �� = �� (F1B:E (:E))�Ẽ �� =

��A(:E)
���� (A! (:Ẽ)
)�Ẽ �� ,

where the first and last equalities follow from the short exact sequences induced by (5.3a)
on the Lie algebras and:E-rational points respectively, and the second equality holds since
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(F1B:E )�Ẽ is a vector group; cf. Proposition 5.3. Note that (7.15d) applies to any E ∈ /2

in the setting where the formula (7.12d) or (7.13b) can be applied. If E ∉ /2 then the left-
most ratio in (7.15d) is equal to 1 by Proposition 5.1. From this observation together with
(7.15c) and (7.15d), we get the following equality

vol/ (�/ ) ·
∏
E∈/

��A(:E)
�� = vol/1 (�/ )∏

E∈/2

�� Lie(A!) (:Ẽ)�Ẽ
�� ·

∏
E∈/1

��A(:E)
�� · ∏
E∈/2

��A! (:Ẽ)�Ẽ
��(7.15e)

=
vol/1 (�/ )∏

E∈/2

�� Lie(A!) (:Ẽ)�Ẽ
�� ·

∏
E∈/

���� �( E)
A◦
!
(mẼ)�Ẽ

���� ;
To see the last equality note that A◦

! (mẼ)�Ẽ = A(mE) for E ∈ /1, as A◦
!,OẼ is the base

change of A◦
OE . Now the formula (7.15b) follows.

Remark 7.16. Let us compare the formula (7.12d) forℒ* (�, 1� ) ·Z? (with 1� denoting the
trivial character of�) with the ?-part of the classical BSD formula [KT03, (1.8.1)] when ?
satisfies Assumption 7.2 for (�, !/ , /!). Since for any % ∈ �( ) and % ∈ �C ( ) we have

(7.16a) 〈%, %̌〉�/! = |� | · 〈%, %̌〉�/ ,

the discriminant of 〈 , 〉�/ coincides with Reg1?/|� |Aalg (1) up to Z×? -multiple.

Recall that [SC/! ,? (�, !/ )]1� ,? �
(
SC/! ,? (�, !/ )

)
�
, and we have the following dis-

tinguished triangle

(7.16b) SC/,? (�, / )
(
SC/! ,? (�, !/ )

)
�

⊕
E∈/

(A◦
!
(mẼ )�Ẽ

A◦ (mE )

)∨
[−1] +1 ,

where we choose Ẽ ∈ c−1 (E) for each E ∈ / . In fact, by [KT03, Lemma 6.1] and its proof( (
SC/! ,? (�, !/ )

)
�

)∨ [−2] is the mapping fibre of

RΓfl (* ,A[?∞]) ⊕
(⊕
E∈/

A◦
!
(mẼ)�Ẽ

L
⊗ Q?/Z?

)
[−1]

⊕
E∈/

RΓfl (Spec E,A[?∞]) ,

so by comparing it with the ?-primary part of (6.1) for ! =  we obtain (7.16b).
Next we turn to the index [A◦

! (mẼ)�Ẽ : A◦ (mE)] for each E ∈ / . If E ∈ /1 then this
index is 1 as explained below (7.15e). Since !/ is tame at all places E ∈ /2 in the setting

where the formula (7.12d) or (7.13b) can be applied, we have
A◦
! (mẼ )

�Ẽ

A◦ (mE ) � F1B:E (:E)�Ẽ for
E ∈ /2 by the short exact sequence

0 F1B:E (:E)�Ẽ A(:E) A! (:Ẽ)�Ẽ 0

induced by :E-points of (5.3a). Therefore we get

(7.16c)
∏
E∈/

[A◦
! (mẼ)�Ẽ : A◦ (mE)] =

∏
E∈/2

[A(:E) : A! (:Ẽ)�Ẽ ] .

From this together with (7.16b) and (7.15e), the formula (7.12d) forℒ* (�, 1� ) · Z? can be
reduced to the ?-part of the the classical BSD formula [KT03, (1.8.1)].

Remark 7.17. This remark is a continuation of Remark 6.16. Even if !/ is not weakly
ramified at some place, one can still obtain a formula for E_

(
ℒ* (�,k )

)
at _ | ? analogous

to Corollary 6.15, at the cost of replacing
(
A◦
!
(mF)

)
F∈/! with some (usually inexplicit)

family�F-stable open compact subgroups+! ≔ (+F)F∈/! where each+F as “cohomolo-

gically trivial”�F-action. But then, it would be quite unlikely that ŜC+! ⊗ẐZ? , introduced
in Remark 6.7, can be represented by a perfect 2-term complex. Indeed, at any place
F ∈ /! where LieA! (mF) is not cohomologically trivial for �F (with E = c (F)), we
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should choose+F to be a proper subgroup of A◦
! (mF), and A◦

! (mF)/+F is not cohomo-
logically trivial as a Z? [�F]-module; cf. [BKK, Lemma 3.4, Proposition 3.7]. In particular,
it is difficult to control

d
k

_

(
j�? (ŜC+! ⊗Ẑ Z? , ℎ? )

)
,

as �(!F)/+F is neither cohomologically trivial for �F nor prime to ? . One should also
note that the formula for E_ (ℒ* (�,k )) also involves the �-equivariant Euler character-
istic of some (usually inexplicit) proper �-stable subbundle of Lie(A!) (−/!).

8. Examples

In Theorem 7.12 we computed the ℓ-part of the normalised leading term ℒ* (�,k )
under Assumption 7.2, which was imposed to simplify the homological algebra especially
when ℓ divides |� |. Themain novelty lies in obtaining the?-part of the normalised leading
term when ? divides |� |. We also have to assume the finiteness ofX(�/!), which is still
wide open in the general setting.

In this section, we present examples of (�, !/ , /!) that satisfy Assumption 7.2 for
ℓ = ? . For all but the last example,X(�/!) is known to be finite so Theorem 7.12 can be
applied unconditionally.

Example 8.1. Suppose that !/ is weakly ramified everywhere, and� is a constant abelian
variety over  ; that is, there is an abelian variety �0 over a finite subfield :0 of  such
that � = �0 ×Spec :0 Spec . Then, X(�/!) is finite by [Mil68] and Assumption 7.2(3) is
automatic for ℓ = ? . Since the torsion points of �(!) and �C (!) are defined over a finite
subfield of !, to check Assumption 7.2 for ℓ = ? it suffices to show that there is no place
F ∈ /! where :F contains the field of definition of any non-trivial point in �0 [?] (:̄0). In
particular, Assumption 7.2 holds for ℓ = ? (with any /!) if � is a constant supersingular
abelian variety.

Let us now focus on the case where � is a non-constant elliptic curve over  . Observe
that Assumption 7.2 can be check locally at places F ∈ /! except Assumption 7.2(1),
which is on the ℓ-torsion of theMordell–Weil groups of� and�C . Let us give a convenient
sufficient condition for Assumption 7.2(1) for ℓ = ? .

Lemma 8.2. Let � be an ordinary elliptic curve over !. If there is a non-trivial ?-torsion
point of� defined over a finite separable extension of !, then� can be defined over !? so the
9 -invariant of � lies in !? . In particular, if the 9 -invariant of � does not lie in !? then �(!)
has no non-trivial ?-torsion.

Proof. If there is a non-trivial ?-torsion point of � defined over a separable extension of
!, then one can split the connected-étale sequence 0 → �[?]◦ → �[?] → �[?] ét → 0,
which in turn enables one to factorise [?] : � → � as

� � �
d ét f�

,

where d ét is a degree-? étale isogeny and f� is a degree-? purely inseparable isogeny.
Therefore, f� can be identified with the Frobenius isogeny � → � (? )

� �, so � can be
defined over !? . �

Remark 8.3. Indeed, the converse of Lemma 8.2 also holds since the connected-étale se-
quence for �[?] splits after the Frobenius pullback. We do not need this property.

Example 8.4. Let ! = F@ (C) be a rational function field of characteristic ? > 3, and let �
be an Ulmer elliptic curve; i.e., the elliptic curve over ! given by the following equation:

(8.4a) ~2 + G~ = G3 − C3
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for some 3 coprime to ? . This elliptic curve has been studied by Ulmer [Ulm02]; namely,
he showed thatX(�/!) is finite [Ulm02, Proposition 6.4] and computed the rank of�(!)
[Ulm02, Theorems 1.5, 9.2].

Since � is defined over F? (C3 ), we can choose an intermediate extension  = F@′ (C3
′ )

so that !/ is Galois. (For example, we choose @′ and @ large enough so that 4 ≔ 3/3 ′
divides @′ − 1.) LetF0 andF∞ respectively denote the places of ! corresponding to C = 0
and C = ∞, and write E0 = c (F0) and E∞ = c (F∞). Then !/ is unramified away from
{E0, E∞}, and admits tame ramification at worst. We now show that Assumption 7.2 for
ℓ = ? is satisfied for many Ulmer elliptic curves � and !/ with “minimal” choice of /! .

Let us first recall various invariants and local properties of�/!, following [Ulm02, §2].
The discriminant of the model (8.4a) is

(8.4b) Δ ≔ C3 (1 − 2433C3 )
and at each place dividing Δ the reduction of� is semistable with prime-to-? local Tamagawa
number (as ? > 3). Lastly, � has good reduction at F∞ if 6 | 3 , and additive reduction at
F∞ otherwise.

Since the 9 -invariant of � is 1/Δ ∉ !? , Assumption 7.2(1) is satisfied for ℓ = ? by
Lemma 8.2. From now on, assume 3 | 6 so that � has semistable reduction at all places of
!, and hence Assumption 7.2(3) is satisfied. Let /! be the union of the zeroes of Δ andF∞,
which is the minimal choice if 3 ′ ≠ 3 . Since the local Tamagawa number at each place
of ! is prime to ? , to verify Assumption 7.2(2) for ℓ = ? it remains to show that A! (:F∞)
is ?-torsion free (cf. Lemma 7.3). Indeed, the fibre of A! atF∞ is given by the following
Weierstraß equation

(8.4c) ~2 = G3 − 1,

which is the mod ? reduction of an elliptic curve over Q with complex multiplication by
Q(

√
−3). In particular, A!,:F∞ is supersingular if ? ≡ 2 mod 3 (and ? > 3), in which case

A! (:F∞) is trivial.
To summarise, suppose that ? > 3 and ? ≡ 2 mod 3. Let � be an elliptic curve defined

by the equation (8.4a) with 6 | 3 and ? ∤ 3 . We choose a finite extension F@/F@′ of finite
fields of characteristic ? and a positive integer 4 dividing gcd(3,@′−1), and set ! ≔ F@ (C)
and  ≔ F@′ (C

3
4 ). (We can arrange so that ? divides [! :  ] by manipulating F@/F@′ .) Let

/! be the disjoint union of the zeroes of Δ ≔ C3 (1−2433C3 ) andF∞. For such (�, !/ , /!),
Assumption 7.2 holds for ℓ = ? . We also note thatX(�/ ) is finite, and we can arrange
so that �(!) has large rank by the work of Ulmer [Ulm02].

Remark 8.5. Let A∞ be the elliptic curve over Z[1/6] defined by the equation (8.4c).
We want to show that there is no non-trivial ?-torsion in A∞ (F?) for any ? > 5. If
? ≡ 2 mod 3, then we already observed in Example 8.4 that A∞ has supersingular good
reduction so the assertion is obvious. So we may assume that ? ≡ 1 mod 3, in which case
A∞ has good ordinary reduction at ? . Then there exists l ∈ F×? \ {1} such that l3 = 1.
Now over F? , we can rewrite (8.4c) as follows

~2 = (G − 1) (G − l) (G − l2),
so A∞ (F? ) [2] has order 4. Now suppose by contrary that A∞ (F?) [?] is non-trivial, so
4? divides |A∞ (F? ) |. Then we have

1 + ? − |A∞ (F? ) | 6 1 − 3?,

which clearly violates the Weil bound. Therefore, A∞ (F?) [?] should be trivial.
Let ? be a prime satisfying ? ≡ 1 mod 3. Then we just showed that the field of defin-

ition of the ?-torsion points of A∞,F? is a non-trivial extension of F? . Returning to the
setting of Example 8.4, choose a positive integer 3 such that ? ∤ 3 and 6 | 3 . Set ! = F@ (C)
for some finite field F@/F? and consider � and !/ as in Example 8.4. Then (�, !/ , /!)
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as in Example 8.4 satisfies Assumption 7.2 for ℓ = ? provided that [:0 : F?] does not
divide [F@ : F? ]. Since [:0 : F?] divides ? − 1, one can still produce examples where ?
divides [! :  ] and ? ≡ 1 mod 3.

Example 8.6. Let us now give an example of a non-constant elliptic curve�/ and a finite
Galois extension !/ with wild ramification where Assumption 7.2 holds for ℓ = ? . Let
 = F@ (C) be a rational function field of characteristic of characteristic ? , and consider
an Artin–Schreier extension ! ≔  (D) with D? −D = C . Then !/ is a cyclic extension of
degree ? ramified only at the place E∞ corresponding to C = ∞. For the unique placeF∞
above E∞ one can check that !F∞/ E∞ is weakly wildly ramified.

Let � be an elliptic curve defined by the equation (8.4a) with 6 | 3 and ? ∤ 3 , and
suppose that ? > 3 with ? ≡ 2 mod 3. Let /! be the disjoint union of the bad reduction
places for � and {F∞}. Let us now verify Assumption 7.2 for (�, !/ , /!) and ℓ = ? ,
using the properties of �/ obtained in Example 8.4.

Since � has semistable reduction at all places of  and !/ is weakly ramified every-
where, Assumption 7.2(3) holds. Assumption 7.2(1) follows from Lemma 8.2 since the
9 -invariant of �/ does not lie in  ? . Since � has good supersingular reduction at E∞,
A! (:F∞) is trivial. And since the fibre ofA at each bad reduction place for �/ is either
Néron 3-gon (at C = 0) or of type �1 (away of C = 0), each of its components is rationally
defined and the local Tamagawa number remains prime to ? under any unramified exten-
sion; cf. [Ulm02, §2.2]. By Lemma 7.3, it follows thatA! (:F) has no non-trivial ?-torsion
for anyF ∈ /! , verifying Assumption 7.2(2). We are not able to check ifX(�/!) is finite.
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