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We investigate the properties of anisotropic white dwarf stars within the rainbow gravity adopting
for matter content the Chandrasekhar model based on an ideal Fermi gas at zero temperature. We
study in detail the effects of the anisotropic factor on stellar mass and radius, the speed of sound, and
the relativistic adiabatic index in both radial and tangential directions. We find that causality is never
violated, whereas the stability criterion based on the relativistic adiabatic index is not met when the
objects are characterized by a positive anisotropic factor close to the Chandrasekhar limit. We present
this significant observation here for the first time, to the best of our knowledge.

I. INTRODUCTION

Einstein’s theory of gravity has achieved remarkable
success for over a century. The GR stands out as one of
the best-tested theories on relatively small astronomical
scales, such as the Solar System and compact astrophys-
ical objects. Despite all of GR’s success, the discovery of
the accelerated expansion of the universe led to a renais-
sance in scientific society. As we know, gravity is an at-
tractive force that causes the universe and all of its mat-
ter to contract. So the expansion of the universe would
gradually slow down at a rate determined by the den-
sity of matter and energy within it. To overcome this
limitation, it is necessary to assume additional exotic
matter components (known as Dark Energy) within the
framework of GR. However, the true nature of dark en-
ergy remains obscure, and an understanding of its phys-
ical properties is incomplete.

Beside that, another possible explanation involves
modifying the Einstein-Hilbert action, commonly
known as modified gravitational theory, without re-
quiring the introduction of dark components. Such
modifications to GR include the adding of extra di-
mensions like Brane-World gravity [1], non-minimal
geometry-matter coupling theories f (R,Lm) [2] and
f (R, T) [3], higher-curvature theories e.g., f (R) gravity
[4] and Lanczos-Lovelock gravity [5]. Furthermore,
massive gravity [6], Brans-Dicke gravity [7] and f (Q)
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gravity [8] are also well-defined modified gravity
theories from the theoretical as well as experimen-
tal/observational point of view.

Following this direction, in Ref. [9], a generalization
from the doubly special relativity was proposed, called
‘rainbow gravity’. This means that particles with dif-
ferent energies distort the spacetime differently, and the
usual Einstein’s equations is modified as a one param-
eter family of equations. This alternative approach has
received a lot of attention among researchers, and we
shall review the definition of rainbow metrics in the
next section. Researchers have extensively studied the
properties of static spherically symmetric black hole so-
lutions within the framework of rainbow gravity [10–
15]. In this context, the study of gravastar solutions
have been found in [16, 17]. The authors of [18] inves-
tigated the wormhole solution for a static and spheri-
cally symmetric spacetime. Additionally, Tudeshki et al
[19] have studied an anisotropic dark energy and inves-
tigated their dynamical stability. Subsequently, dynam-
ically stable neutron stars and quark stars were demon-
strated (for a detailed discussion, see, e.g., Refs. [20–
23]). Rainbow gravity holds significant importance as
the spacetime depends on the form of the rainbow func-
tions and thereby the energy of the probe particle that
affects the spacetime background.

Based on the above discussion, this paper develops a
framework for discussing the white dwarfs in rainbow
gravity, which are among the most extensively studied
stars in stellar astrophysics. White dwarf stars, in as-
tronomy, are the endpoints of the evolution of a low or
medium mass stars. Therefore, scientists believe that
white dwarfs are the most informative objects on the
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stellar evolution theory to measure the age of stellar
populations, the kinematics, and the star formation his-
tory of our galaxy. Interestingly, the existence of white
dwarfs cannot be more massive than 1.4 M⊙. This limit
is called the Chandrasekhar limit for the maximum mass
of a stable white dwarf star [24, 25]. The theoretical evo-
lution of white dwarfs is well understood in [26, 27].
However, recent detection of some extremely luminous
type-Ia supernovae, such as SN 2007if, SN 2006gz, SN
2003fg and SN 2009DC [28, 29] has cast the question on
the maximum mass of white dwarfs. This being known
as “super-Chandrasekhar” white dwarfs [30–33]. Re-
searchers have extensively studied this class of objects in
a variety of settings, such as super strong uniform mag-
netized white dwarfs [34–38], electrical charged white
dwarfs [39, 40] and rotating white dwarfs [41, 42].

Meanwhile, local anisotropy can exist within a self-
gravitating systems [43]. In Refs. [44, 45] authors have
show that the nuclear matter may be anisotropic at very
high densities where the nuclear interactions must be
treated relativistically. Some theoretical investigations
have suggested that the existence of anisotropic pres-
sure can be triggered by various phenomena, e.g., rel-
ativistic nuclear interactions [44, 45], superfluid cores
[46], strong magnetic fields [47–49], etc. Considering
pressure anisotropy, one can construct relativistic stars
[50, 51] or such exotic objects as wormholes [52, 53].
Surprisingly, white dwarfs with an anisotropy matter
source in GR is poorly studied. Our purpose will be
to demonstrate the effects of modified gravity and fluid
anisotropy on the internal structure of white dwarfs.

In addition, white dwarfs in modified theories of
gravity have also attracted much attention among re-
searchers, see Refs. [54–64]. Recently, white dwarfs
within the framework of Rastall-Rainbow gravity have
been evaluated in [65]. In dRGT massive gravity, Panah
and Liu [66] have studied white dwarfs, and showed
that the maximum mass can be more than the Chan-
drasekhar limit (M > 1.45M⊙). From the foregoing out-
line, in this paper we are going to investigate the pos-
sible existence and analyze the stability of white dwarfs
in Rainbow gravity. With the same modified gravity, our
interest lies in emphasizing the effect of Rainbow func-
tion on the structural properties of white dwarfs. In ad-
dition, we compute the static stability criterion, the adia-
batic index, and the sound velocity. Finally, we compare
our results with GR counterpart.

The paper is organized as follows: Section II provides
a brief review of the Rainbow gravity and derives the
modified TOV equations for stellar structure. In Sec-
tion II, we set up the equations of state for white dwarfs
including the structure equations for anisotropic fluid

distribution. In Section IV, we solve the modified TOV
equations numerically and demonstrate the effects of
model parameters on the mass-radius relations. Sec-
tion V is devoted to computing the dynamic stability of
white dwarfs in this gravity theory. Concluding remarks
are given in Section VI.

II. REVIEW OF GRAVITY’S RAINBOW AND STELLAR
STRUCTURE EQUATIONS

A. Rainbow theory

Among the many challenges, the biggest challenge in
theoretical physics is how to unify quantum mechan-
ics and general relativity (GR) together. To address this
challenge, physicists have proposed a number of ap-
proaches, such as loop quantum gravity, string theory,
non-commutative geometry, and so on. Among them
deformed (or doubly) special relativity (DSR) has been
conceived as an extension of special relativity [67] (also
refer to [68]). This modified dispersion relation assume
the existence of two observer-independent scales: the
speed of light and the Planck energy. However, DSR
already faced the most pressing problem is the ’soccer
ball’ problem. In an attempt to provide possible an-
swers, Magueijo and Smolin [9] proposed a new theory
called ‘rainbow gravity’ (RG) as a generalization of DSR
to include curvature in spacetime. Within this formal-
ism the geometry of spacetime depends on the energy
of the test particle and leads to the energy-dependent
distortions in spacetime. Specifically, given a modified
dispersion relation for a particle of mass m, which is rep-
resented by the following equation:

E2Ξ(x)2 − p2Σ(x)2 = m2, (1)

where Ξ(x) and Σ(x) are functions of dimensionless ra-
tio x = E/Ep with E is the particle’s total energy and Ep,

the Planck energy, is defined as Ep =
√

ℏc5

G . These func-
tions are known as rainbow functions and have an in-
fluence the ultraviolet regime [15]. In the limit of x → 0,
the rainbow functions with the following properties:

lim
x→0

Ξ(x) = 1, lim
x→0

Σ(x) = 1, (2)

thereby recovering the standard energy dispersion rela-
tion. Following [9], the rainbow metric which is given in
terms of a one-parameter family of orthonormal frame
fields

gµν(x) = ηabeµ
a (x)⊗ eν

b(x), (3)
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where the vierbeins eµ
a (x) vary with energy:

eµ
0 (x) =

1
Ξ(x)

ẽµ
0 , eµ

k (x) =
1

Σ(x)
ẽµ

k , (4)

where the ‘tilde’ quantities represent the energy-
independent tetrads. As a consequence, the usual Ein-
stein’s equations is modified as a one parameter family
of equations,

Gµν(x) ≡ Rµν(x)− 1
2

gµν(x)R(x) = k(x)Tµν(x), (5)

where k(x) = 8πG(x) with Gµν(x) is the Einstein ten-
sor and Tµν(x) is the stress-energy tensor, the source of
spacetime curvature. Here, we use a system of units in
which G(x) = 1 for simplicity.

B. Modified TOV equations of rainbow gravity

Here, we demonstrate a solution for WDs to the modi-
fied field equations (5), and thereby conventional spher-
ically symmetric metric is replaced by a rainbow metric
parameterized by the energy of the test particle [9],

ds2 = − e2Φ(r)

Ξ2(x)
dt2 +

e2λ(r)

Σ2(x)
dr2 +

r2

Σ2(x)
(dθ2 + sin2 θdϕ2),

(6)
where the metric functions Φ(r) and λ(r) are function
of the radial coordinate r only. In addition, the rainbow
functions Ξ(x) and Σ(x) are invariant with respect to the
spacetime coordinates (r, t, θ, ϕ).

Let us now consider that the matter content is de-
scribed by an anisotropic fluid with energy-momentum
tensor given by

Tµν = (ρ + pt)uµuν + ptgµν − (pt − pr)χµχν, (7)

where ρ(r) is the energy density, pr(r) is the radial pres-
sure, and pt(r) is the transverse pressure, respectively.
The fluid 4-velocity is written as

uµ =

(
Ξ(x)
eΦ(r)

, 0, 0, 0

)
, (8)

with the condition uµuµ = −1. The χµ is the unit radial
vector with χµχµ = 1.

The form of the spacetime metric (6), together with the
energy-momentum tensor (7), we obtain the modified
Tolman-Oppenheimer-Volkoff (TOV) equations (5) with
the following forms [20]:

Meff(r, x) =
∫ r

0

4πr2ρ(r)
Σ2(x)

dr ≡ m(r)
Σ2(x)

, (9)

p′r = −(ρ + pr)Φ′ +
2
r
(pt − pr), (10)

Φ′(r) =
Meff(r, x)Σ2(x) + 4πr3 pr(r)

r(r − 2Meff(r, x))Σ2(x)
, (11)

where the prime denotes a derivative with respect to
the radial coordinate, r. The three differential equations
above contain five unknowns, so we should specify an
equations of state (EoS) to provide a comprehensive de-
scription of the configuration under consideration. We
will discuss the topics below in detail.

III. EQUATION OF STATE

As a way to solve the modified TOV equations, it is
necessary to provide an EoS that establishes a relation-
ship between the pressure and density of the system. In
this context, we consider the Chandrasekhar EoS [25],
which can be expressed in the following form

pr(kF) =
1

3π2h̄3

∫ kF

0

k4√
k2 + m2

e
dk

=
πm4

e
3h3

[
xF(2x2

F − 3)
√

x2
F + 1 + 3 sinh−1 xF

]
,(12)

ρ =
8πµemHm3

e
3h3 x3

F , (13)

where h̄ = h/2π, h is the Plank’s constant, xF ≡ pF/mec,
pF is the Fermi momentum, k is the momentum of elec-
trons, µe is the mean molecular weight per electron (we
choose µe =2 for our work), me is the electron mass and
mH is the mass of hydrogen atom, respectively.

Besides the Chandrasekhar EoS, we also adopt Quasi-
Local (QL) model for an anisotropic matter distribution
proposed by Horvat et al [69], which is described by the
following EoS

σ ≡ p⊥ − pr = βprµ, (14)

where β is a constant that measures the degree of
anisotropy in the fluid and µ = 2m(r)/r represents
the local compactness of the star. The parameter β is
restricted to the domain [−2, 2], see Refs. [70–77] for
more. We note here that the choice r → 0, the ef-
fect of anisotropy vanishes at the stellar interior i.e.,
σ = 0, and thereby recovering the isotropic solution.
The choice of (14) also allows for the vanishing of pres-
sure components at the star’s surface, i.e., pr (r → R) =
p⊥ (r → R) = 0.

IV. COMPUTATIONAL SETUP

In the present study, we solve numerically the struc-
ture equations provided by Eqs. (9) to (11), sup-
plemented by the Chandrasekhar EoS and quasi-local
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FIG. 1. Mass function versus radial coordinate (upper panel),
mass-to-radius relationship (panel in the middle) and factor of
compactness versus stellar mass (lower panel) of white dwarf
stars within rainbow gravity, taking into account variation of

Σ ∈ [0.92, 1.08] for an anisotropic level β = 0.1. The black
solid line illustrates the general relativity scenario for Σ = 1.

The used model parameters are shown in Table I.

model for an anisotropic matter distribution. We impose
at the center of the star appropriate initial conditions as
follows:

ρ(0) = ρc and m(0) = 0 , (15)

where ρc is the central energy density. Those initial con-
ditions ensure regularity of the interior solution describ-
ing hydrostatic equilibrium. We then proceed with the
integration throughout the star until we reach its sur-

FIG. 2. Mass function versus radial coordinate (upper panel),
mass-to-radius relationship (panel in the middle) and factor of
compactness versus stellar mass (lower panel) of white dwarf
stars within rainbow gravity, taking into account variations of
β ∈ [−10, 10] for the rainbow function Σ = 0.5. The black
dashed line presents the case of isotropic solution (β = 0) in
rainbow gravity. The used model parameters are shown in
Table 2.

face, where we impose the matching conditions as fol-
lows:

pr(R) = 0 = pt(R), M = m(R). (16)

Those matching conditions permit us to determine both
the radius, R, and the mass, M, of the star.

The model discussed here is based on the variation
of two free parameters, β and Σ. The first measures
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TABLE I. Main characteristics of white dwarf stars in gravity’s
rainbow. Used model parameters are Σ ∈ [0.92, 1.08] with β =

0.1.

Σ Mmax R ρc M/R
(M⊙) (km) ×1012 kg/m3

0.92 1.27 695 33.69 0.0027
0.96 1.33 725 33.69 0.0027
1.00 1.38 756 33.69 0.0027
1.04 1.44 786 33.69 0.0027
1.08 1.49 816 33.69 0.0027

TABLE II. Main characteristics of white dwarf stars in gravity’s
rainbow. Used model parameters are β ∈ [−10, 10] with Σ =

0.5.

β Mmax R ρc M/R
(M⊙) (km) ×1012 kg/m3

-10 1.38 1,336 6.40 0.0015
-5 1.41 1,160 10.0 0.0018
0 1.44 761 37.0 0.0028
5 1.61 - - -

10 2.02 - - -

anisotropy strength, while the second measures devi-
ation from GR. When β = 0 the objects are isotropic,
while when Σ = 1 we recover Einstein’s gravity.

In Fig. 1 we show the impact of Σ variations on stel-
lar mass, radius and factor of compactness, c = M/R,
assuming β = 0.1, see Table I for more details. We
obtain the mass function versus radial coordinate (up-
per panel), mass-to-radius relationship (panel in the
middle) and factor of compactness versus stellar mass
(lower panel). In all three panels, the solid black curve
in the middle corresponds to the GR solution. The mass
(in solar masses) decreases with the stellar radius (in
km), which is in agreement with the solution of the
Lane-Emden equation for non-relativistic objects when
the polytropic index n = 3/2. Moreover, the factor of
compactness slightly increases with the stellar mass, al-
though it remains small, around two orders of magni-
tude lower than that of neutron stars. Σ < 1 implies
less massive stars, whereas Σ > 1 implies more massive
objects.

The three panels of Fig. 2 are similar to the ones of
the previous figure, although this time we fix Σ = 0.5
and we vary β, see Table II for more details. A negative
anisotropic factor implies less massive objects, whereas
when the anisotropy is positive the stars become more
massive.

V. STABILITY INVESTIGATION OF QSs

Now we confront our results with the stability of
white dwarf stars using the static stability criterion, the
adiabatic index, and the sound velocity. The methods
used for assessing the stability of these stars are briefly
described below.

A. Static Stability Criterion

At this point, we have studied the static stability crite-
rion [78, 79] to examine the behavior of the equilibrium
configuration under consideration. However, this is a
necessary condition but not sufficient for confirming the
stability of a spherical body. Mathematically, this crite-
rion has been extensively utilized in modified gravity
theories also, see Refs. [80–82] and therein. We express
the definition through the following inequalities:

dM
dρc

< 0 → indicating an unstable configuration,(17)

dM
dρc

> 0 → indicating a stable configuration. (18)

The M − ρc relations are shown in Fig. 3 with the pa-
rameter set provided in Figs. 1 and 2, respectively. As
shown in Fig. 3, the mass of the stars increases with
the central density, until it reaches a maximum value,
and after that it starts decreasing. Although this second
part of the curve is not physical, as it corresponds to in-
stability according to the Harrison-Zeldovich criterion
i.e., the stable configuration exists in the region where
dM/dρc > 0. Consequently, the turning point indicated
by the pink circles defined by dM/dρc = 0.

B. Adiabatic Indices

To investigate the dynamical stability of the config-
uration, in this section, we are going to study the adi-
abatic index (γ). It is important to note that Chan-
drasekhar [83] established the foundation for under-
standing dynamical instability in compact stars. This
work provides key insights into the limits of the stability
of relativistic stars. Mathematically, the speed of sound,
c2

s and the relativistic adiabatic index, Γ, of a fluid are
defined by [83, 84]

c2
s ≡ dp

dρ
, Γ ≡ c2

s

(
1 +

ρ

p

)
(19)

while if the fluid is anisotropic, there is a sound speed
and a relativistic adiabatic index for each direction,
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FIG. 3. Star mass versus the central energy density ρc for var-
ious values of Σ and β. In figures, the pink points represent
a boundary wall that separates the stable configuration region
indicated by dM/dρc > 0 from the unstable one.

namely radial and tangential. The stability criterion
based on Γ is the following: its mean value must be
larger than a critical value

⟨Γ⟩ ≥ Γcr (20)

where the critical value is given by [85]

Γcr =
4
3
+

19M
21R

(21)

while the mean value is computed by [85]

⟨Γ⟩ =
∫ R

0 dr Γ(r)p(r)r2eλ+3Φ∫ R
0 dr p(r)r2eλ+3Φ

. (22)

The interested reader may consult for instance [85] for
more details on the role of the relativistic adiabatic index
on stability of stars.

γ =
4
3

(
1 +

σ

r|p′r|

)
max

, Γr =
ρ + pr

pr
v2

r ,

Γt =
ρ + pt

pt
v2

t , (23)

FIG. 4. The adiabatic indices in the radial and tangential direc-
tions with a central density of ρc = 3.7 × 1013 kg/m3 or 0.0208
MeV/fm3, along with the parameter set depicted in Fig. 1.

where Γr and Γt are the adiabatic indices in the radial
and tangential direction, respectively. Since, ∆ = 0 rep-
resents the isotropic solution, we have γ = 4/3. In the
case of soft-anisotropy where σ < 0, we find γ < 4/3,
similar to what is observed in Newtonian theory. While
for strong anisotropic case i.e., when σ > 0, we have
γ > 4/3. Neutral equilibrium occurs for Γ = γ and sta-
ble equilibrium requires Γ > γ, see Refs [84, 86] for more
details. The anisotropic star model exhibits stale behav-
ior when Γr > γ and Γt > γ everywhere inside the star.
To discuss stability based on our calculation, we show
in Fig. 4 and Fig. 5 the variation of adiabatic indices Γr
and Γt in both directions, namely radial and tangential,



7

FIG. 5. The adiabatic indices in the radial and tangential direc-
tions with a central density of ρc = 5× 1012 kg/m3 or 0.002814
MeV/fm3, along with the parameter set depicted in 2.

for Σ variations and β variations, respectively, assuming
a certain value of the central energy density. Regarding
Σ variations, both indices increase with the radial coor-
dinate, while at the same time they remain higher than
the Newtonian value 4/3. Regarding β variations close
to the Chandrasekhar limit, M ∼ 1.4M⊙, the radial adia-
batic index increases with the radial coordinate remain-
ing higher than 4/3, whereas in the tangential direction
it exhibits a behavior that depends on the sign of the
parameter β. In particular, a positive anisotropic factor
implies instability, as Γt < 4/3.

FIG. 6. The squares of the sound speeds in the radial and tan-
gential directions as a function of the distance from the center
of the star to its edge, with parameters specified in Fig. 1.

C. Sound Speed and Causality

We now turn to consider an additional validation, the
squared speed of sound, defined as v2

r,t =
dp{r,t}

dρ , serves
as an essential validation to evaluate the physical cor-
rectness of our model. For Chandrasekhar’s EoS, we
calculate the sound speed both radially and tangentially
within the stellar interior. Finally, in Fig. 6 and Fig. 7
we display the speed of sound in both directions, ra-
dial and tangential, for Σ variations and β variations,
respectively, assuming a certain value of the central en-
ergy density. We observe that in all cases the sound
speed monotonically decreases with the radial coordi-
nate throughout the stars, remaining always lower than
1, and therefore causality is never violated.

VI. CONCLUSION

To summarize our work, in the present article we have
studied in detail the properties of anisotropic White
Dwarf stars within Rainbow gravity. First we presented
the modified structure equations, and after that we
briefly discussed the EoS for an ideal Fermi gas at zero
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FIG. 7. The squares of the sound speeds in the radial and tan-
gential directions as a function of the distance from the center
of the star to its edge, with parameters specified in Fig. 2.

temperature, which corresponds to the Chandrasekhar
model. The model discussed here is characterized by
two free parameters, namely β and Σ. The first one is re-
lated to the anisotropic factor, while the other one mea-

sures deviations from GR. We summarized our main nu-
merical results in a number of two Tables and seven fig-
ures, observing the impact of the two free parameters
on the properties of the WD stars. Our findings indi-
cate that a positive β makes stars more massive, a neg-
ative β makes WDs less massive, a Σ < 1 implies less
massive objects, and a Σ > 1 implies more massive WD
stars. Furthermore, causality is always respected as both
speed of sounds decrease with the radial coordinate,
and they always remain bounded 0 < cs < 1 through-
out the WDs. Moreover, regarding the relativistic adia-
batic index, the radial one in all cases increases with the
radial coordinate, while at the same time it always re-
mains higher than the Newtonian value 4/3. The most
striking observation reported in the present work for
the first time is that anisotropic WDs characterized by
a positive anisotropic factor close to the Chandrasekhar
limit seem to become unstable, according to the crite-
rion based on the relativistic adiabatic index along the
tangential direction.
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[22] T. Tangphati, İ. Sakallı, A. Banerjee and A. Pradhan, Phys.

Dark Univ. 46, 101610 (2024).
[23] A. Banerjee, A. Pradhan, B. Dayanandan and A. Ali, Eur.

Phys. J. C 84, 730 (2024).
[24] S. Chandrasekhar, Astrophys. J. 74, 81 (1931).
[25] S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207



9

(1935).
[26] A. H. Corsico, A. D. Romero, L. G. Althaus and J. J. Her-

mes, Astron. Astrophys. 547, A96 (2012).
[27] M. E. Camisassa, L. G. Althaus, D. Koester, S. Torres,
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