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Energy-based fragmentation methods approximate the potential energy of a molecular
system as a sum of contribution terms built from the energies of particular subsystems. Some
such methods reduce to truncations of the many-body expansion (MBE); others combine
subsystem energies in a manner inspired by the principle of inclusion/exclusion (PIE). The
combinatorial technique of Möbius inversion of sums over partially ordered sets, which
generalizes the PIE, is known to provide a non-recursive expression for the MBE contribution
terms, and has also been connected to related cluster expansion methods. We build from these
ideas a very general framework for decomposing potential functions into energetic contribution
terms associated with elements of particular partially ordered sets (posets) and direct products
thereof. Specific choices immediately reproduce not only the MBE, but also a number of
other existing decomposition forms, including, e.g., the multilevel ML-BOSSANOVA schema.
Furthermore, a different choice of poset product leads to a setup familiar from the combination
technique for high-dimensional approximation, which has a known connection to quantum-
chemical composite methods. We present the ML-SUPANOVA decomposition form, which
allows the further refinement of the terms of an MBE-like expansion of the Born-Oppenheimer
potential according to systematic hierarchies of ab initio methods and of basis sets. We outline
an adaptive algorithm for the a posteori construction of quasi-optimal truncations of this
decomposition. Some initial experiments are reported and discussed.

1. Introduction

The generally high-dimensional nature of the electronic Schrödinger equation renders it inaccessible
to conventional numerical techniques. Some recourse is possible to the specialized mechanisms of
computational quantum chemistry [1–5], but the involved costs still scale superlinearly, so these cannot
be applied to larger molecular systems, especially not to an acceptable level of accuracy. A common
tactic is to decompose the single overarching electronic problem into subproblems. Solutions to these can
approximated independently, and combined back into an approximate solution for the original problem.
Distinct versions of this tactic are recognisably present in composite methods [6–8], and in energy-based
fragmentation methods [7, 9–11].

The working formulae for fragmentation methods are often related to or inspired by the well-known
many-body expansion (MBE) [11–14]. Extensions apply counting arguments founded in the principle
of inclusion/exclusion (PIE) [13, 15]. Significant overlap exists here with those fragmentation methods
which construct and identify their fragments using ideas from graph theory [14, 16–22], and also with
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multilevel fragmentation methods [14, 20, 21, 23–27], which combine the results of subsystem calculations
performed at differing levels of theory.

Much work has gone into understanding the properties of and relationships between different fragmen-
tation methods, often with an eye to their unification [13, 15, 27–29]. We suggest that the combinatorial
theory of Möbius inversion [30–32], which can be understood as an extension of inclusion/exclusion,
provides a useful theoretical framework, not only for the comparison and analysis of existing fragmentation
methods, but also for the development of new ones. The connection between Möbius inversion and the
MBE is known [12, 33], although apparently unexplored in the modern fragmentation method context.
But Möbius inversion has long been applied in cluster expansion methods, see, e.g., [33–35]. These are
closely related to the MBE [33], and some are explicitly founded in graph theory, e.g., [34].

We consider here a very general decomposition form over direct products of partially ordered sets
(posets). Specific choices of posets directly and deliberately reproduce existing decomposition forms
well-known in mathematics. The simplest case would be a totally ordered set, i.e., a chain, and direct
products of chains lead to grid-based decompositions like those underlying the combination technique [36–
42]. The choice instead of a single Boolean algebra, that is, an inclusion-ordered powerset 2[n], delivers
an ANOVA-like decomposition [43, 44], cf. [45]. Any subposet of a Boolean algebra is isomorphic to an
ordered subset of the induced subgraphs of some undirected graph G with vertex set [n] [46], and the
structural properties of some such subsets make them either more or less appealing for our purposes. From
the chemical perspective, the resulting decompositions either mimic or directly reconstruct, e.g., composite
methods [6], the MBE, graph-based forms like the BOSSANOVA (Bond-Order diSSection ANOVA) [18,
19] decomposition and particular cases of the CGTCE [34], and finally, multilevel mechanisms such as
ML-BOSSANOVA [14] and ML-FCR [27]. A product of either a Boolean algebra or a subposet thereof
with multiple chains extends these ideas to a new decomposition type that we call ML-SUPANOVA.

This article is based on [47]; further details including data, graphics, and experiments are given there.
The structure is as follows: In Section 2, we progressively develop and motivate our new multilevel
decomposition. Section 2.1 draws on fundamentals in computational chemistry to establish a hierarchy of
model approximations to the Born-Oppenheimer potential function, much like those used in composite
methods. Section 2.2 establishes some basics regarding fragmentation methods. Section 2.3 introduces
the combinatorial tools that we need to build and operate our multilevel scheme, and demonstrates
their application. In Section 2.4, we use these tools to uncover an issue in the BOSSANOVA setup,
and consider the introduction of convex subgraphs as a partial panacea. Section 2.5 combines ideas
from both composite methods and multilevel energy-based fragmentation methods, and introduces the
final ML-SUPANOVA decomposition. We outline in Section 3 an adaptive a posteori algorithm for
generating cost-effective truncations of this decomposition. Some initial experimental results are discussed
in Section 4, and we make some concluding remarks in Section 5.

2. Decomposition-Based Techniques in Computational Chemistry

2.1. A model hierarchy and composite methods

For general background on computational quantum chemistry, we refer to [1–5]. The electronic Schrödinger
equation poses a linear partial differential eigenproblem,

HΨ(x1, . . . , xN ) = EΨ(x1, . . . , xN ). (1)

Here, Ψ is the electronic wavefunction of a molecular system composed of M clamped nuclei and N
electrons, the latter with spatial/spin coordinates {xi = (ri ∈ R3, σi ∈ {±1/2})}Ni=1. H is the corresponding
electronic Hamiltonian operator, and E is the electronic energy of an eigenstate Ψ. The Schrödinger
equation — with “electronic” implicit from this point — is usually cast into atomic units, and energies
are measured in Hartrees (Eh). Solutions to the weak form of (1) live in

V := H1
((

R3 × {±1/2}
)N) ∩ N∧

i=1

L2
(
R3 × {±1/2}

)
, (2)
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see [2, 48]. We will refer to as the Born-Oppenheimer potential the function

V BO(X1, . . . , XM ) :=
∑

1≤A<B≤M

ZAZB

∥RB −RA∥2
+ inf

Ψ∈V
⟨Ψ,Ψ⟩=1

⟨Ψ, HΨ⟩ (3)

delivering the ground-state total energy under the Born-Oppenheimer approximation, cf. [14]. This
includes the repulsion energy contributed by the nuclei with coordinates {XA = (RA ∈ R3, ZA ∈ N)}MA=1,
where each RA is a spatial coordinate and each ZA is an atomic number.

Quantum chemical ab initio methods approximate the minimizing Ψ in (3) via the Hartree-Fock
ansatz [1]. Here, Ψ is restricted to the space of single Slater determinants, each an antisymmetrized
combination of a particular set of N spin orbitals, {χi : H1(R3 × {±1/2})}Ni=1. The spatial components
of these are approximated in a discretization of H1(R3) via a practically finite basis set of NAO atomic
orbital functions {ϕµ ∈ H1(R3)}NAO

µ=1 . The cost for the setup and iterative solution of the Hartree-Fock

problem formally runs as O(N4
AO), but certain localization properties of commonly-used basis functions

reduce this cost in practice to O(N3
AO), see, e.g., [3].

One requires or at least desires also an approximation to the correlation energy, that is, the model
error in the energy E due to the Hartree-Fock approximation. The usual SCF method for approximating
a Hartree-Fock solution produces NAO spin orbitals, more than the N which are strictly required. The
remainder can be selectively interchanged with those making up the Hartree-Fock solution to produce
an orthonormal set of

(
NAO

N

)
Slater determinants, giving a basis in turn for a finite-dimensional linear

subspace VNAO
⊂ V ; see the treatment in [48]. The full configuration-interaction (FCI) method produces

a Ritz-Galerkin approximation of the full wavefunction Ψ within this subspace, and provides the best
possible estimate of the correlation energy within the chosen discretization of H1(R3). As NAO →∞,
FCI approximations in a family of appropriately-constructed subspaces {VNAO}NAO>N converge to the
true Ψ [48, Thm. 3.1].

The dimensionality of VNAO
scales exponentially in NAO [48], and so FCI solutions are generally

infeasible to obtain. A more affordable size-consistent approximation to the correlation energy can be
obtained from second-order perturbative Møller-Plesset theory (MP2) [1, 49], at cost scaling basically as
O(N5

AO). The coupled cluster approach [48, 50] delivers more accurate size-consistent approximations
again. Coupled cluster treatments are usually specified by the order of those excitations retained
in the exponentialized cluster operator: CCSD (single and double excitations), CCSDT (also triple
excitations), CCSDTQ, and so on. The cost of an CC(n) coupled cluster calculation considering nth-order
excitations [51] can be rather loosely given as O(N2n+2

AO ), but see [51] for more precision.
A stepping stone between the CCSD and CCSDT methods is provided by CCSD(T) [52], which is

famously considered to provide the practical reference for accurate computational chemistry, usually
as measured against the chemical accuracy threshold of 1 kcal mol−1 ≈ 0.0016Eh. The perturbative
approach underpinning the CCSD(T) correction has been generalized to CC(n)(n + 1) correction terms
applicable to CC(n) calculations [53–55]. Again loosely, these cost O(N2n+3

AO ) to evaluate, but see and
cf. [8, 50, 54]. Taken all together, then, the ab initio methods listed above can be arranged into a hierarchy
containing 2N − 1 elements,1 with regularly increasing cost and presumably increasing accuracy, cf.,
e.g., [8, 50]:

HF[O(N3
AO)]→ MP2[O(N5

AO)]→ CCSD[O(N6
AO)]→ CCSD(T)[O(N7

AO)]

→ · · · → CC(n)[O(N2n+2
AO )]→ CC(n)(n + 1)[O(N2n+3

AO )]

→ · · · → FCI[∼ O(NN
AO)].

(4)

The size NAO of the discretizing basis set {ϕµ}NAO
µ=1 is an adjustable parameter in all of the above, but

in practice only indirectly. Modern computational chemistry generally employs basis sets composed of
Gaussian-type functions [3–5, 56, 57]. In the usual case of a polyatomic system, these basis sets are
constructed by replication and translation of standardized families of basis sets optimized for monatomic
problems, such as the cc-pVnZ sets [58]. The error due to the incompleteness of these basis sets is expected
to decrease regularly as n→∞ and the so-called complete basis set (CBS) limit is approached [57]. This

1Where we assume for the sake of simplicity that up to N spin orbitals are available for excitation. In practical settings,
we should more properly consider the implications of, e.g., spin-restricted formalisms like RHF, see, e.g., [1, 3].
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regularity is supported at least in practice by the success of extrapolation procedures; see, e.g., [59], and
discussion in [14]. In any case, the total number of basis functions required to describe an M -atom system
with an cc-pVnZ basis set goes as NAO ∼Mn3; see [4, Sec. 8.3] for precise counting formulae per atom.

We will refer to any particular combination of an ab initio method, e.g., HF or MP2, and a generating
basis set, e.g., cc-pVDZ or cc-pVTZ, as a level of theory. Each such pairing is viewed as providing an
approximation Vm,p : (R3×N)M → R to the true Born-Oppenheimer potential (3), where 1 ≤ m ≤ 2N−1
indexes the method as per the ordering of (4), and 1 ≤ p <∞ indexes the basis set within its particular
family. In the last, it suffices intuitively to think of the cc-pVnZ basis sets, such that p = 1 indexes
cc-pVDZ, p = 2 similarly cc-pVTZ, and so on, but any naturally-orderable family that produces a
sufficiently regular error decay will do.

Similar hierarchies are widely used in composite methods like G4(MP2) [60, 61], the ccCA [62], W4 [63],
and the HEAT schemes [64]; see also the reviews [7, 8]. As a general rule, these require some set of
full-system single-point calculations to be carried out, each at a different level of theory. The energetic
results of some of these are carefully subtracted from those of others, providing a collection of correction
terms that represent, e.g., the added accuracy gained by moving from MP2/cc-pVDZ to CCSD/cc-pVDZ,
or from MP2/cc-pVDZ to MP2/cc-pVTZ. The sum of these correction terms then gives an overall
extrapolation towards a true FCI/CBS solution.

It was observed in passing in [14] that the derivation and resummation of the correction terms in
composite methods is formally reminiscent of the combination technique [36, 37] for efficient high-
dimensional approximation. In [6], this similarity was exploited to construct a combination quantum
machine-learning scheme. For intuition, it helps to interpret the indices m and p as locating the potentials
Vm,p on a so-called Pople diagram; see and cf. the reviews already cited, [5, Fig. 5.4], and [6, Fig. 1].
Without involving machine learning, a generalized picture of the connection can be given as follows, cf. [6,
8], although at some risk of oversimplification.2 Define a family of contribution/correction terms by

Ṽm,p := Vm,p −
∑
n<m

Ṽn,p −
∑
q<p

Ṽm,q −
∑
n<m
q<p

Ṽn,q. (5)

Let L be a linear functional mapping potentials Vm,p into some suitable Banach space Y , and assume much
as in [14] that ∥L[Vm,p − Vm,p−1]∥Y ≲ gp, for some sequence (gp ∈ R)p∈N such that

∑
p∈N gp converges

absolutely. We restrict ourselves here to a simple point-evaluation functional L[Vm,p] = Vm,p(X1, . . . , XM )
parametrized by a fixed molecular conformation {XA}MA=1, but, e.g., an evaluation of the nuclear gradient
requires no significant theoretical adjustment in what follows. Then we obtain pointwise an exact
expansion of the Born-Oppenheimer potential as

V BO =

2N−1∑
m=1

∞∑
p=1

Ṽm,p. (6)

Experience with the combination technique suggests that accurate yet affordable results can be obtained
by truncating this sum in a lower-triangular fashion, for example, after all terms with m+p ≤ N ′ for some
reasonably low N ′. And indeed, up to very many intricacies, and precise choice of the set of potentials
Vm,p and truncation of (6), this is essentially just how composite methods operate.

2.2. Energy-based fragmentation methods

Alternatively, energy-based fragmentation methods, hereafter just “fragmentation methods”, aim to obtain
approximate solutions to the Schrödinger equation at costs scaling linearly in M . For detailed reviews,
see, e.g., [7, 9–11]. In brief, a fragmentation method involves a decomposition of the full set of nuclear

indices [M ] = {1, 2, . . . ,M} into a family of K subsets F = {Fi ⊆ [M ]}Ki=1 such that
⋃K

i=1 Fi = [M ]. As
per, e.g., [7, 12, 13], this decomposition can be either disjoint, so that Fi ∩ Fj = ∅ for i ̸= j and thus
{Fi}Ki=1 is a strict partition of [M ], or overlapping if not; cf., however, comments in [10] questioning
the meaningfulness of this differentiation in practice. We will refer to each Fi as a fragment, and the

2For example, this does not allow for some common characteristics of composite models, such as the prevalent use of
CBS extrapolation schemes, and the introduction of corrections targeting, e.g., core-valence interactions and relativistic
effects. For a much more detailed discussion of this setup, see [47, Chap. 4].
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family F = {Fi ⊆ [M ]}Ki=1 as a fragmentation, with the disjointness condition Fi ∩ Fj = ∅ holding unless
otherwise stated.

The prototypical fragmentation method involves a truncation of the well-known many-body expansion
(MBE), see, e.g., [13, 14, 33]. We construct the MBE as follows. Write simply as V : (R3 × N)M → R
some particular symmetric potential, either an approximation Vm,p as defined above, or the true V BO.
Further, let {Vu : (R3 × Z)M → R}u⊆[M ] be a family of subproblem potentials, one for each subset of the
nuclear indices [M ]. Each Vu is a potential which focuses basically the same level of theory as V on the
nuclei indexed by u; however, each such potential still retains at least the possibility of a dependence on
the full set of nuclei. This allows, for instance, the definition of each Vu to cater for the introduction of
such link atoms as are necessary after severing the subsystem indexed by u out from its surrounding
electrostatic environment [65], and/or to embed a single-point calculation in a field of Coulomb point
charges, as in, e.g., [23, 66]. The MBE of V is then

V =
∑

u⊆[M ]

Ṽu = Ṽ∅ +

M∑
i=1

Ṽ{i} +

M∑
i=1

M∑
j=i+1

Ṽ{i,j} + · · ·+ Ṽ[M ], (7)

where each member of the family {Ṽu}u⊆[M ] is a contribution potential, defined for the moment recursively
as

Ṽu := Vu −
∑
v⊂u

Ṽv. (8)

As noted in [14], it is easy to see that as long as V[M ] = V , the expansion (7) is exact, regardless of the
form of the remaining potentials Vu. Although V∅ can be zero, and usually implicitly is, this is not a
requirement, as we shall briefly discuss below.

It is more common in practice to construct an MBE in terms of some fragmentation F of [M ], as in,
e.g., [29]. To formulate this, writing Fu :=

⋃
i∈u Fi, we decompose V instead as

V =
∑

u⊆[K]

ṼFu , ṼFu
:= VFu −

∑
v⊂u

ṼFv . (9)

We will refer to this form as a fragment MBE, in contrast to the nuclear MBE (7). For notational ease,
we will work mostly with the nuclear form. But as we shall see, a fragment MBE can be viewed quite
precisely as a restriction of a nuclear MBE.

The traditional way to derive a working fragmentation method from an MBE like (7) (or (9), proceeding
equivalently) is to truncate the expansion after all terms Ṽu with |u| ≤ n ≤M for some particular choice
of n. The critical assumption driving such an n-body expansion is that of a decay in |Ṽu| as |u| increases,
one swift enough that

∑
|u|>n Ṽu is negligibly small even for n≪M [11, 14]. Then, since the evaluation

costs of the potentials scale polynomially in |u|, the terms in the n-body expansion are individually cheap
to calculate, and this can collectively be done in an embarrassingly-parallel fashion [11]. It has been
demonstrated in [28, 67] that these assumptions are flawed. The actual decay in the potentials is not as
reliable or as fast as hoped, see also, e.g., [68], but more concerningly, the arithmetic required to evaluate
an n-body expansion rapidly amplifies the uncertainties produced by the iterative solvers which always
lie behind the potentials Vu in practical implementation. We will briefly return to this latter point in
Sections 3 and 4 below.

Other fragmentation methods start with an explicitly overlapping set of fragments, and generate
weighted sums of energy terms motivated by inclusion/exclusion arguments in an effort to somehow
avoid double-counting interactions or particles; see [13, 15], and cf., e.g., [17]. The generalized many-body
expansion (GMBE) [13] seeks to build by extension a framework capable of handling n-body combinations
of overlapping fragments, rather than disjoint fragments as in (9). To obtain an n-body truncation of
the GMBE, one starts by forming the family {F ′

i}K
′

i=1 of all K ′ =
(
K
n

)
exactly n-fold unions of a set of K

distinct and potentially overlapping fragments Fi, called in context n-mers [13, 15]. Adapting from [15,
(1.9)], an n-body truncation of the GMBE can then be written as

EGMBE
(n) =

K′∑
i=1

EF ′
i
−

K′∑
i<j

EF ′
i∩F ′

j
+

K′∑
i<j<k

EF ′
i∩F ′

j∩F ′
k

+ · · ·+ (−1)K
′+1EF ′

1∩···∩F ′
K′ , (10)

5



where, e.g., EF ′
i∩F ′

j
:= L[VF ′

i∩F ′
j
] indicates the total energy of the subsystem indexed by the intersection

of n-mer fragments F ′
i and F ′

j . The formula is explicitly motivated by the well-known inclusion/exclusion
expression for the cardinality of the union of a collection of potentially-overlapping sets. In the case when
the initial fragmentation is disjoint, the n-body GMBE energy is expected to reduce to a standard n-body
truncation of a fragment MBE [13, 15].

Mathematically, the MBE is an ANOVA-like decomposition [14, 18, 19, 43, 44], and so each term Ṽu

can be viewed as the contribution of the lower-dimensional subset of dimensions indexed by u to the
high-dimensional function V . Just the same idea underlies a construction of the MBE as a particular high-
dimensional model representation (HDMR) [45]. A low-order truncation of the MBE therefore exploits a
low effective dimension in the underlying electronic problem [14, 43]. It has been widely observed, see,
e.g., [7, 10, 12, 29], that the energy expressions of many fragmentation methods can be understood as
truncated MBEs. We believe, probably uncontroversially, that the ANOVA-like viewpoint suggests that
any fragmentation method should ultimately revert to a truncation

∑
u∈I Ṽu for a downward-closed subset

I ⊆ 2[M ], in the sense that if v ⊆ u ∈ I then also v ∈ I — for if not, the “missing” terms in I introduce
an inherent error to the approximation that cannot be systematically removed. This requirement has
already been explicitly stated in some methods, e.g., [14, 29].

The following straightforward observation underpins much of what we do in the following: any truncation
of (7) can be rewritten as a linear combination of potentials Vu rather than explicitly contributions Ṽu,
simply by application of (8) and collection of terms. Doing so leads to non-recursive expressions for,
e.g., standard n-body expansions [28, 69]. We highlight one particular existing setup which already
acknowledges and exploits this for more arbitrary truncations. This fragment combination range (FCR)
method [27, 29] is derived from a fragment MBE like (9). Adapting notation from [29] with reference
also to [27, (9), (10), (11)], the total energy of a molecular system composed of K disjoint subsystems
represented by composite coordinates {zi}Ki=1 is approximated in the FCR approach as

E(z1, . . . , zK) ≈
∑

fl∈{FCR}

pFCR
fl

Efl({z}fl). (11)

Here, {FCR} indicates an arbitrary downward-closed subset of 2[K], and Efl({z}fl) the total energy of
the combined subsystem specified by those composite coordinates {zi}i∈fl . The coefficients pFCR

fl
are

given non-recursively by

pFCR
fl

=
∑
fl′⊇fl

fl′∈{FCR}

(−1)l
′−l, (12)

derived in [29] by an inductive argument. It is noted that in some cases, these coefficients vanish.

2.3. Fragmentation methods from the perspective of Möbius inversion

The principle of inclusion/exclusion, widely used to derive fragmentation method energy formulae like (10),
can be substantially generalized by the technique of Möbius inversion from combinatorics and the theory
of partially ordered sets [30–32]. For the convenience of the reader, we will reintroduce some basic ideas,
following particularly [32] with minor notational deviation and general reference also to [30, 31]. We
assume familiarity with the notion of a partially ordered set, or poset. A poset P is locally finite if
{u ∈ P | s ≤ u ≤ t} is finite for every s ≤ t.

Definition 2.1 (Möbius function). The Möbius function of a locally finite poset P is

µP (s, t) =


1 if s = t,

−
∑

s≤u<t µ(s, u) if s < t,

0 otherwise.

(13)

This is essentially the definition in [32], but extended to explicitly include the case when s ̸≤ t. For
particular posets P , simpler expressions exist for µP . For example, suppose that P is a so-called chain
poset, that is, a totally ordered set, and that it has a 0̂, i.e., a unique minimal element. Then P is

6



isomorphic to N, in the sense that there exists a bijection ϕ : P → N which preserves ≤, as does its
inverse ϕ−1. In this case, it is immediate from (13) that

µP (s, t) =


1 if s = t,

−1 if s ≺ t,

0 otherwise,

(14)

where s ≺ t indicates that s is covered by t, i.e., s < t and there exists no intervening u ∈ P with
s < u < t. Since the Möbius function is invariant under isomorphism, see also [70, Cors. 2 and 3], the
form of µN follows immediately. Further, write Bn to be the powerset 2[n] ordered such that u ≤ v
exactly when u ⊆ v. This is the Boolean algebra of rank n, and (14) can be used to show that

µBn
(u,v) =

{
(−1)|v−u| if u ≤ v,

0 otherwise.
(15)

The next result is a slightly specialized form of [32, Prop. 3.7.1], given without proof; historically,
see [30]. We recall that the principal order ideal of some t ∈ P is the set Λt = {s ∈ P | s ≤ t}.

Theorem 2.1 (Möbius inversion [30, 32]). If P is a poset such that Λt is finite for every t ∈ P , and f ,
g : P → R, then

g(t) =
∑
s≤t

f(s) (16)

for all t ∈ P if and only if

f(t) =
∑
s≤t

µ(s, t)g(s) (17)

for all t ∈ P .

A non-recursive expression for the terms Ṽu in an MBE like (7) can be obtained pointwise via Möbius
inversion [12, 33]. To make the bidirectional nature of the process clear, note that we can equally well
just define outright each

Ṽu :=
∑
v⊆u

(−1)|v−u|Vv =
∑
v⊆u

µBM
(v,u)Vv, (18)

and then obtain (8) as an immediate consequence of Theorem 2.1. The equivalence between (8) and (18)
is known even without explicit recourse to Möbius inversion [29], and has also been noted in the ANOVA
setting; cf. [44, Thm. 2.1]. Interestingly, a simpler variant of Theorem 2.1 is invoked for this purpose
in [17], where it is named as an extension of the PIE; cf. again [32].

We introduce some notation and ideas now in a very general form. These can be immediately specialized
to the case of BM currently under consideration, and therefore the MBE, but they will also apply to
the general expansion form (32) to which we will progressively build. In combinatorial terminology, an
order ideal is a subset I of a poset P such that if t ∈ I, then also s ∈ I for all s ≤ t. Obviously, a
downward-closed subset of BM is just such an order ideal.

Definition 2.2 (Combination coefficients). Let P be a locally finite poset with a 0̂, and let I be a finite
order ideal of P . The combination coefficient of each s ∈ P for I is defined to be

D(I)
s =

∑
t∈I
t≥s

µP (s, t). (19)

The name “combination coefficient” stems from the combination technique, and there are direct
connections in what follows to poset-based constructions in that area; see, e.g., [39–42] and the more
general development in [47, Chap. 3]. From our perspective, the combination coefficients arise by rewriting

7



what we will call an I-truncation of the MBE as a linear combination of the subproblem potentials Vu,
i.e.,

SI :=
∑
u∈I

Ṽu =
∑
u∈I

∑
v⊆u

VvµBM
(v,u)

=
∑
u∈I

Vu

∑
v⊇u
v∈I

µBM
(v,u) =

∑
u∈I

D(I)
u Vu,

(20)

by (18) and rearrangement; cf. the alternative proof of [32, Prop. 3.7.1]. Note that when µBM
(v,u) =

(−1)|v−u| is inserted in (19), then D
(I)
u is exactly the FCR coefficient pFCR

fl
in (12), up to notation. So our

setup can be viewed as just rederiving the FCR energy expression (11) by application of heavy machinery.
Now suppose that F̂ ⊆ BM is an arbitrary subposet of BM , recalling in general that a subposet of some

poset P is a subset Q ⊆ P equipped with an appropriate restriction of the same order relation ≤ as P .
Then we can decompose

V ≈
∑
u∈F̂

Ṽ ′
u, (21)

in terms of contribution potentials defined only for elements of F̂ ,

Ṽ ′
u := Vu −

∑
v≤F̂u

Ṽ ′
v =

∑
v≤F̂u

µF (v,u)Vv, (22)

where the last equality follows again by Möbius inversion. For reasons that will become clear below, we
will refer to (21) as a SUPANOVA expansion, but it can also be viewed as a special case of the CGTCE
decomposition form given in [34]. If [M ] ∈ F̂ and V[M ] = V , then the decomposition (21) is exact, but

even if not, a sum S′
I′ =

∑
u∈I′ Ṽ ′

u can be defined for any order ideal I ′ of F̂ , and rewritten as a linear

combination of only those original contribution potentials Vu where u ∈ F̂ . Such a truncation S′
I′ can be

exactly identified with some SI for an order ideal of the full BM at least when the non-zero terms of SI

are exactly those of S′
I′ . We can formalize this in the general setting as follows:

Definition 2.3 (Combination-consistency). Let P be a locally finite poset, and Q be a subposet of P .

Further, let I be a finite order ideal of P , and I ′ be a finite order ideal of Q. Write as above D
(I)
s to be

the combination coefficient of s ∈ P for I, and for notational clarity, write D̂
(I′)
s′ to be the combination

coefficient of s′ ∈ Q for I ′. If for every s ∈ P it holds that

D(I)
s =

{
D̂

(I′)
s if s ∈ Q,

0 otherwise,
(23)

then I and I ′ are combination-consistent. If a combination-consistent finite order ideal I of P exists for
every finite order ideal I ′ of Q, then Q is a combination-consistent subposet of P .

If we assume that P possesses a certain kind of structure, we can characterize the necessary requirements
for some subposet Q of P to be combination-consistent with it. This characterization slightly generalizes
work in [35]. For a detailed explanation of the connection, see [47, Sec. 5.2]. But in short, a cluster
expansion is there truncated after a certain order ideal of a direct product of subposets of a Boolean
algebra, and Möbius inversion leads to a different expression for what we call combination coefficients.
This expression can be recreated in our setup as follows, as an immediate consequence of (19) and (13).
A direct connection also exists here to a textbook derivation of the set-cardinality PIE expression via
Möbius inversion; see and cf. [32, p. 265]. The PIE in turn connects back to the combination technique;
see, e.g., [40, 42].

Lemma 2.1. Let I be an order ideal of a locally finite poset P . Define J := I ∪ {1̂J} ordered just as I
but with additionally s < 1̂J for every s ∈ I. The precise choice of 1̂J is not important here, only that
there exists some unique maximal element of J . Then, for every s ∈ I,

D(I)
s = −µJ(s, 1̂J). (24)
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We need some further basic definitions; see again and cf., e.g., [31, 32]. A meet semilattice is a poset P
where every pair of elements s, t ∈ P have a unique greatest lower bound r in P ; this bound is called
their meet and written as r = s∧ t. If Q is a meet-closed subposet of a meet semilattice P , i.e., one where
s ∧P t ∈ Q for any s, t ∈ Q, then we call Q a meet subsemilattice of P . For a finite order ideal I of a
general poset P , the generating antichain of I is the set A = {s ∈ I | ∄ t ∈ I, t > s} of maximal elements
of I; we will write then I = ⟨A⟩ :=

⋃
a∈A Λa. Using this terminology, we can rephrase a key observation

made on [35, p. 7481] in a more general setting. The proof is given in Appendix A, and uses just the
same ideas as in [35].

Proposition 2.1 (Generalized from [35]). Let P be a locally finite meet semilattice, and I be a finite

order ideal of P with generating antichain A. If D
(I)
s ̸= 0 for some s ∈ P , then there exists some

{a1, . . . , an} ⊆ A such that s = a1 ∧ · · · ∧ an.

Using our notation and terminology, and with a little generalization, it was further observed in [35]
that the subposet Q built from the meets of an essentially arbitrary antichain A of a particular meet
semilattice P is combination-consistent with I = ⟨A⟩P ⊆ P . It is straightforward to check that, given an
order ideal I ′ of some arbitrary subposet Q of a more general P , the only possible combination-consistent
order ideal I of P is that provided by the generating antichain of I ′, if one exists at all. For the proof,
see Appendix A.

Lemma 2.2 (Adapted from Lem. 5.2.7 [47]). Let P be a locally finite poset, let Q be a subposet of
P , and let I ′ ⊆ Q be an arbitrary finite order ideal of Q. If I is a finite order ideal of P which is
combination-consistent with I ′, then I = ⟨A′⟩P , where A′ ⊆ I ′ is the generating antichain of I ′.

Since the next result is an immediate consequence of standard results in order theory, it is hardly
interesting in its own right, although we do not believe we have seen it explicitly stated as such. But it is
very important for us. The key ideas, particularly for direction (⇐), are again to be found in [35] for a
particular lattice, and their generalization to an arbitrary meet semilattice is immediate. The proof is
relegated to Appendix A. We remark that other lattices, related to Nd, also arise very naturally in the
standard grid-based setting of the combination technique [39–42], and there is also an especially close
connection here to an inclusion/exclusion-based construction in [42, Chap. 3]; see [47, Sec. 5.2.3] for
deeper discussion.

Theorem 2.2 (Thm. 5.2.8 [47]). Let P be a locally finite meet semilattice with a 0̂, and let Q be a
subposet of P . Then Q is combination-consistent with P if and only if Q is a meet subsemilattice of P .

As a first consequence of this, consider some fragmentation F = {Fi ⊆ [M ]}Ki=1 of [M ], and let in this

case F̂ = {Fu | u ∈ BK}. Since meets in BM are given by set intersections, it is not hard to see that F̂ is
a meet subsemilattice of BM . This means that any downward-closed truncation of a fragment MBE (9),
standard n-body or otherwise, can also be understood as a downward-closed truncation of a nuclear
MBE (7). Note that while the former fragment-MBE truncation can then be exactly expressed as a
sum of nuclear-MBE contributions

∑
u∈I Ṽu indexed by the appropriate I ⊆ BM , only the nuclear-MBE

subproblem potentials Vu for u ∈ F̂ actually matter in this sum, and the remainder indexed by BM − F̂
can be chosen completely arbitrarily.

Theorem 2.2 applies to any arbitrary subposet F̂ of BM . This can be used to rigorously understand
some, and we claim most if not all, of the various fragmentation methods that build from sets of overlapping
fragments just as producing particular truncations of a fragment MBE, and therefore transitively an
underlying nuclear MBE. This has been informally anticipated, and in some cases either shown directly
or argued by example, see again [7, 10, 29]. The following result is hypothesized in [29], but with only a
non-rigorous justification. Some further practical demonstration is given in [27]. The proof is condensed
and clarified from the version in [47, Sec. 5.2]. It should be stressed that this is, in essence, just a variant
of the same argument used in [32, p. 265] to construct the set-cardinality PIE using Möbius inversion.
Observe also the connection to the decomposition in terms of the meets of an antichain in [35].

Proposition 2.2. Let F = {Fi}Ki=1 be a not necessarily disjoint fragmentation of [M ]. Assuming that
V∅ = 0, then for any 1 ≤ n ≤ K there exists an order ideal I of BM such that SI = EGMBE

(n) .
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Proof. Let {F ′
i}K

′
i=1 be the set of n-mers required for an n-body GMBE, built from F . Notationally,

define F ′
∩u :=

⋂
i∈u F ′

i for every ∅ ⊂ u ⊆ [K ′]. Take F̂ := {F ′
∩u | ∅ ⊂ u ⊆ [K ′]} ∪ {∅}, cf. [32, p. 265], and

rewrite (10) as

EGMBE
(n) =

∑
∅⊂u⊆[K′]

(−1)|u|+1EF ′
∩u

=
∑
û∈F̂
û̸=∅

dûEû, (25)

where we define dû to be the sum of all ±1 coefficients in terms (−1)|u|+1EF ′
∩u

where F∩u = û, cf.,
e.g., [66].

We will show that each dû = D
(F̂ )
û , where the latter is the combination coefficient of û ∈ F̂ viewed

as an order ideal of itself. First, fix some non-empty û ∈ F̂ . By construction, there exists at least one
u ⊆ [K ′] such that F ′

∩u = û; moreover, there exists exactly one such u with maximal |u|, for if there
were two or more, u1, u2, . . ., it would hold that û = F ′

∩(u1∪u2)
, contradicting the maximality of |u1| and

|u2|. Note then that for each ∅ ⊂ v ⊆ u, it holds that F ′
∩v = v̂ for some v̂ ≥F̂ û, and conversely, each

v̂ ≥F̂ û can be written as F ′
∩v for at least one ∅ ⊂ v ⊆ u. Therefore,

∑
v̂≥F̂ û

dv̂ =
∑

∅⊂v⊆u

(−1)|v|+1 =

|u|∑
j=1

(−1)j+1

(
|u|
j

)
= 1−

|u|∑
j=0

(−1)j
(
|u|
j

)
= 1, (26)

where we use a standard combinatorial identity [71, (1.31)]. Finally, by Möbius inversion of (26) considering
the dual F̂ ∗ of F̂ , that is, F̂ reordered by u ≥F̂∗ v iff u ≤F̂ v, and according to (19),

dû =
∑

v̂≥F̂ û

µF̂∗(v̂, û) =
∑

v̂≥F̂ û

µF̂ (û, v̂) = D
(F̂ )
û . (27)

Since V∅ = 0, then, it follows that (25) is just (21) for this particular F̂ . Since F̂ is closed under
intersection by construction, it is a meet subsemilattice of BM , and the desired result follows from
Theorem 2.2 by choosing I ′ = F̂ .

We observe that (26) coincides with a more general “top-down” expression for the FCR coefficients

derived by a counting argument in [27], which in our notation is D
(I)
u = 1−

∑
u⊂v∈I D

(I)
v . In fact, and

more generally again, given any finite order ideal I of a suitable poset P , dual-form Möbius inversion [32,

Prop. 3.7.2] of (19) immediately delivers D
(I)
s = 1 −

∑
s<t∈I D

(I)
t for arbitrary s ∈ I. This can be

understood as a property of the Möbius function, cf. Exercise 3.88 of [32].
We required V∅ = 0 in the statement of Proposition 2.2 in order that the truncation SI should match

the GMBE form (10), and this is more generally the intuitively correct selection if each Vu should provide
the total energy of the subsystem indexed by u held in isolation. However, in [66], the energy terms
Eu in what can be viewed as a one-body GMBE are calculated by embedding subsystems in a field
of electrostatic point charges, and an overcounting correction for the self-interactions of those charges
is added to (10), with form justified again via the PIE. This correction can be viewed as a non-zero
expression for V∅, weighted by d∅ = 1−

∑
∅̸=û∈F̂ dû in the above notation, so a special case of (26) and

the expressions in the previous paragraph.
This, then, is the logic behind our general definition of the subproblem potentials Vu : (R3 × Z)M → R.

If, e.g., a family of embedding-style potentials are constructed, such that V∅ represents an extremely
coarse model of the full system and each Vu somehow improves the treatment of the subsystem indexed by
u compared to those by each v ⊂ u, then a kind of “overcounting correction” analogous to that in [66] is

automatically built into any truncation by way of D
(I)
∅ . This also applies to truncations of the multilevel

decomposition (32) below. The idea should find natural application to MBE-like expansions constructed
using explicitly quantum embedding techniques; see the review [72] and cf., e.g., quite recent work in [73,
74]. Although we will not explicitly treat quantum-embedding potentials here, we considered some initial
experiments in this direction in [47]; see there for details and discussion. Although these results were
mixed, we still consider this a very promising area for future investigation.
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2.4. Constructing consistent graph-based decompositions

Most fragmentation methods exploit either distance-based thresholding criteria or some more abstract
idea of structural connectivity in order to exclude some energetic terms from calculation; see again
the reviews [7, 9–11] for many examples. Implicitly or explicitly graph-theoretic techniques can be
used to choose an initial fragmentation directly, and/or to derive a decomposition [14, 17–22, 75]. For
graph-theoretic notation and terminology, we follow mostly [76], with general reference also to [77, 78].

Fundamental in this context is the representation of a molecular system via an interaction graph, that
is, an undirected graph G = (V = [M ], E), with an edge set chosen to capture some picture of the
connectivity of the individual atoms in the system. Although we have also used V to denote potentials
and E energies in the above, the use of standard graph-theoretical notation should be unambiguous in
context. Surely the canonical choice for an interaction graph is a bond graph, where each edge {i, j} ∈ E
corresponds to a covalent bond between the two atoms with indices i, j. However, the bond graph is by
no means the only plausible interaction graph; see, e.g., [17, 21, 79].

Once an interaction graph is obtained, subproblems can be identified from particular subgraphs of
G. A full comparison of the many different ways this can be done is beyond the scope of this article.
But for example, the BOSSANOVA decomposition [18, 19] is essentially a modified MBE that includes
only contribution terms for those subsets u ⊆ [M ] which induce connected subgraphs G[u] of G. We
write the set of all such subsets as conn[G] and treat it as a subposet of BM . The informal motivation,
consistent with Kohn’s famous nearsightedness principle [80], is that at any given order 1 ≤ |u| ≤ M ,
these subgraphs should provide a tidy way to select the most important |u|-body interactions in the
system. Some potential V is decomposed as

V =
∑

u∈conn[G]

Ṽ BOSSANOVA
u , Ṽ BOSSANOVA

u := Vu −
∑

v∈conn[G]
v⊂u

Ṽ BOSSANOVA
v . (28)

Of course, (28) is just an instantiation of (21) for F̂ = conn[G]. As mentioned above, (21) and
thus (28) can be recognized as special cases of the very general chemical graph-theoretic cluster expansion
(CGTCE) [34]. Since the set of induced subgraphs of G ordered by their inducing sets is clearly isomorphic
to BM [46], it is only a matter of perspective to regard any decomposition (21) as being determined
by a particular collection of induced subgraphs rather than by a particular subposet of BM . However,
we will refer to any explicitly induced-subgraph-based decomposition of the form (21) as a SUPANOVA
decomposition, for SUbgraph Poset ANOVA. We take the liberty of using a different name since, in context,
we treat this setup primarily as a useful extension on the BOSSANOVA decomposition, and we will
extend it below to generalize on the multilevel ML-BOSSANOVA scheme [14]. To our reading, such a
multilevel adjustment to the CGTCE was not envisioned in [34].

Although the results of initial experiments with n-body truncations of the BOSSANOVA decomposition
over chain-type molecules were highly encouraging [18, 19], difficulties arose for molecules containing ring
substructures. These were initially ascribed to physical effects in ring fragmentation. While these are
important, a more subtle, yet critical issue becomes obvious in light of Theorem 2.2.

It is rather easy to find graphs G where conn[G] is not closed under intersection and therefore
cannot be a meet subsemilattice of the appropriate Boolean algebra. Consider, e.g., the cycle graph
C6 = (V = [6], E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}}), and note that the intersection of {1, 2, 3, 4}
and {1, 4, 5, 6} does not induce a connected subgraph. This graph is isomorphic to the covalent bond
graph of benzene, neglecting hydrogens. In general, for such a G, there must exist at least one, and
practically there will be many order ideals of conn[G] that do not have a combination-consistent order
ideal of BM . The corresponding truncations of (28) effectively miscount MBE contribution terms Ṽu; for
a full worked example demonstrating this effect, see [47, Sec. 6.3]. Interestingly, this seems to be the
same issue which necessitates the “ring repair rule” in the SMF method [75], cf. [81], although we do not
attempt to argue this rigorously.

The conditions on G under which conn[G] is a sublattice of BM were established in [46]. It follows in
particular from [46, Lems. 1 and 2] that conn[G] cannot be combination-consistent with BM if G contains
certain forbidden induced subgraphs, specifically any chordless cycle of length greater than three, or a
cycle of length four with one chord. For details and more precise formulation, see again [47, Sec. 6.3].
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This rules out the useful application of the BOSSANOVA decomposition (28) in terms of, for instance,
the bond graphs of the vast majority of cyclic compounds.

We seek, then, a suitable subposet of subgraphs of G that embody a similar kind of locality to the
connected subgraphs, while still being a combination-consistent subposet of BM . One possibility is to
use the geodesically convex subgraphs of G. In fact, these were mentioned on [34, p. 156] as providing a
“well-behaved” option in a particular application of the CGTCE, namely the construction of a certain
coupled cluster-like expansion. We give here only a self-contained definition of the geodesically convex
subgraphs of a graph that is essentially the same as that used there. A deeper understanding of these and
other kinds of convex subgraphs should be grounded in the theory of abstract convexity; see, e.g., [82] for
general background, [83] for a treatment of graph convexities in particular, and [47, Sec. 6.5] for more
detailed summary and further references. We base our notation on that in, e.g., [84].

Definition 2.4 (Geodesically convex subgraphs of an interaction graph). Let G be a connected interaction
graph, with vertex set V = [M ]. An induced subgraph G[u] of G is (geodesically) convex if, for any pair
of vertices i, j ∈ u, all vertices along any shortest path between i and j in the full graph G lie also in
G[u]. The geodesic convexity of G, written Mg[G], is the subposet of BM formed by all u ∈ BM such
that G[u] is a convex subgraph of G.

Combination-consistency of Mg[G] with BM results from the obvious fact that if G[u] and G[v] are
convex subgraphs of G, then so too is G[u ∩ v]. However, Mg[G] is not always an ideal poset for use
in a SUPANOVA expansion (21). An important result [85, Thm. 4.1] shows that Mg[G] fails in many
cases of practical interest to be a convex geometry [82]. In particular, and informally, subsets u ≺Mg [G] v
may then have substantially different sizes |u| and |v|; cf. [82, Thm. 2.1]. This has practical implications
for the adaptive algorithm we give below. It would be very interesting to investigate whether general
schemes could be developed for the construction and/or adjustment of G in a way that would ensure that
Mg[G] is a convex geometry, but this remains for future work.

There is an interesting connection between a convex SUPANOVA decomposition, that is, (21) for
Mg[G], and the energy expression of a multilevel graph-based fragmentation method described in, e.g., [20,
21]. We consider explicitly only a non-multilevel expression given in [21]. In the language of the scheme,
if an induced subgraph G[u] of G is complete, it is called a rank-r simplex, where r = |u| − 1. We write
compR[G] to collect those subsets of [M ] which induce simplices of rank up to some 0 ≤ R ≤ M − 1.
Then the energy expression is, adapting [21, (3)],

Esimplex
R =

R∑
r=0

(−1)r
∑

u∈compR[G]
|u|=r+1

Eu

(
R∑

m=r

(−1)mpmu

)
, (29)

where pmu counts the number of rank-m simplices which include the rank-r simplex G[u] as a subgraph.
As noted for simplices in, e.g., [20], if u ⊆ v, and G[v] is complete, then so too is G[u]. As a result,

compR[G] is an order ideal of BM . The expression (29) can be obtained directly by manipulation of (20)
after a corresponding insertion of (15); indeed, this is just a special case of an expression already given in
the FCR setting [29, (14), (15)]. So (29) is simply a particular truncation of (7); this was recognized
in, e.g., [20, 21]. But note also that every complete induced subgraph of G is also a convex subgraph,
although not necessarily vice-versa. As a result, compR[G] is also an order ideal of Mg[G], and so (29) is
one truncation of a convex SUPANOVA decomposition.

It is not hard to imagine situations where it would be important to have access to the full range of
convex SUPANOVA truncations, rather than only the subset provided by (29). Consider, for instance,
a chain system of disjoint fragments, for instance, a linear alkane. Here, the only simplices would be
the empty graph (R = −1), the individual fragments (R = 0), and neighboring pairs (R = 1). The full

graph G is not complete, so Esimplex
R cannot “converge” to the full-system energy as R increases, and,

e.g., neighboring triples of fragments are not simplices, so the descriptive power of the simplex approach
for longer-range interactions is inherently limited to the edge set of G. Were a full convex SUPANOVA
expansion considered instead, the adaptive method for truncation selection that we outline below should
be able to explore up through the additional terms, and also obviate the need to explicitly preselect a
maximum rank R as a parameter.
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2.5. Combining composite and fragmentation methods

Although the true Born-Oppenheimer potential V BO can in principle be expanded as, e.g., an MBE
like (7), this is hardly useful, since the potentials Vu still remain numerically inaccessible. Practically,
instead, one must consider an expansion instead of a full-system potential Vm,p at a single level of theory.
Multilevel fragmentation methods [14, 20, 21, 23–27] attempt to achieve an effective approximation of
such a full-system potential at a high-quality level of theory via evaluations of some of the subproblem
potentials Vu at the same high level, and of others at a lower and thus computationally cheaper level. In
this section, we interlace ideas from the previous sections with those found in existing multilevel methods
in order to derive a new and very general multilevel fragmentation approach.

By multilevel, we refer most generally to any scheme which produces a single approximate solution
to (1) from a collection of other and presumably less-accurate solutions calculated from multiple levels of
theory. The composite methods mentioned in Section 2.1 clearly form a class of multilevel approach [6].
Another, very well-known such class is provided by the multilayered ONIOM method [86] and its many
variants and derivatives [87]. Stated most simply, the principle of ONIOM is to approximate the total
energy EHL of a molecular system as per some high level of theory as

EHL ≈ ELL +
(
EHL

u − ELL
u

)
, (30)

see and cf. [86, (3)]. Here, ELL is the full-system total energy calculated instead using a lower level of theory,
and EHL

u and ELL
u the high/low-level total energies of a subsystem indexed by u ⊂ [M ] and deserving of

accentuation. The idea extends to a successively-nested chain of n subsystems [M ] = u1 ⊃ u2 ⊃ · · · ⊃ un,
each matched with an increasingly stronger level of theory; see and cf. [86, (4)].

The core ONIOM idea has provided a springboard for the development of many multilevel fragmentation
methods; see, e.g., [20–22, 26, 88], and also again [7, 9, 11, 87]. To connect these and other multilevel
fragmentation methods with composite methods, we introduce a very general expansion of some potential
V : (R3 × N)M → R. We begin by recalling, see, e.g., [32], that the direct product of two posets P ×Q is
ordered such that (s, t) ≤P×Q (s′, t′) iff s ≤P s′ and t ≤Q t′. The following basic result is very helpful;
we omit the proof.

Theorem 2.3 (Product theorem [30, 32]). For the direct product P ×Q of two locally finite posets P
and Q, it holds that

µP×Q((s, t), (s′, t′)) = µP (s, s′)µQ(t, t′). (31)

Call the members of some family of locally finite posets {Pi}di=1 to be poset axes, and by extension
their direct product Π = P1 × · · · × Pd to be a d-dimensional poset grid. Note that µΠ can be obtained
from (31) by recursively rewriting, e.g., Π = P1 × (P2 × · · · × Pd). The axes Pi need not be finite, but we
will assume them to each have a 0̂. Then, analogously to above, we assume the existence of some family
of subproblem potentials {Vp}p∈Π, and expand some V : (R3 × N)M → R as

V =
∑
p∈Π

Ṽp, Ṽp := Vp −
∑
q<p

Ṽq =
∑
q≤p

µΠ(q,p)Vq. (32)

This equality, and convergence of the sum in the case of one or more infinite axes Pi, is conditional on
the precise choice of subproblem potentials. The idea here is to choose these and also the overall grid Π
in such a way that pointwise convergence to V BO holds, practically if not provably. In any case, given
any finite order ideal I of Π, the I-truncation SI =

∑
p∈I Ṽp certainly exists, and can be converted into a

sum in terms of combination coefficients D
(I)
p and subproblem potentials Vp.

For particular choices of Π, the expansion form (32) captures not only the nuclear MBE (7), the fragment
MBE (9), the BOSSANOVA decomposition (28) and its SUPANOVA (or CGTCE) generalization (21),
but also, for Π = [2N − 1] × N, the composite-style expansion (6). It can also reproduce a number of
existing multilevel fragmentation methods. In the interest of space, we will only explicitly show this for
the relatively recent example of the multilevel ML-FCR approach [27], which is itself an extension on the
original FCR method. Note that, in the case of BM , the FCR expression (11) was completely equivalent
to an I-truncation SI , and the benefit of our approach was in the supporting theoretical tools provided.
In the multilevel setting, however, although the ML-FCR is already very general, we can extend it further.
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Only a two-level ML-FCR formulation is explicitly given in [27]. An extension to further layers is
suggested but not given. Such an extension seems to be in use in [22], but we restrict ourselves here to
the original formulation. Two separate downward-closed sets of potentially-overlapping fragments are
considered, which we write as {FCRHL} and {FCRLL}. Generally, one would expect the former to be
a subset of the latter, but the involved formulae work correctly even when this relationship is inverted.
Adjusting notation to match (11) above, the ML-FCR energy equation is [27, (15)]

EML-FCR(z1, . . . , zK) =
∑

fl∈{FCRHL}

pHL
fl

EHL
fl

({z}fl) +
∑

fl∈{FCRLL}

pLLfl ELL
fl

({z}fl). (33)

Each energy term EHL
fl

is calculated with a somehow high-level method, and each ELL
fl

with a low-level

method. The high-level coefficients pHL
fl

are non-multilevel FCR coefficients (12) for fl in {FCRHL}. The
high- and low-level coefficients are connected by

pHL
fl

+ pLLfl = p
{FCRHL}∪{FCRLL}
fl

, (34)

motivated in [27] via a counting argument, where similarly p
{FCRHL}∪{FCRLL}
fl

is the non-multilevel FCR
coefficient for fl in {FCRHL} ∪ {FCRLL}.

To reconstruct the ML-FCR from (32), including a generalization to multiple layers, we choose
Π = BM × [n], for some n ≥ 1. For an order ideal I of Π, we can write I =

⋃n
i=1 Ii × {i}, where each Ii

is an order ideal of BM and also I1 ⊇ I2 ⊇ · · · ⊇ In. Recalling (19) and using (31), we have that

D
(I)
(u,n) =

∑
v⊇u
v∈In

µΠ((u, n), (v, n)) =
∑
v⊇u
v∈In

µBM
(u,v) = D(In)

u , (35)

where the final D
(In)
u is a combination coefficient for an In-truncation of a sum indexed from BM . Clearly

D
(I)
(u,i) = 0 when i > n. When i < n,

D
(I)
(u,i) =

n∑
j=i

∑
v⊇u
v∈Ij

µBM
(u,v)µ[n](i, j)

=
∑
v⊇u
v∈Ii

µBM
(u,v)−

∑
v⊇u

v∈Ii+1

µBM
(u,v) = D(Ii)

u −D(Ii+1)
u ,

(36)

then (33) emerges by fixing n = 2, and choosing I1 = {FCRLL} and I2 = {FCRHL}. The coefficients pHL
fl

and pLLfl are recovered from (35) and (36), cf. [27, (17), (18)], and these also give a rederivation of (34).
Other choices of I1 and I2, or, viewed alternatively, {FCRLL} and {FCRHL}, lead, after some straight-

forward manipulation and sometimes with recourse to the argument in Proposition 2.2, also to the
working equations of a variety of other multilevel fragmentation methods. These include a multilevel
version of the EE-MB [23], the HMBI [24], the MFBA [25], and the MC QM/QM method [26]. The full
multilevel form of the simplex-based method in [20, 21] can also be recovered via the discussion of (29)
above, and for more general n, the MIM [88] emerges. We omit the details for reasons of space, but
see [47, Sec. 7.2]. Equivalences between some of these methods have certainly been mentioned before, as
in, e.g., [24, 27], but this provides further support for the generality of the ML-FCR approach, at least
for existing fragmentation methods.

Alternatively, given an interaction graph G, choosing in (32) instead Π = conn[G] × N delivers the
ML-BOSSANOVA extension [14] to the original BOSSANOVA scheme. Very briefly, ML-BOSSANOVA
expands each of a family of potentials {Vp}p∈N via a standard BOSSANOVA expansion as Vp =∑

u∈conn[G] Ṽp,u. Each Ṽp,u is itself decomposed as Ṽp,u =
∑p

q=0 ω̃q,u, with ω̃q,u = Ṽq,u − Ṽq−1,u in

general and ω̃0,u = Ṽ0,u as a special case. The intention is to capture only the important terms from an

ANOVA-like decomposition
∑

u∈BM

∑
p∈N Ṽ ′

p,u where instead each Ṽ ′
p,u is defined instead for the full BM

rather than just conn[G]. But crucially, the issue of combination-consistency arises here again, just as for
BOSSANOVA. It is easy to see that a direct product P ×Q is a meet semilattice if and only if both P and
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Q are, and so this particular choice of Π will not generally be combination-consistent with BM ×N. So, for
most cyclic interaction graphs G, at least one possible I-truncation of the ML-BOSSANOVA expansion
will not lead to a downward-closed truncation of the full ANOVA-like expansion

∑
u∈BM

∑
p∈N Ṽ ′

p,u. Note
that, correspondingly, the ML-FCR cannot always recover an arbitrary ML-BOSSANOVA I-truncation.

All of the multilevel methods discussed above consider only a single axis for the level of model quality.
However, using (32), it is straightforward to extend this to arbitrarily many axes. The extension can
be motivated as allowing the approximation of each Ṽu in an MBE in the style of a composite method,
following the combination-technique understanding in [6, 14]. The starting point is thus the Boolean
algebra BM corresponding to an ANOVA-like decomposition of V . The next axis, P2 = [2N − 1], indexes
the various levels of ab initio theory outlined in (4) above. Then, like ML-BOSSANOVA, we introduce a
third axis P3 = N, which indexes members of a systematically-improving family of basis sets. Again under
appropriate assumptions regarding convergence, the resulting poset grid Π = BM × P2 × P3 produces an
exact expansion of the Born-Oppenheimer potential as

V BO =
∑
p∈Π

Ṽp =
∑

u∈BM

2N−1∑
m=1

∞∑
p=1

Ṽ(u,m,p). (37)

The first axis can of course be restricted to a subposet of BM , or isomorphically, a subposet of induced
subgraphs of some G. For combination-consistency to hold, this must be a meet subsemilattice of BM , for
example Mg[G]. Taking the subgraph perspective, we refer to (37) as an ML-SUPANOVA decomposition.

3. Adaptive Algorithm

Standard n-body truncations of MBEs become for increasing n at best inefficient, and at worst numerically
unstable [11, 28], and so choosing the correct value of n for use in practice is difficult. When considering
expansions like (21) and especially multilevel forms like (37), the task of choosing suitable truncations a
priori becomes even harder again. Algorithm 1 outlines instead an adaptive, a posteori approach for
the selection of a truncation order ideal I for a sum (32) over some poset grid Π. This algorithm is a
specialization of one given in a more general setting in [47, Chap. 3]. The basic idea of the algorithm
goes back to work in dimensionally-adaptive numerical quadrature [38], and there are many other strong
connections in the context of sparse grid approximation and the combination technique; see, e.g., [37,
39, 40]. We observe with interest that a similar approach is taken in the “bottom-up” energy-screening
algorithm described very recently in [89], which walks a directed acyclic graph constructed for the terms
of the GMBE. As there noted, this graph allows interpretation as a Hasse diagram, and Algorithm 1 can
likewise be interpreted as walking the Hasse diagram of Π, in the more general order-theoretic sense [32];
see [47, Sec. 3.5], and cf., e.g., [40]. Our algorithm targets more general expansions than just the GMBE,
and differs particularly in the screening criterion applied and the update mechanism; cf. [89, (12), (13)].

We assume here the choice of a linear operator L, e.g., a point evaluation operator as in Section 2.1.
Sequences of order ideals I(i) and their corresponding evaluated sums Si := L[SI(i) ] are generated, starting
from the initial values I(0) = {0̂} and S0 = L[Ṽ0̂] = L[V0̂]. At the ith iteration of the algorithm, at least
one element p ∈ I(i−1) is selected for expansion: all those elements q ≻ p such that I(i) ∪ {q} would
remain an order ideal are adjoined to I(i−1) to form I(i). The contribution potentials Ṽq for these new
element(s) are evaluated, and accumulated into Si.

The choice of element(s) p ∈ I(i−1) for expansion is guided by the benefit/cost ratios ∥L[Ṽp]∥/C(p),
where C : Π→ R is an abstract cost model for the evaluation of the subproblem potentials Vp by L. One
possible abstract cost model for point evaluation is outlined in Appendix B. Under certain assumptions,
see [14, 37] and [47, Sec. 3.4], a truncation constructed by assembling terms in descending order of
benefit/cost leads to a quasi-optimal truncation of (32).

Notationally, we assume that the elements of a d-dimensional tensor, i.e., a multidimensional array
T can be indexed Tm by multiindices m ∈ Nd. For a poset grid Π = P1 × · · · × Pd where each Pi

is countable, we assume the existence of a suitable indexing bijection Φ : Π → Nd and will write by
abuse of notation Tp to mean the element TΦ(p). Elementwise additions (+) and multiplications (⊙)
of tensors behave as usual, and the tensor product T ⊗ U of a k-dimensional T and l-dimensional U
is (k + l)-dimensional and defined elementwise by (T ⊗ U)(m1,...,mk,n1,...,nl) := T(m1,...mk)U(n1,...,nl). We
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Algorithm 1 Adaptive algorithm for calculation of order ideal I (adapted from [47, Alg. 3.3])

1: I,A← ∅
2: Q← an empty priority queue
3: D,L,E ← empty (zero) tensors
4: i← −1
5: repeat
6: i← i + 1
7: if i = 0 then
8: Inew ← {0̂Π}
9: else

10: Inew ← new elements from entries of Q according to selection strategy
11: I ← I ∪ Inew
12: for all p ∈ Inew do
13: Lp ← L[Vp]
14: Evaluate Möbius tensor M (p).
15: D ← D + M (p) ▷ Update the full combination tensor,
16: E ← E + M (p) ▷ Update the error-indicator tensor.
17: Insert p into Q, keyed by ∥L[Ṽp]

(
= Reduce(M (p) ⊙ L)

)
∥/C(p).

18: ▷ Update generating antichain, and correct the error indicator tensor ◁
19: A← A ∪ Inew
20: R← A ∩

⋃
p∈Inew

{q ∈ Π | q ≺ p}
21: A← A−R
22: E ← E −

∑
p∈R M (p)

23: ▷ Calculate approximation, error indicator, cost, and uncertainty ◁
24: Si ← Reduce(D ⊙ L)
25: Ei ← Reduce(E ⊙ L)
26: Ci ←

∑
p∈I C(p)

27: dSi ←
√
Reduce(ε2(D ⊙D))

28: until Q is empty, or termination criteria are met.
29: return I, and also Si, Ei, Ci, and/or dSi as required

write Reduce(T ) :=
∑

m∈Π Tm. This sum is here always finite, since although tensors may be notionally
infinite, those considered have finitely many non-zero terms by construction. For the same reason, it is
desirable to work in the implementation with sparse tensors [90, 91], that is, higher-dimensional analogues
of standard sparse matrices. We omit the details here.

It is a deliberate feature of this notation that the combination coefficients D
(I(i))
p as per (19) coincide

identically with the entries of the combination tensor

D(I(i)) :=
∑

p∈I(i)

M (p), (38)

where each M (p) is the Möbius tensor of p ∈ Π and is defined elementwise by M
(p)
q := µΠ(q,p). As

elements p ∈ Π are added to the order ideals I(i), their evaluations L[Vp] are stored in a suitable tensor

as Lp. Their Möbius tensors can be used to directly evaluate L[Ṽp] = Reduce(M (p) ⊙ L), and then
accumulated into a running combination tensor D.

Maintaining the sum Si indirectly via the combination tensor has some appealing numerical charac-
teristics that help to ameliorate issues like those noted in, e.g., [28]. A sparsity-exploiting evaluation
Si = Reduce(D ⊙ L) can use as few arithmetic operations as possible, whereas a näıve accumulation
of evaluated terms L[Ṽp] may suffer over iterations from accrued error due to floating-point arithmetic.
Moreover, all ab initio methods reduce to the solution of particular systems of equations, which are solved
to within some tolerance usually chosen well below floating-point precision. In [28], a propagation-of-errors
technique is used to test how these tolerances flow through to the overall uncertainty of a standard n-body
truncation, rewritten for the purpose in a closed-form expression [28, (4.2) and (4.5)]. If we associate to
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each L[Vp] an inherent uncertainty εp, then it is an easy generalization of the same approach to calculate
the propagated uncertainty in the sum SI for any I as

dSI =

√∑
p∈I

(
D

(I)
p

)2
ε2p. (39)

The precise encoding of poset grid elements p ∈ Π is an implementation detail. The algorithm requires
only that all covered elements q ≺ p can be enumerated, and similarly all covering elements r ≻ p. It
suffices if the same is possible for any element of an individual axis p ∈ Pi. This is easy in the cases
of [n], N, and Bn. A little more work is required for conn[G] and particularly Mg[G]; see [47, App. 2]
for details and supporting references. The values µΠ(q,p) and thus M (p) can then always be evaluated
explicitly at least as per (13), which is amenable to memoization. Particularly when expressions like (14)
and (15) are available, it is more convenient to apply (31) and write

M (p=(p1,...,pd)) =

d⊗
i=1

m(pi), (40)

using Möbius “vectors” defined elementwise by m
(pi)
s := µPi

(s, pi) for s, pi ∈ Pi. For example, if Pi is a
chain poset, then constructing m(pi) requires no more than two elementwise updates to an initially-zero
sparse vector.

We maintain throughout the course of the algorithm a priority queue, see [78] and cf. [38], of all
elements p ∈ Π which have been previously added to I and not yet fully expanded, in the sense that not
all elements q ≻ p have also been added to I. The queue is kept in descending order of ∥L[Ṽp]∥/C(p). At
line 10, elements p are removed one-by-one from the front of the queue, and their covering elements r ≻ p
are tested for admissibility, which holds whenever all elements p′ ≺ r are also already in I. Any such
admissible r joins the overall set of new elements Inew, such that I(i) ← I(i−1) ∪ Inew. A p with at least
one admissible r ≻ p is expandable, and different strategies can be applied to guide the number of elements
expanded at each step. One might simply stop after expanding the first, Best expandable element in
the queue, or instead consider All expandable elements in the queue. A more flexible strategy is to
continue through the queue, expanding any elements whose benefit/cost ratio is within some Threshold
factor 0 ≤ α ≤ 1 of that of the best. Whichever strategy is used, any dequeued element found to have an
inadmissible r ≻ p should be requeued.

Once the new elements p ∈ Inew have been identified, each corresponding L[Vp], M (p), L[Ṽp], and C(p)

must be evaluated, the combination tensor D
(I)
p updated, and p inserted into the queue. This occurs in

the loop at line 12, along with one additional step which will be explained below. Parallelism in this
loop should be exploited as much as possible, since in practice, the evaluations L[Vp] are by far the most
costly part of the algorithm.

The algorithm terminates once either the queue has been exhausted, or some termination criterion has
been met. One might place a cumulative limit on the abstract costs C(p), but it is more useful to have
an estimating error indicator, see and cf., e.g., [37, 38]. For this, we suggest

Ei =
∑

p∈A(i)

L[Ṽp], (41)

where A(i) is the set of maximal elements of I(i). For efficiency, the adaptive algorithm also maintains and
updates this set. The key observation is that any new p added to I(i) must be a maximal element of the
same, and that any elements {q ∈ I(i−1) | q ≺ p} are correspondingly precluded from maximality in I(i).
Again, we calculate (41) not as a sum of contribution terms, but rather maintain a set of combination
coefficients analogous to those for the full sum (lines 16 and 19–22).

4. Experiments and Discussion

As an initial evaluation of the techniques outlined above, we consider a collection of experimental results
obtained by adaptively truncating sums of the form (32). These results are a subset of those covered
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Figure 1: Stick-model visualization of the covalent bond structure of the antifreeze protein 1KDF [129,
130], after preprocessing as described in the main text and with hydrogen atoms excluded. Ring
substructures are highlighted in red.

in [47], and were generated using an implementation of the more general version of Algorithm 1 given
there. We refer to Appendix A of that source for more calculation and implementation details, and
Appendix B of that source for details regarding algorithmic treatments of the involved posets. Most ab
initio calculations required for subproblem potential evaluation were performed using PySCF [92–94];
with the exception of the spike glycoprotein calculation below, results of these calculations were cached
and reused to generate the final results shown here. Some reference calculations were performed using
NWChem [95], and monatomic calculations for atomization energies, see below, were mostly performed
using MRCC [96–100]. In general, we performed HF [1], MP2 [49], CCSD [101, 102], and CCSD(T) [52]
calculations; KS-DFT/B3LYP [103] was used for geometry optimizations. We used variously the following
basis sets: STO-3G[104, 105], cc-pVDZ [58, 106], cc-pVTZ, cc-pCVnZ for 2 ≤ n ≤ 8 [58, 107–117],
and also all necessary basis sets for G4(MP2) [60, 61, 118–121]. Most basis sets were obtained from
the Basis Set Exchange [122], and processed further using the BSE Python library, see again [47] for
processing details. Standard scientific libraries [123, 124] were used, particularly NetworkX [125] for
working with graphs. Some reference was made to the Sparse library for sparse arrays [91]. In general,
tensor reductions were performed using interval arithmetic as implemented in the Arb library [126], using
100 bits of precision, but we believe this had no significant impact on results compared to the use of
standard double-precision floating-point arithmetic. Some of the data in Figure 5 were regenerated to
correct an error in [47], and here, standard double-precision was used. Plots and visualizations are colored
using the “bright” scheme of [127], while molecular visualizations were rendered in Blender using the
DSO shading scheme in [128].

4.1. Convex SUPANOVA decomposition

Before considering the full multilevel setup, we first investigate the suitability of the convex SUPANOVA
correction to the non-multilevel BOSSANOVA method. Since we already know from, e.g., [18, 19] that
the conventional BOSSANOVA approach is well capable of handling smaller chain-like molecules, we
investigate two examples of larger molecular systems with characteristics that would be problematic in
light of BOSSANOVA’s issues with combination-consistency.

18



1014 1015 1016 1017

10−4

10−1

102

105

Cumulative abstract cost

E
rr
o
r
m
et
ri
c
(E

h
)

(a) Absolute error

1014 1015 1016 1017

10−8

10−6

10−4

10−2

Cumulative abstract cost

(b) Relative error

All Threshold (α = 0.1)

Absolute/relative error Absolute/relative error

Absolute error indicator Absolute error indicator

Figure 2: Per-iteration error metrics for adaptive truncations of a convex SUPANOVA decomposition for
the 1KDF antifreeze protein, obtained using All and Threshold selection strategies. The
horizontal black line in each plot indicates chemical accuracy, 1 kcal mol−1. The vertical black
line indicates the abstract cost of a full-system reference HF/cc-pVTZ calculation.

We begin with a model of an antifreeze protein [129], obtained from the Protein Data Bank [130, PDB
key: 1KDF]. As for most proteins, and as indicated in the visualization in Figure 1, the covalent bond
structure of 1KDF contains several rings. The 1KDF model was preprocessed using Open Babel [131],
with hydrogens added explicitly. The resulting system contained a total of 991 atoms, 479 non-hydrogen.

That some interaction graphs may not accurately represent the spatial topology of a molecule is a known
issue in graph-based fragmentation methods [22]. The shape of 1KDF suggests that strong interactions
should be expected between collections of particles that are close in space, but not close in the standard
bond graph G. The impacts of those interactions would then only appear in contribution terms Ṽu

corresponding to quite large convex subgraphs G[u] which also include at least all those particles along a
shortest path between the two originally considered. As mitigation, we employed instead an interaction
graph G with a distance-thresholded edge set E = {{i, j} ⊆ [M ] | i ̸= j, ∥Ri − Rj∥ ≤ rcut}. This is a
common approach in fragmentation methods, either explicitly or implicitly; see and cf., e.g., [20–22], as
well as many other examples in the reviews cited above. Here, we used a cutoff radius of rcut = 2.5 Å,
which should be sufficient to capture at least any hydrogen bonds [132] in addition to all covalent bonds.

In the convex SUPANOVA decomposition (21), we use notional subproblem potentials Vu such that an
evaluated L[Vu] is the HF/cc-pVTZ total energy of the subsystem indexed by u, calculated using PySCF.
Dangling covalent bonds from subsystems were treated with standard hydrogen link atoms, placed using
covalent radii [133] consistent with, e.g., [13, (19)]. Rather than a nuclear decomposition, we used a
fragment decomposition. The choice of fragments was intended to avoid two practical issues: firstly, the
question of how to terminate a dangling double bond, and second, the possibility that two link atoms
would be placed in close spatial proximity after subsystem excision, thus potentially biasing the relevant
Ṽu; on the latter, cf., e.g., [22, 75]. To this end, we refined an initial fragmentation F = {{i}}Mi=1 of [M ]
using a simple heuristic algorithm, the details of which are given in Appendix C. Technically, this means
that the decomposition is not in terms of Mg[G], but rather Mg[G′], where G′ = G/F is the quotient
graph [134] G′ = (F,E′) with edge set E′ = {{Fi′ , Fj′} | i′ ̸= j′, ∃{i, j} ∈ E with i ∈ Fi′ , j ∈ Fj′} derived
from the original edge set E of G.

Using NWChem, we calculated a reference HF/cc-pVTZ total energy of the 1KDF system to be
approximately −24 896.350Eh. Detailed information, convergence thresholds, etc., for this and and also
other reference calculations used later, can be found in [47]. We mention for completeness a minor
computational detail not stated there, namely, that the HF/cc-pVTZ calculation was initialized by basis
set projection from an initial HF/STO-3G calculation.
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Per-iteration results are plotted in Figure 2 for two adaptively-grown truncations of the convex
SUPANOVA decomposition. One truncation was refined using the All selection strategy, and the other
according to the Threshold strategy with α = 0.1. Both calculations were terminated once the total,
cumulative abstract cost expended passed the abstract cost of the reference calculation by a factor
of two. The left-hand plot shows both the progression of the error indicators Ei at each iteration, as
well as the true absolute error of the resulting value Si as measured against the reference total energy.
The right-hand plot shows the per-iteration relative errors for the same calculations. The solid black
vertical and horizontal lines on the plots indicate the abstract cost of the reference calculation, and the
1 kcal mol−1 threshold of chemical accuracy relative to reference, respectively. Since the first iteration of
the algorithm produces in both cases only S0 = L[V∅] = 0 for zero abstract cost, these data points are
not explicitly shown, nor will they be in similar plots to follow.

The absolute errors of the produced sums Si under both All and Threshold selection strategies
decrease rapidly in early iterations, stabilizing around 10−2 Eh. A further improvement is suggested shortly
after the abstract costs of the iterative calculations pass that of the reference calculation. Excepting
one early Threshold iteration, chemical accuracy relative to the reference value is only achieved in the
final iteration. From a performance perspective, we would ideally hope to achieve chemical accuracy at a
significantly reduced cost relative to the reference calculation. Although we do not achieve this, it should
be kept in mind that, as plot (b) highlights, a consistent relative accuracy of at least six significant figures
is achieved with approximately an order of magnitude speedup relative to reference. For larger systems
again, such reliable relative accuracy is probably a more important consideration than true chemical
accuracy, especially for total energy calculations.

As expected, there is no indication here of the inherent errors that would be expected in higher-order
truncations of the standard BOSSANOVA expansion due to the presence of chordless cycles in G′. It
is also positive to see that the error indicators Ei are generally reliable. If anything, they are a little
conservative: the true error is sometimes significantly overestimated, but only rarely underestimated,
and even then not by more than an order of magnitude. Further, although not plotted explicitly in
Figure 2, the propagated uncertainties dSi in these calculations hovered generally around 10−6 Eh, and
never exceeded 10−5 Eh, assuming throughout a per-evaluation uncertainty of ε = 10−8 Eh consistent
with involved convergence thresholds. This suggests that the unfavorable error propagation observed
in [28] for n-body truncations of the MBE is not in play here. It seems unlikely that this is due to any
particular combinatorial property of the decomposition itself, but rather only that most terms Vu in the
underlying MBE have zero combination coefficients; this would be consistent with, e.g., [28, 67].

As a general feasibility test of the convex SUPANOVA approach, we performed a similar calculation on
a much larger sample system, specifically, a model of the spike glycoprotein of the SARS-CoV-2 virus [135],
again drawn from the Protein Data Bank [136, PDB key: 6VXX]. Preprocessing and hydrogenation with
Open Babel produced here a system made up of 27 non-covalently bonded subsystems, each containing
between 63 and 2690 non-hydrogen atoms, for a total of 46 923 atoms. A space-filling visualization of
the 6VXX system is given in Figure 3. We used the same methodology as above to choose a nuclear
interaction graph G (rcut = 2.5 Å), a refined fragmentation F , and a final quotient graph G′ = G/F .
This F included 7524 fragments, each containing up to 17 distinct atoms.

We performed a single adaptive calculation, using HF/cc-pVTZ subproblem potentials as above, and
applying the Threshold strategy with α = 0.5. The 6VXX system is of course far too large to allow
a conventional reference calculation at any level of quantum theory. Indeed, we were not even able to
evaluate an abstract cost for the system, since our abstract cost model involves the explicit calculation of
some O(N2

AO) two-electron integrals; see Appendix B. Thus, we set no explicit termination criteria, and
simply allowed the calculation to run for approximately 46 h. At each iteration, subproblem potential
evaluations were distributed in a hybrid fashion across up to 4864 cores of a compute cluster.

Results for this calculation are shown in Figure 4. In the absence of a reference result, we can only
consider the per-iteration error indicators. The left plot shows the absolute values of these as a function of
cumulative abstract cost, also an estimate of the relative error calculated as |Ei/Si|, and the propagated
uncertainty of the calculation assuming per-subproblem thresholds of ε = 10−8 Eh. The right-hand pane
plots the same data, but measured as a function of the true cumulative wall-clock time required for the
calculation. The similarity of the two plots supports the “reasonableness” of the abstract cost model
we have used throughout, at least for HF. Some deviance here can be attributed to unavoidable parallel
inefficiency.
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Figure 3: Space-filling visualization of the SARS-CoV-2 spike glycoprotein [135, 136, PDB key: 6VXX].
Atoms are drawn as spheres of appropriate van der Waals radii [137]. Colors indicate membership
of connected components of the full-system bond graph, chosen using a graph-coloring algorithm
provided by NetworkX.

The error indicators exhibit a clear and fairly smooth rate of decay. At termination, they suggest the
calculation has approximated the total energy of the spike glycoprotein to again at least six significant
figures of accuracy. Naturally, this conclusion depends entirely on the reliability of the error indicator.
Although this is certainly suggested by results in the smaller 1KDF case, we do mention that we discussed
cases in [47] where the error indicator underperformed for reasons related to unrepresentative interaction
graphs, and so further and more detailed validation would be in order before this could be relied upon.
What can be said, however, is that the propagated uncertainty of this calculation remains basically flat
throughout, and in particular, always stay several orders of magnitude less than the absolute value of the
error indicator. So the numerics of the truncated sum are sound.

This test provides initial support to the idea that the convex SUPANOVA approach can be practically
applied to extremely large molecules. It is to be stressed, however, that this is a preliminary calculation
only, and further benchmarking of the underlying model is most certainly required. One potential target
for such benchmarking is provided by an FMO calculation performed on the same protein [138]. That
calculation was much more methodologically sophisticated, and included in particular a high-quality
treatment of correlation energy, so a direct comparison is not appropriate without further work. We
do note that the computational resources applied in that study were substantially greater than ours,
and it would be very interesting to investigate whether any computational advantage remained once all
differentiating factors were properly taken into account.

4.2. ML-SUPANOVA decompositions

When evaluating experimental results obtained by truncating a decomposition like (37) of the true
Born-Oppenheimer potential V BO, we are impeded by the fact that there is no non-trivial molecular
system for which a true reference solution can be obtained. We consider here only much smaller test
systems than in the previous section. For these, we can obtain reasonable-quality approximate solutions,
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Figure 4: Per-iteration error metrics for adaptive convex SUPANOVA approximation of the HF/cc-pVTZ
total energy of the SARS-CoV-2 spike glycoprotein (PDB key: 6VXX) [135, 136].

and these can function at least as rough references. Specifically, we investigate calculations on the linear
alkane heptane (C7H16), and the heterocyclic molecule limonin (C26H30O8). Chemical structures for
these systems were obtained from the ChemSpider database [139, 140], and then relaxed into plausible
equilibrium conformations using a KS-DFT/B3LYP/cc-pVDZ geometry optimization under NWChem,
using the simint ERI calculation library [141].

The poset grid under theoretical consideration is Π =Mg[G]× [2N − 1]× N, as outlined above, but
see the practical restriction discussed below. It is also possible to construct decompositions in terms of
“subgrids” of this poset grid. These can be viewed as holding one or multiple of the parameters u, m,
and/or p for potentials V(u,m,p) fixed, and doing so allows us to investigate the utility of the various axes.
We consider the following subgrids of Π:

• Πnon-ML =Mg[G], with subproblem potentials fixed at a particular level of theory indexed by (m, p).
This is a non-multilevel approximation. In cases where Mg[G] = conn[G], this is a BOSSANOVA
decomposition; where not, a more general convex SUPANOVA one.

• ΠGCM = [2N − 1] × N. All subproblem potentials are full-system potentials Vm,p, that is, with
u = [M ]. Consistent with [47], where the idea was considered by extension of [6], we refer to this as
a GCM (generalized composite method) grid.

• ΠAbI =Mg[G]×N, with subproblem potentials fixed at a particular ab initio method indexed by m,
e.g., m = 4 for CCSD(T). As above, for cases whereMg[G] = conn[G], this is an ML-BOSSANOVA
decomposition.

• ΠBS = Mg[G] × [2N − 1], with subproblem potentials using a fixed basis set indexed by p, e.g.,
p = 2 for cc-pCVTZ.

For each test case, we calculated a reference total energy using a single-point calculation via PySCF,
at as high a level of theory as practically possible. We also used an alternative mechanism to derive a
reference result, specifically, an implementation of the G4(MP2) method [61], written in Python with some
reference to [142]. We omitted here the initial DFT-based geometry optimization technically required by
G4(MP2). In general, the component calculations required were also performed using PySCF, however,
almost all monatomic energies were calculated using MRCC; see again [47] for details.

Since G4(MP2) makes the frozen-core approximation, it is inherently unsuited to the calculation of
accurate total energies, but might be reliable to around chemical accuracy [143, 144] for the calculation
of energy differences such as atomization energies. An atomization energy potential can be constructed
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Figure 5: Per-iteration error metrics for adaptive truncations of the ML-SUPANOVA decomposition for
heptane, and for subgrid decompositions.

from the Born-Oppenheimer potential as

V atom(X1, . . . , XM ) :=

[
M∑

A=1

V BO(XA)

]
− V BO(X1, . . . , XM ), (42)

cf., e.g., [4]. Similar potentials can also be derived from approximations to the Born-Oppenheimer
potential like any of the V(u,m,p) terms implicitly involved in (37), taking care to match the level of
theory (m, p) for the monatomic calculations. Since monatomic energies Vm,p(XA) can be precalculated
and reused, we assume that the abstract costs of such potentials are precisely the same as the standard
total-energy versions.

For practical reasons, we restricted the poset axes [2N − 1] and N for ab initio theory and basis set.
For atomization energy calculations, we restricted the ab initio theory axis to contain four elements
corresponding to HF, MP2, CCSD, and CCSD(T), and the basis set axis to contain seven elements,
corresponding to cc-pCVnZ for n = 2 (cc-pCVDZ) through 8 (cc-pCV8Z). For total energy calculations,
we further restricted these axes according to the level of theory used to derive the reference result. While
we would anticipate larger axes to produce more accurate approximations of V BO, any additional accuracy
would confound a comparison against the reference result. For atomization energy calculations, we do not
consider the subgrids Πnon-ML or ΠBS; ΠAbI is, however, considered, fixed for CCSD(T).

The reference all-electron CCSD(T)/cc-pCV5Z total energy of heptane was approximately −276.370Eh,
and the atomization energy of heptane as per G4(MP2) was approximately 3.481Eh. We used here only
the standard covalent bond graph G′. The corresponding fragmentation F of the nuclear indices, with
each fragment Fi containing the indices of exactly one backbone carbon atom and also those of any
hydrogen atoms bonded to it, is both as delivered by the heuristic algorithm, and precisely consistent
with that suggested for the original BOSSANOVA decomposition. We applied here only the All selection
strategy.3 Plots of per-iteration error metrics for adaptive truncations of the complete poset grid Π
and of the variously-considered subgrids listed above are given in Figure 5. The left-hand plot shows
accuracy results for total energy calculations, as measured against the CCSD(T)/cc-pCV5Z reference, and
corresponding error indicators. The right-hand plot is equivalent, but for atomization energy calculations,

3Note that for the Threshold and Best strategies, some minor adjustment of Algorithm 1 would be required to handle
the fact that, e.g., Ṽ(∅,m,p) = 0.

23



Figure 6: Stick-model visualization of limonin (C26H30O8), after KS-DFT/B3LYP/cc-pVDZ geometry
optimization. Sticks indicate single and double covalent bonds between non-hydrogen atoms;
hydrogen atoms themselves, and bonds to them, are not shown.

measured against the G4(MP2) reference result. We correct in this plot an error in [47, Fig. 7.1].4

For the total energy results, we see, in short, that all considered sequences of truncations lead (with the
narrow exception of the GCM result) to chemically-accurate approximations of the reference result, and at
speedups of at least an order of magnitude. It is interesting to observe that the generally best performance
is delivered by the subgrid fixed at CCSD(T); since G is a simple chain, here Mg[G] = conn[G], and
this is precisely an ML-BOSSANOVA expansion. The performance here is any case comparable with
truncations for the complete poset grid Π, while the fixed-basis ΠBS grid performs less well. The error
indicators for all calculations are generally well-behaved, although sometimes prone to overestimation of
the true error, particularly for the Πnon-ML and ΠAbI cases.

For the calculation of atomization energies, no cost benefit is obtained relative to the reference
calculation. We do not read much into this: heptane is still only a small system, and it is unsurprising
that the CCSD and CCSD(T) calculations involved in the ML-SUPANOVA truncation are more expensive
than the up-to-MP2 calculations required for G4(MP2). Again, the per-iteration absolute errors for
the three tested grids eventually trend progressively downwards, although the results for the complete
grid Π seem to spend considerable time in a pre-asymptotic regime. Truncations for both Π and ΠAbI

consistently outperform those for ΠGCM at similar cost, and both come to approximate the G4(MP2)
atomization energy to within chemical accuracy. A slight advantage is noticeable here for the complete
grid Π, and the final iterations for that grid suggest a slightly faster rate of “convergence” relative to
those for ΠAbI. The absolute error indicators for all grids are generally reliable, tracking the true absolute
error closely. When considering the absolute error and the absolute error indicator for Π in the final
iterations, we should remember that the G4(MP2) result may itself not be reliable much past the chemical
accuracy cutoff. It remains therefore possible that the error indicator is valid and the true FCI/CBS
atomization energy of heptane is indeed being approximated more and more closely. This cannot be the
case for ΠAbI, which can at best approximate the CCSD(T)/CBS atomization energy.

The second system we consider, limonin, is of interest particularly due to the highly cyclic nature
of its covalent bond graph G′, clearly visible in the visualization in Figure 6. Cyclic structures remain
after fragmentation with the heuristic algorithm: the resulting quotient graph G′ = G/F contains five
chordless cycles of length at least five. This indicates that the standard ML-BOSSANOVA decomposition
using conn[G] cannot succeed, and the use ofMg[G] is more appropriate; although we do not give details
here for reasons of space, this was established for the single-level BOSSANOVA case in [47, Sec. 6.6]. It
was infeasible to calculate a reference total energy for limonin using CCSD(T) at an appropriately high
basis set. Instead, we consider a reference total energy for limonin calculated at the MP2/cc-pCVQZ
level of theory: approximately −1609.907Eh. The atomization energy of limonin as per G4(MP2) was
calculated as approximately 11.183Eh.

Per-iteration results for All-strategy adaptive calculations for limonin are shown in Figure 7, with a

4In [47], the absolute error values plotted were measured relative, not to the G4(MP2) atomization energy of heptane as
stated, but rather the ccCA-PS3 [62] atomization energy of heptane, see [47, Tab. 7.2]. The error behaviour shown in
the original [47, Fig. 7.1] seems, in this light, consistent with the reasoning that led to the choice of the G4(MP2) value
as reference, rather than the ccCA-PS3 atomization energy.

24



1010 1012 1014 1016 1018
10−5

10−3

10−1

101

103

Cumulative abstract cost

E
rr
o
r
m
et
ri
c
(E

h
)

Total energy, MP2/cc-pCVQZ

1010 1012 1014 1016

10−3

10−2

10−1

100

101

Cumulative abstract cost

Atomization energy, G4(MP2)

Absolute error Absolute error indicator

Πnon-ML (MP2/cc-pCVQZ) Πnon-ML (MP2/cc-pCVQZ)

ΠAbI (MP2 or CCSD(T)) ΠAbI (MP2 or CCSD(T))

ΠBS (cc-pCVQZ) ΠBS (cc-pCVQZ)

Π (complete) Π (complete)

Figure 7: Per-iteration error metrics for adaptive truncations of (37) for limonin, as well as subgrid
decompositions.

layout equivalent to those for heptane. We omit from consideration also the subgrid ΠGCM, since the
results available up to practicality are not usefully comparable. We begin with approximations of the
MP2/cc-pCVQZ total energy. In their final iterations, all such calculations, either approach (Πnon-ML

and ΠBS) or comfortably exceed (ΠAbI and Π) chemical accuracy with respect to the reference result.
Their respective error indicators are still sometimes prone to overestimation of the error, even late in the
calculation. There does not seem to be either a clear speedup relative to the reference, or a clear winner
amongst the subgrids trialled: the ΠAbI subgrid is the first to reach chemical accuracy, but the errors
produced by truncations for Π seem to decay slightly more regularly.

For approximations of atomization energies, it is again interesting to see that while the error indicators
are broadly reliable, they do underestimate the true error in the very final iterations. It is difficult to be
conclusive here. As regards accuracy, neither calculation produces an agreement with the reference value
better than 0.01Eh. Here, it may be the case that further iterations would produce a closer agreement,
but again, since we would expect the truncations to approach the true V atom — or, given the restricted
grid, the approximation of V atom for CCSD(T)/cc-pCV8Z — this would again depend on the accuracy of
the G4(MP2) energy itself.

Although we are limited in our ability to draw conclusions by the quality of the available reference
results, it does still seem clear that ML-SUPANOVA truncations are systematically improvable. It is
important to note that the highly cyclic structure of the limonin system is not an issue. For atomization-
energy calculations, there is still no clear performance benefit here compared to a simple application
of G4(MP2). But the G4(MP2) cost is here significantly higher than that for heptane, and there must
quickly come a point where even G4(MP2) will become prohibitively expensive. It is here that we still
anticipate that the ML-SUPANOVA approach will truly come into its own.

5. Concluding Remarks

In this article, we investigated the working equations of single- and multilevel energy-based fragmentation
methods. The technique of Möbius inversion, well-known to the cluster expansion methods community
and easily extensible from work there, led to the unifying expansion form (32). As well as reproducing
the energy equations of a number of existing multilevel fragmentation methods, this expansion provides
for a further extension again, namely the efficient approximation of individual many-body terms in the
broad style of a composite method, using a framework based on the combination technique.
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The algorithm we have given here is clearly capable of refining ML-SUPANOVA truncations in a way
that produces a systematic increase in accuracy. However, some questions do remain regarding their
function as a mechanism for computational speedup. We can reasonably anticipate that application of
ML-SUPANOVA is likely to pay dividends for much larger systems than those we have considered here. A
further investigation of “true” adaptivity, with, e.g., the Threshold strategy, would be appropriate. But
the primary issue will remain one of validation, given the inherent unavailability of true reference solutions.
Two complementary approaches suggest themselves. The first would be an effort to develop rigorous
bounds on the decay properties of the MBE subproblem potentials Ṽu, and then also on their more
general multilevel equivalents. The second would be detailed practical comparison against experimental
results. For this, it would be necessary to obtain from truncated ML-SUPANOVA expansions also point
evaluations of the nuclear gradient, rather than just of total and/or atomization energies. This adjustment,
very well-known in existing fragmentation methods, requires in our setup just a different choice of linear
operator.

Were it not already clear, let us stress that the combinatorial tools we have applied here are textbook
knowledge. Nevertheless, they allowed us to identify and avoid a subtle but important issue in the existing
(ML-)BOSSANOVA framework. It seems likely that careful investigation of more recent developments in
combinatorics, order theory, and the theory of graph convexities may lead to helpful further insights. It
would be particularly interesting to explore whether and to what extent it might be possible to derive a
general scheme for the construction of a interaction graph G that both captures the topological structure
of a molecular system while also ensuring that Mg[G] is truly a convex geometry, but this may prove a
difficult task.

As mentioned above, we remain particularly interested in the use of subproblem potentials employing
quantum embedding, which are explicitly catered for by our formal setup. For example, if one were
to build a set of potentials that applied either a WFT-in-WFT or WFT-in-DFT quantum embedding
scheme, it would be natural to use the ab initio theory index m and basis set index p to specify the
treatment of the embedding region. There are other possibilities; one might also consider a multilevel
treatment of the environment region. Here, there will be practical issues, since the cost of evaluating each
V(u,m,p) will presumably scale superlinearly in the size of the full system.
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A. Proofs

In this section, we provide proofs for some of the results given in the text. With the exception of the
first proof (for Prop. 2.1), these are drawn almost verbatim from [47], with some small adjustments for
clarity and also consistency within this article. We use some basic terminology and concepts not explicitly
introduced above; see, e.g., [30–32].

The first proof uses just the same standard results and idea of proof as on [35, p. 7481].

Proof of Proposition 2.1. If s /∈ I, then immediately D
(I)
s = 0, so let s ∈ I. Define J := I ∪ {1̂J}, such

that 1̂J >J t for any t ∈ I. By Lemma 2.1, D
(I)
s = −µJ(s, 1̂). Note that the interval [s, 1̂]J is itself a

meet semilattice, so a lattice by [32, Prop. 3.3.1]. If µJ(s, 1̂) = −D(I)
s ̸= 0, then s must be a meet of

coatoms of [s, 1̂]J by [32, Cor. 3.9.5], and these coatoms are in A by construction.

Proof of Lemma 2.2. Let P , Q, I ′, and A′ be as in the statement of the claim. Further, let I be some
finite order ideal of P which is combination-consistent with I ′. Since I is finite, it is generated by an
antichain A ⊆ I; we want to show that A = A′.

26



The proof is by contradiction. Suppose that A ̸= A′. Then there exists some a ∈ A such that a /∈ A′,
or otherwise, some a′ ∈ A′ such that a′ ̸∈ A. Begin by supposing the former. Since a is maximal in I, we

have D
(I)
a = µP (a, a) = 1 by definition. If a ̸∈ Q, then by (23), also D

(I)
a = 0, a contradiction. So a ∈ Q.

It must be that a ∈ I ′, for otherwise, D̂
(I′)
a = 0, again a contradiction. Since a ̸∈ A′, there exists some

a† ∈ A′ such that a† > a. Just as above, D̂
(I′)
a† = 1, but since a is maximal in I, we know that a† cannot

also be an element of I, so also D
(I)

a† = 0, contradicting (23).

It must then be that there exists a′ ∈ A′ such that a′ ̸∈ A. Just as above, D̂
(I′)
a′ = 1. If a′ ̸∈ I, then

D
(I)
a′ = 0, contradicting (23) since a′ ∈ A′ ⊆ Q. So a′ ∈ I. Then there exists some a† ∈ A ⊆ P such that

a† > a′, and D
(I)

a† = 1. Since this is nonzero, it must be that a† ∈ Q, by (23). But since D̂
(I′)
a† is nonzero

only when a† ∈ I ′, we have that a′ is not maximal in I ′, so a′ /∈ A′, a contradiction.

In the following proof, we make use again of the same ideas as on [35, p. 7481], particularly for direction
(⇐). We correct here a minor omission in the proof given in [47], namely, a trivial case when s /∈ I, and
also correct a minor error related to the use of the Crosscut Theorem.

Proof of Theorem 2.2. (⇐) Let P be a locally finite meet semilattice with a 0̂, and let Q ⊆ P be a meet
subsemilattice of P . Let I ′ be an arbitrary finite order ideal of Q with generating antichain A′, and let
I = ⟨A′⟩P be the finite order ideal of P generated by A′ in P .

Fix some s ∈ P . If s /∈ I, then clearly D
(I)
s = 0, and if also s ∈ Q, similarly D̂

(I′)
s = 0. So assume s ∈ I.

Define J := I ∪ {1̂J} and J ′ := I ′ ∪ {1̂J′}, such that 1̂J >J t for any t ∈ I, and 1̂J′ >J′ t′ for any t′ ∈ I ′.
If s is a meet of coatoms of J , then also s ∈ J ′, since each such coatom is in A′ by construction and Q is
a meet subsemilattice of P . Further, noting that the coatoms of [s, 1̂J ]J and [s, 1̂J′ ]J′ must be the same,

it follows that D
(I)
s = −µJ(s, 1̂J) = −µJ′(s, 1̂J′) = D̂

(I′)
s by Lemma 2.1 and the Crosscut Theorem [32,

Cor. 3.9.4], using those sets of coatoms as the subset X in the statement of the latter result. If s is not a

meet of coatoms of J , then D
(I)
s = 0 by [32, Cor. 3.9.5]; if here also s ∈ Q, then similarly D̂

(I′)
s = 0, and

we are done.
For (⇒), the proof is by contradiction. Let P be a locally finite meet semilattice with a 0̂, and let Q

be a combination-consistent subposet of P . Suppose that Q is, however, not a meet subsemilattice of
P . Then there exist (at least) two distinct elements t, t′ ∈ Q such that t ∧P t′ ̸∈ Q. Let I ′ = ⟨{t, t′}⟩Q
be the finite order ideal of Q generated by those two elements. Since Q is combination-consistent with
P , there exists a finite order ideal I of P that is combination-consistent with I ′. By Lemma 2.2, this
I = ⟨{t, t′}⟩P . Form as above J := I ∪{1̂J}. Since the only subset of {t, t′} whose meet is t∧P t′ is {t, t′}
itself, it follows from the Crosscut Theorem [32, Cor. 3.9.4] that D

(I)
t∧P t′ = −µJ(t ∧P t′, 1̂J) = 1. But,

since I is combination-consistent with I ′, and since t ∧P t′ ̸∈ Q, also D
(I)
t∧P t′ = 0, a contradiction.

B. Abstract Cost Model

In this section, we outline the abstract cost model used in the calculations described above. The model is,
in essence, just a collection of asymptotic expressions for the costs of individual algorithms, see again
Section 2.1 and, e.g., [1–5], with the inclusion of some tunable constant factors. We simply state the
model here, and refer the interested reader to [47] for more details as well as some additional supporting
references.

The computational cost required to evaluate the total energy for a molecular system at some level of ab
initio theory is ultimately a function of the specific molecular geometry as well as the selected basis set.
The number and species of atoms determines the number of basis functions NAO. All of the quantum-
chemistry algorithms discussed here involve the calculation of formally O(N4

AO) two-electron integrals
(ERIs) over atomic-orbital basis functions, but very many of these will usually be negligibly small [3, 56].
Since ERI negligibility is most commonly an expression of spatial separation between particles, this effect
will be less pronounced for a more compact molecular system such as an individual fragment. In the
following, we assume knowledge or at least an estimate of the number NERI of non-negligible ERIs. We
also include a tuneable factor fERI that can be used to weight the cost of their calculation as fERINERI.
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We assume the use of a direct SCF algorithm [145] for Hartree-Fock calculations. The work at each
iteration involves first calculating all distinct ERIs, and then solving the Roothaan-Hall equations.
Assuming that some NHF

iter iterations are required on average, then, the cost of a Hartree-Fock calculation
is modelled as

CHF(· · ·) = NHF
iter(fERINERI + N3

AO), (43)

cf. the cost model in [14]. We hide the various arguments and parameters of the cost function inside an
ellipsis for notational simplicity.

It is common to see the cost of an MP2 calculation stated as O(N5
AO), but this can be expressed a

little more tightly. One necessarily begins with a Hartree-Fock calculation, which provides the first term
in the following formula. The remaining calculation depends on the number of virtual orbitals Nvirt, and
also on the number of correlated orbitals Ncorr, which is just the number of occupied orbitals Nocc for an
all-electron calculation but somewhat lower for a calculation made under the frozen-core approximation.
The actual evaluation of the MP2 contribution term requires only O(N2

corrN
2
virt) operations, cf. [1],

giving the second term below. However, these involve ERIs over molecular orbitals, which must be
computed from the atomic-orbital ERIs. After these latter are explicitly calculated (third term), four
tensor contractions (remaining terms) deliver the final tensor of molecular ERIs; for details on this
transformation, see, e.g., [146]. Ordering these optimally under the assumption that Ncorr < Nvirt, then,

CMP2(· · ·) = CHF(· · ·) + N2
corrN

2
virt + fERINERI

+ NcorrNERI + N2
corrN

3
AO + N2

corrNvirtNAO + N2
corrN

2
virtNAO. (44)

We model the costs of a general nth-order coupled cluster calculation more simply, as

CCC(n)(· · ·) = fERINERI + NAO(Ncorr + Nvirt)
4 + NCC

iterN
n
corrN

n+2
virt ; (45)

that is, as the cost of calculating non-negligible atomic ERIs (first term), transforming them into molecular
ERIs (second term, modelled without as much detail as for MP2), and then iteratively solving the necessary
amplitude equations, which is assumed to require NCC

iter iterations on average; for asymptotic costs of
coupled cluster calculations, see again, e.g., [8, 50, 51, 54]. This assumes that the cost difference of the
frozen-core approximation can be captured by replacing Nocc by Ncorr. Finally, by extension, the cost of
evaluating such a calculation but also with a perturbative approximation for the effects of subsequent-order
excitations is modelled as

CCC(n)(n+1)(· · ·) = CCC(n)(· · ·) + Nn+1
corr N

n+2
virt . (46)

To obtain the abstract costs used in this article, we used the factor values NHF
iter = 15, NCC

iter = 15, and
fERI = 50. We used PySCF to derive values of NAO, Ncorr, and Nvirt, and estimated NERI as per the
standard Cauchy-Schwarz bound [147], with the ERIs required to evaluate the bound calculated using
libcint [92]. ERIs were deemed negligible below a bound of 10−12 , evaluated per basis shell, and counted
up to permutational symmetry.

C. Heuristic Fragmentation Algorithm

In this section, we describe informally the heuristic algorithm used to derive the fragmentations used in
Section 4. Particularly similar heuristics are used in [16, 81]. As an initial candidate fragmentation, we
take F = {{i}}Mi=1, so assigning the index of each atom in the system to its own fragment. Fragments are
then repeatedly coalesced in two separate phases.

The first phase collects any bonded hydrogen atoms with their “parents”, and removes the possibility
that calculating any subproblem potential VFu would require severing a double- or higher-order bond.
Iterating over pairs, two fragments Fi and Fj are combined if either a) a non-single covalent bond exists
between an atom in each fragment, or b) a hydrogen atom in one fragment is bonded to an atom in the
other fragment. This is repeated until a steady state is obtained.

The second phase is intended to avoid the possibility whereby two covalent bonds leading to the same
external atom must be severed in the calculation of some VFu , which would result in the introduction of
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two link atoms in very close proximity to one another. We iterate again over pairs of fragments, looking
for two particular cases. In the first case, a single atom in one fragment Fi is bonded to two atoms in
another fragment Fj , where the two fragments are adjacent in the quotient graph. In the second case,
atoms in two fragments Fi and Fj are bonded, and either of those two atoms is also bonded to an atom
in a third fragment Fk that is itself adjacent to both Fi and Fj . Again, the second phase terminates
when a steady state is encountered.

Note that the output of this algorithm is dependent upon the ordering of the fragments, and on how
fragment pairs are enumerated at each iteration of each phase.
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Wahrscheinlichkeitstheorie Verwandte Geb. 2.4 (1964), pp. 340–368.

[31] M. Aigner. Combinatorial Theory. Classics in Mathematics. Berlin, Heidelberg: Springer, 1997.

[32] R. P. Stanley. Enumerative Combinatorics. 2nd ed. Vol. 1. New York: Cambridge University Press,
2012.
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multivariate functions”. Math. Comput. 79.270 (2009), pp. 953–966.
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[99] M. Kállay. “A systematic way for the cost reduction of density fitting methods”. J. Chem. Phys.
141.24 (2014), p. 244113.
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[129] F. D. Sönnichsen, C. I. DeLuca, P. L. Davies, and B. D. Sykes. “Refined solution structure of type
III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice
interaction”. Structure 4.11 (1996), pp. 1325–1337.
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