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ABSTRACT
Physical rehabilitation plays a crucial role in restoring functional
abilities, but traditional approaches often face challenges in terms
of cost, accessibility, and personalized monitoring. Asynchronous
physical rehabilitation has gained traction as a cost-effective and
convenient alternative, but it lacks real-time monitoring and assess-
ment capabilities. This study investigates the feasibility of using
low-cost Virtual Reality (VR) devices for action evaluation in re-
habilitation exercises. We leverage state-of-the-art deep learning
models and evaluate their performance on three data streams (head
and hands) derived from existing rehabilitation datasets that ap-
proximate VR headset and hand data. Our results demonstrate
that VR tracking data can be effectively utilized for action evalu-
ation, paving the way for more accessible and affordable remote
monitoring solutions in physical therapy. By leveraging artificial
intelligence techniques and consumer-grade virtual reality technol-
ogy, this study proposes an approach that could potentially address
some of the challenges in asynchronous rehabilitation, such as the
need for expensive motion capture systems or in-person sessions.
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• Computing methodologies→ Boosting; Motion capture; Neural
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1 INTRODUCTION
In the United States, there are over 250,000 physical therapists, and
this number is expected to grow by 15% in the coming years to
meet the increasing demands of society1.

In-person physical rehabilitation with a professional has long
been the standard for therapy intervention and is widely recognized
as one of the most effective ways to rehabilitate patients. However,
this traditional process involves several challenges, including the
need for synchronous sessions, significant time commitments, high
costs, and the inconvenience of clinic travel, which may be particu-
larly difficult for some patients [13].

To address these issues, healthcare providers are increasingly
adopting asynchronous rehabilitation modalities. In this model,
patients perform a prescribed set of exercises at home, following
guidelines provided by professionals. This approach has proven
effective in musculoskeletal practices and has led to high patient
satisfaction [8]. However, monitoring these exercises and providing
real-time assessments remain challenging tasks for researchers and
companies.
1https://www.bls.gov/ooh/healthcare/physical-therapists.htm

Researchers have employed statistical algorithms like Dynamic
TimeWarping (DTW) and distance measures like Euclidean and Jac-
card. Some have explored machine learning techniques like Support
Vector Machines (SVM) and Gaussian Mixture Models (GMMs) to
classify correct and incorrect movements. More recently, deep learn-
ing architectures such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have been used to model
joint dependencies and assist in movement scoring [16].

Additionally, Virtual Reality (VR) technology, which is widely
used in vocational training, entertainment, and medical care, of-
fers promising applications for rehabilitation. Stand-alone head-
mounted display devices are becomingmore affordable, user-friendly,
and accessible to many users simultaneously, providing a low-cost
method for motion tracking [9].

This paper aims to combine artificial intelligence techniques with
VR technology to evaluate the effectiveness of these devices as cost-
effective motion-tracking systems in asynchronous rehabilitation
processes. Hence, we proposed a simple baseline model that outputs
the average score from the training set and an eXtreme Gradient
Boosting (XGBoost) machine learning model that, given a selected
set of features, predicts a score. Wewill provide an in-depth analysis
of these models in Section 3.

We summarize the contributions of this paper as follows:

• Automated Preprocessing Pipeline:We proposed a com-
prehensive preprocessing pipeline that automatically splits
the data into exercise repetitions, facilitating the training
of various models.

• Model Comparison Framework:We conducted a thor-
ough comparison of state-of-the-art models using standard-
ized training setups. To the best of our knowledge, this is
the first work aimed at democratizing model comparison
in this context.

• Novel XGBoost Model:We implemented a novel eXtreme
Gradient Boosting (XGBoost) machine learning model that
performs comparably to the current state-of-the-art models
when using our training setup data and parameters.

The rest of this work is organized as follows: The section 2
provides an overview of related research. Section 3 details the data
and models used in our experiments, including the novel eXtreme
Gradient Boosting (XGBoost) machine learning model. Section 4
presents the results, while Sections 5 and 6 summarize the key
findings, draw conclusions, and outline potential future research
directions.
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2 RELATEDWORK
2.1 Motion Capture Systems
The effectiveness of physical rehabilitation programs depends on
patients’ adherence and the accurate execution of prescribed ex-
ercises. To ensure systematic monitoring of exercise performance,
prior research has explored the use of advanced technologies such
as video-based systems, wearable devices, and Inertial Measurement
Units (IMUs) for measuring and tracking motion [4].

Vision-based strategies for motion tracking can be categorized
into marker-based and marker-less techniques. Marker-based tech-
niques involve placing tags or markers on specific body parts, which
allows for precise measurement of their positions in space. This
approach can be useful for guiding patients through rehabilitation
exercises, as it provides accurate tracking of their movements. How-
ever, marker-based systems and body-worn sensors, while accurate
for motion capture, can be intrusive and disruptive to a patient’s
daily activities. The need to properly place and wear the sensors or
markers can make these systems impractical for successful imple-
mentation of home-based rehabilitation programs, where patients
are expected to perform exercises independently without direct
supervision [5, 7].

On the other hand, marker-less techniques rely solely on com-
puter vision algorithms to track and analyze body movements with-
out the need for any physical markers or sensors attached to the
body (Microsoft Kinect). This approach can be less intrusive and
more convenient for patients, but may potentially sacrifice some
accuracy compared to marker-based systems [5, 18].

2.2 Applied Virtual Reality
Virtual Reality (VR) technology has gained significant attention in
recent years, with numerous research studies exploring its potential
applications across various domains involving physical movement
and motion activities. These applications range from learning com-
plex skills, such as couple dancing, to enhancing physiotherapy
and rehabilitation processes. By leveraging the immersive and in-
teractive nature of VR, researchers and practitioners have been able
to develop innovative approaches that show promising results in
terms of improved learning outcomes, patient engagement, and
overall effectiveness.

One notable example is the use of VR in learning couple dance.
By creating virtual environments that simulate real-world dance set-
tings, VR systems can provide learners with immersive experiences
that help them practice and refine their dance moves. These systems
can offer real-time feedback, personalized guidance, and the ability
to practice at one’s own pace, making the learning process more
efficient and enjoyable [17].

Similarly, VR technology has been applied to the field of physio-
therapy. By incorporating VR into rehabilitation programs, thera-
pists can create engaging and interactive exercises that motivate
patients to adhere to their treatment plans. VR-based physiother-
apy can also provide real-time monitoring and analysis of patient
movements, enabling therapists to track progress, adjust treatment
plans, and provide targeted feedback [3, 10, 15].

2.3 Action evaluation
In prior studies, movement evaluation is typically conducted by
comparing a patient’s performance to that of healthy participants.
Early researchers employed machine learning models to classify
individual movements as either correct or incorrect. They experi-
mented with well-known methods such as the Adaboost classifier,
k-nearest neighbours, and Bayesian classifier, which produce binary
class outputs. However, these approaches lack the ability to detect
varying levels of motion quality or to identify gradual changes in
patient performance throughout the rehabilitation program [1, 19].

A line of research has utilized probabilistic approaches for model-
ing and evaluating rehabilitation actions. Studies employing hidden
Markov models (HMMs) [2] and Gaussian Mixture Models (GMMs)
[12] generally conduct quality assessments based on the likelihood
that individual movement sequences are drawn from a trained
model.

In recent years, researchers have been exploring the applica-
tion of deep learning techniques to model complex dependencies
between body joints for the purpose of assessing physical exer-
cises. One notable study by Liao et al. [11] introduced the Spatio-
Temporal Neural Network (STNN), a deep learning architecture
designed specifically for evaluating the quality of exercise perfor-
mance. The STNN combines several key components, including
temporal pyramids, multi-branch convolution, and recurrent layers,
to effectively capture and analyze the spatial and temporal patterns
in human motion data. The input to the STNN is typically skeleton
data, which represents the positions and movements of 22 to 39
body joints, depending on the sensors used to capture the motion.

Another important contribution in this field comes from Deb
et al. [6], who employed Spatio-Temporal Graph Convolution Net-
works (SGNN) for the task of physical exercise assessment. SGNNs
are a type of deep learning model that can operate directly on
graph-structured data, such as the skeletal representation of hu-
man body joints. By leveraging the inherent graph structure of the
body, SGNNs can effectively capture the dependencies and relation-
ships between different joints, enabling a more accurate and robust
assessment of exercise performance.

In a different approach, Mottagui et al. [14] proposed a hybrid
framework that combines deep learning algorithms with probabilis-
tic models. By integrating these two complementary paradigms
into a unified training process, their method aims to leverage the
strengths of both deep learning and probabilistic modelling. Deep
learning excels at automatically learning complex patterns and rep-
resentations from raw data, while probabilistic models provide a
principled way to handle uncertainty and incorporate prior knowl-
edge. By combining these approaches, Mottagui et al. [14] seek to
develop more robust and interpretable models for exercise assess-
ment.

These studies highlight the growing interest in applying ad-
vanced machine learning techniques, particularly deep learning, to
the problem ofmodelling and assessing complex humanmovements
in the context of physical exercises.
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3 METHODS
3.1 Problem formulation
For each subject 𝑠 ∈ 𝑆 the set of all subjects listed in the dataset, we
denote her joint positions and orientations for 𝑖th exercise (i.e. each
exercise file may have more than one repetition) as 𝑃𝑠,𝑖 and 𝑂𝑠,𝑖 ,
respectively. Each exercise file has a ground-truth score annotation
𝑦𝑠,𝑖 ∈ [0, 1] that represents the quality of the performed exercise
based on professional criteria. The higher the score, the better
the patient moves. We train each model Model𝑖 for each 𝑖 distinct
exercise with its 𝜃𝑖 parameters.

Each model we have tested predicts a continuous score 𝑦 𝑗 close
to the ground-truth assessment score, 𝑦∗

𝑗
for a given joint position

or orientation.

𝑦 = Model𝑖 (𝑃𝑆,𝑁 ;𝜃𝑖 ), s.t. 𝑦 𝑗 ≈ 𝑦∗𝑗 (1)
or using joint orientations as inputs, as follows

𝑦 = Model𝑖 (𝑂𝑆,𝑁 ;𝜃𝑖 ), s.t. 𝑦 𝑗 ≈ 𝑦∗𝑗 (2)

3.2 Action Evaluation Public Datasets
The requirements we established for useful datasets were: (1) it
must be publicly available; (2) it must have a clearly defined exer-
cise quality measure; and (3) it must contain skeleton data, specifi-
cally including head and hands data. Consequently, we thoroughly
researched public options for evaluated action data. Our findings
indicate that KIMORE is the most reliable data source, as it meets
all our requirements. Table 1 provides a comparison of each option.

For running the experiments, we used the KIMORE dataset,
which contains data from 78 subjects: 44 in the control group (i.e.,
experts or non-experts who are healthy) and 34 with chronic motor
disabilities. This dataset was recorded using the Kinect v2 depth
sensor, capturing 25 distinct body parts, including their skeleton
positions and orientations. Each subject performed five exercises:

• Lifting of the arms
• Lateral tilt of the trunk with the arms extended
• Trunk rotation
• Pelvis rotations on the transverse plane
• Deep squats

During preprocessing, as described in the original paper, we
applied a 3rd order low-pass Butterworth filter to remove temporary
spikes. The dataset consists of a single CSV file containing positions
or orientations per person and per exercise. We developed a custom
function to split these files into individual repetitions. For example,
in the lifting of the arms exercise, we identified that the Y coordinate
of hands effectively indicated when the patient started a repetition.
Additionally, we applied threshold filtering to remove false peaks
that were found. We used the timestamps where the X position was
maximal to mark the start of each repetition. See Figure 1

However, a limitation of the KIMORE dataset is that it provides
only one score per exercise, meaning all repetitions share the same
ground truth score. The given score ranges from 0 to 50, which we
scaled to a range of 0 to 1 for our analysis.

3.3 Proposed Method
We have built two baseline models to compare the precision of cur-
rent state-of-the-art models for the KIMORE dataset. These baseline

Figure 1: The above image shows all the peaks it found. The
below image shows the final start timestamps we used for
splitting the CSV file into repetitions.

models serve as a reference point for evaluating the performance
of more advanced techniques.

The first baseline model is an aggregator that always outputs the
average score of the training repetitions. Since the dataset contains
a variety of different exercises, we apply this baseline model to each
exercise separately.

The second baseline model is an eXtreme Gradient Boosting
(XGBoosting) machine learning model that utilizes a curated list of
features. Our goal is to determine whether Virtual Reality data can
be effectively used to assess physical rehabilitation exercises. To
this end, we calculate the following 44 features:

• Maximum, minimum, mean, and standard deviation of the
distance between hands for the three coordinates.

• Maximum, minimum, mean, and standard deviation of the
distance between the right/left hand and the head for the
three coordinates.

• Maximum, minimum, mean, and standard deviation for
each right/left hand and head joint for each coordinate.

Our proposed model demonstrates competitive performance,
even outperforming state-of-the-artmodels like the Spatio-Temporal
Neural Network (STNN) in various exercises from the KIMORE
dataset (see Figure ??).

4 RESULTS
4.1 Setup
We first conducted a thorough review of publicly available datasets
and chose to work with the KIMORE dataset. Although UI-PRMD
and IntelliRehabDS include a greater variety of exercises, they lack
a clear methodology for scoring. Specifically, UI-PRMD provides a
labeled subset with scores derived from distance functions, while
IntelliRehabDS only offers binary labels (i.e., correct or incorrect
movements). The KIMORE dataset, by contrast, provides a more
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Table 1: Publicly available datasets.

Dataset
Name

Exercise Quality Measure? Position and Rotation Data? Access? Notes

KIMORE Yes - rated by a physician. Yes. Skeleton positions (trajectory positions) and
orientations in the format of Kinect.

Yes 78 subjects

IntelliRehabDS
(IRDS)

No, the dataset contains a correct-
ness label for each gesture, indicat-
ing whether it was performed cor-
rectly or incorrectly by the subject.

Yes, the dataset contains the 3D coordinates of 25
body joints extracted by a Kinect sensor, as well
as the raw depth map images for each frame.

Yes 29 subjects,
out of which
15 were pa-
tients and 14
were healthy
controls.

UI-PRMD No, the paper proposes a taxon-
omy for performance metrics for
the evaluation of therapy move-
ments, but only a reduced subset
was scored.

Yes, the paper provides both position and angle
data for 39 joints of the human body, obtained
from a Vicon optical tracker and a Kinect sensor.

Yes 10 people, 10
actions

3D Motion
Capture Data

No Yes, the paper provides 3D joint centre positional
data, 3D joint angles, and 3D segment velocity
and acceleration data of the head, trunk, upper
arms, forearms, pelvis, thighs, shanks, and feet
segments.

No 183 Athletes

comprehensive and methodologically sound framework for evalu-
ating rehabilitation exercises, making it the most suitable choice
for our study.

Next, we developed a preprocessing pipeline to segment each
recording into individual exercise repetitions. This was accom-
plished by detecting peaks in the position data of key joints. We
then applied a cleaning filter to eliminate false peaks. To ensure
generality, we standardized each repetition to a fixed length of 104
timesteps. Additionally, we prepared the data so that any model
could be trained on either the whole body joints or just the head
and hand joints.

Then, we evaluate the performance of each model using three
metrics where each model was trained for each exercise separately
since the inherent features of each movement were disparate.: (1)
Root Mean Square Error (RMSE), (2) Mean Absolute Error (MAE),
and (3) Mean Absolute Percentage Error (MAPE). Lower scores
indicate more precise predictions across all metrics. We use the
same training and testing subsets for each model to ensure a fair
comparison and eliminate the influence of external factors. Addi-
tionally, we modify each model to accept either the whole body
joint positions and orientations or only the head and hand data.

We maintain the training procedures described in the original
papers for the Spatio-Temporal Neural Network (STNN) and Spatio-
Temporal Graph Convolution Network (SGNN) models. Specifically,
we train a separate STNN for each exercise, using 500 epochs, a
batch size of 10, and a learning rate of 0.0001. Similarly, we train a
separate GCN for each exercise, using 1000 epochs, a batch size of
10 and a learning rate of 0.0001.

4.2 Position
The results of training the four models with the same data are
presented below. In this context, VR indicates that only head and
hand data were used.

As expected, the Baseline model consistently performs the worst
across all exercises, both for the full joint data and the VR (head
and hand) data (See Figure 2). This simple averaging approach
serves as a reasonable lower bound but is outperformed by more
sophisticated models.

Surprisingly, according to the full joints chart, the SGNN model
exhibits a worse RMSE compared to the simple baseline model and
has an MAE that is equally poor. In contrast, the XGBoost model
outperformed the STNN model in exercises 3 and 5, and it matched
the STNN model in exercise 4, based on the RMSE metric. When
evaluating the MAE metric, XGBoost generally performed worse
than the STNN model, except for the last exercise.

This trend persisted when using VR data format (head and hand
data only). Interestingly, both models maintained their performance
levels even when limited to head and hand joint positions. Notably,
the XGBoost model showed improved performance in the third
exercise under these conditions. See Figure 2.

4.3 Orientation
As mentioned earlier, the baseline model consistently exhibits the
poorest performance across all workout scenarios, both when con-
sidering the full joint data and the virtual reality (VR) data com-
prising head and hand orientations. Similarly, the SGNN (Spatial-
Temporal Graph Neural Network) model mirrors the unsatisfactory
performance of the baseline model, as illustrated in Figure 3.

In contrast, the XGBoost model closely reaches the performance
of the STNN (Spatial Temporal Neural Network) model for most
exercises. This tendency continues even when employing the VR
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Figure 2: Results of training the four models with the same data. VR means only head and hand data.

data format. Nonetheless, both the XGBoost and STNN models
experience a significant decline in performance when working
with limited joint orientation data, as evidenced by Figure 3.

4.4 Position VS Orientation
To optimize performance, it is essential to determine which data
input format yields superior results. Focusing on the full joint
data analysis, as depicted in Figure 4, we observe that the Spatio-
Temporal Neural Network (STNN) model consistently outperforms
across all exercise routines when leveraging orientation data as
input compared to when using position data alone. This behavior
aligns with the expected outcome, as the STNN architecture was
specifically designed to capitalize on orientation data, considering
the spatial relationships and orientations of the body joints during
movement.

Interestingly, our findings also reveal that the XGBoost model,
a powerful ensemble learning technique, performs significantly
better when incorporating orientation data as an additional input

feature. This suggests that the inclusion of joint orientation infor-
mation, in addition to positional data, provides valuable insights
that enable the XGBoost model to make more accurate predictions
and classifications across exercise routines.

Shifting our focus to the head and hand data analysis, as illus-
trated in Figure 5, we observe that the trend discovered in the full
joint data analysis persists. Specifically, the Spatio-Temporal Neural
Network (STNN) model continues to exhibit superior performance
when leveraging orientation data as input compared to position
data alone. However, it is essential to note that exercise 4, which
involves pelvis rotations on the transverse plane, stands as an ex-
ception to this trend. For this particular exercise, the STNN model
surprisingly achieved better results when working with position
data rather than orientation data.

This discovery is intriguing because prior research studies in
this domain did not explicitly explore the implications of employ-
ing either position or orientation data as input features for their
respective analyses. Most previous works focused on leveraging a
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Figure 3: Results of training the four models with the same data. VR means only head and hand data.

specific data format without directly comparing the performance
implications of using alternative input representations, such as
position versus orientation information.

5 DISCUSSION
Advances in machine learning and computer vision techniques
have sparked increased interest in the automated evaluation of
rehabilitation exercises. However, despite significant progress, sev-
eral open questions and numerous challenges remain before these
asynchronous systems can be widely deployed.

To encourage adherence to rehabilitation programs, it is crucial
to design real-time assessment applications that guide patients
through each exercise. However, this remains a notable challenge.

In this work, we present a novel approach for handling skeleton
data using an ensemble learning method. Specifically, we developed
an eXtreme Gradient Boosting (XGBoost) model that achieves per-
formance comparable to state-of-the-art models on the KIMORE
dataset. Additionally, we provide a common framework that allows

researchers to easily integrate and evaluate new models against
existing ones using our open preprocessing and splitting pipeline.

Initially, we analyzed various public datasets relevant to this
problem. After a thorough comparison, we decided to focus exclu-
sively on the KIMORE dataset.We developed an automatic approach
to segment the data into exercise repetitions by detecting the peaks
in certain joint movements.

Our results indicate that the Spatio-Temporal Neural Network
(STNN) generally outperforms other models, even surpassing the re-
sults reported by its original authors. However, as shown in Figures
4 and 5, our XGBoost model achieves performance comparable to
the STNN across all exercises. This finding suggests that machine
learning models can remain competitive even as more complex
deep learning models emerge. Sometimes, a simpler yet well-tuned
approach can be more effective than a more intricate solution.

Furthermore, we observed that using only head and hand data
results in a slight performance drop but still remains close to state-
of-the-art values. This suggests that head-mounted virtual reality
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Figure 4: Comparison between the XGBoost and STNN models using the full joint positions and orientations.

devices could potentially be used in rehabilitation programs as a
low-cost method for tracking and assessing exercises.

All the code will be available from https://github.com/mdelucasg/
VR-for-Action-Evaluation.

6 FUTUREWORK
To further validate and corroborate our findings, we have planned
to conduct additional data collection using head-mounted virtual
reality (VR) devices. While our current analysis has demonstrated
that, in theory, even with a loss in performance, the use of limited
joint orientation data remains relatively affordable and feasible, it is
crucial to verify these observations with real-world data gathered
from actual VR devices. This step is essential to fully verify our
claims and ensure the robustness of our conclusions.

Furthermore, we intend to revisit the implementation of the
Spatio-Temporal Graph Neural Network (STGNN) model. Despite
its promising theoretical foundations, the performance we have
observed from this model in our current analysis falls short of

state-of-the-art (SOTA) levels. By re-implementing and training the
SGNN architecture, we aim to unlock its full potential and push its
performance closer to the cutting edge in this domain.
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