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In the astrophysics community it is common practice to model collisionless dust, entrained in
a gas flow, as a pressureless fluid. However a pressureless fluid is fundamentally different from
a collisionless fluid - the latter of which generically possess a non-zero anisotropic pressure
or stress tensor. In this paper we derive a fluid model for collisionless dust, entrained in a
turbulent gas, starting from the equations describing the motion of individual dust grains. We
adopt a covariant formulation of our model to allow for the geometry and coordinate systems
prevalent in astrophysics, and provide a closure valid for the accretion disc context. We show
that the continuum mechanics properties of a dust fluid corresponds to a higher-dimensional
anisotropic Maxwell fluid, after the extra dimensions are averaged out, with a dynamically
important rheological stress tensor. This higher-dimensional treatment has the advantage of
keeping the dust velocity and velocity of the fluid seen, and their respective moments, on
the same footing. This results in a simplification of the constitutive relation describing the
evolution of the dust Rheological stress.
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1. Introduction
The dynamics of dust in turbulent flows is important to a wide array of astrophysical,
geophysical and engineering applications. In the case of astrophysical applications, dusty
astrophysical fluids often combine a high Mach number with subsonic turbulence which
feeds off of a Rayleigh stable shear flow. The dust number density is typically much lower
than that of the gas, such that dust-dust collisions are infrequent. However, dust particles are
typically too numerous to be kept track of individually. As such there is a need to be able to
model the dynamics of weakly collisional/collisionless dust in turbulent gasses effectively.

The most physically accurate method of evolving dust grains in fluids is an N-body
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approach where each solid particle is evolved independently (although this approach can
still exhibit spurious trapping behaviour, Commerçon et al. 2023). However, this approach is
typically prohibitively expensive for practical computations in the astrophysics setting, due to
the large range of lengthscales and number of dust particles involved, except on the smallest
of scales. Two common methods are used to make modelling dust dynamics computationally
tractable. One is to significantly reduce the number of dust grains compared with reality,
or to treat N-body particles as a dust aggregate; for instance the dust module in Athena,
(Bai & Stone 2010; Zhu et al. 2014), and PLUTO, (Mignone et al. 2019), and superparticle
implementations by Youdin & Johansen (2007); Balsara et al. (2009) and Yang & Johansen
(2016). This is commonly used when there is no back reaction or interaction between dust
grains as the number of particles required to achieved convergence will be much lower. In
accretion disc simulations, making use of such such methods, it is common to employ of
order 10 particles per cell (Laibe & Price 2012a), which is not sufficient to adequately sample
the particle velocity distribution (Peirano et al. 2006). On smaller scales, in particular for the
small/incompressible shearing box (Latter & Papaloizou 2017), adequate particle resolution
may be possible with current computational resources and would provide an excellent check
on models capable of simulating the global disc scale. The second method is to treat the
dust as a continuous fluid (Barrière-Fouchet et al. 2005; Laibe & Price 2012a,b, 2014; Lin
& Youdin 2017; Lin 2019; Bi et al. 2021). In this paper we shall derive such a fluid model,
starting from a stochastic differential equation for the motion of individual grains entrained
in a turbulent gas flow.

The most common model of a dust fluid (in the astrophysics community) is to model it as a
pressureless fluid coupled to the gas via the drag terms (as has been done in Barrière-Fouchet
et al. 2005; Laibe & Price 2012a,b, 2014; Lin & Youdin 2017; Lin 2019; Bi et al. 2021). The
justification for treating the dust as a pressureless fluid is that when the dust number density
is much lower than that of the gas, dust-dust collisions are unimportant to the dust dynamics
(although could be important for fragmentation/coagulation) which is dominated by gravity
and the dust-gas interaction. As dust collisions are unimportant the dust, according to the
literature, can be treated as pressureless. Unfortunately this argument for pressureless dust is
flawed due to a misunderstanding about the micro-physical origin of pressure in a fluid.

The issue with this argument is that it conflates fluid pressure with collisionality. However
fluid pressure is not a measure of fluid collisionality, but instead is a measure of the mean
squared (density weighted) velocity dispersion of the particles. Crucially a collisionless fluid
can have a non-zero velocity dispersion, and will thus have a non-zero pressure tensor. In fact
weakly collisional/collisionless fluids often have large anisotropic pressure tensors and the
hydrodynamical description of the fluid breaks down, not because fluid properties such as
pressure and density are not defined, but because of the difficulty in truncating the moment
expansion, used to derive hydrodynamics from kinetic theory, at finite order (Chapman &
Cowling 1990; Grad 1948, 1949; Bobylev 1982, 2018). Collisions in a fluid are not the source
of pressure - instead the effect of collisions is to ensure that the moment expansion truncates
by damping higher order moments, along with isotropising the fluid pressure tensor (e.g.
Levermore 1996, see also Boltzman’s H-theorem). In conclusion, while there is a strong
argument that dust in astrophysical fluids (and many geophysical fluids) can be approximated
as being collisionless, we cannot conclude, a priori, that the dust pressure is negligible. In
addition to this pressure from the particle motion, in turbulent gas-dust mixture there is an
additional dust Reynolds stress from the turbulent motion.

Stochastic differential equations (SDEs) have been used to model turbulent motion in
fluids (e.g. Thomson 1987; Pope 1987; Sawford 1991; Minier et al. 2004). Various authors
have extended such stochastic models of turbulent fluids to describe the motion of dust
grains entrained in the flow (e.g. Dubrulle et al. 1995; Minier 2001; Carballido et al. 2006;
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Youdin & Lithwick 2007; Minier et al. 2014; Minier 2015; Ormel & Liu 2018; Laibe et al.
2020; Booth & Clarke 2021). Dubrulle et al. (1995), Carballido et al. (2006), Fromang &
Papaloizou (2006), Ormel & Liu (2018), Laibe et al. (2020) and Booth & Clarke (2021) used
their models to calculate the steady state vertical structure of a dust layer in an astrophysical
disc. Youdin & Lithwick (2007) calculated the dust velocity correlations in a rotating shear
flow and, importantly for our work, calculated a dust fluid model by preforming a moment
expansion of the Fokker-Planck equation associated with the stochastic dust motion.

In this paper we develop a dust fluid model starting from a system of stochastic differential
equations (SDEs) describing the motion of a single dust grain in a turbulent gas. To do this we
shall preform a moment expansion of the Fokker-Planck equation associated with the SDEs,
similar to that preformed Youdin & Lithwick (2007) but without the restrictive assumption
that the correlation time is the shortest timescale in the problem, and adopt a closure valid for
the accretion disc context. This approach differs from the more commonly adopted method
of Reynolds averaging the pressureless two-fluid model and including a closure relation
motivated by the interaction of dust grains with individual turbulent eddies (e.g. adopted by
Binkert 2023). Our approach makes use of a novel 6-dimensional formulation, which keeps
the dust velocity and velocity of the fluid seen, along with their moments, on the same footing.
In this formulation the dust Kinetic tensor, Reynolds stress for the fluid seen and dust-gas
cross correlation tensor combine into a single 6-dimensional stress tensor, which is advected
by the flow. We adopt a covariant formulation of the dust fluid equation so that the model
can be adapted to non-Cartesian coordinates often adopted in astrophysics problems. This
will also allow for the adoption of orbital coordinates systems (e.g. Ogilvie & Latter 2013b;
Ogilvie & Barker 2014), which will facilitate the study of distorted (elliptical or warped) dust
discs. Finally, we explore the physical properties of our dust fluid model and consider the
behaviour of the dust stress tensor in a rotating shear flow. Studying the behaviour of the dust
fluid in rotating shear flows allows us to connect our model to problems in astrophysical and
experimental fluid dynamics (accretion discs and dusty Taylor-Couette flows respectively).
This may provide a basis to experimentally test the model in the lab.

In Section 3 we consider a SDE for motion of a single dust grain in a turbulent gas disc.
In Section 4 we derive the dust fluid equations by performing a moment expansion of the
Fokker-Planck equation associated with the SDE introduced in Section 3 and discuss our
closure scheme. Section 5-7 describes the physics of the model. Section 5 discusses the dust
fluid physics and highlights key properties of the model. Section 6 considers the hyperbolic
structure, and wave modes, of the dust fluid equations. Sections 7 looks at the behaviour of
the dust rheological† stress tensor in a rotating shear flows. In Section 8 we suggest possible
refinements that could be made to the model. We present our conclusions in Section 9 and
further mathematical derivations are given in the Appendices.

2. Overview of Astrophysical Flows
In this section we shall briefly outline the key properties of the astrophysical fluids, which
are the primary motivation for developing this model, for the benefit of non-astrophysicists.
The primary flow of interest are protoplanetary discs and other dusty accretion discs, with an
additional interest in dusty quasi-spherical flows present in star formation and dusty planetary
atmospheres. Focusing on accretion discs - these are disc like structures of gas and solid
matter in approximately Keplerian rotation about 1 (or more) central object which dominate
the gravitational field. The gas in such a system has the following properties

† whenever we speak of the dust rheology or rheological stress we are referring to the rheology of the
dust fluid and not the, entirely separate, rheology of the individual solid dust grains.
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• The flow in the inertial frame, stationary with respect to the centre of mass of the system,
is highly hypersonic. However, in the fluid frame it principally behaves like a subsonic shear
flow in a rapidly rotating frame.
• The geometry of the flow naturally lends itself to using cylindrical or spherical

coordinates, both for simplifying analytical treatment and for improved angular momentum
conservation, diffusivity and speed of numerical schemes.
• The discs are Rayleigh stable, however they can exhibit subsonic hydrodynamical or

magnetohydrodynamical turbulence. Magnetohydrodynamical turbulence in discs (due to
the magneto-rotational instability Balbus & Hawley 1991; Hawley & Balbus 1991; Hawley
et al. 1995) is much stronger than hydrodynamical turbulence (e.g. Vertical Shear Instability
Nelson et al. (2013); Lin & Youdin (2015); Flock et al. (2017); Svanberg et al. (2022) or
parametric instability Papaloizou (2005a,b); Ogilvie & Latter (2013a); Barker & Ogilvie
(2014)). However, discs that are cool enough for the presence of dust are typically too cool
to be well ionised, which tends to suppress the action of the magnetic fields. Thus turbulence
in such discs is expected to be hydrodynamical and very subsonic.
• The disc is stratified with a pressure scale height 𝐻 ∼ 𝑅/𝑀 , where 𝑅 is the cylindrical

distance from the central object and 𝑀 is the Mach number. This vertical confinement gives
the disc a shallow-water like character and is also important for setting the maximum size
of turbulent eddies. The rapid rotation means the eddies (inertial waves) are predominantly
vertical with vertical extend ∼ the scale height.
• Characteristic timescales are the orbital period of ∼ 1 day-103 years (depending on the

position in the disc). Characteristic lengthscale are the scale height 𝐻 ≲ 0.1𝑅 and cylindrical
radius 𝑅 ∼ 0.1 − 100 Au (astronomical units) ∼ 107 − 1010 km.
• Molecular viscosity is typically sufficient low that it can be neglected (Although the

Kolmogorov scale is ∼ 10m Armitage (2020)).
The typical properties of dust in protoplanetary discs and prestellar cores are
• The dust is polydispersed with size ∼ 𝜇m − 10 cm and forms a near continuous

distribution in size space, however we will only consider the monodispersed case in this paper.
For computational reasons most simulations of dusty accretion discs are monodispersed at
present. The monodispersed case is also of observational interest as observations tend to be
sensitive to a narrow range in size space dependant on the observational wavelength.
• Dust to gas mass ratio is typically ≳ 0.01, with the vast majority of the mass in the

largest grains (Testi et al. 2014).
• Total number of grains ≳ 1 mm is ∼ 1032. The dust number density is 𝑛 ∼ 10−9cm−3

this corresponds to ∼ 1027 particles per cubic scale height (Testi et al. 2014; Lesur et al.
2022).
• The mean free path for dust-dust collision is ∼ 105 km, with the collision timescale

being typically much longer than the stopping time.

3. Stochastic differential equation for dust particle motion in a dust disc.
Consider a dust grain entrained in a gas flow, in the Epstein regime, where the gas velocity
at the dust grain position is denoted vg. The position x and velocity v for a dust particle,
subject to force per unit mass, f, and gas drag, are given by the following set of differential
equations:

𝑑𝑥𝑖 = 𝑣𝑖𝑑𝑡, (3.1)

𝑑𝑣𝑖 = 𝑓𝑖𝑑𝑡 −
1
𝑡𝑠
(𝑣𝑖 − 𝑣

g
𝑖
)𝑑𝑡, (3.2)

Focus on Fluids articles must not exceed this page length
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where 𝑡𝑠 is the stopping time for the dust particle under consideration. Typically we take the
force per unit mass to be due to gravity with 𝑓𝑖 = −∇𝑖𝜙, where 𝜙 is the gravitational potential.
Here 𝑥𝑖 , 𝑣𝑖 , 𝑣g

𝑖
and 𝑓𝑖 are the covariant components of the vectors x, v, vg and f respectively.

These are related to the contravariant components, 𝑥𝑖 , 𝑣𝑖 , 𝑣𝑖g and 𝑓 𝑖 via the metric tensor
𝛾𝑖 𝑗 , where 𝑥𝑖 = 𝛾𝑖 𝑗𝑥

𝑗 , 𝑣𝑖 = 𝛾𝑖 𝑗𝑣
𝑗 , 𝑣g

𝑖
= 𝛾𝑖 𝑗𝑣

𝑗
g and 𝑓𝑖 = 𝛾𝑖 𝑗 𝑓

𝑗 and we have adopted the
Einstein summation convention such that pairs of matching covariant, contravariant indices
are implicitly summed over (see e.g. Hobson et al. 2006, for details).

The stopping time, in the Epstein regime, for a spherical dust grain of size 𝑠 and grain
density 𝜌grain in a gas of density 𝜌g is

𝑡𝑠 =
𝜌grain𝑠

𝜌g𝑐𝑠

√︂
𝜋𝛾

8
, (3.3)

where 𝛾 is the adiabatic index of the gas and 𝑐𝑠 is the gas sound speed (Epstein 1924; Baines
et al. 1965; Whipple 1972). The relative importance of gas drag is dictated by a comparison
between the stopping time and some characteristic timescale of the fluid flow, 𝑡 𝑓 . This is
encapsulated by the Stokes number St = 𝑡𝑠/𝑡 𝑓 which is a dimensionless number which
controls how strongly the gas and dust are coupled. In rotating shear flows, with angular
velocity Ω, it is typical to take 𝑡 𝑓 = Ω−1 (although in some applications it can be useful to
instead set 𝑡 𝑓 to be the timescale associated with the fluid shear).

A commonly used model for the stochastic gas velocity, subject to homogeneous turbu-
lence, is to model it as a Ornstein-Uhlenbeck process,

𝑑𝑣
g
𝑖
= − 1

𝑡𝑐
𝑣

g
𝑖
𝑑𝑡 +

√︂
2𝛼
𝑡𝑐

𝑐𝑠𝑑𝑊𝑖 , (3.4)

where 𝑡𝑐 is the correlation time (or “eddy turnover” time) of the turbulence, 𝑐𝑠 is the gas
sound speed, 𝛼 is a dimensionless measure of the strength of the fluid turbulence and 𝑊𝑖

is a Wiener process. This model of turbulence regards the turbulent flow as a member of
a statistical ensemble of similar flows (Thomson 1987), with each “draw” following a fluid
element in a single realisation of the flow.

As with the stopping time it is useful to introduce a dimensionless correlation time
𝜏𝑐 = 𝑡𝑐/𝑡 𝑓 . Some authors define the Stokes number to be St = 𝑡𝑠/𝑡𝑐, however this only really
makes sense in homogeneous turbulence applications where 𝑡𝑐 is the only fluid timescale.

For more complex fluid flows, in the infinite Reynolds number limit, we can model
turbulence as undergoing an Ornstein-Uhlenbeck walk about the mean flow. In this model
the gas velocity evolves according to

𝑑𝑣
g
𝑖
= 𝑓

g
𝑖
𝑑𝑡 − 1

𝑡𝑐
(𝑣g
𝑖
− 𝑢

g
𝑖
)𝑑𝑡 +

√︂
2𝛼
𝑡𝑐

𝑐𝑠𝑑𝑊𝑖 , (3.5)

where 𝑓
g
𝑖

is the force per unit mass on the gas and 𝑢
g
𝑖
= E𝑔 (𝑣g

𝑖
) is the mean gas velocity at

the dust location. This mean gas velocity needs to be solved for separately, for which we use
the Equations A 10-A 12 in Appendix A In the absence of back reaction the force per unit
mass on the gas is due to gravity and pressure gradients with 𝑓

g
𝑖
= −∇𝑖𝜙 − 𝜌−1

𝑔 ∇𝑖 𝑝𝑔 where
𝑝𝑔 is the gas pressure and 𝜌𝑔 is the gas density. With this choice of 𝑓

g
𝑖

, Equation 3.5 amounts
to modelling the pressure fluctuation and dissipation terms as being responsible for the
Ornstein-Uhlenbeck terms present above (Pope 2000). 𝑓 𝑔

𝑖
, 𝛼, 𝑡𝑐, 𝑐𝑠 and u𝑔 are all functions

of space and, in general, time. For instance, in accretion discs, 𝑡𝑐 is typically proportional
to the orbital period and is thus an increasing function of cylindrical radius. Likewise, the
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soundspeed and 𝛼 vary (typically slowly) throughout the disc, although 𝛼 is often assumed to
be constant. All these quantities must be evaluated at the dust particle position. In principle
one may be able to incorporate the effects of back reaction into 𝑓

𝑔

𝑖
, we shall give a brief

discussion of this possibility in Section 8.
Combining the model for the gas and dust, we arrive at a system of stochastic differential

equations describing the motion of a dust grain in a turbulent gas,

𝑑𝑥𝑖 = 𝑣𝑖𝑑𝑡, (3.6)

𝑑𝑣𝑖 = 𝑓𝑖𝑑𝑡 −
1
𝑡𝑠
(𝑣𝑖 − 𝑣

g
𝑖
)𝑑𝑡, (3.7)

𝐷𝑑𝑣
g
𝑖
= 𝑓

g
𝑖
𝑑𝑡 − 1

𝑡𝑐
(𝑣g
𝑖
− 𝑢

g
𝑖
)𝑑𝑡 +

√︂
2𝛼
𝑡𝑐

𝑐𝑠𝑑𝑊𝑖 . (3.8)

Now one can regards each ‘draw’ as selecting, and following, a single dust grain entrained
with the turbulent flow. The gas fluid elements do not, in general, follow the dust grains, so
we must correct for the fact we are taking a sample of the gas along the trajectory of the dust.
Following Minier et al. (2004, 2014) we take the operator 𝐷𝑑 to be

𝐷𝑑𝑣
g
𝑖
= 𝑑𝑣

g
𝑖
− (𝑢𝑘 − 𝑢𝑘𝑔)∇𝑘𝑢

g
𝑖
𝑑𝑡. (3.9)

This can be thought of as a separate ‘advection’ step which, on average, corrects for the
difference in the gas and dust trajectories. One can more compactly write these equations in
terms of the dynamics of a particle in 6-dimensions, subject to drag, stochastic forcing and
force per unit mass 𝐹𝛼 (which contains contributions from the force on the dust and gas 𝑓𝑖 ,
𝑓

g
𝑖

, along with the shift correction, (𝑢𝑘 − 𝑢𝑘𝑔)∇𝑘𝑢
g
𝑖
),

𝑑𝑋𝛼 = 𝑉𝛼𝑑𝑡,

𝑑𝑉𝛼 = 𝐹𝛼𝑑𝑡 − 𝐶𝛼𝛽

(
𝑉𝛽 −𝑈

𝛽
𝑔

)
𝑑𝑡 + 𝜎𝛼𝛽𝑑𝑊

𝛽 ,
(3.10)

where we have adopted the convention that Greek indices are over the 6-dimensional space
and Latin indices are taken over the 3-dimensional space. These 6-dimensional indices are
raised and lowered with a 6-dimensional metric tensor 𝑔𝛼𝛽 , constructed from 𝛾𝑖 𝑗 , which will
be properly defined in the next section. We have introduced𝑈𝛽𝑔 , the mean gas velocity “seen”
by the dust; the 6×6 drag tensor𝐶𝛼𝛽 , which incorporate both the gas-dust drag on the stopping
time along with the return of the stochastic gas velocity towards the mean on the turbulent
correlation time which in the 6D picture acts like a “drag” between the gas components of the
velocity and the mean gas flow. We have also introduced 𝜎𝛼𝛽 which controls the strength of
the stochastic forcing in each component of the momentum equation - i.e. it’s the 6D form of
the last term in equation 3.8. In addition to simplifying the subsequent derivations, Equation
3.10 allows us to derive the fluid model for more general drag and turbulence models without
increasing the complexity. For instance the subsequent derivations works equally well for
anisotropic stochastic driving.

One can also include anisotropic correlation times as seen in some two-phase turbulence
models (e.g. Minier et al. 2004, 2014), based on the analysis of Csanady (1963), which
attempts to incorporate the effects of spatial correlation on the fluid seen by the dust particles.
We have chosen not to include this correction as the proposed form of the correction in the
literature (as described in Minier et al. 2004, 2014) predicts that rapidly drifting particle
in rotating shear flows experience the same turbulence as that in homogeneous-isotropic
turbulence. This likely arises due to the Csanady correction neglecting the anisotropy in the
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correlation length induced by the shear. It is possible that the two-step stochastic model (as
discussed in Minier & Henry 2023) will better account for the effects of spatial correlations
and improve the modelling of dusty anisotropic turbulence in the future.

3.1. Geometry of the 6-dimensional space
The 3 additional dimensions in the 6-D system are a set of dummy gas degrees of freedom
corresponding to the gas displacement. These should not be thought of as the gas position
vector as the gas is coincident with the dust. These additional dimensions are, in a sense,
non-physical and, in order that the 6D system agree with the 3D system, the 6D system must
posses translational invariance along these dummy directions. The coordinate basis of the
gas displacement are independent of the basis of the dust position vector. However it is useful
to choose the basis of the gas displacement dimensions such that it reflects the underlying
(physical) 3D coordinate system.

To construct this coordinate system we first consider the coordinates of the underlying
3D system with metric tensor 𝛾𝑖 𝑗 and associated Christoffel symbols T 𝑘

𝑖 𝑗
. Introducing basis

vectors for the 6-D system, {𝑒𝛼}, and the notation 𝛼𝑑 ∈ {1, 2, 3} and 𝛼g ∈ {4, 5, 6} such that
𝑒𝛼𝑑 give the basis vectors of the dust position vector and 𝑒𝛼𝑔 gives the basis vectors of the
gas displacement vector. Additionally it is useful to introduce the bijection ·∗ : {1...6} →
{1...6}, which interchanges the ‘dummy gas’ and position indices with 1, 2, 3 ↦→ 4, 5, 6 and
4, 5, 6 ↦→ 1, 2, 3.

Throughout this work we shall make use of symmetrising/anti-symmetrising operations
on the tensor indices with 𝐸 (𝛼1 · · ·𝛼𝑛 ) and 𝐸 [𝛼1 · · ·𝛼𝑛 ] , for some tensor E, being symmetrisation
and anti-symmetrisation of the indices in brackets, where 𝐸 (𝛼𝛽) = 1

2 (𝐸𝛼𝛽 + 𝐸𝛽𝛼) and
𝐸 [𝛼𝛽 ] = 1

2 (𝐸𝛼𝛽 − 𝐸𝛽𝛼). The operation ∗ does not commute with symmetrisation/anti-
symmetrisation operations, but instead follows the obvious order of operations such that

𝐸 (𝛼,𝛽∗ ) =
1
2
(𝐸𝛼𝛽∗ + 𝐸𝛽∗𝛼), (3.11)

𝐸 (𝛼,𝛽)∗ =
1
2
(𝐸𝛼𝛽∗ + 𝐸𝛽𝛼∗), (3.12)

with equivalent expressions for antisymmetrisation.
The physical solutions must be independent of the gas displacement, we can therefore

integrate out the dummy gas dimensions. Introducing an integral over the dummy gas
directions,

· :=
∫

·𝐽𝑔𝑑3𝑥𝑔, (3.13)

where 𝐽𝑔 is the Jacobian determinant of the dummy gas coordinates. Thus for E, an arbitrary
tensoral quantity, we have

∇𝛼𝑔E = 0. (3.14)
For Cartesian gas displacement coordinates this integrating out of the non-physical space

is straight-forward. Unfortunately if the coordinate system describing the dust position is
non-Cartesian then we need to rotate the “dummy” components of vectors so that they reflect
the underlying 3D coordinate system (e.g. when calculating the gas drag). It is instead useful
to setup the geometry of our 6D space so that the rotation happens automatically. To do this
we first introduce the metric tensor of the 6D coordinate system
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𝑔𝛼𝛽 =


𝛾𝛼𝛽 , 𝛼, 𝛽 ∈ {1, 2, 3},
𝛾𝛼∗𝛽∗ , 𝛼, 𝛽 ∈ {4, 5, 6},
0, otherwise.

(3.15)

We also introduce a metric connection ∇𝛼 that is responsible for rotating the dummy gas
coordinate system. We require that this connection satisfy the following properties:

(i) ∇𝛼 is a metric connection, so that ∇𝛼𝑔𝛽𝛾 = ∇𝛼𝑔𝛽𝛾 = 0.
(ii) Translational invariance with respect to the gas displacement such that ∇𝛼𝑔E(x𝑑) = 0

for tensoral quantity E.
(iii) Alignment of the dummy gas coordinates with the position coordinates. For vectors

A, B and B̃ with 𝐵𝛼𝑑 = 0 and 𝐵̃𝛼 = 𝐵𝛼
∗ then we require (A · ∇B)𝛽 = (A · ∇B̃)𝛽∗ .

Property (ii) ensures that ∇𝛼𝑔E(x𝑑) = ∇𝛼𝑔E, where ∇𝑖 is the covariant derivative, and
allows us to carry out the integral over the dummy gas directions by replacing covariant
derivatives with ∇𝑖 . Property (iii) is required to ensure that the geometric terms in Lagrangian
time derivatives act the same on the dust and gas components of the 6D vectors. This can
be seen considering A = U and considering the action of the Lagrangian time derivative,
𝐷 = 𝜕𝑡 + U · ∇, on the vectors B and B̃. As 𝐵𝛼 = 𝐵̃𝛼

∗ one requires (𝐷B)𝛼 = (𝐷B̃)𝛼∗ this
requires condition (iii) as U is arbitrary and (𝜕𝑡B)𝛼 = (𝜕𝑡 B̃)𝛼

∗ .
The connection which satisfies these properties, given the metric tensor (3.15), acts on the

basis vectors {𝑒𝛼} as follows,

∇𝛼𝑑𝑒𝛽𝑑 = T 𝛾𝑑
𝛼𝑑𝛽𝑑

𝑒𝛾𝑑 , ∇𝛼𝑑𝑒𝛽𝑔 = T 𝛾∗𝑔
𝛼𝑑𝛽

∗
𝑔
𝑒𝛾𝑔 , (3.16)

with ∇𝛼𝑔𝑒𝛽 = 0. As T 𝑘
𝑖 𝑗

are the Christoffel symbols components for the 3D coordinate
system associated with the metric 𝛾𝑖 𝑗 it is straight-forward to show that this connection
satisfies property 1. Property 2 follows from ∇𝛼𝑔𝑒𝛽 = 0. Finally for property 3,

(A · ∇B)𝛽 = 𝐴𝛼∇𝛼𝐵𝛽 = 𝐴𝛼𝜕𝛼𝐵
𝛽 + 𝐴𝛼T 𝛽

𝛼𝛾𝐵
𝛾 , (3.17)

(A · ∇B̃)𝛽 = 𝐴𝛼∇𝛼 𝐵̃𝛽 = 𝐴𝛼𝜕𝛼 𝐵̃
𝛽 + 𝐴𝛼T 𝛽∗

𝛼𝛾∗ 𝐵̃
𝛾

= 𝐴𝛼𝜕𝛼𝐵
𝛽∗ + 𝐴𝛼T 𝛽∗

𝛼𝛾∗𝐵
𝛾∗ = (A · ∇B)𝛽∗.

(3.18)

While this connection has the advantage of keeping the gas coordinate system aligned and
avoids the necessity of including rotation matrices in the equation of motion it does have one
major drawback in that it is not torsion free (since it isn’t the Levi-Civita connection). This
torsion arises when ∇̄𝛼𝑑𝑒𝛽𝑔 ≠ 0 as ∇𝛼𝑡 𝑒𝛽𝑑 = 0, by construction, and is associated with the
rotation of the dummy gas coordinate system. The torsion tensor, 𝑆𝛾

𝛼𝛽
, is given by

𝑆
𝛾

𝛼𝛽
𝑒𝛾 = ∇𝛼𝑒𝛽 − ∇𝛽𝑒𝛼, (3.19)

making use of the properties of the connection the torsion tensor components are

𝑆
𝛾𝑔

𝛼𝑑𝛽𝑔
= −𝑆𝛾𝑔

𝛽𝑔𝛼𝑑
= T 𝛾∗𝑔

𝛼𝑑𝛽
∗
𝑔
, (3.20)

with all other components zero.
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Finally, after specialising to the oriented 6-D geometry one can write 𝑈𝛼
𝑔 in terms of the

mean gas velocity in the gas frame, 𝑢𝑖𝑔,

𝑈𝛼
𝑔 =

{
𝑢𝛼𝑔 , 𝛼 ∈ {1, 2, 3},
𝑢𝛼

∗
𝑔 , 𝛼 ∈ {4, 5, 6}, (3.21)

while the drag and diffusion tensors can be written in terms of the metric tensor. The 6-D
force per unit mass is

𝐹𝛼 =

{
𝑓𝛼 , 𝛽 ∈ {1, 2, 3},
𝑓
𝑔

𝛼∗ + (𝑈𝛽 −𝑈
𝛽
𝑔 )∇𝛽𝑈g

𝛼 , 𝛼 ∈ {4, 5, 6},
(3.22)

while the drag tensor is

𝐶𝛼𝛽 =


1
𝑡𝑠
𝑔𝛼𝛽 , 𝛼, 𝛽 ∈ {1, 2, 3},

− 1
𝑡𝑠
𝑔𝛼𝛽∗ , 𝛼 ∈ {1, 2, 3}, 𝛽 ∈ {4, 5, 6},

0, 𝛼 ∈ {4, 5, 6}, 𝛽 ∈ {1, 2, 3},
1
𝑡𝑐
𝑔𝛼𝛽 , 𝛼, 𝛽 ∈ {4, 5, 6},

(3.23)

while the diffusion tensor is

𝐷𝛼𝛽 =

{
𝛼𝑐2

𝑠

𝑡𝑐
𝑔𝛼𝛽 , 𝛼, 𝛽 ∈ {4, 5, 6},

0, otherwise.
(3.24)

This diffusion tensor is applicable to isotropic diffusivity. More generally one can include
an anisotropic diffusivity by introducing an 𝛼-tensor 𝑎𝛼𝛽 , in which case the diffusion tensor
will be

𝐷𝛼𝛽 =

{
𝑐2
𝑠

𝑡𝑐
𝑎𝛼𝛽 , 𝛼, 𝛽 ∈ {4, 5, 6},

0, otherwise.
. (3.25)

If one were to instead use the more usual Levi-Civita connection the above expressions would
be considerably more complex as they would need to include the rotation of the dummy gas
directions.

4. Derivation of the dust-fluid model.
4.1. Derivation of the Fokker-Planck equation

In order to derive the dust fluid model we must first obtain the Fokker-Planck equation
associate with Equation 3.10, and then perform a moment expansion to derive the fluid
model. To do this consider an arbitrary (𝐶2) function of the dust particle position, velocity
and stochastic gas displacement, 𝐴 = 𝐴(X,V). By use of Ito’s lemma this evolves according
to

𝑑𝐴 =
𝜕𝐴

𝜕𝑋𝛼
𝑑𝑋𝛼 + 𝜕𝐴

𝜕𝑉𝛼
𝑑𝑉𝛼 + 1

2
𝜕2𝐴

𝜕𝑉𝛼𝜕𝑉𝛽
⟨𝑑𝑉𝛼, 𝑑𝑉𝛽⟩, (4.1)

where the angle bracket ⟨·, ·⟩ denotes the covariance. Where the covariance of a Wiener
process 𝑑𝑊𝛼 is given by
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⟨𝑑𝑊 𝛼, 𝑑𝑊𝛽⟩ = 𝑔𝛼𝛽 𝑑𝑡. (4.2)
This leads to the following for the covariance of the velocity,

⟨𝑑𝑉𝛼, 𝑑𝑉𝛽⟩ = 𝜎𝛼𝜇𝜎𝛽𝜈 ⟨𝑑𝑊 𝜇𝑑𝑊𝜈⟩ = 2𝐷𝛼𝛽𝑑𝑡, (4.3)
where we have introduced the diffusion tensor, 𝐷𝛼𝛽 = 1

2𝑔
𝜇𝜈𝜎𝛼𝜇𝜎𝛽𝜈 . Substituting Equation

3.10 into Equation 4.1, we arrive at

𝑑𝐴 =
𝜕𝐴

𝜕𝑋𝛼
𝑉𝛼𝑑𝑡 +

𝜕𝐴

𝜕𝑉𝛼

[
𝐹𝛼 − 𝐶𝛼𝛽

(
𝑈𝛽 −𝑈

𝛽
𝑔

)]
𝑑𝑡

+ 𝜕𝐴

𝜕𝑉𝛼
𝜎𝛼𝛽𝑑𝑊

𝛽 + 𝐷𝛼𝛽

𝜕2𝐴

𝜕𝑉𝛼𝜕𝑉𝛽
𝑑𝑡.

(4.4)

The expectation of 𝐴 is given by,

E[𝐴] =
∫

𝑝𝐿 (X,V, 𝑡,X0,V0, 𝑡0)𝐴(X,V)𝑑6X𝑑6V, (4.5)

where 𝑝𝐿 (X,V, 𝑡,X0,V0, 𝑡0) is the probability for the system to arrive at state (X,V, 𝑡) from
an initial state (X0,V0, 𝑡0). E[𝑑𝐴] is given by,

E[𝑑𝐴] =
∫

𝑑𝑝𝐿 (X,V, 𝑡,X0,V0, 𝑡0)𝐴(X,V)𝑑6X𝑑6V. (4.6)

Substituting Equation 4.4 into the above and, after appropriate integration by parts (assuming
appropriate regularity conditions for 𝑝, namely that 𝑝 and 𝜕𝑝

𝜕𝑉𝛼
vanish as𝑉𝛽 → ∞) we arrive

at

∫
𝐴

{
𝑑𝑝𝐿 + 𝜕

𝜕𝑋𝛼
(𝑝𝐿𝑉𝛼)𝑑𝑡 +

𝜕

𝜕𝑉𝛼

[(
𝐹𝛼 − 𝐶𝛼𝛽

(
𝑈𝛽 −𝑈

𝛽
𝑔

))
𝑝𝐿

]
𝑑𝑡

− 𝐷𝛼𝛽

𝜕2𝑝𝐿

𝜕𝑉𝛼𝑉𝛽
𝑑𝑡

}
𝑑6X𝑑6V,

(4.7)

provided that
∫
𝜕
𝑝𝐿𝐴V · 𝑑S𝑑6V = 0, where

∫
𝜕
𝑑S denotes an integral over the spatial

boundaries. i.e. the expected net flux of 𝐴 through the domain boundaries is zero.
As 𝐴 is arbitrary (baring being 𝐶2, and the boundary conditions) we arrive at the Fokker-

Planck equation for 𝑝,

𝜕𝑝𝐿

𝜕𝑡
+ 𝜕

𝜕𝑋𝛼
(𝑝𝐿𝑉 𝛼) + 𝜕

𝜕𝑉𝛼

[(
𝐹𝛼 − 𝐶𝛼𝛽

(
𝑉𝛽 −𝑈

𝛽
𝑔

))
𝑝𝐿

]
= 𝐷𝛼𝛽

𝜕2𝑝𝐿

𝜕𝑉𝛼𝑉𝛽
. (4.8)

This equation gives an evolutionary equation for the Lagrangian transition PDF, describing
the probability of finding a particle at X, V at time 𝑡 conditional on it being located at X0,V0
at time 𝑡0. The fluid model will consist of a set of Eulerian fields located at a given position
in Space and must be obtained from the Eulerian Mass Density Function (MDF), 𝑝(X,V, 𝑡),
which is the expected mass density of particles at X, V at time 𝑡 (Pope 1985, 2000; Minier &
Peirano 2001). This will contain contributions from particle s with different initial condition
(X0,V0), arriving from differing trajectories. This can be obtained from the Eulerian mass

Rapids articles must not exceed this page length
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density function at 𝑡0, 𝑝(X0,V0, 𝑡0), by using the transition PDF and integrating over the
initial positions and velocities (Pope 1985, 2000; Minier & Peirano 2001),

𝑝(X,V, 𝑡) =
∫

𝑝𝐿 (X,V, 𝑡,X0,V0, 𝑡0)𝑝(X0,V0, 𝑡0) 𝑑6X0𝑑
6V. (4.9)

We can obtain the Fokker-Planck equation for 𝑝 by multiplying Equation 4.8 by 𝑝(X0,V0, 𝑡0)
and integrating over the initial position and velocities. This leaves the form of the Fokker-
Planck Equation unchanged and we obtain

𝜕𝑝

𝜕𝑡
+ 𝜕

𝜕𝑋𝛼
(𝑝𝑉 𝛼) + 𝜕

𝜕𝑉𝛼

[(
𝐹𝛼 − 𝐶𝛼𝛽

(
𝑉𝛽 −𝑈

𝛽
𝑔

))
𝑝

]
= 𝐷𝛼𝛽

𝜕2𝑝

𝜕𝑉𝛼𝑉𝛽
. (4.10)

4.2. Moment expansion of the Fokker-Planck equation
Fluid dynamical models can be derived from the Fokker-Planck equation via a moment
expansion, in a similar manor to that done in kinetic theory. In performing this moment
expansion we wish to arrive at a a set of PDEs in space and time from the initial PDE in
(𝑡,X,V). This means we need to compute a moment expansion in V. A similar procedure
was carried out by Youdin & Lithwick (2007). Defining the velocity moments of 𝑝 as follows,

𝜌6 :=
∫

𝑝𝑑6V, (4.11)

𝜌6𝑈𝛼 :=
∫

𝑝𝑉𝛼𝑑
6V, (4.12)

Π𝛼𝛽 :=
∫

𝑝(𝑉𝛼 −𝑈𝛼) (𝑉𝛽 −𝑈𝛽)𝑑6V, (4.13)

Π𝛼1 · · ·𝛼𝑘
:=

∫
𝑝(𝑉𝛼 −𝑈𝛼) · · · (𝑉𝛼𝑘

−𝑈𝛼𝑘
)𝑑6V. (4.14)

Note that this moment expansion is in the 6-dimensional space, so that 𝜌6 is the 6-dimensional
mass density and Π𝛼𝛽 is the 6-dimensional rheological stress tensor† and we have chosen a
normalisation such that ∫

𝑝𝑑6V𝑑3xg = 𝜌𝑑 , (4.15)

where 𝜌𝑑 is the dust density (i.e. the density of the dust phase, this is equal to the grain
density, 𝜌grain, multiplied by the dust volume fraction). We have opted to normalise with
respect to the dust mass density rather than the dust number density so that

∫
Π𝛼𝛽𝑑

3xg has
the same units as the gas pressure.

Taking the zeroth velocity moment of Equation 4.10 we arrive at the (6-D) dust continuity
equation,

¤𝜌6 + ∇𝛼 [𝜌6𝑈
𝛼] = 0. (4.16)

† We have chosen to call the second velocity moment the rheological stress tensor rather than the dust
pressure tensor as it contains contributions from both the dust pressure (particle velocity dispersion) and
the dust Reynolds stress. These two stresses are indistinguishable due to the way we have formulated the
averaging. This can run into issues when dust-dust collisions are included as the dust collisional velocity is
principally sensitive to the particle (rather than turbulent) velocity dispersion (Fox 2014; Capecelatro et al.
2016b).
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The first V moment of Equation 4.10 leads to the (6-D) dust momentum equation,

𝜕

𝜕𝑡
[𝜌6𝑈𝛼] + ∇𝛽 [Π𝛼𝛽 + 𝜌6𝑈𝛼𝑈𝛽] − 𝜌6𝐹𝛼 + 𝜌6𝐶𝛼𝛽 (𝑈𝛽 −𝑈

𝛽
𝑔 ) = 0. (4.17)

Taking the second V moment yields a constitutive relation for the (6-D) dust stress tensor,

𝜕

𝜕𝑡
[Π𝛼𝛽 + 𝜌6𝑈𝛼𝑈𝛽] + ∇𝛾

[
Π𝛼𝛽𝛾 + 3𝑈(𝛼Π𝛽𝛾) + 𝜌6𝑈𝛼𝑈𝛽𝑈𝛾

]
− 2𝜌6𝑈(𝛼

[
𝐹𝛽) − 𝐶𝛽)𝛾

(
𝑈𝛾 −𝑈

𝛾
𝑔

) ]
+ 2Π𝛾(𝛼𝐶𝛽)𝛾 = 2𝜌6𝐷 (𝛼𝛽) .

(4.18)

Here we have made use of the notation for the symmetrisation of the tensor indices. As we shall
make extensive use of this notation we give explicit expressions for the symmetrised terms in
the above equation as a illustrative example, 𝑈(𝛼Π𝛽𝛾) =

1
3 (𝑈𝛼Π𝛽𝛾 +𝑈𝛽Π𝛼𝛾 +𝑈𝛾Π𝛼𝛽) and

2𝑈(𝛼
[
𝐹𝛽) − 𝐶𝛽)𝛾

(
𝑈𝛾 −𝑈

𝛾
𝑔

) ]
= 𝑈𝛼

[
𝐹𝛽 − 𝐶𝛽𝛾

(
𝑈𝛾 −𝑈

𝛾
𝑔

) ]
+𝑈𝛽

[
𝐹𝛼 − 𝐶𝛼𝛾

(
𝑈𝛾 −𝑈

𝛾
𝑔

) ]
.

Higher velocity moments can be computed in a similar manor. Making use of the
expressions for the velocity moments of the terms of the Fokker-Planck equation given
in Appendix C, we can take the k-th velocity moment of the Fokker-Planck equation to
obtain

𝜕Π𝛼1 · · ·𝛼𝑘

𝜕𝑡
+ 𝑘Π(𝛼1 · · ·𝛼𝑘−1

[
𝐷𝑈𝛼𝑘

+ ∇
𝛼𝑘 )𝜙 + 𝐶

𝛾

𝛼𝑘 ) (𝑈𝛾 −𝑈
𝑔
𝛾 )
]
+ ∇𝜎

[
Π𝛼1 · · ·𝛼𝑘𝜎 +𝑈𝜎Π𝛼1 · · ·𝛼𝑘

]
+ 𝑘Π

𝜎 (𝛼1 · · ·𝛼𝑘−1

[
∇𝜎𝑈

𝛼𝑘 ) + 𝐶 𝜎
𝛼𝑘 )

]
= 𝑘 (𝑘 − 1)Π(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 ) .

(4.19)

Making use of the dust momentum equation this simplifies to

(𝐷 + ∇𝜎𝑈𝜎)Π𝛼1 · · ·𝛼𝑘
+ 𝑘Π𝜎 (𝛼1 · · ·𝛼𝑘−1∇𝜎𝑈𝛼𝑘 ) + ∇𝜎Π𝛼1 · · ·𝛼𝑘𝜎

= −𝑘
[
Π𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐶
𝛼𝑘 )𝜎 − 1

𝜌
Π(𝛼1 · · ·𝛼𝑘−1∇𝜎Π𝛼𝑘 )𝜎 − (𝑘 − 1)Π(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
.

(4.20)

Taking 𝑘 = 2 in the above equation we recover the constitutive relation for Π𝛼𝛽 (to obtain
this we note that Π𝛼 = 0 by the definition of 𝑈𝛼).

It is useful to define various tensor advection operators D, D1 and D2. When acting on
the k-th velocity moment these are given by

DΠ𝛼1 · · ·𝛼𝑘
= 𝐷Π𝛼1 · · ·𝛼𝑘

+ 𝑘Π𝛾 (𝛼1 · · ·𝛼𝑘−1∇𝛼𝑘 )𝑈
𝛾 + Π𝛼1 · · ·𝛼𝑘

∇𝛾𝑈𝛾 , (4.21)
D1Π𝛼1 · · ·𝛼𝑘

= 𝐷Π𝛼1 · · ·𝛼𝑘
+ Π𝛼1 · · ·𝛼𝑘

∇𝛾𝑈𝛾 , (4.22)
D2Π𝛼1 · · ·𝛼𝑘

= 𝐷Π𝛼1 · · ·𝛼𝑘
+ 𝑘Π𝛾 (𝛼1 · · ·𝛼𝑘−1∇𝛾𝑈𝛼𝑘 ) + Π𝛼1 · · ·𝛼𝑘

∇𝛾𝑈𝛾 . (4.23)

The first of these is closely related to the convective Maxwell derivative, with DΠ𝛼1 · · ·𝛼𝑘=0
implying that the the tensoral quantity 𝜌−1

6 Π𝛼1 · · ·𝛼𝑘=0 (i.e. the k-th velocity correlation) is
passively advective by the flow. The other operators D1 and D2 are defined for convenience.
This highlights one advantage of the 6-d formalisation as couplings between the dust kinetic
tensor (𝑇𝛼𝑑𝛽𝑑 ), cross correlation tensor (𝑇𝛼𝑑𝛽𝑔 ) and fluid seen Reynolds stress (𝑅𝛼𝑔𝛽𝑔 ), are
shown to arise from the advection of the dust Rheological stress by the 6D flow.

Rearranging the continuity, momentum and constitutive equations, and making use of the
operator D2, we obtain
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𝐷𝜌6 = −𝜌6∇𝛼𝑢𝛼, (4.24)

𝜌6𝐷𝑈𝛼 = 𝜌6𝐹𝛼 − ∇𝛽Π𝛼𝛽 − 𝜌6𝐶𝛼𝛽 (𝑈𝛽 −𝑈
𝛽
𝑔 ), (4.25)

D2Π𝛼𝛽 = −∇𝛾Π𝛼𝛽𝛾 − 2
(
Π
𝛾

(𝛼𝐶𝛽)𝛾 − 𝜌6𝐷 (𝛼𝛽)
)
. (4.26)

As the right hand side of Equation 4.26 is symmetrised this ensures that Π𝛼𝛽 remains
symmetric for symmetric initial conditions. Using a similar argument to that advanced in
Ogilvie (2003); Lynch & Ogilvie (2021), Π𝛼𝛽 is positive semi-definite for positive semi-
definite initial conditions (See Appendix B.1 for a details). The evolutionary equation for the
k-th velocity moment simplifies to

D2Π𝛼1 · · ·𝛼𝑘
= −∇𝛾Π𝛾𝛼1 · · ·𝛼𝑘

−𝑘
[
Π𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐶
𝛼𝑘 )𝜎 − 1

𝜌
Π(𝛼1 · · ·𝛼𝑘−1∇𝜎Π𝛼𝑘 )𝜎 − (𝑘 − 1)Π(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
.

(4.27)
Alternatively one can write the constitutive equation in terms of the operator D and obtain

the following alternative form of Equation 4.26,

DΠ𝛼𝛽 = −2
(
Π
𝛾

(𝛼𝐴𝛽)𝛾 − 𝜌6𝐷 (𝛼𝛽)
)
, (4.28)

where we have defined

𝐴𝛼𝛽 = 𝐶𝛼𝛽 − 𝜔𝛾𝜀𝛼𝛽𝛾 , (4.29)
where 𝜔𝛾 is the dust-fluid vorticity and

𝜔𝛾𝜀𝛾𝛼𝛽 = ∇𝛼𝑈𝛽 − ∇𝛽𝑈𝛼. (4.30)
The evolutionary equation for the k-th velocity moment can be similarly rewritten. In the full
6-D model, with the Levi-Civita connection, Equation 4.28 is the more useful form of the
constitutive relation as it is independent of the Christoffel symbol components (by symmetry)
and it is more connected to the underlying physics of the rheological stress tensor where the
operator D is responsible for passively advecting the pressure tensor and the drag, vorticity
and turbulent “heating” on the right hand side of Equation 4.28 act like sources/sinks for
the stress tensor. Unfortunately in the presence of torsion, the constitutive equation based on
Equation 4.28 ends up more complicated to manipulate than that based on Equation 4.26
owing to the addition of terms involving the torsion tensor. As such we shall stick to Equation
4.26 for the constitutive relation from this point onwards.

Finally, for the purposes of developing the closure scheme for the moment expansion, it
is useful to express the evolutionary equation for the k-th velocity moment in terms of the
operator D1,

D1Π𝛼1 · · ·𝛼𝑘
= −∇𝜎Π𝛼1 · · ·𝛼𝑘𝜎 − 𝑘

[
Π𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐵
𝛼𝑘 )𝜎

− 1
𝜌
Π(𝛼1 · · ·𝛼𝑘−1∇𝜎Π𝛼𝑘 )𝜎 − (𝑘 − 1)Π(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
,

(4.31)

where we have introduced 𝐵𝛼𝛽 = 𝐶𝛼𝛽 + ∇𝛽𝑈𝛼.
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4.3. Closure scheme.
As is usual for a moment expansion we now have an infinite tower of velocity moments that
is not useful for practical computations and must now consider a closure scheme. In this
section we shall show that when the fluid is thermally stable, and the turbulent velocity small
relative the fluid velocity, the third velocity moment typically decays until it is asymptotically
small relative to the stress tensor and we can therefore drop the ∇𝛾Π𝛼𝛽𝛾 in the constitutive
relation and close the moment expansion at the 2nd velocity moment.

4.3.1. Well coupled ordering scheme.
Previous authors have noted that when the dust is well coupled to the gas (St ≪ 1) it can
be approximated with a fluid description. We can consider such a ‘well coupled’ ordering
scheme by introducing a small parameter 𝜖 > 0, which can be regarded as a characteristic
Stokes number such that St = 𝑂 (𝜖). We consider units such that 𝑈𝛼 = 𝑂 (1), D1 = 𝑂 (1)
and sufficiently weak turbulence heating such that 𝐷𝛼𝛽 = 𝑂 (𝜖2). In our units the spatial
gradients are limited such that ∇𝜎 = 𝑂 (𝜖−1) (In that the magnitude of the spatial gradients
cannot significantly exceed 𝜖−1, they can, however, be ≪ 𝜖−1).

Introducing rescaled velocity moment, Π̃𝛼1 · · ·𝛼𝑘
, such that Π𝛼1 · · ·𝛼𝑘

= 𝜖 𝛿𝑘 Π̃𝛼1 · · ·𝛼𝑘
, and

stretched/rescaled variable 𝑋̃ = 𝑋/𝜖 , such that ∇ = 𝜖−1∇̃, then we arrive at a rescaled
equation for the k-th velocity moment

𝜖 𝛿𝑘D1Π𝛼1 · · ·𝛼𝑘
= −𝜖 𝛿𝑘+1−1∇𝜎Π𝛼1 · · ·𝛼𝑘𝜎 − 𝑘

[
𝜖 𝛿𝑘−1Π𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐵
𝛼𝑘 )𝜎

− 𝜖 𝛿𝑘−1+𝛿2−1

𝜌
Π(𝛼1 · · ·𝛼𝑘−1∇𝜎Π𝛼𝑘 )𝜎 − (𝑘 − 1)𝜖 𝛿𝑘−2+2Π(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
.

(4.32)

Proposing 𝛿𝑘 = 3ceil(𝑘/2), we can rearrange the above to obtain, for even 𝑘 ,

𝜖D1Π𝛼1 · · ·𝛼𝑘
+ 𝑘

[
Π𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐵
𝛼𝑘 )𝜎 − (𝑘 − 1)Π(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
= 𝜖3

[
−∇𝜎Π𝛼1 · · ·𝛼𝑘𝜎 + 𝑘

𝜌
Π(𝛼1 · · ·𝛼𝑘−1∇𝜎Π𝛼𝑘 )𝜎

]
, (4.33)

For 𝑘 = 2 the left hand side corresponds to the constitutive model with Π𝛼𝛽𝛾 = 0. For odd 𝑘

we instead have

𝜖D1Π𝛼1 · · ·𝛼𝑘
= −∇𝜎Π𝛼1 · · ·𝛼𝑘𝜎 − 𝑘

[
Π𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐵
𝛼𝑘 )𝜎

− 1
𝜌
Π(𝛼1 · · ·𝛼𝑘−1∇𝜎Π𝛼𝑘 )𝜎 − (𝑘 − 1)Π(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
. (4.34)

Thus we find that the correction to the evolutionary equation for the second velocity moment
Π𝛼𝛽 is suppressed by a factor of 𝜖3, relative to the leading order terms. Crucially this strong
suppression means that Stokes numbers slightly less than one may still be well approximated
by our fluid model, provided that we retain the 𝑂 (𝜖) advection term (D1Π𝛼𝛽) which will no
longer be negligible.

According to Equation 4.34 the evolution of the third velocity moment will depend on
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gradients of the 4-th velocity moment at leading order. Thus, we gain no advantages if we
were to truncate the expansion at the third velocity moment over truncating at the second.

4.3.2. Near Maxwellian ordering scheme
We now wish to consider a situation where the dust distribution function is initially close to
a Maxwellian velocity distribution and determine under what circumstances the departure
from a Maxwellian velocity distribution remains small. Consider an asymmetric Maxwellian
velocity distribution,

𝑓 =
|𝐴|1/2

(2𝜋)𝑛/2 exp
(
−1

2
𝑄𝛼𝛽 (𝑉𝛼 −𝑈𝛼) (𝑉𝛽 −𝑈𝛽)

)
, (4.35)

with second velocity moment

𝑊𝛼𝛽 =

∫
(𝑉𝛼 −𝑈𝛼) (𝑉𝛽 −𝑈𝛽) 𝑓 𝑑𝑛𝑉. (4.36)

This is related to 𝑄𝛼𝛽 through 𝑄𝛼𝜎𝑊𝜎𝛽 = 𝛿𝛼
𝛽

. More generally we define the 𝑘-th velocity
moment for the Maxwellian velocity distribution as

𝑊𝛼1 · · ·𝛼𝑘
=

∫
(𝑉𝛼1 −𝑈𝛼1) · · · (𝑉𝛼𝑘

−𝑈𝛼𝑘
) 𝑓 𝑑𝑛𝑉. (4.37)

For odd 𝑘 , 𝑊𝛼1 · · ·𝛼𝑘
= 0. Using standard results for Maxwellian distributions (e.g. Withers

1985) we obtain the following relationship between the 𝑘-th and (𝑘 −2)-th velocity moment;

𝑊𝛼1 · · ·𝛼𝑘
= (𝑘 − 1)𝑊(𝛼1 · · ·𝛼𝑘−2𝑊𝛼𝑘−1 )𝛼𝑘

. (4.38)
By symmetry of the velocity moments we also have 𝑊𝛼1 · · ·𝛼𝑘

= 𝑊(𝛼1 · · ·𝛼𝑘 ) = (𝑘 −
1)𝑊(𝛼1 · · ·𝛼𝑘−2𝑊𝛼𝑘−1𝛼𝑘 ) .

Starting from the assumption that the 2nd velocity moment evolves according to

𝐷𝑊𝛼1𝛼2 = −2
[
𝑊𝜎

(𝛼1
𝐵
𝛼2 )𝜎 − 𝐷𝛼1𝛼2

]
, (4.39)

we wish to show that the 𝑘-th velocity moment evolves according to

𝐷𝑊𝛼1 · · ·𝛼𝑘
= −𝑘

[
𝑊𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐵
𝛼𝑘 )𝜎 − (𝑘 − 1)𝑊(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘)

]
(4.40)

Assuming this is the case for the (𝑘 − 2)-th velocity moment then we can substitute Equation
4.38 into the above equation to obtain

𝐷𝑊𝛼1 · · ·𝛼𝑘
= (𝑘 − 1)𝑊(𝛼1𝛼2𝐷𝑊𝛼3 · · ·𝛼𝑘 ) + (𝑘 − 1)𝑊(𝛼1 · · ·𝛼𝑘−2𝐷𝑊𝛼𝑘−1𝛼𝑘 )

= −(𝑘 − 1) (𝑘 − 2)𝑊(𝛼1𝛼2

[
𝑊𝜎

𝛼3 · · ·𝛼𝑘−1𝐵𝛼𝑘 )𝜎 − (𝑘 − 3)𝑊𝛼3 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
− 2(𝑘 − 1)𝑊(𝛼1 · · ·𝛼𝑘−2

[
𝑊𝜎

𝛼𝑘−1𝐵𝛼𝑘 )𝜎 − 𝐷
𝛼𝑘−1𝛼𝑘 )

]
= −(𝑘 − 1)

[
(𝑘 − 2)𝑊

𝜎 (𝛼1 · · ·𝛼𝑘−3
𝐵 𝜎
𝛼𝑘−2𝑊𝛼𝑘−1𝛼𝑘 ) + 2𝑊(𝛼1 · · ·𝛼𝑘−2

𝑊𝜎
𝛼𝑘−1𝐵𝛼𝑘 )𝜎

]
+ (𝑘 − 1) (𝑘 − 3)

[
(𝑘 − 2)𝑊(𝛼1 · · ·𝛼𝑘−4𝐷𝛼𝑘−3𝛼𝑘−2𝑊𝛼𝑘−1𝛼𝑘 ) + 2𝑊(𝛼1 · · ·𝛼𝑘−4𝑊𝛼𝑘−3𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
= −𝑘

[
𝑊𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐵
𝛼𝑘 )𝜎 − (𝑘 − 1)𝑊(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘)

]
.

(4.41)
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Thus we see that if the (𝑘 − 2)-th velocity moment evolves according to Equation 4.40, and
the 2nd velocity moment evolves according to Equation 4.39, then the 𝑘-th velocity moment
also evolves according to Equation 4.40. Starting with the 4-th velocity moment we see that,
given Equations 4.39 and 4.41, it evolves according to Equation 4.40. We can thus proceed
by induction to arbitrary 𝑘 , and conclude that 𝑊𝛼1 · · ·𝛼𝑘

evolve according to Equation 4.40.
Consider a dust fluid which varies on some short lengthscale 𝐿dust embedded with a gas

that varies on a long lengthscale 𝐿gas. This introduces a separation of scales for which
we introduce 𝝃 for coordinates describing variation on the short dust lengthscale and x
describing variation on the gas lengthscale. Naturally, the properties of the gas depend only
on x (and time). We propose a nearly Maxwellian dust velocity distribution with the following
asymptotic scheme

Π𝛼1 · · ·𝛼𝑘
= 𝜖 𝑘𝜌(𝝃, x)𝑊𝛼1 · · ·𝛼𝑘

(x) + 𝜖 𝑘+1Σ𝛼1 · · ·𝛼𝑘
(𝝃, x), (4.42)

𝑈 = 𝑈0(x) + 𝜖 𝜅𝑢0(𝝃, x), (4.43)

∇ = 𝜖−1 𝜕

𝜕𝝃
+ 𝜕

𝜕x
, (4.44)

where 𝜖 is treated as a book-keeping parameters. Strictly speaking one should also expand
the density, however the 𝑂 (𝜖) terms due to the effects of the Non-Maxwellian velocity
perturbation can be absorbed into the definition of Σ𝛼1 · · ·𝛼𝑘

. While we can often treat 𝜅 = 2
(i.e. the part of the mean velocity that varies on the dust lengthscale is 𝑂 (𝜖2)) we shall
assume 𝜅 = 1 throughout as this will allow for a wider range of dust flows.

Substituting Equations 4.42-4.44 into Equation 4.31, and making use of D1𝜌 = 0, the
evolutionary equation for the k-th velocity moment becomes:

D1Π𝛼1 · · ·𝛼𝑘
= 𝜖 𝑘𝜌𝐷𝑊𝛼1 · · ·𝛼𝑘

+ 𝜖 𝑘+1𝑢𝛼0
𝜕

𝜕𝑥𝛼
𝑊𝛼1 · · ·𝛼𝑘

+ 𝜖 𝑘+1D1Σ𝛼1 · · ·𝛼𝑘

= −𝜖 𝑘
(

𝜕

𝜕𝜉𝜎
+ 𝜖

𝜕

𝜕𝑥𝜎

)
(𝜌𝑊𝛼1 · · ·𝛼𝑘𝜎) − 𝜖 𝑘+1

(
𝜕

𝜕𝜉𝜎
+ 𝜖

𝜕

𝜕𝑥𝜎

)
Σ𝛼1 · · ·𝛼𝑘𝜎

− 𝑘𝜖 𝑘

[(
𝜌𝑊𝜎

(𝛼1 · · ·𝛼𝑘−1
+ 𝜖Σ𝜎(𝛼1 · · ·𝛼𝑘−1

)
𝐵
𝛼𝑘 )𝜎

−
(
𝜌𝑊(𝛼1 · · ·𝛼𝑘−1 + 𝜖Σ(𝛼1 · · ·𝛼𝑘−1

) ( 𝜕

𝜕𝜉𝜎
+ 𝜖

𝜕

𝜕𝑥𝜎

) (
𝜌𝑊𝛼𝑘 )𝜎 + 𝜖Σ𝛼𝑘 )𝜎

)
− (𝑘 − 1)

(
𝜌𝑊(𝛼1 · · ·𝛼𝑘−2 + 𝜖Σ(𝛼1 · · ·𝛼𝑘−2

)
𝐷𝛼𝑘−1𝛼𝑘 )

]
,

(4.45)

where, here, 𝐷 = 𝜕𝑡 +𝑈𝛼
0 ∇𝛼 is the Lagrangian time derivative with respect to the leading

order flow described by 𝑈0.
Making use of Equation 4.40 for the evolution of 𝑊𝛼1 · · ·𝛼𝑘

, along with the recurrence
relation for𝑊𝛼1 · · ·𝛼𝑘

(Equation 4.38) and rearranging we obtain and equation for the evolution
of the non-Maxwellian part of the velocity moment,
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D1Σ𝛼1 · · ·𝛼𝑘
+ 𝑢𝛼0

𝜕

𝜕𝑥𝛼
𝑊𝛼1 · · ·𝛼𝑘

+ 𝑘𝜌𝑊𝜎 (𝛼1

𝜕

𝜕𝑥𝜎
𝑊𝛼2 · · ·𝛼𝑘 ) +

𝜕

𝜕𝜉𝜎
Σ𝛼1 · · ·𝛼𝑘𝜎

+ 𝑘

[
Σ𝜎(𝛼1 · · ·𝛼𝑘−1

𝐵
𝛼𝑘 )𝜎 − 𝜌𝑊(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝜉𝜎
Σ𝛼𝑘 )𝜎

− Σ(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝜉𝜎
𝜌𝑊𝛼𝑘 )𝜎 − (𝑘 − 1)Σ(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
= 𝜖

[
𝑘𝜌𝑊(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝑥𝜎
Σ𝛼𝑘 )𝜎 + 𝑘Σ(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝑥𝜎

(
𝜌𝑊𝛼𝑘 )𝜎 + 𝜖Σ𝛼𝑘 )𝜎

)
+ 𝑘Σ(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝜉𝜎
Σ𝛼𝑘 )𝜎 − 𝜕

𝜕𝑥𝜎
Σ𝛼1 · · ·𝛼𝑘𝜎

]
,

(4.46)

where the terms on the right hand side are all sub-leading. Dropping these subleading terms
we obtain

0 = D1Σ𝛼1 · · ·𝛼𝑘
+ 𝑢𝛼0

𝜕

𝜕𝑥𝛼
𝑊𝛼1 · · ·𝛼𝑘

+ 𝑘𝜌𝑊𝜎 (𝛼1

𝜕

𝜕𝑥𝜎
𝑊𝛼2 · · ·𝛼𝑘 ) +

𝜕

𝜕𝜉𝜎
Σ𝛼1 · · ·𝛼𝑘𝜎

+ 𝑘

[
Σ𝜎(𝛼1 · · ·𝛼𝑘−1

𝐵
𝛼𝑘 )𝜎 − 𝜌𝑊(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝜉𝜎
Σ𝛼𝑘 )𝜎

− Σ(𝛼1 · · ·𝛼𝑘−1𝑊𝛼𝑘 )𝜎
𝜕

𝜕𝜉𝜎
𝜌 − (𝑘 − 1)Σ(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘 )

]
.

(4.47)

This confirms that the asymptotic ordering scheme (Equations 4.42-4.44) is self consistent
and the non-Maxwellian terms are suppressed by a factor of 𝜖 ∼ 𝐿dust/𝐿gas relative to the
Maxwellian terms. However, for the purposes of the equation of motion the pressure gradients
are the more important quantity. For the nearly Maxwellian velocity distribution considered
here the stress gradients are

∇𝛽Π𝛽𝛼 = 𝜖

(
𝜕

𝜕𝜉𝛽
+ 𝜕

𝜕𝑥𝛽

)
𝜌𝑊𝛽𝛼 + 𝜖2

(
𝜕

𝜕𝜉𝛽
+ 𝜕

𝜕𝑥𝛽

)
Σ𝛽𝛼

= 𝜖𝑊𝛽𝛼 𝜕

𝜕𝜉𝛽
𝜌 +𝑂 (𝜖2).

(4.48)

Thus the effects of the non-Maxwellian terms are 𝑂 (𝜖2), and are thus small relative to the
acceleration and gravity, which are taken to be 𝑂 (1), when the dust layer is dynamically
cool.

4.3.3. Are the ordering schemes attractors?
We have two separate situations where we can truncate the moment expansion by neglecting
the third (and higher) velocity moment(s). The first is when St ≲ 1, meaning that the dust is
tightly coupled to the gas and the higher order velocity moments are suppressed by interaction
with the gas. The second is for dynamically cool dust layers where 𝐿dust ≪ 𝐿gas (with the
lengthscale typically being the dust and gas scale heights), where the non-Maxwellian velocity
moments are suppressed by the confinement of the dust. This latter scenario is of interest for
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dust with St > 1 in gas flows which are not strongly stirred, in the presence of vertical gravity,
as these would be expected to settle into a hydrostatically supported dust layer which is much
thinner than a hydrostatically supported gas flow. Of course the existence of a consistent
asymptotic scaling does not guarantee that the fluid regime is an attractor. While a complete
exploration of when this state becomes an attractor, and thus allow for a fluid treatment of the
dust, is beyond the scope of this work, in this section we shall present an argument showing
that velocity moments which start far from this asymptotic scaling are expected to damp
towards this scaling, subject to the dust fluid being thermally stable.

Consider a situation situation where the either the well coupled or near-Maxwellian
ordering scheme holds. We wish to explore what happens where some perturbation increases
the k-th velocity moment sufficiently such that it breaks the ordering scheme. If the k-th
velocity moment is large, while all other velocity moments keep the same ordering as in the
fluid ordering schemes, then the only terms that are important in the evolutionary equation
for k-th velocity moment are those involving Π𝛼1 · · ·𝛼𝑘

. Thus evolution of the k-th velocity
moment is approximately described by

D1Π𝛼1 · · ·𝛼𝑘
= −𝑘Π𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐵
𝛼𝑘 )𝜎 . (4.49)

Defining 𝑊𝛼1 · · ·𝛼𝑘
= 𝜌−1Π𝛼1 · · ·𝛼𝑘

this simplifies to

𝐷𝑊𝛼1 · · ·𝛼𝑘
= −𝑘𝑊𝜎

(𝛼1 · · ·𝛼𝑘−1
𝐵
𝛼𝑘 )𝜎 . (4.50)

We wish to show that 𝑊𝛼1 · · ·𝛼𝑘
decays subject to certain constraints on 𝐵𝛼𝛽 . To do this we

make use of the adjoint problem,

𝐷𝑌 𝛼 = 𝐵 𝛼
𝛽 𝑌 𝛽 , (4.51)

in order to relate the evolutionary equation for𝑊𝛼1 · · ·𝛼𝑘
for arbitrary 𝑘 to that with 𝑘 = 2. This

allows us to relate the behaviour of Equation 4.50 to properties of the constitutive equation,
in particular the thermal stability of the flow.

Equations 4.50 and 4.51 are related by an invariant scalar 𝜒 = 𝑊𝛼1 · · ·𝛼𝑘
𝑌 𝛼1 · · ·𝑌 𝛼𝑘 , with

𝐷𝜒 = 𝑌 𝛼𝑛+1 · · ·𝑌 𝛼𝑘𝐷𝑄𝛼𝑛+1 · · ·𝛼𝑘
+ (𝑘 − 𝑛)𝑄𝛼𝑛+1 · · ·𝛼𝑑

𝑘
𝑌 𝛼𝑛+1 · · ·𝑌 𝛼𝑘−1𝐷𝑌 𝛼𝑘

= −(𝑘 − 𝑛)𝑌 𝛼𝑛+1 · · ·𝑌 𝛼𝑘𝑄𝜎𝛼𝑛+1 · · ·𝛼𝑘−1𝑀
𝜎
𝛼𝑘

+ (𝑘 − 𝑛)𝑄𝜎𝛼𝑛+1 · · ·𝛼𝑘−1𝑌
𝛼𝑛+1 · · ·𝑌 𝛼𝑘−1𝑀 𝜎

𝛽 𝑌 𝛽

= 0 .

(4.52)

Consider now 𝑘 = 2 and define the associated scalar, 𝜁 = 𝑄𝛼𝛽𝑌
𝛼𝑌 𝛽 , we also assume 𝑄𝛼𝛽

is positive definite at 𝑡 = 𝑡0. Without loss of generality we can take 𝑌 𝛼 = 𝑦𝛼0 at 𝑡 = 𝑡0, where
|y0 | = 1, such that

𝜁 = (𝑄𝛼𝛽𝑌
𝛼𝑌 𝛽)

��
𝑡=𝑡0

= 𝑄𝛼𝛽𝑦
𝛼
0 𝑦

𝛽

0 > 0. (4.53)

At 𝑡 = 𝑡1 > 𝑡0 we write 𝑌 𝛼 = Y𝑦𝛼, with |y| = 1 , such that

𝜁 = (𝑄𝛼𝛽𝑌
𝛼𝑌 𝛽)

��
𝑡=𝑡1

= Y2𝑄𝛼𝛽𝑦
𝛼𝑦𝛽 . (4.54)

As 𝑄𝛼𝛽 is positive semi-definite, for all 𝑡, 𝑄𝛼𝛽𝑦
𝛼𝑦𝛽 ⩾ 0. Using the fact that 𝜁 is constant,

we obtain
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Y2 =
𝑄𝛼𝛽𝑦

𝛼
0 𝑦

𝛽

0
𝑄𝛼𝛽𝑦

𝛼𝑦𝛽
, (4.55)

In order for the fluid to be thermally stable 𝑄𝛼𝛽 must ultimately decay towards zero. If
this were not the case then there would exist components of Π𝛼𝛽 where heating by the disc
turbulence is not balanced by cooling from the Π𝜎

(𝛼𝐵𝛽)𝜎 term, and would thus experience
thermal runaway. Thus for 𝛿 > 0, there exists a 𝑡 = 𝑡cool > 𝑡0 such that the components of
𝑄𝛼𝛽 at 𝑡 = 𝑡cool satisfy |𝑄𝛼𝛽 | < 𝛿. It should be noted that certain components of 𝑄𝛼𝛽 can
experience transient growth (e.g. due to the shearing out of the initial conditions), but must
ultimately decline in order to ensure thermal stability. As 𝛿 is arbitrary we can choose 𝛿 small
enough such that

𝑄𝛼𝛽𝑦
𝛼𝑦𝛽 ⩽

∑︁
𝛼,𝛽

|𝑄𝛼𝛽 | |𝑦𝛼 | |𝑦𝛽 | < 𝛿
∑︁
𝛼,𝛽

|𝑦𝛼 | |𝑦𝛽 | < 𝑄𝛼𝛽𝑦
𝛼
0 𝑦

𝛽

0 , (4.56)

for 𝑡 > 𝑡cool. From this we can conclude that Y > 1, for 𝑡 > 𝑡cool. By choosing 𝑡 large enough
we can make Y arbitrarily large. Typically one expects 𝑡cool to be of order the cooling/settling
time in the fluid as this decay is linked to the dynamical cooling of the dust fluid.

Now consider the scalar 𝜒 associated with 𝑄𝛼𝑛+1 · · ·𝛼𝑘
. As 𝜒 is constant we have,

𝑄𝛼𝑛+1 · · ·𝛼𝑘

��
𝑡=𝑡0

𝑦
𝛼𝑛+1
0 · · · 𝑦𝛼𝑘

0 = (𝑄𝛼𝑛+1 · · ·𝛼𝑘
𝑌 𝛼𝑛+1 · · ·𝑌 𝛼𝑘 )𝑡=𝑡0

= (𝑄𝛼𝑛+1 · · ·𝛼𝑘
𝑌 𝛼𝑛+1 · · ·𝑌 𝛼𝑘 )𝑡=𝑡1

= Y𝑘𝑄𝛼𝑛+1 · · ·𝛼𝑘

��
𝑡=𝑡1

𝑦𝛼𝑛+1 · · · 𝑦𝛼𝑘 .

(4.57)

Rearranging this we obtain,

𝑄𝛼𝑛+1 · · ·𝛼𝑘

��
𝑡=𝑡1

𝑦𝛼𝑛+1 · · · 𝑦𝛼𝑘 = Y−𝑘𝑄𝛼𝑛+1 · · ·𝛼𝑘

��
𝑡=𝑡0

𝑦
𝛼𝑛+1
0 · · · 𝑦𝛼𝑘

0 ⩽ Y−𝑘
∑︁

𝛼𝑛+1 · · ·𝛼𝑘

���𝑄𝛼𝑛+1 · · ·𝛼𝑘

��
𝑡=𝑡0

��� .
(4.58)

Again, by choosing 𝑡1 large enough we can take Y to be as large as we like, this means that
𝑄𝛼𝑛+1 · · ·𝛼𝑘

��
𝑡=𝑡1

𝑦𝛼𝑛+1 · · · 𝑦𝛼𝑘 can be made arbitrarily small. As we can do this for any unit
vector 𝑦𝛼, and 𝑄𝛼𝑛+1 · · ·𝛼𝑘

is symmetric, we conclude that the components of 𝑄𝛼𝑛+1 · · ·𝛼𝑘
will

become arbitrarily small at late times
Thus we can conclude, from the above argument, that thermal stability of the fluid flow is

a necessary, and sufficient condition for 𝑊𝛼1 · · ·𝛼𝑘
to decay. This means that the k-th velocity

moment, Π𝛼1 · · ·𝛼𝑘
, decays when its evolution can be well approximated by Equation 4.49

and the fluid is thermally stable. This implies that the dust fluid ordering schemes are stable
to (nonlinear) perturbations to the higher order velocity moments, which should damp until
they are compatible with the fluid ordering scheme derived above on approximately the
cooling/settling time of the dust fluid.

The above argument shows that thermal stability is a necessary condition for the fluid
dust description to remain valid. It is not, however, a sufficient condition as the argument
only applies to (nonlinear) perturbations to the k-th velocity moment in isolation. Thus,
in principle, there could exist perturbations to the multiple orders of velocity moment
simultaneously that can be sustained and will not damp towards the fluid ordering scheme.
For now we shall work under the assumption that thermal stability is sufficient to ensure
the damping of higher-order velocity moments, however the exploration of the stability of
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the fluid description against more general perturbations should be explored if the dust fluid
model finds widespread use.

4.4. Obtaining the dust fluid equations
As a result of the asymptotic argument presented above, we can take Π𝛼𝛽𝛾 = 0 and
only consider the first 3 moments of the Fokker-Planck equation. This yields a continuity,
momentum and constitutive relation for a 6-dimensional dust fluid. This dust fluid has a
high degree of symmetry as physical properties must be independent of the gas displacement
{x𝑔}†. One can, therefore, integrate out these redundant degrees of freedom.

In integrating out the dummy gas degrees of freedom, we replace the connections ∇𝛼
with the connections ∇𝛼 which ensure that the components of vectors associated with the
integrated out directions remain correctly aligned. Our normalisation means that 𝜌𝑑 = 𝜌6,
we also introduce the rheological stress tensor 𝑇𝛼𝛽 = Π𝛼𝛽 and we can always choose the
size of the dummy gas dimensions such that 𝑈𝛼 = 𝑈𝛼. With these choices the dust fluid
equations are

𝐷𝜌𝑑 = −𝜌𝑑∇𝛼𝑈𝛼, (4.59)

𝜌𝑑𝐷𝑈𝛼 = 𝜌𝑑𝐹𝛼 − ∇𝛽𝑇𝛼𝛽 − 𝜌𝑑𝐶𝛼𝛽 (𝑈𝛽 −𝑈
𝛽
𝑔 ), (4.60)

D2𝑇𝛼𝛽 = −2
(
𝑇
𝛾

(𝛼𝐶𝛽)𝛾 − 𝜌𝑑𝐷 (𝛼𝛽)
)
, (4.61)

where

𝐷 = 𝜕𝑡 +𝑈𝛼∇𝛼 =

(
𝜕𝑡 + 𝑢𝑖

𝑑
∇𝑖 0

0 𝜕𝑡 + 𝑢𝑖
𝑑
∇𝑖

)
, (4.62)

which corresponds to the usual (3-dimensional) Lagrangian time derivative with respect
to the mean dust flow applied to the dust and dummy gas components of the (6-D) tensor
independently. 𝐶𝛼𝛽 and 𝐷𝛼𝛽 are given by Equations 3.23 and 3.24 (for isotropic stochastic
driving). Finally the operator D2, when acting on 𝑇𝛼𝛽 , is given by

D2𝑇𝛼𝛽 = 𝐷𝑇𝛼𝛽 + 2𝑇𝛾𝑑 (𝛼∇
𝛾𝑑
𝑈𝛽) + 𝑇𝛼𝛽∇𝛾𝑑𝑈𝛾𝑑 . (4.63)

Finally to highlight the effects of the torsion we consider it’s contribution to the dust fluid
vorticity,

𝜔𝛾𝜖𝛾𝛼𝛽 = 2𝜕 [𝛼𝑈𝛽 ] + 𝑆
𝛾𝑔

𝛼𝛽
𝑈𝛾𝑔 , (4.64)

meaning

𝜔𝛾𝜖𝛾𝛼𝑔𝛽𝑑 = −𝜕𝛽𝑑𝑈𝛼𝑔 − T 𝛾∗𝑔
𝛽𝑑𝛼

∗
𝑔
𝑈𝛾𝑔 . (4.65)

This additional contribution to the vorticity is associated with the rotation of the gas
displacement vectors.

For Cartesian coordinates (𝑥, 𝑦, 𝑧, 𝑥𝑔, 𝑦𝑔, 𝑧𝑔), in Euclidean space, with 𝐶𝛼𝛽 and 𝐷𝛼𝛽 are
given by Equations 3.23 and 3.24, then Equations 4.59-4.61 are explicitly

† For the Stochastic model considered here. If the fluid equations were to be derived based on a two-step
Stochastic model, as outlined in Minier & Henry (2023), then the dummy gas variable would influence the
fluid model, which may allow the effects of spatial correlations to be included.
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(𝜕𝑡 +𝑈𝛼𝑑𝜕𝛼𝑑 )𝜌𝑑 = −𝜌𝑑𝜕𝛼𝑑𝑈𝛼𝑑 , (4.66)

𝜌𝑑 (𝜕𝑡 +𝑈𝛼𝑑𝜕𝛼𝑑 )𝑈𝛼𝑑 = −𝜌𝑑𝜕𝛼𝑑𝜙 − 𝜕𝛽𝑑𝑇
𝛽𝑑
𝛼𝑑 − 𝜌𝑑

𝑡𝑠
(𝑈𝛼𝑑 −𝑈𝛼𝑔 ), (4.67)

𝜌𝑑 (𝜕𝑡 +𝑈𝛼𝑑𝜕𝛼𝑑 )𝑈𝛼𝑔 = −𝜌𝑑𝜕𝛼∗
𝑔
𝜙 − 𝑓𝑑𝜕𝛼∗

𝑔
𝑝𝑔 + 𝜌𝑑 (𝑈𝛽𝑑 −𝑈

𝛽𝑑
𝑔 )𝜕𝛽𝑑𝑈

g
𝛼𝑑

− 𝜕𝛽𝑑𝑇
𝛽𝑑
𝛼𝑔 − 𝜌𝑑

𝑡𝑐
(𝑈𝛼𝑔 −𝑈

𝑔
𝛼𝑔 ),

(4.68)

(𝜕𝑡 +𝑈𝛼𝑑𝜕𝛼𝑑 )𝑇𝛼𝑑𝛽𝑑 + 𝑇
𝛾𝑑
𝛼𝑑𝜕𝛾𝑑𝑈𝛽𝑑 + 𝑇

𝛾𝑑
𝛽𝑑
𝜕𝛾𝑑𝑈𝛼𝑑 + 𝑇𝛼𝑑𝛽𝑑𝜕𝛾𝑑𝑈

𝛾𝑑

= − 2
𝑡𝑠
𝑇𝛼𝑑𝛽𝑑 + 1

𝑡𝑠
𝑇𝛼𝑑𝛽∗𝑑 + 1

𝑡𝑠
𝑇𝛼∗

𝑑
𝛽𝑑 ,

(4.69)

(𝜕𝑡 +𝑈𝛼𝑑𝜕𝛼𝑑 )𝑇𝛼𝑑𝛽𝑔 + 𝑇
𝛾𝑑
𝛼𝑑𝜕𝛾𝑑𝑈𝛽𝑔 + 𝑇

𝛾𝑑
𝛽𝑔
𝜕𝛾𝑑𝑈𝛼𝑑 + 𝑇𝛼𝑑𝛽𝑔𝜕𝛾𝑑𝑈

𝛾𝑑

= −
(

1
𝑡𝑐

+ 1
𝑡𝑠

)
𝑇𝛼𝑑𝛽𝑔 +

1
𝑡𝑠
𝑇𝛼∗

𝑑
𝛽𝑔 ,

(4.70)

(𝜕𝑡 +𝑈𝛼𝑑𝜕𝛼𝑑 )𝑇𝛼𝑔𝛽𝑔 + 𝑇
𝛾𝑑
𝛼𝑔𝜕𝛾𝑑𝑈𝛽𝑔 + 𝑇

𝛾𝑑
𝛽𝑔
𝜕𝛾𝑑𝑈𝛼𝑔 + 𝑇𝛼𝑔𝛽𝑔𝜕𝛾𝑑𝑈

𝛾𝑑

= − 2
𝑡𝑐

(
𝑇𝛼𝑔𝛽𝑔 − 𝛼𝑐2

𝑠𝜌𝑑𝛿𝛼𝑔𝛽𝑔

)
.

(4.71)

In the 3-dimensional picture we have 𝑢𝑖
𝑑
= 𝑈𝑖 , 𝑢𝑖𝑠 = 𝑈𝑖

∗ are the (3D) dust velocity and fluid
seen respectively and 𝑝𝑖 𝑗 = 𝑇𝑖 𝑗 , 𝜏𝑖 𝑗 = 𝑇𝑖 𝑗∗ , 𝜎𝑖 𝑗 = 𝑇𝑖∗ 𝑗∗ are the dust kinetic tensor, dust-gas
correlation tensor and Reynolds stress of the fluid seen respectively. Equations 4.66-4.71 are
equivalent to

(𝜕𝑡 + 𝑢𝑖𝑑𝜕𝑖)𝜌𝑑 = −𝜌𝑑𝜕𝑖𝑢𝑖𝑑 , (4.72)

𝜌𝑑 (𝜕𝑡 + 𝑢
𝑗

𝑑
𝜕 𝑗)𝑢𝑑𝑖 = −𝜌𝑑𝜕𝑖𝜙 − 𝜕 𝑗 𝑝

𝑗

𝑖
− 𝜌𝑑

𝑡𝑠
(𝑢𝑑𝑖 − 𝑢𝑠𝑖 ), (4.73)

𝜌𝑑 (𝜕𝑡 + 𝑢
𝑗

𝑑
𝜕 𝑗)𝑢𝑠𝑖 = −𝜌𝑑𝜕𝑖𝜙 − 𝑓𝑑𝜕𝑖 𝑝𝑔 + 𝜌𝑑 (𝑢 𝑗𝑑 − 𝑢

𝑗
𝑔)𝜕 𝑗𝑢g

𝑖
− 𝜕 𝑗𝜏

𝑗

𝑖
− 𝜌𝑑

𝑡𝑐
(𝑢𝑠𝑖 − 𝑢

𝑔

𝑖
), (4.74)

(𝜕𝑡 + 𝑢𝑘𝑑𝜕𝑘)𝑝𝑖 𝑗 + 𝑝𝑘𝑖𝜕𝑘𝑢
𝑑
𝑗 + 𝑝𝑘 𝑗𝜕𝑘𝑢

𝑑
𝑖 + 𝑝𝑖 𝑗𝜕𝑘𝑢

𝑘
𝑑 = − 2

𝑡𝑠
𝑝𝑖 𝑗 +

1
𝑡𝑠
𝜏𝑖 𝑗 +

1
𝑡𝑠
𝜏𝑗𝑖 , (4.75)

(𝜕𝑡 + 𝑢𝑘𝑑𝜕𝑘)𝜏𝑖 𝑗 + 𝑝𝑘𝑖𝜕𝑘𝑢
𝑠
𝑗 + 𝜏𝑘𝑗𝜕𝑘𝑢

𝑑
𝑖 + 𝜏𝑖 𝑗𝜕𝑘𝑢

𝑘
𝑑 = −

(
1
𝑡𝑐

+ 1
𝑡𝑠

)
𝜏𝑖 𝑗 +

1
𝑡𝑠
𝜎𝑖 𝑗 , (4.76)

(𝜕𝑡 + 𝑢𝑘𝑑𝜕𝑘)𝜎𝑖 𝑗 + 𝜏𝑘𝑖𝜕𝑘𝑢
𝑠
𝑗 + 𝜏𝑘𝑗𝜕𝑘𝑢

𝑠
𝑖 + 𝜎𝑖 𝑗𝜕𝑘𝑢

𝑘
𝑑 = − 2

𝑡𝑐

(
𝜎𝑖 𝑗 − 𝛼𝑐2

𝑠𝜌𝑑𝛿𝑖 𝑗

)
. (4.77)

5. Properties of the dust fluid model
We will now describe some key features of our dust fluid model.

5.1. The mean gas velocity experienced by the dust is different to that experienced by the
gas

Unlike the pressureless, non-turbulent models the dust experiences a different mean gas
velocity to the gas. Part of this is due to the “crossing trajectory effect” (e.g. see Minier 2001;
Minier et al. 2004, 2014) where the mean gas velocity “seen” by the dust is that following
the Lagrangian trajectory traced by the dust, rather than that traced by the fluid particles. In
addition to this, the dust experience a subsample of the gas velocity field rather than the gas
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velocity field itself. This distinction is vital for producing dust dispersion by the turbulence.
If the dust experienced the same gas velocity distribution as the gas then a local dust density
maxima of perfectly coupled dust would not spread in homogeneous gas turbulence. The
dust to gas density ratio (in the 3D picture), in such a setup, evolves according to

𝜕𝑡 (𝜌𝑑/𝜌𝑔) = −∇𝑖 (𝜌𝑑𝑢𝑖𝑑/𝜌𝑔) (5.1)
= −∇𝑖 (𝜌𝑑𝑢𝑖𝑠/𝜌𝑔) (5.2)

Thus, in order that the gas turbulence disperse the dust, we require the velocity of the fluid
seen 𝑢𝑖𝑠 ≠ 𝑢𝑖𝑔 = 0. The subsampling of the gas velocity distribution means the larger number
of dust grains at the centre of the overdensity experience more “draws” from the gas velocity
distribution and thus experience a greater gas dispersion (this would equally be true for
“marked” gas fluid elements). This means the dust experiences a mean gas flow directed
away from the maxima due to the resulting gradient in the cross pressure.

5.2. Anisotropic Dust Rheological Stress Tensor
The most important feature of the dust fluid model is the fluid stress is not zero, and can be
dynamically important. In fact one expects dust settling/drift to concentrate dust until dust
stress gradients become dynamically important. Also present is a form of “cross-pressure”,
arising from correlations between the dust and gas motion, which modifies the mean-gas
velocity experienced by the dust.

This rheological stress tensor is anisotropic in the presence of strong shear or rotation. In
general, the gas turbulence heats the dust and isotropises the dust stress tensor on timescales
longer than the correlation time. However, in strong shear flows the velocity dispersion
induced in the dust by the turbulence is sheared out resulting in an anisotropic stress tensor
(just as happens for the gas Reynolds tensor). The flow vorticity also provides an additional
anisotropic heating term in the dust. In Section 7 we explore this effect further by considering
the dust stress tensor in a rotating shear flow.

As we shall show in the next section, the presence of a nonzero elastic stress means the
dust fluid supports waves, specifically seismic waves.

5.3. Viscoelasticity
The dust fluid exhibits viscoelastic behaviour (See Appendix B.2) This behaviour is easiest
to see when 𝑡𝑠 ∼ 𝑡𝑐 = 𝑂 (De), where De = 𝑡𝑟/𝑡 𝑓 is the Deborah number of the dust fluid,
which is the ratio of the characteristic relaxation time 𝑡𝑟 ∼ 𝑡𝑠 ∼ 𝑡𝑐 to the characteristic fluid
timescale 𝑡 𝑓 . When De ≫ 1 the dust stress tensor evolves according to

D2𝑇𝛼𝛽 = D𝑇𝛼𝛽 − 2𝑇𝛾(𝛼𝜀𝛽)𝛾𝜎𝜔
𝜎 = 0. (5.3)

This corresponds to an elastic stress with a vortical heating (or “gyroscopic motion” Gavrilyuk
& Gouin 2012) term, and evolves in an identical manner to a Reynolds stress in the absence
of source terms. When De ≪ 1 the stress tensor is approximately

𝑇𝛼𝛽 = 𝑝𝑑

(
1 + 𝑡𝑠

𝑡𝑐
Θ
𝑔

𝛼𝛽

)
𝑔𝛼𝛽 +

1
2
𝑝𝑥 (𝑔𝛼𝛽∗ + 𝑔𝛼∗𝛽) − 2𝜇𝜇𝜈

𝛼𝛽
∇𝜇𝑈𝜈 +𝑂 (De2). (5.4)

At leading order this consists of an isotropic, isothermal, effective, dust pressure with sound
speed

√︃
𝛼

1+𝑡𝑠/𝑡𝑐 𝑐𝑠, a cross pressure 𝑝𝑥 = 𝑝𝑑 , from the dust-gas velocity correlations, and
an additional pressure like contribution to the dummy gas components of the Rheological
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stress. The next terms in the expansion are an anisotropic viscous stress characterised by
the viscosity tensor 𝜇

𝜇𝜈

𝛼𝛽
; including a “cross” viscosity, which likely encapsulates the the

decorrelation of the dust and gas velocities in the presence of shear. Explicit expressions
for 𝜇𝜇𝜈

𝛼𝛽
are given in Appendix B.2. For weak gas turbulence 𝛼 ≪ 1 the the viscous terms,

for small dust grains, are typically negligible and the dust primarily behaves like an inviscid
isothermal gas with a lower temperature than than the gas phase. The difference between
𝑈
𝑔
𝛼𝑔 and 𝑈𝛼𝑑 (mean gas velocities experienced by the gas and dust respectively) as a result

of the cross pressure term allows for dust diffusion to occur in this limit.
The local expression, Equation 5.4, arises due to the fact that in the De ≪ 1 limit v − v𝑔

and v𝑔 − u𝑔, in the original stochastic-differential equations, are “fast variables” with no
memory of the previous fluid state (Minier 2016). For 𝜏𝑐 ≪ 1, but St ∼ 1, only v𝑔 − u𝑔 is a
fast variable and we have a local closure for 𝑇𝛼𝑑𝛽𝑔 and 𝑃𝛼𝑔𝛽𝑔 but not 𝑃𝛼𝑑𝛽𝑑 , which then has
a fluid memory of order the stopping time. In the large Deborah number limit the fast terms
in Equation 3.8 are negligible, resulting in a fully nonlocal behaviour for 𝑇𝛼𝛽 (Equation 5.3).

5.4. Eddy-Knudsen number effect
While it might be expected that small dust grains should closely follow the gas with the dust
velocity correlations being set by the gas velocity correlations. This turns out to only be the
case when the dust sees the turbulence as a continuum. This is explored further in Appendix
B.3. Whether the dust see the turbulence as a continuum or is sensitive to individual eddies
is determined by a form of “eddy Knudsen number”:

Kne =
𝜆

𝐿
=
𝑡𝑐Δ𝑈

∗

𝐿
, (5.5)

where 𝜆 = 𝑡𝑐Δ𝑈
∗ is the mean free path of a dust grain in the turbulent flow representing

the lengthscale a dust grain is transported by a single eddy, Δ𝑈∗ is a characteristic velocity
difference between the dust and gas and 𝐿 is a characteristic lengthscale of variations in the
fluid flow.

When Kne ≪ 1 a dust grain interacts with many turbulent eddies over the lengthscale on
which the dust fluid varies, meaning the dust experiences the turbulence as a continuum of
stochastic perturbations. When Kne ≳ 1 the dust is instead strongly affected by individual
eddies (in a similar manner to how weakly collisional gases can be strongly perturbed by
individual collisions). Thus, in this regime, the dust is sensitive to individual eddies. In the
short stopping time limit the equation for the dust stress simplify to (see Appendix B.3)

𝑡𝑐𝐷̃

(
𝑇𝛼𝑔𝛽𝑔

𝜌𝑑

)
+ 2

𝑡𝑐

𝜌𝑑
𝑇
𝛾𝑑 (𝛼𝑔∇

𝑘𝑢
𝑔

𝛽𝑔 ) + 2
(
𝑇𝛼𝑔𝛽𝑔

𝜌𝑑
− 𝛼𝑐2

𝑠𝑔𝛼𝑔𝛽𝑔

)
= −Kne

[
Δ𝑈𝛾

Δ𝑈∗ 𝐿∇𝛾
(
𝑇𝛼𝑔𝛽𝑔

𝜌𝑑

)
+ 2

𝑇𝛾 (𝛼𝑔
𝜌𝑑

𝐿∇𝛾
Δ𝑈𝛽𝑔 )

Δ𝑈∗

]
.

(5.6)

When Kne → 0 this matches the equation governing the evolution of the gas velocity
correlations, meaning the dust velocity correlations are indeed set by those of the gas. This is
no longer the case when Kne ∼ 1 and the dust velocity correlations can depart strongly from
those of the gas, even when the mean velocity of the gas and dust remain tightly coupled.

6. Hyperbolic structure and linear waves
In this section we will rearrange the equations into hyperbolic form, which is useful for some
types of numerical solver and for understand the wave modes in the system. We wish to find
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a state vector W, matrices A𝑖 and source vector such that the dust-fluid equations take the
form

𝜕W
𝜕𝑡

+ A𝛼∇𝛼W = S, (6.1)

To start we rearrange the equations so that all the source/sink terms are on the right hand
side,

¤𝜌𝑑+𝑈𝛼∇𝛼𝜌𝑑 + 𝜌𝑑∇𝛼𝑈𝛼 = 0, (6.2)

¤𝑇𝛼𝛽+𝑈𝛾∇𝛾𝑇𝛼𝛽 + 2𝑇𝛾 (𝛼∇
𝛾
𝑈𝛽) + 𝑇𝛼𝛽∇𝛾𝑈𝛾 = −2

(
𝑇
𝛾

(𝛼𝐶𝛽)𝛾 − 𝜌𝑑𝐷𝛼𝛽

)
, (6.3)

¤𝑈𝛼+𝑈𝛽∇𝛽𝑈𝛼 + 1
𝜌𝑑

∇𝛽𝑇𝛽𝛼 = 𝐹𝛼 − 𝐶𝛼𝛽 (𝑈𝛽 −𝑈
𝛽
𝑔 ), (6.4)

where we have exchanged the momentum and constitutive relation as it will make A𝛼 easier
to diagonalise. The state vector for this system is

W =
©­«
𝜌𝑑
T
U
ª®¬ , (6.5)

The source vector is

S =
©­«

0
−CT − TCT + 2𝜌𝑑D

F − C(U − U𝑔)
ª®¬ . (6.6)

The matrices A𝛼 are given by

A𝛼 =
©­«
𝑈𝛼 0 𝜌𝑑 ê𝛼
0 𝑈𝛼I M𝛼

0 I
𝜌𝑑

ê𝛼 𝑈𝛼I
ª®¬ , (6.7)

where I denote the identity matrix and

(M𝛼)𝜎𝛽𝛾 = 𝑇𝜎𝛽𝛿
𝛼
𝛾 + 2𝑇 𝛼(𝜎𝛿

𝛾

𝛽) , (6.8)
such that

(M𝛼∇𝛼U)𝜎𝛽 = (M𝛼)𝜎𝛽𝛾∇𝛼𝑈𝛾 , (6.9)
For the system to be hyperbolic we must show that all the eigenvalues of 𝐴𝛼𝑛̂𝛼 are real

for unit vector 𝑛̂𝛼, and the eigenvectors span the 28 dimensional state-space. Without loss of
generality we can orient our coordinate system such that n̂ = ê1 to point along the positive
x-direction. Physically we must remember that the dummy gas and position dimensions are
distinct, however we do not need to consider the case where n has non-zero components in
the ‘dummy gas’ directions as we require physical quantities to be independent of xg.

It is useful to separate out the velocity into the velocity along the 𝑥 direction (along the
direction of propagation),𝑈1, and the velocity in the other directions,𝑈𝛼 (where, for the rest
of this section, we take the indices 𝛼, 𝛽 and 𝛾 to run over 2, · · · , 6.). We similarly separate
out the stress tensor into compression along the 𝑥 direction, 𝑇11, shear components in the 𝑥

direction 𝑇1𝛼 and the components of the stress in other directions, 𝑇𝛼𝛽 . We shall split the
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momentum and constitutive relation in a similar manor This results in the following state
vector

W =

©­­­­­­«

𝜌

𝑇11
𝑇1𝛼
𝑇𝛼𝛽
𝑈1
𝑈𝛼

ª®®®®®®¬
, (6.10)

The eigenvalues, 𝑣, for 𝐴𝛼𝑛𝛼 can be derived from the determinant of the following matrix

A1 − 𝑣I =

©­­­­­­­­«

𝑢𝑥 − 𝑣 0 0 0 𝜌𝑑 0
0 𝑢𝑥 − 𝑣 0 0 3𝑇11 0
0 0 (𝑢𝑥 − 𝑣)I 0 2𝑇1𝛼 𝑇11I
0 0 0 (𝑢𝑥 − 𝑣)I 𝑇𝛼𝛽 2𝑇1(𝛼êT

𝛽)
0 1

𝜌𝑑
0 0 (𝑢𝑥 − 𝑣) 0

0 0 1
𝜌𝑑

I 0 0 (𝑢𝑥 − 𝑣)I

ª®®®®®®®®¬
, (6.11)

which has a characteristic equation

(𝑣 − 𝑢𝑥)16
(
(𝑣 − 𝑢𝑥)2 − 3

𝑇11
𝜌𝑑

) (
(𝑣 − 𝑢𝑥)2 − 𝑇11

𝜌𝑑

)5
= 0. (6.12)

This results in 16 nonpropagating (in the fluid frame) wavemodes, with wavespeed 𝑣 =

𝑢𝑥 . These consist of the entropy wave with eigenvector
(

1
027

)
and 15 ‘stress’ waves with

eigenvectors ©­«
07

ê𝛼𝛽
06

ª®¬, where we have introduced the notation 0𝑛 =

0
...

0
, with 𝑛 denoting the

number of zeros in the column.
Two of the propagating waves can be identified as P-waves, with wavespeed 𝑣 = 𝑢𝑥±

√︃
3𝑇11
𝜌𝑑

.
The P-waves are analogous to sound-waves, but with an anisotropic soundspeed, with seismic
wavespeed anistropy being a well known phenomena in geophysics (Thomsen 1986). These
wavemodes have eigenvectors,

©­­­­­­­­­­«

±𝜌𝑑
±3𝑇11
±3𝑇1𝛼

±
(
𝑇𝛼𝛽 + 2

𝑇11
𝑇1(𝛼𝑇𝛽)1

)
−
√︃

3𝑇11
𝜌𝑑

−
√︃

3
𝜌𝑑𝑇11

𝑇1𝛼

ª®®®®®®®®®®¬
, (6.13)

Finally there are 10 propagating waves which can be identified as S-waves, with wavespeed
𝑣 = 𝑢𝑥 ±

√︃
𝑇11
𝜌𝑑

. As is typical for elastic media, the S-waves have slower wavespeeds than the
P-waves. These wavemodes have eigenvectors,



26

©­­­­­­­­«

0
0

±𝑇11ê𝛾
±2𝑇1(𝛼𝛿

𝛾

𝛽)
0

−
√︃
𝑇11
𝜌𝑑

ê𝛾

ª®®®®®®®®¬
. (6.14)

These eigenvectors span the 28-dimensional state-space of the dust fluid model.
Upon decomposing the velocity and pressure tensor, the source vector is given by

S =

©­­­­­­­­«

0
−2𝑇1

1𝐶11 − 2𝑇𝛾1𝐶1𝛾
−2𝑇1

(1𝐶𝛼)1 − 2𝑇𝛾(1𝐶𝛼)𝛾
−2𝑇1

(𝛼𝐶𝛽)1 − 2𝑇𝛾(𝛼𝐶𝛽)𝛾 + 2𝜌𝑑𝐷𝛼𝛽

𝐹1 − 𝐶11(𝑈1 −𝑈1
𝑔) − 𝐶1𝛾 (𝑈𝛾 −𝑈

𝛾
𝑔 )

𝐹𝛼 − 𝐶𝛼1(𝑈1 −𝑈1
𝑔) − 𝐶𝛼𝛾 (𝑈𝛾 −𝑈

𝛾
𝑔 )

ª®®®®®®®®¬
, (6.15)

Thus we see that there are no source terms for the entropy wave. Turbulent diffusion (D)
and the drag dependant coupling between pressure tensor components are sources/sinks of
the stress waves. Finally the force per unit mass F and drag terms are sources/sinks of the P
and S-waves. In practice whether the wavemodes can propagate in the dust fluid will depend
on these source/sink terms as strong damping (such as by drag) may cause the waves to be
evanescent in certain regions of parameter space.

While the aforementioned wavemodes represent all the waves present in the bulk. The dust
fluid can support additional wavemodes when it occupies a thin layer, or other gravitationally
confined structure. In such a situation the disc posses dust breathing modes associated with
periodic oscillations of the dust scale-height. These are analogous to the surface waves in
seismology.

7. Rheological Stress in a Rotating Shear Flow
7.1. Steady state

In order to better understand the behaviour of the rheology, we consider the specific example
of a steady rotating shear flow in the kinematic limit (i.e. we impose a rotation profile
in the dust and gas and neglect the modification to the fluid flow from the resulting stress
gradients). Rotating shear flows are of particular interest in astrophysics as they are important
for understanding accretion discs. They are also a common setup in experimental fluid
dynamics (e.g. Taylor-Couette flows). To study this problem we adopt (6-D) cylindrical polar
coordinates (𝑅, 𝜙, 𝑧, 𝑅𝑔, 𝜙𝑔, 𝑧𝑔) with metric tensor components

𝑔𝑅𝑅 = 𝑔𝑅𝑔𝑅𝑔
= 𝑔𝑧𝑧 = 𝑔𝑧𝑔𝑧𝑔 = 1, 𝑔𝜙𝜙 = 𝑔𝜙𝑔𝜙𝑔 = 𝑅2. (7.1)

and connection coefficients,

Γ𝑅𝜙𝜙 = Γ
𝑅𝑔

𝜙𝜙𝑔
= −𝑅, (7.2)

Γ
𝜙

𝜙𝑅
= Γ

𝜙

𝑅𝜙
= Γ

𝜙𝑔

𝜙𝑅𝑔
= Γ

𝜙𝑔

𝑅𝜙𝑔
= 1/𝑅, (7.3)
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with all other components zero. The fluid flow consists of a rotating shear flow where both
the dust and gas rotate on cylinders with angular velocity Ω = Ω(𝑅). This leads to the 6-D
mean velocity of the dust fluid of

𝑈𝛾 = Ω(𝑅) (𝑒𝛼𝜙 + 𝑒𝛼𝜙𝑔 ). (7.4)

We additionally assume that the fluid is vertically homogeneous. By specifying that the
dust mean velocity should exactly follow that of the gas we are implicitly taking the zero
Eddy-Knudsen number limit. Thus the stress for small Stokes dusts is entirely specified by
the velocity correlations in the gas.

With this geometry, and imposed velocity, the operator D2 (when acting on 𝑇𝛼𝛽) is

D2𝑇𝛼𝛽 = 𝐷𝑇𝛼𝛽 + 2𝑇𝑅(𝛼 (𝑒
𝜙

𝛽) + 𝑒
𝜙𝑔

𝛽) )𝜕𝑅 (𝑅
2Ω) − 2ΩΓ

𝛾

𝜙 (𝛼𝑇𝛽)𝛾 − 2𝑅2Ω
(
Γ
𝜙

𝛾 (𝛼 + Γ
𝜙𝑔

𝛾 (𝛼

)
𝑇
𝛾

𝛽) .

(7.5)
We are interested in the steady state solution to the stress tensor with 𝐷𝑇𝛼𝛽 = 0. We thus
have the following for the constitutive relation in the steady rotating shear flow,

4𝑅(Ω−𝐴)𝑇𝑅(𝛼 (𝑒
𝜙

𝛽)+𝑒
𝜙𝑔

𝛽) )−2ΩΓ
𝛾

𝜙 (𝛼𝑇𝛽)𝛾−2𝑅2Ω(Γ𝜙
𝛾 (𝛼+Γ

𝜙𝑔

𝛾 (𝛼)𝑇
𝛾

𝛽) = −2
(
𝑇
𝛾

(𝛼𝐶𝛽)𝛾 − 𝜌𝑑𝐷𝛼𝛽

)
,

(7.6)
where we have introduced Oort’s first constant 𝐴 = −(𝑅/2)Ω𝑅, which is a measure of the
fluid shear rate. The Rayleigh stability criterion corresponds to 𝐴/Ω < 1.

Explicitly, the “dust-dust” components of Equation 7.6, which can be thought of as the
equations governing the behaviour of the 3D dust stress, are

−4Ω
𝑅

𝑇𝑅𝜙 = − 2
𝑡𝑠
(𝑇𝑅𝑅 − 𝑇𝑅𝑅𝑔

), (7.7)

−2Ω
𝑅

𝑇𝜙𝜙 + 2𝑅(Ω − 𝐴)𝑇𝑅𝑅 = − 2
𝑡𝑠
𝑇𝑅𝜙 +

1
𝑡𝑠
(𝑇𝑅𝜙𝑔 + 𝑇𝑅𝑔𝜙), (7.8)

4𝑅(Ω − 𝐴)𝑇𝑅𝜙 = − 2
𝑡𝑠
(𝑇𝜙𝜙 − 𝑇𝜙𝜙𝑔 ). (7.9)

The “dust-gas” components Equation 7.6, which govern the behaviour of the “cross-stress”
- from the cross correlation between the dust and gas velocities, are

−2Ω
𝑅

𝑇𝑅𝑔𝜙 −
Ω

𝑅
(𝑇𝑅𝜙 + 𝑇𝑅𝜙𝑔 ) = −

(
1
𝑡𝑠

+ 1
𝑡𝑐

)
𝑇𝑅𝑅𝑔

+ 1
𝑡𝑠
𝑇𝑅𝑔𝑅𝑔

, (7.10)

−2Ω
𝑅

𝑇𝜙𝜙𝑔 −Ω𝑅(𝑇𝑅𝑅 − 𝑇𝑅𝑅𝑔
) + 2𝑅(Ω − 𝐴)𝑇𝑅𝑅 = −

(
1
𝑡𝑠

+ 1
𝑡𝑐

)
𝑇𝑅𝜙𝑔 +

1
𝑡𝑠
𝑇𝑅𝑔𝜙𝑔 , (7.11)

−Ω

𝑅
(𝑇𝜙𝜙 + 𝑇𝜙𝜙𝑔 ) + 2𝑅(Ω − 𝐴)𝑇𝑅𝑅𝑔

= −
(

1
𝑡𝑠

+ 1
𝑡𝑐

)
𝑇𝑅𝑔𝜙 +

1
𝑡𝑠
𝑇𝑅𝑔𝜙𝑔 , (7.12)

2𝑅(Ω − 𝐴) (𝑇𝑅𝜙 + 𝑇𝑅𝜙𝑔 ) + 𝑅Ω(𝑇𝑅𝑔𝜙 − 𝑇𝑅𝜙) = −
(

1
𝑡𝑠

+ 1
𝑡𝑐

)
𝑇𝜙𝜙𝑔 +

1
𝑡𝑠
𝑇𝜙𝑔𝜙𝑔 . (7.13)

Finally the “gas-gas” components of Equation 7.6, which describe the behaviour the (3D)
gas Reynolds stress along the dust trajectory, are
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Figure 1: Horizontal stress tensor components in a rotating shear flow, as a function of St
and 𝐴/Ω, with different dimensionless correlation times

−2Ω
𝑅

(𝑇𝑅𝑔𝜙𝑔 + 𝑇𝑅𝑔𝜙) = − 2
𝑡𝑐
(𝑇𝑅𝑔𝑅𝑔

− 𝛼𝑐2
𝑠𝜌𝑑),

(7.14)

−Ω

𝑅
(𝑇𝜙𝜙𝑔 + 𝑇𝜙𝑔𝜙𝑔 ) −Ω𝑅(𝑇𝑅𝑅𝑔

− 𝑇𝑅𝑔𝑅𝑔
) + 2𝑅(Ω − 𝐴)𝑇𝑅𝑅𝑔

= − 2
𝑡𝑐
𝑇𝑅𝑔𝜙𝑔 , (7.15)

2𝑅Ω𝑇𝑅𝑔𝜙𝑔 + 2𝑅(Ω − 2𝐴)𝑇𝑅𝜙𝑔 = − 2
𝑡𝑐
(𝑇𝜙𝑔𝜙𝑔 − 𝛼𝑐2

𝑠𝜌𝑑𝑅
2).

(7.16)

It is straightforward, if rather laborious, to invert the above equations. However, the
resulting expressions are somewhat cumbersome and not particularly informative. We
shall instead use a symbolic algebra package to obtain expressions for the pressure tensor
components that can be used in numerical computations (we provide a Mathematica script
to do this in the supplementary materials). We can then numerically explore the behaviour
of the dust pressure tensor.

Figure 1 shows how the horizontal stress tensor components change with 𝐴/Ω and St for
different dimensionless correlation times. Figure 2 shows the locations in the parameter space
where stress tensor components pass through zero - indicating that the rotating shear flow
no longer posses a steady solution. Together these shows the general behaviour of the dust
stress tensor. This shows that the dust stress tends to get weaker at larger Stokes and tends
to isotropy in the absence of shear 𝐴/Ω → 0. There are singularities/zeros of the pressure
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Figure 2: Locations in the parameter space of zeros of the stress tensor components,
indicating a lack of steady solutions. Black Solid: 𝜏𝑐 = 10−3, Black Dashed: 𝜏𝑐 = 10−2,
Black Dotted: 𝜏𝑐 = 10−2, Blue Solid: 𝜏𝑐 = 1, Blue Dashed: 𝜏𝑐 = 103. The region of the

parameter space above these lines contains no (physical) steady solutions.

tensor at large 𝐴/Ω and St associated with the breakdown of the fluid dust description. For
𝜏𝑐 ≲ 1 these asymptote to the Rayleigh stability criterion for large St, for small Stokes
dust drag/cooling helps to regularise the behaviour of the pressure tensor allow for steady
solutions at higher 𝐴/Ω. For large 𝜏𝑐 small Stokes numbers are less effective at regularising
the behaviour of the stress tensor and we see a zero of the stress tensor at 𝐴/Ω ∼ 2 for small
Stokes. This occurs because of a breakdown of the turbulence model for large 𝜏𝑐 and 𝐴/Ω
(See Appendix A.2 and A.3).

Figure 3 shows the stress tensor components for different Stokes numbers in a rotating
shear flow with 𝜏𝑐 = 1. The left plot shows the Rayleigh stable Keplerian shear flow with
𝐴 = 3

4Ω (The Reynolds stress of the gas associated with this flow is shown in the left hand plot
of Figure 7 in Appendix A.3). For small Stokes numbers the tight coupling to the gas means
the dust stress is set by the velocity correlations in the gas. As the Stokes number increases
there is a competition between the isotropising effect of the turbulence and the shearing out
of the radial component of the stress tensor, leading to an increasingly anisotropic flow.

The right hand plot shows a Rayleigh unstable shear flow with 𝐴 = 1.1Ω (The Reynolds
stress of the gas is shown in the right hand plot of Figure 7). Again at low Stokes the dust
stress is set by the gas velocity correlations. The stress tensor components diverge as the
Stokes number increases, and one approaches the breaks down in the fluid description, before
vanishing indicating a lack of accessible steady flow solution.

Figure 4 shows how the speed of the P-wave varies with Stokes number and direction.
S-waves velocities are the same as those of the P-waves but rescaled by 1/

√
3. As the dust

rheological stress becomes increasingly anisotropic the P-waves and S-waves propagate more
radially than azimuthally. In the right hand plot of the Rayleigh unstable flow the P (and S)
waves cannot propagate at large enough Stokes numbers - further increasing the Stokes
number leads to a breakdown of the fluid description.

7.2. Accretion flow solutions
Section 7.1 gives the effects of the leading order velocity field on the pressure tensor in a
rotating shear flow and neglects the presence of an accretion flow driven by the 𝑅𝑟 𝜙 Reynolds
stress and the effects of gas pressure gradients. To study this effect we implement a 1D hydro-
solver to solve the dust-fluid equations in aligned-cylindrical coordinates. We consider an
axisymmetric dust flow around a Keplerian gravitational potential, neglecting the effects of
vertical gravity.

For the gas properties we solve Equations A 10-A 12 perturbatively, with the leading order
terms being that due to gravity and circular-Keplerian motion. We then consider the 1st
order correction to the gas velocity due to the gas pressure and turbulence. This has the
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Figure 3: Horizontal stress tensor components for a fluid with a dimensionless correlation
time, 𝜏𝑐 = 1. Left: A Rayleigh stable Keplerian shear flow where Ω ∝ 𝑅−3/2 (𝐴 = 3

4Ω);
Right: Rayleigh unstable shear flow with 𝐴 = 1.1Ω. The gas Reynolds stress for these two
cases is shown in Figure 7 in Appendix A.3. For the Keplerian shear flow the rheological

stress tensor becomes increasingly anisotropic as the Stokes number increases. In the
Rayleigh unstable case there is a maximum Stokes number above which the fluid dust

description breaks down as the constitutive equation becomes thermally unstable.
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Figure 4: Illustration of the directional dependence of the P-wave velocity at different
Stokes numbers for the disc considered in Figure 3. The distance from the origin is

proportional to the wavespeed of the P-wave, while the angle to the 𝑥-axis is the direction
of propagation. The axes are aligned such that the x-axis is directed in the radial direction,

while the the y-axis points in the direction of the fluid motion. On this figure the sound
wave in the gas would be a circle of unit radius. For the Keplerian shear flow the P-waves
slow down and preferentially propagate radially as the Stokes number increases. For the
Rayleigh unstable flow the P-wave velocity is highly anisotropic, up to the breakdown in
the fluid description where there is no longer a steady background on which the P-wave

can propagate.

effect of driving a slow, radial accretion flow and making the gas rotation sub-Keplerian
in the presence of a negative pressure gradient. We consider constant 𝛼 and sound speed
throughout.

As a starting point we consider the case of a constant gas surface density, and neglect the
slow change in the gas density due to accretion. This is not self-consistent as the timescale
on which the gas density evolves is typically expected to be comparable to the dust sound
crossing time of interest. We also consider a more realistic example, where we solve for the
steady-state, turbulent gas profile, resulting in a gas surface density of 𝜌𝑔 ∝ 𝑅−3/2 Further
details on the gas-flow considered are given in Appendix A.4.

We solve the dust fluid equations in aligned-cylindrical coordinates using an implemen-
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Figure 5: Density plots for the rotating shearflow, (left) constant density flow, (right)
steady state accretion flow. Both are for Keplerian shear flows, solved with the HLL solver

with 𝜏𝑐 = 0.1. The dashed line indicates the initial density profile, while the solid black
line shows the final density profile. Grey lines show the evolution of the density profile,

spaced every 100 inner orbits (left), and every 200 inner orbits (right).

tation of the HLL (Harten et al. 1983) and Roe (Roe 1981) approximate-Reimann solvers,
and constant reconstruction. We use an operator-split Van-Leer integrator (Van Leer 2006;
Eleuterio 1999), and use an RK(2)3 integrator to integrate the source terms.

We take units such that the radius of the inner boundary is 1 and 𝐺𝑀 = 1, resulting in
the circular Keplerian frequency on the inner boundary also being unity. The domain spans
𝑅 ∈ [1, 5]. In these units we consider a gas disc with constant sound speed 𝑐=0.2, and
turbulence with 𝛼 = 0.02 and 𝜏𝑐 = 0.1 or 𝜏𝑐 = 0.01. This is adopted for computational
convenience (principally difficulties with ensuring positivity of the stress tensor and so that
the dust sound crossing time is not too long), and is not reflective of realistic disc turbulence
(particularly for dust hosting discs). We consider dust with stopping time 𝑡𝑠 = 0.01 at the
reference orbit 𝑅 = 1 and reference gas density 𝜌𝑔 = 1. For the constant gas density case
we start with a constant dust density 𝜌𝑑 = 1, while for the steady state we start with a step
profile,

𝜌𝑑 = 0.1 + 0.9[tanh(2𝑅 + 1) + 1] . (7.17)
In both cases we take the initial dust velocity to be equal to the gas velocity and an isotropic
dust stress with 𝑇𝛼𝛽 = 𝛼𝑐2

𝑠𝑔𝛼𝛽 . Notably this initial dust stress does not correspond to the
anisotropic stress expected in a steady rotating shear flow (as shown in Section 7.1). We
adopt zero-gradient boundary conditions with a diode inner boundary for 𝑈𝑅, i.e. we set
𝑈𝑅 (1) = 0 whenever it is positive thereby only allowing an outflow on the inner boundary.
We add wavekilling zones to our simulations, applying a large artificial viscosity near the
boundary, which decreases to zero within a distance of 0.2 of the boundary. This is done to
stop grid scale oscillations being excited by the boundary, particularly when using the Roe
solver. For the constant gas density case we integrate for 1000 inner orbits, while for the
steady state accretion flow we integrate for 3000 inner orbits. In both cases this does not
reach a steady state due to the long relaxation time in the outer disc.

Figure 5 shows the density of both cases at different times, integrated with the HLL solver
for 𝜏𝑐 = 0.1. In the steady state case the initial dust step in the outer disc has drifted in due to
the drag from the sub-Keplerian gas, before the dust density start to relax towards the steady
state for the induced drift velocity Figure 6 shows the dust stress tensor for the final output
of both these simulations, compared against the steady state solutions of Section 7.1. The
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Figure 6: Diagonal dust-stress components for the flows considered in Figure 5. Full colour
lines are the simulation, while greyed out/transparent lines are the solutions from Section
7.1. These are closer in the inner disc where the velocity is closer to Keplerian motion.
The outer disc in the constant gas density case is still far from the steady state profile.

Roe solver is not able to reach as large a correlation time as the HLL solver (which is more
diffusive), however we carry out the same simulations with a correlation time of 𝜏𝑐 = 0.01
where we find agreement between the two solvers.

The simulations exhibit several of the expected feature of the dust fluid in an accretion
disc. In the steady accretion flow, Figure 5 show the initial step profile drifting inwards due to
the action of gas drag with the sub-Keplerian gas flow. This is well established behaviour for
dust in accretion flows and occurs even in the absent of dust-pressure. For the constant gas
density case the dust is dragged inwards by the accretion flow and builds up on the boundary.
This appears to be due to the adopted boundary conditions being partially permeable to the
dust, with the zero-gradient in the radial velocity resulting in a lower outflow velocity than
expected for a continuation of the accretion flow. The presence of this partial obstruction
is then communicated into the disc by diffusion of the dust due to the gas turbulence.
Preliminary tests simulating the dust fluid in accretion flows with a gas-pressure maximum
suggests, as expected, the gas pressure maximum is no longer a dust trap. This differs from
the behaviour found in pressureless dust models, with the dust now able to reach the inner
boundary given enough time, This effect will have major implications for the transport of
solids in protoplanetary discs and needs to be explored more thoroughly in the future.

The numerical implementation of the dust-fluid solver, presented here, is far from a
practical implementation and requires numerous improvements to be useful. For most
purposes the HLL solver is too diffusive and one should either further develop the Roe solver
to be more stable at large correlation times or implement a HLLC (Toro et al. 1994) type
solver. Currently the solver struggles to maintain positivity of the stress tensor, particularly
𝑇𝜙𝜙, at larger correlation times, with the correlation time reachable by the HLL solver being
𝜏𝑐 = 0.1, rather than the 𝜏𝑐 = 1− 5 expected of realistic disc turbulence. One possible reason
for this is using the total second velocity moment, 𝑇𝛼𝛽 + 𝜌𝑑𝑈𝛼𝑈𝛽 as a conservative variable.
This leads to errors due to the large difference in scale between the orbital motion, 𝜌𝑑𝑈𝜙𝑈𝜙
and the dust stress tensor component 𝑇𝜙𝜙. On obvious improvement would be to implement
a FARGO (Masset 2000) like advection scheme and subtract off the orbital motion, to reduce
the error on 𝑇𝜙𝜙. Is is also possible that a finite difference scheme will perform better than
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the finite-volume Reimann solvers employed here when the orbital motion is treated in this
manor (Benı́tez-Llambay & Masset 2016). Finally much work needs to be done to determine
appropriate boundary conditions, as the current zero-gradient boundaries excite grid scale
oscillations that are currently dealt with by adding viscosity close to the boundary. This
probably indicates that such a choice of boundary are ill posed in the dusty, rotating shear
flow setting.

8. Discussion
In this paper we have chosen not to include the back reaction of the dust on the gas, despite
it’s importance even in dust poor flows. One can include back reaction in an ad-hoc manner
by adding a dust drag term to 𝑓

g
𝑖

,

𝑓
g
𝑖
= −∇𝑖𝜙 − 1

𝜌𝑔
∇𝑖 𝑝𝑔 −

1
𝑡𝑠

𝑓𝑑 (𝑢g
𝑖
− 𝑢d

𝑖 ), (8.1)

where 𝑢d
𝑖

is the mean dust velocity and 𝑓𝑑 = 𝜌𝑑/𝜌𝑔 is the dust to gas density ratio. Here
the back reaction on the gas is only between the mean velocities and does not account for
the effect of the dust on the gas turbulence, through corresponding source terms in the
evolutionary equation for the gas Reynolds stress. A more self consistent approach would
be to allow back reaction with the stochastic gas and dust velocities, which leads to the
obvious improvement on Equation 8.1 by replacing the mean flow back reaction term with
− 1
𝑡𝑠
𝑓𝑑 (𝑣g

𝑖
− 𝑣d

𝑖
) (e.g. as done in Minier & Peirano 2001; Minier et al. 2004; Minier 2015).

However, vg is the velocity of a fluid element (seen), while vd is the velocity of an individual
dust particle, and one expects there to be multiple dust particles within a given fluid element
- it is thus not clear whether this modification is self consistent (see also the discussion in
Minier & Peirano 2001).

As above, in addition to adding in the dust drag, dust loading can affect the fluid turbulence.
An alternative way to include this effect is make 𝑡𝑐 and 𝛼 dependant on collective dust
properties, the most important effect likely being a dependence on the dust to gas ratio
𝑓𝑑 = 𝜌𝑑/𝜌𝑔. It would, thus, be useful to have a more rigorous treatment of back reaction,
this would also be important for ensuring total energy in the gas+dust system is conserved
(particularly to ensure the turbulence doesn’t act as an infinite source of energy).

A rigorous treatment of energy conservation allows for energy to be exchanged between the
gas turbulence, gas thermal energy and dust mechanical potential energy, along with the mean
flow of both phases. This is particularly important in the compressible setting as the pressure
is dynamical, and affected by the gas temperature, rather than being a Lagrange multiplier
enforcing incompressibility (the coupling has been considered in the incompressible setting
e.g. by Fox 2014). This coupling naturally leads to the damping of the gas turbulence due to
dust loading as energy is transformed from the turbulent fluctuations into heating the dust
and is then transformed to the gas thermal energy due to gas drag leading to turbulent gas
motions being converted to heat on ∼ 𝑡𝑠 𝑓

−1
𝑑

. Finally this more complete modelling of the
energy exchange between the three stores of energy may allow for more complex phenomena
like intermittence and predator-prey dynamics which are known to be important in many
turbulence processes (e.g. Diamond et al. 1994).

Our model considers a situation where dust-dust collisions are rare due to the low number
density of the dust relative to the gas. As the dust density increases, dust-dust collisions
can become important, particularly for small grains. Inclusion of dust-dust collisions would
allow contact between the dust fluid theory and existing work on dust pressure in weakly
collisionless dust systems (Goldreich & Tremaine 1978; Borderies et al. 1985; Araki &
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Tremaine 1986; Latter & Ogilvie 2008; Larue et al. 2023). The inclusion of dust collisions
in a SDE model for particle laden flows, and associate moment closure, has been studied in
Innocenti et al. (2019, 2021) and Capecelatro et al. (2016a,b). This includes a separation
of the dust Reynolds stress from the pressure tensor, which is important when dust-dust
collisions are included as the dust collision velocity is principally sensitive to the particle
velocity dispersion rather than the turbulent velocity dispersion (Fox 2014; Capecelatro et al.
2016b). Gas kinetic effects can also be important for smaller dust grains in regions of low gas
density, where finite Knudsen number effects become important. Here dust gas collisions are
infrequent enough, and impart sufficient momentum on the dust grain, that are an additional
source of stochasticity on top of the gas turbulence which will act to heat the dust. Both
dust-dust collisions and kinetic gas effects are likely important in systems with very large
dust to gas ratios - particularly when the gas is produced by sublimating/colliding dust.

Finally more sophisticated models of gas turbulence’s (e.g. Sawford 1991; Pope 2002)
include two timescales (correlation time and Kolmogorov time) and maybe used to derive
finite Reynolds number effects (formally our model is for turbulence with an infinite Reynolds
number). As Reynolds numbers in astrophysical (and geophysical) gasses are very large this
effect is likely only important in a limited region of parameter space - but maybe needed to
obtain the correct collisional velocity for small grains (e.g. to reproduce the results of Ormel
& Cuzzi 2007), or for the experimental verification of the model.

9. Conclusion
In this paper we have derived a fluid model for collisionless dust in a turbulent gas, starting
from a system of stochastic differential equations describing the motion of a single dust
grain. To allow for the coordinate systems and geometries common to astrophysics, we have
adopted a covariant form for our dust-fluid model. We show that the continuum mechanics
properties of dust in a turbulent gas corresponds to a 6-dimensional anisotropic Maxwell
fluid with a dynamically important rheological stress tensor. The 6-dimensional formulation
keeps the dust and fluid seen velocities, and their respective moments, on the same footing.
The coupling between the dust kinetic tensor, dust-gas cross pressure and fluid seen Reynolds
stress are obtained from the advection of the 6-dimensional dust stress tensor by the fluid
flow.

In summery our conclusions are:
• We have developed a dust fluid model, using a closure valid in the accretion disc context,

and demonstrated that the self-consistency of the moment truncation used to obtain the fluid
description is closely related to the thermals stability of the fluid.
• Collisionless dust has a non-zero anisotropic rheological stress which can be dynami-

cally important, such as in dusty atmospheres where the dust is in hydrostatic equilibrium
between the dust stress, vertical gravity and the gas Reynolds stress.
• The dust can support seismic (P and S) waves
• Whether velocity correlations of small dust grains are set by the gas velocity correlations

is determined by a form of Eddy-Knudsen number. Which can lead to small dust grains not
being well mixed with the gas.

We have suggested several potential extension to our model some of which we intend to
pursue in future work.
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Appendix A. Model for the gas
A.1. Formulation

In our model for the turbulent gas an individual fluid element evolves according to the
following set of stochastic differential equations,

𝑑x = v𝑑𝑡, (A 1)

𝑑v = f𝑔𝑑𝑡 −
1
𝑡𝑐
(v − u)𝑑𝑡 +

√︂
2𝛼
𝑡𝑐

𝑐𝑠𝑑W, (A 2)

where (x, v) are the position and velocity of the fluid elements, F is the force per unit mass
on the gas in the absence of turbulence and the turbulence results in an Ornstein-Uhlenbeck
walk around the mean fluid flow with correlation time 𝑡𝑐. W is a Wiener process, with 𝑐𝑠 the
gas sound speed and 𝛼 a dimensionless measure of the strength of the turbulence. The fluid
flow is a member of a statistical ensemble of similar flows with each fluid element following
a single realisation of the flow (Pope 1985; Thomson 1987).

The Fokker-Planck equation associated with these equations can be derived in a similar
way to that of the dust,

𝜕𝑝

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
[𝑣𝑖 𝑝] + 𝜕

𝜕𝑣𝑖

[
𝑝 𝑓 𝑖𝑔 −

1
𝑡𝑐
(𝑣𝑖 − 𝑢𝑖)𝑝

]
=
𝛼𝑐2

𝑠

𝑡𝑐

𝜕2𝑝

𝜕𝑣2 . (A 3)

Taking the 0th, 1st and 2nd velocity moments of this equation we arrive at

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
[𝑢𝑖𝜌] = 0, (A 4)

𝜕

𝜕𝑡
[𝜌𝑢𝑖] +

𝜕

𝜕𝑥 𝑗
[𝑅𝑖 𝑗 + 𝜌𝑢𝑖𝑢 𝑗] − 𝜌 𝑓

𝑔

𝑖
= 0, (A 5)

𝜕

𝜕𝑡
[𝑅𝑖 𝑗 + 𝜌𝑢𝑖𝑢 𝑗] +

𝜕

𝜕𝑥𝑘
[𝑅𝑖 𝑗𝑘 + 3𝑢 (𝑖𝑅 𝑗𝑘 ) + 𝜌𝑢𝑖𝑢 𝑗𝑢𝑘] − 2𝜌𝑢 (𝑖 𝑓

𝑔

𝑗 ) +
2
𝑡𝑐
𝑅𝑖 𝑗 = 2

𝛼𝑐2
𝑠

𝑡𝑐
𝜌𝑔𝑖 𝑗 .

(A 6)

These can be rearranged to obtain

𝐷𝜌 = −𝜌∇𝑖𝑢𝑖 , (A 7)
𝜌𝐷𝑢𝑖 = −∇ 𝑗𝑅𝑖 𝑗 + 𝜌 𝑓

𝑔

𝑖
, (A 8)

(𝐷 + ∇𝑘𝑢𝑘)𝑅𝑖 𝑗 + 2𝑅𝑘 (𝑖∇𝑘𝑢 𝑗 ) = −∇𝑘𝑅𝑖 𝑗𝑘 −
2
𝑡𝑐

(
𝑅𝑖 𝑗 − 𝛼𝑐2

𝑠𝜌𝑔𝑖 𝑗

)
, (A 9)

where, in this Appendix, 𝐷 = 𝜕𝑡 + 𝑢𝑖∇𝑖 is the Lagrangian derivative with respect to the
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gas flow. Our closure scheme for this model assumes 𝑅𝑖 𝑗𝑘 = 0. We shall show, in the next
section, this can be justified on the basis of a near-Maxwellian ordering scheme for the
velocity moments, similar to the dust. Finally using a similar argument to that presented in
Appendix B.1, for the dust, we can show that (when 𝑅𝑖 𝑗𝑘 = 0) 𝑅𝑖 𝑗 is positive semi-definite
for positive semidefinite initial conditions. Thus the equations to be solved for the gas phase
are

𝐷𝜌 = −𝜌∇𝑖𝑢𝑖 , (A 10)
𝜌𝐷𝑢𝑖 = −∇ 𝑗𝑅𝑖 𝑗 + 𝜌 𝑓

𝑔

𝑖
, (A 11)

(𝐷 + ∇𝑘𝑢𝑘)𝑅𝑖 𝑗 + 2𝑅𝑘 (𝑖∇𝑘𝑢 𝑗 ) = − 2
𝑡𝑐

(
𝑅𝑖 𝑗 − 𝛼𝑐2

𝑠𝜌𝑔𝑖 𝑗

)
. (A 12)

Equivalently, one can perform a Reynolds decomposition of this flow resulting in the
equivalent set of equations, which are closer to the formulation of Thomson (1987),

𝑑x = (v𝑡 + u)𝑑𝑡, (A 13)

𝑑v𝑡 = − 1
𝑡𝑐
(v𝑡 − vhs)𝑑𝑡 +

√︂
2𝛼
𝑡𝑐

𝑐𝑠𝑑W, (A 14)

where the total gas velocity is equal to the sum of the mean velocity u and turbulent velocity
v𝑡 , v = u + v𝑡 . The mean velocity obeys the usual Reynolds averaged equation

𝜌𝐷u = 𝜌f𝑔 − ∇ · R, (A 15)
and we have introduced vhs =

𝑡𝑐
𝜌
∇ · R − 𝑡𝑐v𝑡 · ∇u. Minier et al. (2014) has shown that these

two formulations are equivalent.

A.2. Justification of the closure scheme
In this section we will determining a closure for the gas phase in our model. This will exploit
the separation of scales between the hypersonic background motion and the highly subsonic
turbulence and show that there exist a well defined asymptotic scaling in which the departure
from an anisotropic Maxwellian velocity distribution is small. This is similar to the near-
Maxwellian ordering scheme for the dust fluid considered in Section 4.3.2. As we did in the
dust fluid one can obtain an evolutionary equation for the k-th velocity moment of the gas
turbulence,

D1𝑅𝑖1 · · ·𝑖𝑘 + 𝑘𝑅 𝑗 (𝑖1 · · ·𝑖𝑘−1∇ 𝑗𝑢𝑖𝑘 ) = −∇ 𝑗𝑅𝑖1 · · ·𝑖𝑘 𝑗 +
𝑘

𝜌
𝑅(𝑖1 · · ·𝑖𝑘−1∇ 𝑗𝑅𝑖𝑘 ) 𝑗

− 𝑘

𝑡𝑐

(
𝑅𝑖1 · · ·𝑖𝑘 − (𝑘 − 1)𝛼𝑐2

𝑠𝑅(𝑖1 · · ·𝑖𝑘−2𝑔𝑖𝑘−1𝑖𝑘 )
)
,

(A 16)

where we have introduced the differential operator D1 = 𝐷 + ∇𝑖𝑢𝑖 .
Consider a high Mach-number gas flow with subsonic turbulence and introduce two

(potentially) small parameters 𝛿, which is of order 1/M with M the Mach number, and
𝛼 < 1 which is a measure of the strength of the turbulence. We introduce two lengthscales
a long lengthscale 𝐿 = 𝑂 (1) (with long lengthscale variable x), and ‘short’ lengthscale
𝑙 = 𝑂 (𝛿) (with short lengthscale variable 𝝃). To leading order the gas has a Maxwellian
velocity distribution where the mean velocity is 𝑂 (1) and the gas sound speed is 𝑂 (𝛿). This
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ordering scheme is subtly different to the near-Maxwellian ordering scheme of the dust fluid
as we generally have 𝐿 ⩽ 𝑙 ⩽ 𝐿dust. The small parameter 𝜖 in the dust fluid problem is
𝑂 (𝛼1/2𝛿) in the gas ordering scheme. Our ordering scheme will be valid provided that the
turbulent velocities are small compared with the the typical fluid velocities and correspond
to 𝜖 ≪ 1. This can either be due to the flow having a high Mach-number (𝛿 ≪ 1), as is
typical in astrophysics, or when the turbulence is weak (𝛼 ≪ 1).

At leading order we consider a gas with a Maxwellian velocity distribution which varies
on the long lengthscale 𝐿, but having a gas density that can vary on the short lengthscale 𝑙.
At higher order the distribution function has a non-Maxwellian velocity component, which
is allowed to vary on the short lengthscale. The nearly Maxwellian asymptotic scheme is

𝑅𝑖1 · · ·𝑖𝑘 = 𝛼ceil(𝑘/2)𝛿𝑘𝜌(𝝃, x)𝑊𝑖1 · · ·𝑖𝑘 (x) + 𝛼ceil( (𝑘+1)/2)𝛿𝑘+1Σ𝑖1 · · ·𝑖𝑘 (𝝃, x), (A 17)
u = u0(x) + 𝛼2𝛿2u1(𝝃, x), (A 18)

∇ = 𝛿−1 𝜕

𝜕𝝃
+ 𝜕

𝜕x
, (A 19)

where 𝑊𝑖1 · · ·𝑖𝑘 are the Maxwellian velocity correlations and have the same properties as to
there dust counterparts and evolve according to

𝐷𝑊𝑖1 · · ·𝑖𝑘 = −𝑘
[
𝑊
𝑗

(𝑖1 · · ·𝑖𝑘−1
𝐵
𝑖𝑘 ) 𝑗 − (𝑘 − 1)𝑊(𝑖1 · · ·𝑖𝑘−2𝐷𝑖𝑘−1𝑖𝑘 )

]
. (A 20)

As we did with the dust, we can absorb perturbations to the gas density, from the non-
Maxwellian terms, into the definition of Σ𝑖1 · · ·𝑖𝑘 .

Substituting the ordering scheme (Equations A 17-A 19) into Equation A 16 we arrive at

D1𝑅𝑖1 · · ·𝑖𝑘 = 𝛼ceil(𝑘/2)𝛿𝑘𝜌𝐷𝑊𝑖1 · · ·𝑖𝑘 + 𝛼ceil(𝑘/2)+2𝛿𝑘+2𝑢
𝑗

1
𝜕

𝜕𝑥 𝑗
𝑊𝑖1 · · ·𝑖𝑘 + 𝛼ceil( (𝑘+1)/2)𝛿𝑘+1D1Σ𝑖1 · · ·𝑖𝑘

= −𝛼ceil( (𝑘+1)/2)𝛿𝑘
(
𝜕

𝜕𝜉 𝑗
+ 𝛿

𝜕

𝜕𝑥 𝑗

)
(𝜌𝑊𝑖1 · · ·𝑖𝑘 𝑗) − 𝛼ceil(𝑘/2)+1𝛿𝑘+1

(
𝜕

𝜕𝜉 𝑗
+ 𝛿

𝜕

𝜕𝑥 𝑗

)
Σ𝑖1 · · ·𝑖𝑘 𝑗

− 𝑘𝛿𝑘

[
𝛼ceil( (𝑘+1)/2) 𝜌𝑊𝑖1 · · ·𝑖𝑘 + 𝛼ceil(𝑘/2)+1𝛿Σ𝜎𝑖1 · · ·𝑖𝑘

−
(
𝛼ceil( (𝑘+1)/2)𝑊(𝑖1 · · ·𝑖𝑘−1 + 𝛼ceil(𝑘/2)+1𝛿𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

) ( 𝜕

𝜕𝜉 𝑗
+ 𝛿

𝜕

𝜕𝑥 𝑗

) (
𝜌𝑊𝑖𝑘 ) 𝑗 + 𝛼𝛿Σ𝑖𝑘 ) 𝑗

)
− (𝑘 − 1)

(
𝛼ceil(𝑘/2) 𝜌𝑊(𝑖1 · · ·𝑖𝑘−2 + 𝛼ceil( (𝑘+1)/2)𝛿Σ(𝑖1 · · ·𝑖𝑘−2

)
𝑔𝑖𝑘−1𝑖𝑘 )

]
,

(A 21)

where, here, 𝐷 = 𝜕𝑡 + 𝑢𝑖0∇𝑖 and we have made use of D1𝜌𝑔 = (𝐷 + ∇𝑖𝑢𝑖0)𝜌𝑔 = 0.
Making use of Equation A 20 for the evolution of𝑊𝑖1 · · ·𝑖𝑘 , along with the recurrence relation

for 𝑊𝑖1· · ·𝑖𝑘 and rearranging we obtain and equation for the evolution of the non-Maxwellian
part of the turbulent velocity moment,



38

𝛼ceil( (𝑘+1)/2)D1Σ𝑖1 · · ·𝑖𝑘 + 𝛼ceil(𝑘/2)+1 𝜕

𝜕𝜉 𝑗
Σ𝑖1 · · ·𝑖𝑘 𝑗 + 𝑘

[
𝛼ceil(𝑘/2)+1Σ𝜎𝑖1 · · ·𝑖𝑘

− 𝛼ceil( (𝑘+1)/2)+1𝑊(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝜉 𝑗
Σ𝑖𝑘 ) 𝑗 + 𝛼ceil( (𝑘+1)/2) 𝜌𝑊 𝑗 (𝑖𝑘

𝜕

𝜕𝑥 𝑗
𝑊𝑖1 · · ·𝑖𝑘−1 )

− 𝛼ceil(𝑘/2)+1𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝜉 𝑗

(
𝜌𝑊𝑖𝑘 ) 𝑗

)
− (𝑘 − 1)𝛼ceil( (𝑘+1)/2)Σ(𝑖1 · · ·𝑖𝑘−2𝑔𝑖𝑘−1𝑖𝑘 )

]
= 𝛿

[
𝑘𝛼ceil( (𝑘+1)/2)+1𝑊(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝑥 𝑗
Σ𝑖𝑘 ) 𝑗 + 𝑘𝛼ceil(𝑘/2)+1𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝑥 𝑗

(
𝜌𝑊𝑖𝑘 ) 𝑗

)
+ 𝑘𝛼ceil(𝑘/2)+2𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

(
𝜕

𝜕𝜉 𝑗
+ 𝛿

𝜕

𝜕𝑥 𝑗

)
Σ𝑖𝑘 ) 𝑗

+ 𝛼ceil(𝑘/2)+2𝑢
𝑗

1
𝜕

𝜕𝑥 𝑗
𝑊𝑖1 · · ·𝑖𝑘 + 𝛼ceil(𝑘/2)+1 𝜕

𝜕𝑥𝜎
Σ𝛼1 · · ·𝛼𝑘𝜎

]
.

(A 22)

Keeping only leading order terms in 𝛿 then, for even 𝑘 , we have

D1Σ𝑖1 · · ·𝑖𝑘 +
𝜕

𝜕𝜉 𝑗
Σ𝑖1 · · ·𝑖𝑘 𝑗 + 𝑘

[
Σ𝜎𝑖1 · · ·𝑖𝑘 − 𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝜉 𝑗

(
𝜌𝑊𝑖𝑘 ) 𝑗

)
− (𝑘 − 1)Σ(𝑖1 · · ·𝑖𝑘−2𝑔𝑖𝑘−1𝑖𝑘 )

]
− 𝛿

[
𝑘𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝑥 𝑗

(
𝜌𝑊𝑖𝑘 ) 𝑗

)
+ 𝜕

𝜕𝑥𝜎
Σ𝛼1 · · ·𝛼𝑘𝜎

]
= 𝛿𝛼

[
𝑘𝑊(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝑥 𝑗
Σ𝑖𝑘 ) 𝑗 + 𝑘𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

(
𝜕

𝜕𝜉 𝑗
+ 𝛿

𝜕

𝜕𝑥 𝑗

)
Σ𝑖𝑘 ) 𝑗 + 𝑢

𝑗

1
𝜕

𝜕𝑥 𝑗
𝑊𝑖1 · · ·𝑖𝑘

]
,

(A 23)

while for odd 𝑘 , we have

D1Σ𝑖1 · · ·𝑖𝑘 + 𝛼
𝜕

𝜕𝜉 𝑗
Σ𝑖1 · · ·𝑖𝑘 𝑗 + 𝑘

[
𝛼Σ𝜎𝑖1 · · ·𝑖𝑘 − 𝛼𝑊(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝜉 𝑗
Σ𝑖𝑘 ) 𝑗 + 𝜌𝑊 𝑗 (𝑖𝑘

𝜕

𝜕𝑥 𝑗
𝑊𝑖1 · · ·𝑖𝑘−1 )

− 𝛼𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝜉 𝑗

(
𝜌𝑊𝑖𝑘 ) 𝑗

)
− (𝑘 − 1)Σ(𝑖1 · · ·𝑖𝑘−2𝑔𝑖𝑘−1𝑖𝑘 )

]
= 𝛿𝛼

[
𝑘𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

𝜕

𝜕𝑥 𝑗

(
𝜌𝑊𝑖𝑘 ) 𝑗

)
+ 𝑘𝛼𝜌−1Σ(𝑖1 · · ·𝑖𝑘−1

(
𝜕

𝜕𝜉 𝑗
+ 𝛿

𝜕

𝜕𝑥 𝑗

)
Σ𝑖𝑘 ) 𝑗 +

𝜕

𝜕𝑥𝜎
Σ𝛼1 · · ·𝛼𝑘𝜎

]
.

(A 24)

In both cases the right-hand side can be dropped at leading order if either𝛼 or 𝛿 are small. This
confirms that the asymptotic ordering scheme (Equations A 17-A 19) is self-consistent and
the non-Maxwellian terms are suppressed by a factor of ∼ 𝛼/M relative to the Maxwellian
terms. For the purposes of the effect on the gas equation of motion one must consider
the effect on the Reynolds stress gradients. For the nearly Maxwellian velocity distribution
considered the gradients of the Reynolds Stress are
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∇ 𝑗𝑅𝑖 𝑗 = 𝛼𝛿

(
𝜕

𝜕𝜉 𝑗
+ 𝜕

𝜕𝑥 𝑗

)
𝜌𝑊 𝑖 𝑗 + 𝛼2𝛿2

(
𝜕

𝜕𝜉 𝑗
+ 𝜕

𝜕𝑥 𝑗

)
Σ𝑖 𝑗 . (A 25)

Thus the effects of the non-Maxwellian terms are 𝑂 (𝛼2𝛿2) and are thus small relative to the
acceleration and gravity, which are taken to be 𝑂 (1), or the pressure gradients which are
𝑂 (𝛿)

As with the dust fluid, the existence of a consistent asymptotic scaling does not guarantee
that the it is an attractor. We shall not repeat the argument here, but one can follow a similar
line of reasoning to Section 4.3.3 to demonstrate that turbulent velocity moments which start
far from the asymptotic scaling are expected to damp towards the scaling, subject to the
equation governing the evolution of the Reynolds stress having a stable equilibrium. As with
the dust fluid, this is not sufficient to completely show that the near-Maxwellian ordering is
an attractor as it does not account for the possibility of (nonlinear) perturbations to multiple
velocity moments mutually supporting each other against decay. As with the dust fluid a
more complete analysis of when the near-Maxwellian ordering scheme acts as an attractor
must be left for future work.

A.3. Reynolds stress in a rotating shear flow
In this section we shall derive the steady state Reynolds stress in a rotating shear flow. This
will aid our discussion of the behaviour of the dust rheological stress in a rotating shear flow
in Section 7 along with illustrating some key properties of our turbulence model. The steady
state Reynolds stress in the gas satisfies the following equation,

∇𝑘
(
𝑢𝑘𝑅𝑖 𝑗

)
+ 2𝑅𝑘 (𝑖∇𝑘𝑢 𝑗 ) = − 2

𝑡𝑐
(𝑅𝑖 𝑗 − 𝛼𝑐2

𝑠𝜌𝑔𝑔𝑖 𝑗). (A 26)

Adopting cylindrical polar coordinates (𝑅, 𝜙, 𝑧), with the usual expressions for 𝑔𝑖 𝑗 and
Γ𝑘
𝑖 𝑗

. We consider a rotating shear flow with velocity, 𝑢𝑘 = Ω(𝑅)𝑒𝑘
𝜙

. Substituting this into
Equation A 26, and neglecting gradients in 𝑅𝑖 𝑗 at leading order, we have

−2ΩΓ𝑠
𝜙 (𝑖𝑅 𝑗 )𝑠 + 4𝑅(Ω − 𝐴)𝑅𝑅(𝑖𝑒

𝜙

𝑗 ) − 2𝑅𝑘(𝑖Γ
𝜙

𝑗 )𝑘𝑅
2Ω = − 2

𝑡𝑐
(𝑅𝑖 𝑗 − 𝛼𝑐2

𝑠𝜌𝑔𝑔𝑖 𝑗), (A 27)

where we have in introduced Oort’s constant 𝐴 = −𝑅2 Ω𝑅. Explicitly the components of the
Reynolds stress equations are

−4Ω
𝑅

𝑅𝑅𝜙 = − 2
𝑡𝑐
(𝑅𝑅𝑅 − 𝛼𝑐2

𝑠𝜌𝑔), (A 28)

−2Ω
𝑅

𝑅𝜙𝜙 + 2𝑅(Ω − 𝐴)𝑅𝑅𝑅 = − 2
𝑡𝑐
𝑅𝑅𝜙, (A 29)

4𝑅(Ω − 𝐴)𝑅𝑅𝜙 = − 2
𝑡𝑐
(𝑅𝜙𝜙 − 𝛼𝑐2

𝑠𝜌𝑔𝑅
2). (A 30)

We can rearrange these to obtain the following expressions for the Reynolds stress components
in the rotating shear flow,
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Figure 7: Reynolds stress components (in units of 𝛼𝑐2
𝑠) for two different rotating shear

flows. The left is for the, Rayleigh stable, circular Keplerian rotational profile where
Ω ∝ 𝑅−3/2. Here the Reynolds stress becomes increasingly anisotropic as 𝜏𝑐 increases,

although the cross term 𝑅𝑅𝜙 is maximum near 𝜏𝑐 = 1. The right is for a marginally
Rayleigh unstable flow where 𝐴 = 1.1Ω. Here we see that the Reynolds stress diverges as
𝜏𝑐 →

√︁
5/2, where the moment expansion used to derive the turbulent stress model breaks

down.

𝑅𝑅𝑅 = 𝛼𝑐2
𝑠𝜌𝑔

1 + 2𝜏2
𝑐

(
2 − 𝐴

Ω

)
1 + 4𝜏2

𝑐

(
1 − 𝐴

Ω

) , (A 31)

𝑅𝑅𝜙 = 𝛼𝑐2
𝑠𝑅

(
𝐴

Ω

)
𝜏𝑐

1 + 4𝜏2
𝑐

(
1 − 𝐴

Ω

) 𝜌𝑔, (A 32)

𝑅𝜙𝜙 = 𝛼𝑐2
𝑠𝜌𝑔𝑅

2
1 + 2𝜏2

𝑐

(
1 − 𝐴

Ω

) (
2 − 𝐴

Ω

)
1 + 4𝜏2

𝑐

(
1 − 𝐴

Ω

) . (A 33)

(A 34)

This solution breaks down in the presence of strong shear, when 𝐴
Ω

⩾ 1 + 1
4𝜏2

𝑐
, as either

𝑅𝑅𝑅 or 𝑅𝜙𝜙 will be negative. This means there is no stable equilibrium for the Reynolds
stress. As discussed in the previous section, this will also result in a breakdown of the moment
expansion used to derive the equation governing the evolution of 𝑅𝑖 𝑗 as higher order moments
can grow to become important. In Figure 7 we show the Reynolds stress components for the
Rayleigh stable Keplerian shear flow and a Rayleigh unstable flow with 𝐴 = 1.1Ω.

A.4. Accretion flow solutions - gas
In this section we derive the background gas solutions used in the numerical modelling of
Section 7.2. Consider a Keplerian shear flow where the, circular, Keplerian motion is take to
be order 1 and 𝑢𝑅, R, 𝑝 and partial time derivative 𝜕𝑡 are 𝑂 (𝜖) , for some small parameter 𝜖 .
We will neglect vertical gravity throughout, such that the Keplerian potential Φ = −1/𝑅 is a
function of the Cylindrical radius, R, only (where we have adopted units in which 𝐺𝑀 = 1).
We consider velocity, in cylindrical coordinates, of the form
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𝑢𝑅 = 𝜖𝑢̃𝑅, (A 35)
𝑢𝜙 = Ω𝐾 + 𝜖𝑢̃𝜙, (A 36)
𝑢𝑧 = 0. (A 37)

The gas equations for an axisymmetric, vertically invariant flow, neglecting vertical gravity
are

¤𝜌 + 𝑅−1𝜕𝑅 (𝑅𝜌𝑔𝑢̃𝑅) = 0, (A 38)
2𝜌𝑅Ω𝐾 𝑢̃𝜙 = 𝜕𝑅𝑝 + (∇ · R)𝑅, (A 39)
1
2
𝜌𝑢̃𝑅𝑅Ω𝐾 = −(∇ · R)𝜙 . (A 40)

The vertical momentum equation is trivially solved by 𝑢𝑧 = 0. The only time derivative
remaining is that in the continuity equation, responsible for the slow accretion of the gas.
At this order the Reynolds stress is given by Equation A 31-A 33 and 𝑅𝑧𝑧 = 𝛼𝑐2

𝑠𝜌𝑔. For the
Keplerian shear flow we take 𝐴/Ω = 3/4 and 𝛼, 𝑐𝑠 and 𝜏𝑐 to be constants. Substituting these
into the dust stress gradients we have

(∇ · R)𝑅 =
1
2
𝛼

2 + 5𝜏2
𝑐

1 + 𝜏2
𝑐

𝜕𝑅𝑝 + 15
8

𝑝

𝑅

𝛼𝜏2
𝑐

1 + 𝜏2
𝑐

, (A 41)

(∇ · R)𝜙 =
3
4

𝛼𝜏𝑐

1 + 𝜏2
𝑐

𝑅−1𝜕𝑅
[
𝑝𝑅2] , (A 42)

noting that at this order 𝑅𝑅𝑧 = 𝑅𝜙𝑧 = 0. This results in the following corrections to the gas
velocity,

𝑢̃𝜙 =
1

2𝜌𝑅Ω𝐾

[(
1 + 1

2
𝛼

2 + 5𝜏2
𝑐

1 + 𝜏2
𝑐

)
𝜕𝑅𝑝 + 15

8
𝑝

𝑅

𝛼𝜏2
𝑐

1 + 𝜏2
𝑐

]
, (A 43)

𝑢̃𝑅 = − 3
2𝜌𝑅2Ω𝐾

𝛼𝜏𝑐

1 + 𝜏2
𝑐

𝜕𝑅
[
𝑝𝑅2] . (A 44)

We consider two scenarios. One where we neglect the gas continuity equation and consider
a fixed dust density. This approximation can be reasonable if the dust drift timescale or
the characteristic lengthscale of the dust fluid is short, however we adopt it here mostly for
illustrative purposes. The second scenario is to solve for a steady accretion flow with ¤𝜌 = 0
this leads to a gas pressure profile of

𝑝 = −4
3
F 1 + 𝜏2

𝑐

𝛼𝜏𝑐
Ω𝐾 + C𝑅−2, (A 45)

where F and C are constants. For our dust-fluid simulations in Section 7.2 we take 𝜌 ∝ 𝑅−3/2,
which is compatible with the steady state pressure profile above.
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Appendix B. Properties of the Dust Fluid Model
B.1. Realisability

A necessary property of the constitutive relation is that the stress tensor be realisable from
a second velocity moment of some distribution function. A similar property must hold for
the dust Reynolds stress, the proof of which proceeds the same as the proof for the dust
rheological stress tensor - to avoid repeating our selves we shall only cover the latter. As
Π𝛼𝛽 =

∫
𝑝(𝑉𝛼 − 𝑈𝛼) (𝑉𝛽 − 𝑈𝛽)𝑑6V, Π𝛼𝛽 must be positive semi-definite. Thus for all

positive semidefinite initial conditions Π𝛼𝛽 (0) our constitutive model most conserve the
positive semi-definite character of Π𝛼𝛽 . This is similar to the requirements for constitutive
models of the MRI (Ogilvie 2003; Lynch & Ogilvie 2021).

Following (Lynch & Ogilvie 2021) we introduce the quadratic form 𝑄 = Π𝛼𝛽𝑌
𝛼𝑌 𝛽 , if

the stress tensor is positive semi-definite then 𝑄 ⩾ 0 for all vectors 𝑌 𝛼 at all points in
the fluid. We will show by contradiction that an initially positive semi-definite Π𝛼𝛽 cannot
evolve into one that is not positive semi-definite. Suppose, to the contrary, that some point
in the flow 𝑄 < 0 for some vector 𝑋𝛼 at some time after the initial state. Let us consider a
smooth, evolving vector field𝑌 𝛼 that matches the vector 𝑋𝛼 at the given point and time. The
corresponding quadratic form 𝑄 is then a scalar field that evolves according to

D𝑄 = 𝑌 𝛼𝑌 𝛽D2Π𝛼𝛽 + Π𝛼𝛽D2(𝑌 𝛼𝑌 𝛽)
= −2𝑌 𝛼𝑌 𝛽

(
Π
𝛾
𝛼 𝐴̄𝛽𝛾 − 𝜌𝑑𝐷𝛼𝛽

)
+ Π𝛼𝛽D2𝑌

𝛼𝑌 𝛽 ,
(B 1)

where, when operating on 𝑌 𝛼, the differential operator D2 is

D2𝑌
𝛼 = 𝐷𝑌 𝛼 − 𝑌 𝛾∇𝛼𝑈𝛾 −

1
2
𝑌 𝛼∇𝛾𝑈𝛾 . (B 2)

By assumption, 𝑄 is initially positive and evolves continuously to a negative value at the
given later time. Therefore 𝑄 must pass through zero at some intermediate time, which we
denote by 𝑡 = 0 without loss of generality. We can also assume, without loss of generality,
that the vector field evolves according to D2𝑌

𝛼 = 0, which means that it is advected by the
flow. The equation for 𝑄 then becomes

𝐷𝑄 = −2𝑌 𝛼𝑌 𝛽
(
Π
𝛾
𝛼𝐶𝛽𝛾 − 𝜌𝑑𝐷𝛼𝛽

)
, (B 3)

At 𝑡 = 0, 𝑄 = 0 and, as Π𝛼𝛽 is positive semi-definite, one can show that 𝑌 𝛼Π𝛾𝛼 = 0 so that
the time derivative of 𝑄 is given by

𝐷𝑄 |𝑡=0 = 2𝑌 𝛼𝑌 𝛽𝜌𝑑𝐷𝛼𝛽 ⩾ 0 , (B 4)
provided that 𝐷𝛼𝛽 is also positive semidefinite (which is guaranteed as 𝐷𝛼𝛽 =
1
2𝑔
𝜇𝜈𝜎𝛼𝜇𝜎𝛽𝜈). This contradicts the assumption that 𝑄 passes through zero from positive to

negative at 𝑡 = 0. We thus conclude that Π𝛼𝛽 remains positive semi-definite provided it is
initially.

B.2. Viscoelasticity
In this appendix we shall explore the viscoelastic behaviour of the dust rheological stress.
It’s easiest to see the viscoelastic behaviour of the model when 𝑡𝑠 ∼ 𝑡𝑐. Introducing a
characteristic relaxation time of the dust fluid 𝑡𝑟 ∼ 𝑡𝑠 ∼ 𝑡𝑐, and a characteristic fluid timescale
𝑡 𝑓 . We introduce the Deborah number De = 𝑡𝑟/𝑡 𝑓 , with 𝐶𝛼𝛽 and 𝐷𝛼𝛽 being 𝑂 (De−1) while
𝜌𝑑 and D2 are 𝑂 (1). We can rewrite the constitutive relation as



43

D2𝑇𝛼𝛽 = − 2
De

(
𝑇
𝛾

(𝛼𝐶𝛽)𝛾 − 𝜌𝑑𝐷𝛼𝛽

)
, (B 5)

where we now treat De as a bookkeeping parameter to keep track of terms in an expansion
in Deborah number. The constitutive model now has a similar form to classic viscoelastic
models (e.g. the Oldroyd-B model, Oldroyd (1950)). The elastic limit can be recovered by
taking De → ∞ leading to,

D2𝑇𝛼𝛽 = D𝑇𝛼𝛽 − 2𝑇𝛾(𝛼𝜀𝛽)𝛾𝜎𝜔
𝜎 = 0. (B 6)

This corresponds to an elastic flow, with a source term from the flow vorticity. It is equivalent
to the evolution of the Reynolds stress in the absence of source terms (e.g. see Gavrilyuk &
Gouin 2012).

If we instead take the short Deborah number limit we can develop a series solution to
Equation B 5 (similar to Lynch & Ogilvie 2021), which takes the form

𝑇𝛼𝛽 =

∞∑︁
𝑛=0

De𝑛𝑇 (𝑛)
𝛼𝛽

, (B 7)

where

𝑇
(0)𝛾
(𝛼𝐶𝛽)𝛾 = 𝜌𝑑𝐷𝛼𝛽 (B 8)

and

𝑇
(𝑛)𝛾
(𝛼𝐶𝛽)𝛾 = −1

2
D2𝑇

(𝑛−1)
𝛼𝛽

, 𝑛 > 0. (B 9)

Both these equations take the form 𝑇
(𝑛)𝛾
(𝛼𝐶𝛽)𝛾 = 𝑄

(𝑛)
𝛼𝛽

, which can be inverted to obtain

𝑇
(𝑛)
𝛼𝑑𝛽𝑑

= 𝑡𝑠𝑄
(𝑛)
𝛼𝑑𝛽𝑑

+ 𝑡𝑠𝑡𝑐

𝑡𝑠 + 𝑡𝑐

(
𝑄

(𝑛)
(𝛼𝑑𝛽∗𝑑 )

+𝑄
(𝑛)
(𝛼∗

𝑑
𝛽𝑑 ) +

𝑡𝑐

𝑡𝑠
𝑄

(𝑛)
𝛼∗
𝑑
𝛽∗
𝑑

)
(B 10)

𝑇
(𝑛)
𝛼𝑑𝛽𝑔

=
𝑡𝑠𝑡𝑐

𝑡𝑠 + 𝑡𝑐

(
2𝑄 (𝑛)

(𝛼𝑑𝛽𝑔 ) +
𝑡𝑐

𝑡𝑠
𝑄

(𝑛)
𝛼∗
𝑑
𝛽𝑔

)
, (B 11)

𝑇
(𝑛)
𝛼𝑔𝛽𝑔

= 𝑡𝑐𝑄
(𝑛)
𝛼𝑔𝛽𝑔

. (B 12)

Substituting 𝑄
(0)
𝛼𝛽

= 𝐷𝛼𝛽 , and making use of the properties of 𝐷𝛼𝛽 we obtain

𝑇
(0)
𝛼𝑑𝛽𝑑

=
𝑡2𝑐

𝑡𝑠 + 𝑡𝑐
𝐷𝛼∗

𝑑
𝛽∗
𝑑
=

𝑡𝑐

𝑡𝑠 + 𝑡𝑐
𝛼𝑐2

𝑠𝜌𝑑𝑔𝛼𝑑𝛽𝑑 (B 13)

𝑇
(0)
𝛼𝑑𝛽𝑔

=
𝑡2𝑐

𝑡𝑠 + 𝑡𝑐
𝐷𝛼∗

𝑑
𝛽𝑔 =

𝑡𝑐

𝑡𝑠 + 𝑡𝑐
𝛼𝑐2

𝑠𝜌𝑑𝑔𝛼∗
𝑑
𝛽𝑔 , (B 14)

𝑇
(0)
𝛼𝑔𝛽𝑔

= 𝑡𝑐𝐷𝛼𝑡𝛽𝑡 = 𝛼𝑐2
𝑠𝜌𝑑𝑔𝛼𝑔𝛽𝑔 . (B 15)

To calculate 𝑇
(1)
𝛼𝛽

we first need to calculate D2𝑇
(0)
𝛼𝛽

. For simplicity we shall assume that 𝛼,
𝑐𝑠, 𝑡𝑠, 𝑡𝑐 are constant, and that the metric tensor is time independent then we obtain
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(D2T(0) )𝛼𝑑𝛽𝑑 =
2𝑡𝑐

𝑡𝑠 + 𝑡𝑐
𝛼𝑐2

𝑠𝜌𝑑∇̄(𝛼𝑑𝑈𝛽𝑑 ) , (B 16)

(D2T(0) )𝛼𝑑𝛽𝑔 =
𝑡𝑐

𝑡𝑠 + 𝑡𝑐
𝛼𝑐2

𝑠𝜌𝑑

(
∇̄𝛼𝑑𝑈𝛽𝑔 + ∇̄𝛽∗𝑔𝑈𝛼𝑑

)
(B 17)

(D2T(0) )𝛼𝑔𝛽𝑔 =
𝑡𝑐

𝑡𝑠 + 𝑡𝑐
𝛼𝑐2

𝑠𝜌𝑑

(
∇̄𝛼∗

𝑔
𝑈𝛽𝑔 + ∇̄𝛽∗𝑔𝑈𝛼𝑔

)
. (B 18)

Substituting this into Equations B 10-B 12 we obtain

𝑇
(1)
𝛼𝑑𝛽𝑑

= −1
2

𝑡2𝑐
𝑡𝑠 + 𝑡𝑐

𝛼𝑐2
𝑠𝜌𝑑

(
2
𝑡𝑠

𝑡𝑐

𝑡𝑠 + 2𝑡𝑐
𝑡𝑠 + 𝑡𝑐

∇̄(𝛼𝑑𝑈𝛽𝑑 ) + ∇̄𝛼𝑑𝑈𝛽∗𝑑 + ∇̄𝛽𝑑𝑈𝛼∗
𝑑

)
(B 19)

𝑇
(1)
𝛼𝑑𝛽𝑔

= −1
2

𝑡𝑠𝑡
2
𝑐

(𝑡𝑠 + 𝑡𝑐)2𝛼𝑐
2
𝑠𝜌𝑑

[(
2 + 𝑡𝑐

𝑡𝑠

)
∇̄𝛼𝑑𝑈𝛽𝑔 + 2∇̄𝛽∗𝑔𝑈𝛼𝑑 + 𝑡𝑐

𝑡𝑠
∇̄𝛽∗𝑔𝑈𝛼∗

𝑑

]
, (B 20)

𝑇
(1)
𝛼𝑔𝛽𝑔

= −1
2

𝑡2𝑐
𝑡𝑠 + 𝑡𝑐

𝛼𝑐2
𝑠𝜌𝑑

(
∇̄𝛼∗

𝑔
𝑈𝛽𝑔 + ∇̄𝛽∗𝑔𝑈𝛼𝑔

)
. (B 21)

This results in a rheological stress tensor of the form,

𝑇𝛼𝛽 = 𝑝𝑑

(
1 + 𝑡𝑠

𝑡𝑐
Θ
𝑔

𝛼𝛽

)
𝑔𝛼𝛽 +

1
2
𝑝𝑥 (𝑔𝛼𝛽∗ + 𝑔𝛼∗𝛽) − 2𝜇𝜇𝜈

𝛼𝛽
∇𝜇𝑈𝜈 +𝑂 (De2) (B 22)

where we have introduced the dust pressure, 𝑝𝑑 , and cross pressure, 𝑝𝑥 , with 𝑝𝑑 = 𝑝𝑥 =

𝛼𝑐2
𝑠
𝑡𝑐
𝑡𝑠+𝑡𝑐 𝜌𝑑; and for convenience we have defined Θ

𝑔

𝛼𝛽
, with Θ

𝑔

𝛼𝑑𝛽𝑑
= Θ

𝑔

𝛼𝑑𝛽𝑔
= Θ

𝑔

𝛼𝑔𝛽𝑑
= 0

and Θ
𝑔

𝛼𝑔𝛽𝑔
= 1. We have also introduced an anisotropic viscosity tensor, 𝜇𝜇𝜈

𝛼𝛽
, given by,

𝜇
𝜇𝜈

𝛼𝛽
= 𝜇𝑑𝛿

𝜇

(𝛼𝛿
𝜈
𝛽) + 𝜇𝑥

(
𝛿
𝜇

(𝛼𝛿
𝜈
𝛽∗ ) + 𝛿

𝜇

(𝛼∗𝛿
𝜈
𝛽)

)
+ 𝜂

𝜇𝜈

𝛼𝛽
, (B 23)

with

𝜇𝑑 =
1
2
𝑡𝑠𝑡𝑐 (𝑡𝑠 + 2𝑡𝑐)
(𝑡𝑠 + 𝑡𝑐)2 𝛼𝑐2

𝑠𝜌𝑑 , (B 24)

𝜇𝑥 =
1
2

𝑡2𝑐
𝑡𝑠 + 𝑡𝑐

𝛼𝑐2
𝑠𝜌𝑑 , (B 25)

and

𝜂
𝜇𝜈

𝛼𝑑𝛽𝑑
= 𝜂

𝜇𝜈

𝛼𝑔𝛽𝑔
= 0, (B 26)

𝜂
𝜇𝜈

𝛼𝑑𝛽𝑔
=

1
2
𝜇𝑥

[
𝑡2𝑐 − 𝑡2𝑠
𝑡𝑐

𝛿
𝜇
𝛼𝑑𝛿

𝜈
𝛽𝑔

+ (𝑡𝑠 − 𝑡𝑐)𝛿𝜇𝛽∗𝑔𝛿
𝜈
𝛼𝑑

− (𝑡𝑠 + 𝑡𝑐)𝛿𝜇𝛼𝑑𝛿
𝜈
𝛽∗𝑔

+ 𝑡𝑐

𝑡𝑠
𝛿
𝜇

𝛽∗𝑔
𝛿𝜈
𝛼∗
𝑔

]
. (B 27)

B.3. Dust velocity correlations in the short stopping time limit.
In this section we consider the short stopping time behaviour of the rheological stress tensor.
Naively one might expect the dust velocity correlations to match the gas velocity correlations
due to the tight coupling between the gas and dust. This would mean the dust stress tensor
would be given by 𝑇𝛼𝑑𝛽𝑑 = 𝑓𝑑𝑅𝛼∗

𝑑
𝛽∗
𝑑

where 𝑓𝑑 is the dust to gas ratio. We shall show that
this is only the case when the dust experiences the turbulence as a continuum where the dust
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interacts with many turbulent eddies over the lengthscale on which the dust fluid varies. If,
however an individual eddy transports a dust particle a significant distance in the fluid then
the dust velocity correlations can deviate strongly from those of the gas.

We wish to compare the evolutionary equations for the gas Reynolds stress to that of the
dust stress tensor. The gas Reynolds stress evolves according to

𝐷̃𝑅𝑖 𝑗 + 2𝑅
𝑘 (𝑖∇

𝑘𝑢
𝑔

𝑗 ) + 𝑅𝑖 𝑗∇𝑘𝑢𝑘𝑔 = − 2
𝑡𝑐
(𝑅𝑖 𝑗 − 𝜌𝑔𝐷𝑖 𝑗), (B 28)

where 𝐷̃ is the Lagrangian time derivative with respect to the mean gas flow, u𝑔. The dust
stress tensor evolves according to

𝐷𝑇𝛼𝛽 + 2𝑇𝛾 (𝛼∇
𝛾
𝑈𝛽) + 𝑇𝛼𝛽∇𝛾𝑈𝛾 = −2

(
𝑇
𝛾

(𝛼𝐶𝛽)𝛾 − 𝜌𝑑𝐷𝛼𝛽

)
, (B 29)

where 𝐷 is the Lagrangian time derivative with respect to the mean dust flow.
Because of the factor of the dust to gas ratio between the dust rheological and the gas

Reynolds stress, it is more convenient to work with the respective velocity correlation tensors.
The dust velocity correlation tensor 𝑊𝛼𝛽 = 𝑇𝛼𝛽/𝜌𝑑 which evolves according to

𝐷𝑊𝛼𝛽 + 2𝑊𝛾 (𝛼∇
𝛾
𝑈𝛽) = −2

(
𝑊
𝛾

(𝛼𝐶𝛽)𝛾 − 𝐷𝛼𝛽

)
, (B 30)

We can also write the the evolutionary equation for the gas velocity correlation tensor,
𝑅𝑖 𝑗/𝜌𝑔, in the form

D̃2(𝑅𝑖 𝑗/𝜌𝑔) = − 2
𝑡𝑐

(
(𝑅𝑖 𝑗/𝜌𝑔) − 𝐷𝑖 𝑗

)
, (B 31)

where we have introduce the differential operator D̃2 which, when acting on 𝑅𝑖 𝑗/𝜌𝑔, is given
by

D̃2(𝑅𝑖 𝑗/𝜌𝑔) = 𝐷̃ (𝑅𝑖 𝑗/𝜌𝑔) + (2/𝜌𝑔)𝑅𝑘 (𝑖∇
𝑘𝑢
𝑔

𝑗 ) . (B 32)

We now consider small dust grains (𝑡𝑠 → 0) embedded in a gas flow with mean velocity
𝑢
𝑔

𝑖
. The ‘dust’ components of the dust fluid momentum equation, in the limit 𝑡𝑠 → 0, simplify

to

𝑈𝛼𝑑 = 𝑈𝛼∗
𝑑 , (B 33)

while the ‘dummy gas’ components are

𝜌𝑑𝐷𝑈𝛼𝑔 = 𝜌𝑑𝐹𝛼𝑔 − ∇𝛽𝑑𝑇𝛼𝑔𝛽𝑑 − 1
𝑡𝑐
𝜌𝑑

(
𝑈𝛼𝑔 −𝑈

𝑔
𝛼𝑔

)
. (B 34)

While the mean dust velocity is tightly coupled to the mean gas velocity (𝑈𝛼𝑑 = 𝑈𝛼∗
𝑔 )

the mean gas velocity as experience by the dust is not generally the same as the mean gas
velocity experience by the gas, 𝑢𝑔

𝑖
. This is because the dust is effectively a subsample of

the gas velocity field and can experience a mean gas velocity relative to the gas frame due
to correlation in the gas turbulence. This distinction is vital for allowing zero stopping time
particles to diffuse in gas turbulence.

We can write the 6D dust velocity as follows

𝑈𝛼𝑑 = 𝑢
𝛼𝑑
𝑔 + Δ𝑈𝛼𝑑 , 𝑈𝛼𝑔 = 𝑢

𝛼∗
𝑔

𝑔 + Δ𝑈𝛼∗
𝑔 , (B 35)
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where Δ𝑈𝑖 is the relative velocity with respect to the mean gas flow experienced by the gas,
which need not be small. With this velocity for the dust flow the Lagrangian time derivative,
𝐷, can be related to 𝐷̃ by

𝐷 = 𝐷̃ + Δ𝑈𝛾∇𝛾 . (B 36)

Substituting this velocity into Equation B 30 and separating the dust and dummy gas
components of the dust constitutive relation we get

𝐷̃𝑊𝛼𝑑𝛽𝑑 + 2𝑊
𝛾 (𝛼𝑑∇

𝛾
𝑢
𝑔

𝛽𝑑 ) + Δ𝑈𝛾∇𝛾𝑊𝛼𝑑𝛽𝑑 + 2𝑊𝛾 (𝛼𝑑∇
𝛾
Δ𝑈𝛽𝑑 ) = − 1

𝑡𝑠

(
2𝑊𝛼𝑑𝛽𝑑 −𝑊𝛼∗

𝑑
𝛽𝑑 −𝑊𝛼𝑑𝛽

∗
𝑑

)
,

(B 37)

𝐷̃𝑊𝛼𝑑𝛽𝑔 +𝑊𝛾𝛼𝑑∇
𝛾
(
𝑢
𝑔

𝛽∗𝑔
+ Δ𝑈𝛽∗𝑔

)
+𝑊𝛾𝛽𝑔∇

𝛾 (
𝑢
𝑔
𝛼𝑑 + Δ𝑈𝛼𝑑

)
+ Δ𝑈𝛾∇𝛾𝑊𝛼𝑑𝛽𝑔 = −

(
1
𝑡𝑠

+ 1
𝑡𝑐

)
𝑊𝛼𝑑𝛽𝑔 +

1
𝑡𝑠
𝑊𝛼∗

𝑑
𝛽𝑔 ,

(B 38)

𝐷̃𝑊𝛼𝑔𝛽𝑔 + 2𝑊
𝛾 (𝛼𝑔∇

𝛾
𝑢
𝑔

𝛽𝑔 )∗ + Δ𝑈𝛾∇𝛾𝑊𝛼𝑔𝛽𝑔 + 2𝑊𝛾 (𝛼𝑔∇
𝛾
Δ𝑈𝛽𝑔 )∗ = − 2

𝑡𝑐

(
𝑊𝛼𝑔𝛽𝑔 − 𝛼𝑐2

𝑠𝑔𝛼𝑔𝛽𝑔

)
.

(B 39)

Taking the short stopping time limit of Equations B 37 and B 38 leads to

𝑊𝛼𝑑𝛽𝑑 =
1
2
(𝑊𝛼∗

𝑑
𝛽𝑑 +𝑊𝛼𝑑𝛽

∗
𝑑
), (B 40)

and

𝑊𝛼𝑑𝛽𝑔 = 𝑊𝛼∗
𝑑
𝛽𝑔 . (B 41)

We can use these relations to simplify the ‘dummy gas’ components (Equation B 39), which
can be rearranged to obtain

𝑡𝑐D̃2𝑊𝛼𝑔𝛽𝑔 + 2(𝑊𝛼𝑔𝛽𝑔 − 𝛼𝑐2
𝑠𝑔𝛼𝑔𝛽𝑔 ) = −𝑡𝑐

(
Δ𝑈𝛾∇𝛾𝑊𝛼𝑔𝛽𝑔 + 2𝑊𝛾 (𝛼𝑔∇

𝛾
Δ𝑈𝛽𝑔 )

)
. (B 42)

If Δ𝑈∗ is the characteristic scale of the relative velocity Δ𝑈𝛼 and 𝐿 is a characteristic
lengthscale of variations in the fluid flow then we can introduce an Eddy-Knudsen number,

Kne =
𝜆

𝐿
=
𝑡𝑐Δ𝑈

∗

𝐿
, (B 43)

where 𝜆 = 𝑡𝑐Δ𝑈
∗ is the mean free path of a dust grain in the turbulent flow representing the

lengthscale a dust grain is transported by a single eddy. When Kne ≪ 1 the dust experiences
the gas turbulence as a continuum, interacting with a large number of turbulent eddies on the
lengthscale of the fluid. When Kne ≳ 1 the dynamics of a dust grain is dominated by the last
eddy that it interacted with - in a similar manor to the effects of individual particle collisions
in weakly collisional gasses. Rescaling the right-hand side of Equation B 42 and making use
of the Eddy-Knudsen number we arrive at
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𝑡𝑐D̃2𝑊𝛼𝑔𝛽𝑔 + 2(𝑊𝛼𝑔𝛽𝑔 − 𝛼𝑐2
𝑠𝑔𝛼𝑔𝛽𝑔 ) = −Kne

(
Δ𝑈𝛾

Δ𝑈∗ 𝐿∇𝛾𝑊𝛼𝑔𝛽𝑔 + 2𝑊𝛾 (𝛼𝑔𝐿∇
𝛾 Δ𝑈𝛽𝑔 )

Δ𝑈∗

)
.

(B 44)
In the limit Kne → 0 this matches Equation B 31 for the turbulent gas velocity correlations.
Thus we conclude that in limit 𝑡𝑠, Kn𝑒 → 0 the dust velocity correlations are set by the gas
velocity correlations. However when Kne ≳ 1 the dust velocity correlations no longer match
those of the gas as the dust velocity correlations are strongly affected by individual eddies.

Appendix C. Higher moments of the Fokker-Planck equation terms
The individual terms in the Fokker-Planck equation satisfy the follow relations, which are
important for deriving the evolutionary equations for the higher velocity moments,∫

(𝑉𝛼1 −𝑈𝛼1) · · · (𝑉𝛼𝑘
−𝑈𝛼𝑘

) 𝜕𝑝
𝜕𝑡

𝑑6V =
𝜕Π𝛼1 · · ·𝛼𝑘

𝜕𝑡
+ 𝑘Π(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝑡
𝑈𝛼𝑘 ) , (C 1)

∫
(𝑉𝛼1 −𝑈𝛼1) · · · (𝑉𝛼𝑘

−𝑈𝛼𝑘
) 𝜕

𝜕𝑋𝜎
[𝑉𝜎 𝑝]𝑑6V

=
𝜕

𝜕𝑋𝜎

(
Π𝛼1 · · ·𝛼𝑘𝜎 +𝑈𝜎Π𝛼1 · · ·𝛼𝑘

)
+ 𝑘Π𝜎

(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝑋𝜎
𝑈𝛼𝑘 ) + 𝑘𝑈𝜎Π(𝛼1 · · ·𝛼𝑘−1

𝜕

𝜕𝑋𝜎
𝑈𝛼𝑘 ) ,

(C 2)∫
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[
𝑝∇𝜎Φ + 𝑝𝐶𝜎𝛾 (𝑉𝛾 −𝑈𝜎
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]
𝑑6V

= −𝑘Π(𝛼1 · · ·𝛼𝑘−1

[
∇
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𝛾
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𝑔
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(C 3)

∫
(𝑉𝛼1 −𝑈𝛼1) · · · (𝑉𝛼𝑘

−𝑈𝛼𝑘
)𝐷𝜇𝜈

𝜕2𝑝

𝜕𝑉𝜇𝜕𝑉𝜈
𝑑6V = 𝑘 (𝑘 − 1)Π(𝛼1 · · ·𝛼𝑘−2𝐷𝛼𝑘−1𝛼𝑘−2 ) . (C 4)
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