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ON HILBERT SCHEME OF COMPLETE INTERSECTION ON THE

BIPROJECTIVE

AISLAN LEAL FONTES AND MAXWELL DA PAIXÃO DE JESUS SANTOS

ABSTRACT. The goal of this paper is to construct the Hilbert scheme of complete inter-

sections in the biprojective space X = Pm
× Pn and for this, we define a partial order

on the bidegrees of the bihomogeneous forms. As a consequence of this construction, we

computer explicitly the Hilbert scheme for curves of genus 7 and 8 listed in [1] and [8]

that are complete intersections. Finally, we construct the coarse moduli space of complete

intersections in P1
× P1.
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1. INTRODUCTION

We recall that a variety Y ⊂ Pn is a complete intersection in Pn if Y generated by

the homogeneous polynomials F1, · · · , Fc and 0 < dimY = n − c. We can generalize

this definition in the following form, Y ⊂ X is a complete intersection in X if it is the

intersection of c = codim (Y,X) hypersurfaces of X , where X is a smooth arithmetically

Cohen–Macaulay projective variety. Our interest is in complete intersection in biprojective

spaces X = Pm×Pn. The motivation is due to the remarkable works [1] and [8] of Mukai

whose principal results we write in Example 10.

Our first goal is to understand the Hilbert scheme H, of complete intersection in X , and

for this, we will apply the tools of [6] where the Hilbert space is a tower of Grassmannians.

Unlike projective space, on bi-projective space X we cannot define a total order on the

bidegrees of the bihomogeneous forms but rather a partial order and so we reproduce the

theorems of standard complete intersection inX . Furthermore, we computer the dimension

of the Hilbert scheme of complete intersections listed by Mukai in [1] and [8]
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The second section of this paper will be dedicated to constructing the scheme X . We

will review bigraded rings and modules as well as the definition of bihomogeneous ele-

ments and ideals. We will provide a construction of the scheme Proj2 S, where S is a

bigraded ring. We will give a topology and a structural sheaf O for Proj2 S.

The third section is devoted to studying the cohomology of complete intersections. The

principal difference between the standard and biprojective cases X is that not every com-

plete intersection of X is arithmetically Cohen-Macaulay (ACM). We say that a set of

bi-homogeneous polynomials F1, · · · , Fc is a regular sequence if any scheme generated

by any subset Fi1 , · · · , Fiα is a complete intersection and ACM. We assume that the com-

plete intersection Y ⊂ X is spanned by a regular sequence, when there is no confusion we

just say Y is ACM.

Due to the difficulty of establishing an order on the bidegrees of the bihomogeneous,

in Section 4 we restrict to the case where Y is ACM. Finally, we will discuss the Hilbert

scheme of complete intersection in X . If it has codimension 1, then we can take any

complete intersection and for codimension greater than 1 we will have to assume that the

complete intersections are ACM.

To conclude we will talk about the coarse moduli of smooth complete intersection ACM

curves on Pm × Pn.

2. THE BIPROJECTIVE SPACE Pm × Pn

2.1. Bigraded Rings and Modules.

A bigraded ring is a ring S endowed with a direct sum decomposition

S =
⊕

(i,j)∈N2

Si,j

such that:

(1) Si,j are additive subgroups of S;

(2) Si1,j1Si2,j2 ⊂ Si1+i2,j1+j2 for all (i1, j1), (i2, j2) ∈ N2;

(3) S is a finitely generated S0,0-algebra by elements of S0,1 and S1,0.

A bigraded S-module is a S-module M endowed with a decomposition of the form M =
⊕

(i,j)∈N2 Mi,j such that Si1,j1Mi2,j2 ⊂ Mi1+i2,j1+j2 for all (i1, j1), (i2, j2) ∈ N2. We

call Mi,j the homogeneous component of M of bidegree (i, j). An element u ∈ M is

bihomogeneous of bidegree (i, j) if u ∈ Mi,j . The bidegree of u is then denoted by deg u.

Let R := k[x0, · · · , xm, y0, · · · , yn] be the polynomial ring with coefficients in k.

A monomial G = xa0

0 · · ·xam
m yb00 · · · ybnn ∈ R has bidegree (

∑

ai,
∑

bi). Let Ri,j be

the r-dimensional vector space over k spanned by all monomial of bidegree (i, j) where

r = dimRi,j =
(

m+i
m

)(

n+j
n

)

, and thus R is a bigraded ring. A polynomial F ∈ R
is bihomogeneous of bidegree (d1, d2) if F is a k-linear combination of monomials of

bidegree (d1, d2). We also say that F is a form of bi-degree (d1, d2).
If F ∈ Rd1,d2

and λ1, λ2 ∈ k then we have

F (λ1u, λ2v) = λd1

1 λd2

2 F (u, v), (1)

for every (u, v) ∈ Am+1 × An+1 and conversely, it is easy to see that any polynomial of

R satisfying the condition of the equation (1) is bihomogeneous of bidegree (d1, d2).
Let I = (F1, · · · , FC) ⊂ R be an ideal. If every Fi is bihomogeneous, then I is consid-

ered a bihomogeneous ideal. For any ideal J ⊂ R, the (i, j) bihomogeneous component

of J is the ideal generated by all the bihomogeneous elements of bidegree (i, j) of J , i.e
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Ji,j = J ∩ Ri,j . If J is bihomogeneous, then J =
⊕

(i,j)∈N2 Ji,j and conversely, every

ideal that is the direct sum of its bihomogeneous components is also bihomogeneous.

Example 1. The ideals R1,0 = (x0, · · · , xm) and R0,1 = (y0, · · · , yn) are bihomoge-

neous, so called irrelevant ideals. The ideal I = (x0x1 + y20) is not bihomogeneous, but

homogeneous if R has the standard grading.

When I is a bihomogeneous ideal of R the quotient ring R/I also inherits a bigraded

ring structure with (R/I)i,j = Ri,j/Ii,j . In this manner R/I and I are bigraded R-

modules. For (a, b) ∈ N2, let us denote R(−a,−b) the polynomial ring R with a shifted

grading, where R(−a,−b)i,j = Ri−a,j−b.

Example 2. For a, b positive integers the ∆ = {(na, nb) | n ∈ N} is called (a, b)-diagonal

ofN2. We may so define the diagonal ofR along∆ as the graded ringR∆ =
⊕

n∈N
Rna,nb

and thus R∆ is a R-module. Analogously, we define M∆ for every R-module M .

2.2. Biprojective Space. When we talk about the projective variety X = Pm × Pn, we

always talk in terms of the Segree embedding, some literature refers to X as the Segree

variety. In this session we will present a schematic construction of X and for a detailed

construction see [7, Chapter-1]

Let S be a noetherian bigraded finitely generated ring over S0,0 by bihomogeneous

elements x0, · · · , xm, y0, · · · , yn, such that deg xi = (1, 0) and deg yj = (0, 1). Let us

denoteS+ = (x0, · · · , xm)(y0, · · · , yn), a prime idealP ⊂ S is said relevant if P does not

contain S+. Then we define the set Proj2(S) to be the set of all relevant bihomogeneous

prime ideals P .

For I ⊂ S a bihomogeneous ideal we define V+(I) := {P ∈ Proj2(S) | I ⊂ P} and

we see that if J = (
√
I : (x0, · · · , xm)) + (

√
I : (y0, · · · , yn)), then V+(I) = V+(J), in

particular V+(I) = ∅ if and only if every prime ideal P ⊂ S containing I also contains S+,

i.e. S+ ⊂
√
I . We have a topology on Proj2(S) where the closed subsets are the subsets

of the form V+(I). We construct the structure sheaf O on X in a manner equivalent to

the structural sheaf of the projective space, but we take relevant prime homogeneous ideals

making Proj2(S) a scheme. We call Proj2(S) the biprojective scheme associated to S.

For R = k[x0, · · · , xm, y0, · · · , yn] we have Proj2(R) = P
m
k × P

n
k = X and if ∆ is the

(a, b)-diagonal, then the sheaf of ideals L = (Ra,b)OX defines an isomorphism between

X and X∆ = Proj(R∆).
Classically the (1, 1)-diagonal corresponds to the Segree embedding of X in PN , where

N = (m + 1)(n + 1) − 1, we can see that the topology of X is induced by the standard

Zariski topology of PN . The homogeneous coordinate ring of its image, via the Segre

embedding, is R∆.

On the other hand, we can make the classical construction of the Zarisk topology on X
by repeating the construction of the Zarisk topology of the projective space by considering

bihomogeneous ideals. We finish this section with the Theorem which can be found in [5,

Theorem 1.8.1].

Theorem 3 (Biprojective Nullstellensatz). A bihomogeneous ideal I ⊂ R is the vanishing

ideal of V (I) if and only if I is radical and saturated concerning each “irrelevant” ideal.

In other words I(V (I)) = (
√
I : (x0, · · · , xm)) + (

√
I : (y0, · · · , yn))

Remark 4. From Theorem 3 we see that V (I) = ∅, if and only if, (x0, · · · , xm) ∈
√
I

or (y0, · · · , yn) ∈
√
I or (x0, · · · , xm)(y0, · · · , yn) ∈

√
I . Let I = (F1, · · · , Fc) be

a bihomogeneous ideal of R where c < n + m and we have V (I) = ∅, if and only if,
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there is a t ∈ N such that (x0, · · · , xm)t ∈ I or (y0, · · · , yn)t ∈ I . Supposes, without

loss of generality that (x0, · · · , xm)t ∈ I for some t, in particular, for all i, the forms xt
i

of bidegree (t, 0) are elements of I , this implies that at last m + 1 generators of Fi has

bidegree (ai, 0).

3. ON THE COHOMOLOGY OF COMPLETE INTERSECTION IN Pm × Pn

Let us consider the variety X = Pm × Pn. Throughout this section, we will computer

the cohomology of X and we provide some conditions to find the cohomology of complete

intersections in X .

Definition 5. By considering X = Pm ×Pn and Di = OX(ai, bi) be effective divisors of

X , take Fi ∈ H0(X,Di), where ai + bi > 1. We say that Y =
⋂c

i=1 V (Fi) is a complete

intersection of X if dimY = m+ n− c, where 0 ≤ c < n+m.

We denote X := Pm × Pn, where m ≤ n and Yj =
⋂j

i=1 V (Fi), where Y0 = X and

Yc = Y , thus if Y is a complete intersection, then Yj is a complete intersection. By Segree

embedding we have X ⊂ Pr, where r = (m+ 1)(n+ 1)− 1.

A scheme Y ⊂ Pr is said to be Arithmetically Cohen-Macaulay (ACM) if its coor-

dinate ring is a Cohen-Macauly ring. Unlike the projective case, not all of the com-

plete intersection in X is ACM, for example, let Y = V (x2
0) be the curve of bidegree

(2, 0) in P1 × P1 under the Segre embedding in P3. In fact, the coordinate ring of Y is

R = k[z0, z1, z2, z3]/(z0z3 − z1z2, z
2
0 , z0z1, z

2
1), where dimKrull R = 2 and z2 is a max-

imal regular sequence of R, hence R is not Cohen-Macauly. An equivalent definition of

ACM variety is

Hi(Y,OY (d)) = 0 for every 1 ≤ i ≤ dim Y − 1 or Hi(Y, IY (d)) = 0, ∀ 1 ≤ i ≤ dim Y.

Definition 6. Let Y = ∩c
i=1V (Fi) be a complete intersection ofX . We say that F1, · · · , Fc

is a regular sequence on X if for every index i1 < i2 < · · · < iα the scheme ∩α
r=1V (Fir )

is ACM.

Let D be the divisor OX(a, b) not necessarily effective. By Kunneth formula

hi(X,OX(a, b)) =
∑

r+s=i

hr(Pm,OPm(a)) · hs(Pn,OPn(b))

and we summarize the cohomology of D in the Table 1.

From Table 1, we have hi(X,OX(d, d)) = 0 for all d ∈ Z and 1 ≤ i ≤ m+ n− 1, i.e

X is ACM. Let Yc = ∩c
i=1V (Fi) be a complete intersection in X . For integers a1, b1 and

d ∈ Z, take the exact sequence

0 OX(d− a1, d− b1) OX(d, d) OY1
(d, d) 0,

·F1

(2)

and we can observe that F1 is regular if, and only if,

hi(X,OX(d− a1, d− b1)) = 0 for all 1 ≤ i ≤ m+ n− 1

which is equivalent to

hi(X,OX(d−a1, d−b1)) = 0 for all i ∈ {m,n} ⇒ (a1−b1) < m+1 and (b1−a1) < n+1.
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h0(OX(a, b)) hm(OX(a, b)) hn(OX(a, b)) hm+n(OX(a, b))

a ≥ 0, b ≥ 0
(

m+a
m

)

·
(

n+b
n

)

0 0 0

b ≥ 0,

a ≤ −m− 1
0

(

n+b
n

)

·
(

−1−a
m

)

0 0

a ≥ 0,

b ≤ −n− 1
0 0

(

m+a
m

)

·
(

−1−b
n

)

0

a ≤ −m− 1,

b ≤ −n− 1
0 0 0

(

−1−a
n

)

·
(

−1−b
n

)

TABLE 1. Cohomology of Pm × Pn.

Now, we consider the exact sequence

0 OY1
(d− a2, d− b2) OY1

(d, d) OY2
(d, d) 0,

(3)

and we can observe that F1, F2 is a regular sequence if, and only if,

hi(Y1,OY1
(d− a2, d− b2)) = 0, ∀1 ≤ i ≤ m+ n− 2

which implies

hi(X,OX(d− aj , d− bj)) = 0 and hi(X,OX(d− a1 − a2, d− b1 − b2)) = 0,

then

(aj−bj) < m+1, (bj−aj) < n+1 and (a1+a2−b1−b2) < m+1, (b1+b2−a1−a2) < n+1.

By applying the same process we can show that F1, F2, F3 is a regular sequence if only if

(ai − bi) < m+ 1, (bi − ai) < n+ 1 for i = 1, 2, 3

(ai + aj − bi − bj) < m+ 1, (bi + bj − ai − aj) < n+ 1 for all i < j,

(a1 + a2 + a3 − b1 − b2 − b3) < m+ 1 and (b1 + b2 + b3 − a1 − a2 − a3) < m+ 1.

With an extension of the above arguments we get:

Proposition 7. Let Y be a complete intersection on X . Then, Y is generated by a regular

sequence if and only if,

(ai1 − bi1 + · · ·+ aiα − biα) < m+ 1

and

(bj1 − aj1 + · · ·+ bjβ − ajβ ) < n+ 1

for every i1 < i2 < · · · < iα and j1 < j2 < · · · < jβ .

From now on, we will call a scheme Y a complete intersection ACM, or just ACM,

when a regular sequence generates Y .

Proposition 8. Let Y =
⋂c

i=1 V (Fi) be a closed subscheme of X . If Fi is a regular

sequence, then:

(1) For all 0 ≤ j ≤ c, Yj is a complete intersection of codimension j of X;
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(2) Y is ACM;

(3) The dualizing sheaf of Y is ωY
∼= OY (

∑

ai −m− 1,
∑

bi − n− 1).

Proof. Every subsequence of a regular sequence is regular, so we need to show that Y
is a complete intersection, but this is clear since the regularity guarantees that Y has the

expected dimension.

From Koszul Complex we get:

⊕

i<j

OX(−ai − aj ,−bi − bj)
⊕

i

OX(−ai,−bi) IY,X 0,

where IY,X is the ideal sheaf of Y in X . Therefore,

ωY
∼= ωX ⊗ (det IY,X)−1 ∼= OY (

∑

ai −m− 1,
∑

bi − n− 1).

�

Corollary 9. Under the hypothesis of Proposition 7, follows that

C.1 The map H0(X,OX(d)) −→ H0(Y,OY (d)) is surjective for every d ∈ Z;

C.2 The map H0(Pr,OPr(d)) −→ H0(Y,OY (d)) is surjective for every d ∈ Z;

C.3 The kernel H0(X, IY,X(d)) consists of bi-homogeneous polynomialsF =
∑

i FiHi,

where Hi ∈ H0(X,OX(d− ai, d− bi)).

Proof. The items C.1 and C.3 follows the Proposition 7. Now we consider the exact se-

quence

0 IX OPr OX 0,

where the map H0(Pr,OPr(d)) −→ H0(X,OX(d)) is given by send a homogeneous

monomial Zi00
00 Zi01

01 · · ·Zimn
mn of degree d on a form (X0Y0)

i00 (X0Y1)
i01 · · · (XmYm)imn

of bidegree (d, d). It’s easy to see that the map is surjective, now applying item C.1 we

complete the proof. �

It is important to comment that there are many cases of ACM complete intersections to

be studied, the most simple example are the curves of bidegree (a, b) on a smooth quadric

of P3, such that |a− b| < 2. Here are some interesting examples:

Example 10. Let C be a smooth curve of genus 8. From [8, (i) and (ii) of the Theorem]

we have

(1) If C is a general curve and has a g27 non-selfadjoint, then C is a complete intersec-

tion of divisors of bidegree (1, 1), (1, 2) and (2, 1) in P2 × P2;

(2) If C has a g14 but no g26 , then C is the complete intersection of four divisors of

bidegree (1, 1), (1, 1), (0, 2) and (1, 2) in P1 × P4.

Let C be a smooth curve of genus 7. From [1, Table 1] we have

(1) If C is trigonal and has a g26 non-selfadjoint, then C is a complete intersection of

two divisors of bidegree (1, 1) and (3, 3) in P1 × P2;

(2) If C is tetragonal and has no g26 , then C is isomorphic to a complete intersection of

a divisor of bidegree (1, 1) and two divisors of bidegree (1, 2) in P
1 × P

3;
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(3) Assume that C has gonality 4 and C has a g26 non-selfadjoint, then C is isomorphic

to a complete intersection of three divisors of bidegree (1, 1), (1, 1) and (2, 2) in

P2 × P2.

Corollary 11. Let Y be a complete intersection on X ⊂ Pr. If Y is ACM, then:

a) The scheme Y is connected;

b) Y ⊂ Pr is degenerate if, and only if, (ai, bi) = (1, 1) for some i;
c) Y is not contained on a global section of neither OX(1, 0) or OX(0, 1).

Proof. By considering the exact sequence

0 IY,X OX OY 0,

follows fromC.1 and C.3 for d = 0 that k = H0(X,OX) ∼= H0(Y,OY ) which means Y
connected, the second item just takes d = 1. For the third item, we take the exact sequence

0 OYj−1
(−aj ,−bj) OYj−1

OYj
0,

and we tensor it by OX(1, 0) or OX(0, 1). For all j ≥ 1 we going to show that

H0(Yj−1,OYj−1
(1− aj ,−bj)) = H0(Yj−1,OYj−1

(−aj , 1− bj)) = 0

or equivalently:

hq(X,F ⊗OX(1, 0)) = hq(X,F ⊗OX(0, 1)) = 0,

for all q ∈ {0,m, n} and all i1 < · · · < jm+1, where F = OX(−ai1 −· · ·−aim+1
,−bi1 −

· · · − bim+1
). Since ai + bi > 1, for q = 0 is trivial. Lets show for m, we can assume

without loss of generality that m < n, so take index i1 < · · · < im < im+1, one condition

for hm(X,F ⊗OX(1, 0)) not being zero is bi1 = · · · = bim+1
= 0, in particular aip ≥ 2

for all p ∈ {1, · · · ,m,m+ 1}, thus

2m ≤ ai1 + · · ·+ aim < m+ 1

which is absurd.

Now one condition for hm(X,F ⊗OX(0, 1)) not being zero is bi1 + · · ·+ bim+1
≤ 1,

we can suppose bim+1
= 1 and bi1 = · · · = bim = 0 in particular aip ≥ 2 for all

p ∈ {1, · · · ,m}, following as in the previous case, we will have an absurd. Similarly, the

nth cohomology vanishes. �

4. COMPLETE INTERSECTION ARITHMETICALLY COHEN-MACAULAY ON Pm × Pn

In the study of the standard complete intersection in Pn, we always order the degrees

of the homogeneous forms such that di ≤ di+1, unfortunately, we cannot get a total order

for the bi-degrees in X . We need a partial order such that the intermediate cohomolo-

gies are null to replicate the theorems of standard complete intersection, but now in X ,

i.e there is an ordering Y = ∩c
i=1V (Fi), where the map ϕj : H0(X,OX(aj , bj)) −→

H0(Yj−1,OYj−1
(aj , bj)) is surjective for every j. To do this we only need to show that

hm(X,OX(aim+1
− aim − · · · − ai1 , bim+1

− bim − · · · − bi1)) = 0

and

hn(X,OX(ajn+1
− ajn − · · · − aj1 , bjn+1

− bjn − · · · − bj1)) = 0,

(4)
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for every i1 < · · · < im < im+1 and for every j1 < · · · < jn < jn+1. For example,

if ai ≤ ai+1 and bi ≤ bi+1, then the theory will work similarly to the standard case, but

we know that this is not always the case. The first attempt is the dictionary order, that is,

ai < ai+1 or ai = ai+1 and bi ≤ bi+1, most of the time this order will be enough, but if it

is not, we will present another order. If m = 1, the dictionary order is enough, therefore,

without loss of generality, we can assume that m > 1.

If m = n, given an ACM complete intersection Y in Pn × Pn generated by bihomo-

geneous polynomials of bidegree (ai, bi), let us consider the order on the bi-degrees such

that

|ai − bi| ≥ |ai+1 − bi+1|
and if |a1 − b1| = · · · = |ac − bc| = 1 and |aj − bj| = 0 for all j > c, then we reorder, if

possible, so that the first terms alternate signs.

Example 12. If X = P2×P2 and ai−bi = 1, aj−bj = 1 and ak−bk = −1, then the order

is (ai, bi) = (a1, b1), (ak, bk) = (a2, b2) and (aj , bj) = (a3, b3) or (ak, bk) = (a1, b1),
(ai, bi) = (a2, b2) and (aj , bj) = (a3, b3).

Taking into account this order, we suppose that 4 is not zero. Then we suppose, without

loss of generality, that ain + · · ·+ ai1 ≥ ain+1
+n+1 and bin+1

≥ bin + · · ·+ bi1 , which

implies:

(ain − bin) + · · ·+ (ai1 − bi1) ≥ (ain+1
− bin+1

) + n+ 1.

We claim that |ain+1
− bin+1

| ≤ 1, indeed, if |ain+1
− bin+1

| > 1, then |air − bir | >
1 for all 1 ≤ r ≤ n. Let the first terms be positive, so

∑α
k=1(aik − bik) ≥ 2α and

∑n

k=α+1(aik − bik) ≤ −2(n − α), if α 6= n/2 then the norm of one of these sums

will be greater than n, which contradicts the definition of ACM, if α = n/2, suppose

ain+1
− bin+1

> 0, then |∑α

k=1(aik − bik) + (ain+1
− bin+1

)| > n, another contradiction.

Therefore |air − bir | = 1, for all 1 ≤ r ≤ n and from Proposition 7, we get

n ≥ (ain − bin) + · · ·+ (ai1 − bin),

so ain+1
− bin+1

= −1 and thus (ain − bin) = · · · = (ai1 − bin) = 1. In this way, we will

have at most n− 1 terms equal to −1, which prevents ain+1
− bin+1

= −1.

Now we suppose Y a complete intersection ACM on Pm × Pn, where m < n. We will

use the following order: |ai− bi| ≥ |ai+1− bi+1| and if |ai1 − bi1 | = · · · = |aic − bic | = 1
and |aj−bj| 6= 1 for all j 6∈ {i1, · · · , ic}, then we reorder, if possible, so that (ai1 −bi1) =
· · · = (aim−1

− bim−1
) = 1 and (air − bir ) ≤ (air+1

− bi+1
) for all r ≥ m.

Suppose that the first equation 4 is not zero. Then we get

m ≥ (aim − bim) + · · ·+ (ai1 − bi1) ≥ (aim+1
− bim+1

) +m+ 1,

in particular, (aim+1
− bim+1

) ≤ −1, which makes (aik − bik) 6= 0 for all k. If there exists

a negative term in the above sum, let’s assume that it is (aim − bim). In this form, we have

(aim − bim) ≤ (aim+1
− bim+1

), which implies
∑m−1

r=1 (air − bir ) ≥ m+ 1 contradicting

Proposition 7. Therefore, the only solution is (aim − bim) = · · · = (ai1 − bi1) = 1 and

(aim+1
− bim+1

) which is not possible, given the order we are using. Similarly, we will

have an absurdity if we assume that the second equation 4 is not zero.

Remark 13. In summary, an order satisfying the Equation 4 can be described as follows:

(1) Let Y be a complete intersection ACM on X = Pn × Pn. We can order the

bidegrees (a1, b1), · · · , (a2n−1, b2n−1) such that |ai − bi| ≥ |ai+1 − bi+1| and if

|ai1 − bi1 | = · · · = |aic − bic | = 1 and |aj − bj | = 0 for all j 6∈ {i1, · · · , ic},

then reorder, if possible, so that the first terms alternate signs.
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(2) Let Y be a complete intersection ACM on X = Pm × Pn, where m < n. We

order the bi-degrees such that |ai − bi| ≥ |ai+1 − bi+1|. If |ai1 − bi1 | = · · · =
|aic − bic | = 1 and |aj − bj| 6= 1 for all j 6∈ {i1, · · · , ic}, then reorder, if possible,

so that (ai1 − bi1) = · · · = (aim−1
− bim−1

) = 1 and (air − bir) ≤ (air+1
− bi+1

)
for all r ≥ m.

Proposition 14. Let Y be an ACM complete intersection at X . Then there is a writing

Y = ∩c
i=1V (Fi) such that:

(1) The map ϕj : H0(X,OX(aj , bj)) −→ H0(Yj−1,OYj−1
(aj , bj)) is surjective for

every j, where Yj = ∩j
i=1V (Fi) and Y0 = X;

(2) The kernel H0(X, IYj−1,X(aj , bj)) of ϕj consists of bi-homogeneous polynomials

F =
∑

i FiHi, where Hi ∈ H0(X,OX(aj − ai, bj − bi));
(3) The kernel H0(X, IY,X(d)) depends only of the bidegrees (a1, b1), · · · , (ac, bc)

and of the numbers d, c, m,n.

Proof. To prove the first and the second statement is sufficient to display an order on the

bidegrees (ai, bi) such that H1(Yj−1,OYj−1
(aj+1 − aj , bj+1 − bj)) = 0 or equivalently

that the Equation 4 is true. This is true from the above discussion and the Remark 4

Finally, to prove the last statement, we consider the following exact sequence:

0 OYj−1
(d− aj , d− bj) OYj−1

(d) OYj
(d) 0,

and the result follows from recurrence in j �

Example 15. Let Y be the complete intersection of four divisors of bidegree (1, 1), (1, 1),
(0, 2) and (1, 2) in P1 × P4. If we consider the order used in Proposition 14 on the bi-

degrees, we get (a1, b1) = (0, 2), (a2, b2) = (1, 1), (a3, b3) = (1, 1) and (a4, b4) = (1, 2).
On the other hand, if we use the order (a1, b1) = (1, 1), (a2, b2) = (1, 1), (a3, b3) = (1, 2)
and (a4, b4) = (0, 2), then the Proposition 14 is also true which means that the order on

the bi-degrees is not unique,

From Proposition 14 we can order the values of the bidegrees conveniently. When Y is

not ACM, it is a bit complicated, as shown in the following example.

Example 16. Let Y be the complete intersection of three divisors of bidegree (4, 1) in

X = P2 × P2. By taking any order on the bidegrees follows that h2(X,OX(a3 − a2 −
a1, b3 − b2 − b1)) = 9.

From Table 1, there are many cases in which Proposition 14 can be applied. For Y a

scheme (not necessarily a complete intersection) of X , we say that Y has a good order if

there is a writing Y = ∩c
i=1V (Fi) such that for all j

Hm(X,OX(aj+1 − ai1 − · · · − aim , bj+1 − bi1 − · · · − bim)) = 0

and

Hn(X,OX(aj+1 − al1 − · · · − aln , bj+1 − bl1 − · · · − bln)) = 0

for all i1 < · · · < im and l1 < · · · < ln. We say that (ac+1, bc+1) respects the relations

of a complete intersection if the bidegrees (a1, b1), · · · (ac, bc), (ac+1, bc+1) are writing in

a good order. For example, in every complete intersection Y = ∩c
i=1V (Fi) the bidegree

(aj , bj) respects the relations of Yj−1. For every (ac+1, bc+1) such that ac+1 >
∑c

i=1 ai
and bc+1 >

∑c
i=1 bi, the pair (ac+1, bc+1) respects the relations of Y .
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Let Y be a complete intersection of X ⊂ Pr. The Hilbert polynomial of a coherent

sheaf F on Pr is

pF(d) =
∑

i

hi(Pr,F(d))

and the Hilbert polynomial pY of Y is defined as the Hilbert polynomial of OX . Denote

by IY the ideal sheaf of Y in Pr, IY,X its restriction to X and from Serre’s Vanishing

Theorem, there is an integer d0 such that hi(Pr,OY (d)) = 0 for all i > 0 and d > d0 what

means the Hilbert polynomial depends only of h0(Pr,OY (d)). From exact sequence:

0 IY,X OX OY 0,

we have pY (d) = h0(X,OX(d))−h0(X, IX(d)) for an integer sufficiently large d. From

Proposition 14, for all d sufficiently large, the dimension h0(X, IX(d)) depends only of

m, n, d, c and of the bidegrees, and if we take Y = ∩c
i=1V (Fi) and Y ′ = ∩c

i=1V (F ′
i ),

where Fi and F ′
i are elements of H0(X,OX(ai, bi)), then pY = pY ′ .

Conversely, we suppose Y = ∩c
i=1V (Fi) a complete intersection of Pm × P

n, where

pY its Hilbert polynomial, and Y ′ is another complete intersection such that pY = pY ′ . If

m < n, then there is a writing ∩c
i=1V (F ′

i ) where (ai, bi) = (a′i, b
′
i) for all i ∈ {1, · · · , c}.

This follows from recurrence in 1 ≤ j ≤ c to the exact sequence

0 OYj−1
(d− aj , d− bj) OYj−1

(d) OYj
(d) 0.

By same sequence we can prove that, if m = n, then Y ′ is generated by bihomogeneous

polynomial of bidegree (a1, b1), (a2, b2), · · · , (ac, bc) or by bihomogeneous polynomials

of bidegree (b1, a1), (b2, a2), · · · , (bc, ac).
Remark 17. With the above arguments, we have that the Hilbert polynomial of a complete

intersection is (almost) determined by its bidegrees when m < n (m = n).

Proposition 18. Let k ⊂ K be an extension of field and Y a closed subscheme of Pm×Pn.

Then Y is an ACM subcheme if, and only if, YK is an ACM subcheme.

Proof. Denote Y = ∩c
i=1V (Fi) and YK = ∩c

i=1V (Fi,K). If Y is ACM, then, by flat pro-

priety of change of base, YK is a complete intersection, since the bidegrees are preserved

by base change, then YK is projectively normal.

On the other hand, let us suppose YK a ACM of XK and we take G1, · · · , Gc the regular

sequence defining YK , writing in a good order. Let’s prove by induction at 0 ≤ r ≤ c that,

even if that means changing the regular sequence, exists Fi ∈ H0(X, IY (ai, bi)) such that

Gi = Fi,K .

For r = 0 is trivial. We suppose that the assertion is true for some r = j. We denote

Yj = ∩j
i=1V (Fi) and we consider the inclusion of k-vector spaces

H0(X, IYj
(aj+1, bj+1)) ⊂ H0(X, IY (aj+1, bj+1)).

If we extend by scalars to K then from the base change Theorem we get the inclusion of K-

vector spaces H0(X, IYj,K
(aj+1, bj+1)) ⊂ H0(X, IYK

(aj+1, bj+1)). Since Gj+1 is an

element of H0(X, IYK
(aj+1, bj+1)) but it is not an element of H0(X, IYj,K

(aj+1, bj+1))
the last inclusion is strict and by flatness the first inclusion is strict too. Therefore, we can

take Fj+1 such that

Fj+1 ∈ H0(X, IY (aj+1, bj+1)) but Fj+1 /∈ H0(X, IYj
(aj+1, bj+1)).
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From Proposition 14, Fj+1,K ∈ H0(X, IYK
(aj+1, bj+1)) can be represented as

Fj+1,K =

c
∑

i=1

GiHi,

where Hi ∈ H0(XK ,OXK
(aj+1 − ai, bj+1 − bi)). Since Fj+1,K is not an element of

H0(X, IYj,K
(aj+1, bj+1)) there is l ≥ j + 1 such that Hl 6= 0 which implies (al, bl) =

(aj+1, bj+1) and we can suppose l = j+1. Therefore, we construct a new regular sequence

for YK by replacing Gj+1 with Fj+1,K .

Let’s consider Y ′ := ∩c
i=1V (Fi). Since Y ′ ⊂ Y and Y ′

K = YK , the flatness of the

extension k −→ K ensures that Y ′ = Y . Finally, an ACM is defined by its bidegree and

we can see in the induction process that the bidegrees are not changed (at most a change

of order) because the flatness of the extension preserves the bidegree of bihomogeneous

forms. �

Proposition 19. Let T be a Noetherian scheme and Y ⊂ XT a closed subscheme such that

the projection π : Y −→ T is flat and its fibers are ACM. Then, for all d ∈ Z, π∗OY (d) is

locally free and its formation commutes at any change of basis. If these fibers has bidegree

(a1, b1), · · · , (ac, bc) and suppose that (ac+1, bc+1) respect the relation of these complete

intersection, then π∗OY (ac+1, bc+1) is locally free and commutes with base change.

Proof. For every t ∈ T , we have the commutative diagram

π∗OXt
(ac+1, bc+1)⊗ k(t) H0(Xt,OXt

(ac+1, bc+1))

π∗OY (ac+1, bc+1)⊗ k(t) H0(Yt,OXt
(ac+1, bc+1)).

pr

pr′

From Proposition 14 or Corollary 9, the vertical arrow on the right is surjective, conse-

quently, from [4, Proposition 12.11-a], the arrow on the left is also subjective. The map pr
is surjective by definition of polynomial, then pr′ is surjective, thus from [6, Proposition

1.1.7] we have that π∗OY (ac+1, bc+1) is locally free and commutes with base change. �

Proposition 20. Let T be the spec of a DV R and Y ⊂ XT a flat closed subscheme over

T . If the special fiber is an ACM complete intersection then its generic fiber is an ACM

complete intersection. Moreover, any equation of the special fiber can be raised to an

equation of Y .

Proof. Repeating the arguments of the proof of [6, Proposition 2.1.12]. �

5. HILBERT SCHEME OF COMPLETE INTERSECTION

In this section, we will construct the Hilbert scheme for complete intersections which

are ACM. Throughout this section we consider X to be Pm × Pn, where X ⊂ Pr under

Segre embedding. Let Y = ∩c
i=1V (Fi) be an ACM and p(t) its Hilbert polynomial, where

each form Fi has bidegree (ai, bi). Fix a good order on bidegrees (a1, b1), · · · , (ac, bc).
We denote by Hilbr the Hilbert scheme of Pr and Hilbp(t)

r ⊂ Hilbr the Hilbert scheme

associate to p(t). For a scheme S, we define

H
p(t)
X (S) =







flat families X ⊂ X × S of closed subschemes of X, parametrized by S,

with fibers having Hilbert polynomial p(t).
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Since flatness is preserved by base change, this association defines a contravariant functor

H
p(t)
X : Schemesop −→ Set

called the Hilbert functor of X relative to p(t) where “Schemes” denotes the category of

locally Noetherian separated k-schemes. Its known that H
p(t)
X is represented by a closed

subscheme of Hilbp(t)r .

Let F be the contravariant functor of the category of schemes to the sets category such

that for each scheme S

F(S) =







flat families X ⊂ X × S of closed subschemes of X , parametrized by S,

with fibers ACM.







The next subsections are devoted to providing an explicit construction of a scheme H
which will be the scheme that represents the contravariant functor F . We apply some

arguments of [6, Section 1.2] to the construction of H. The construction of H Due to the

difficulty of establishing an order in the bidegrees, we will divide the construction of H in

two cases which consist of the next 2 subsections.

5.1. On Codimension at Most 2.

Proposition 21. For hypersurfaces of bidegree (a, b) in X = Pm × Pn, not necessarily

ACM, let pr : X −→ Spec (Z) be the structure morphism. The scheme sought H is

P(pr∗OX(a, b)∨).

Proof. We claim that pr∗OX(a, b) is a locally free sheaf on Spec (Z) and it commutes

with base change. Indeed, since a ≥ 0 and b ≥ 0, we have H1(X,OX(a, b)) = 0, in

particular, for every y ∈ Spec (Z) the natural map

R1pr∗OX(a, b)⊗ k(y) −→ H1(Xy,OXy
(a, b)) = 0

is surjective and from [4, Proposition 12.11-a], follows that this map is an isomorphism.

Now the map pr∗OX(a, b) ⊗ k(y) −→ H0(Xy,OXy
(a, b)) is surjective, thus from [6,

Proposition 1.1.7] we have the claim. The geometric fibers of pr∗OX(a, b) are identified

with H0(XK ,OXK
(a, b)), where K is the algebraically closed field on which it is defined

each point. Denote by H(a,b), or just H when there is no confusion, the projective bundle

P(pr∗OX(a, b)∨) and π : H −→ Spec (Z) the projection. A geometric point of H is the

linear space 〈F 〉 of H0(XK ,OXK
(a, b)). By construction, we have an injection of the

tautological line bundle OH(−1) −→ π∗pr∗OX(a, b). We have a commutative diagram:

X ×H X

H Spec (Z)

π′

pr′ pr

π

and by base change π∗pr∗OX(a, b) = pr′∗π
′∗OX(a, b) = pr′∗OX×H((a, b); 0), so we

rewrite the injection as OH(−1) −→ pr′∗OX×H((a, b); 0), applying the pullback pr′∗ and

by adjunction we get a morphism of line bundle OX×H((0, 0);−1) −→ OX×H((a, b); 0),
the zero locus of this morphism is a Cartier divisor X (or X(a,b)) of X ×H. Let X −→ H
be the projection pr′ restrict to X , by construction ever fiber of 〈F 〉 is given by the scheme

of zeros of F in XK . �
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We can assume n ≥ 2 and let F1, F2 be forms of bidegree (a1, b1) and (a2, b2), respec-

tively, and Y1 = V (F1) and Y2 = V (F2). By Remark 4, the intersection Y1∩Y2 is a proper

closed subset of X , for all cases except when b1 = b2 = 0, m = 1 and gcd(F1, F2) = 1.

If we take the relations of the bidegrees as described in Proposition 7, then by Remark 4,

the set V (F1, · · · , Fc) will be closed in X .

Now we will describe the Hilbert schemes of complete intersection on X , denoted by

H. Let’s consider α := min{a1, a2}, β := min{b1, b2}. Since the intersection is a closed

set of X , for every irreducible component Z of Y1 ∩ Y2, we have dimZ ≥ dimY1 +
dimY2 − dimX = n+m− 2. If the intersection is not proper, then there is a form G of

bidegree at most (α, β) so that Y1 ∩ Y2 = V (G), in particular, G is a common factor of F1

and F2.

Proposition 22. For complete intersection of codimension equal to 2, the scheme H is

Gr(2, pr∗(α, β)
∨) over Spec (Z) or P(pr∗ OX1

(a2, b2)
∨) over H(a1,b1) or the complement

of V1,2. Here the set V1,2 is the closure of H(a1,b1)×H(a2,b2) where its points (F1, F2) are

such that F1 and F2 have a common component.

Proof. The first two cases are similar to the construction of towers of Grassmannian bun-

dles in [3, Section 1.3].

Case 1 - If (α, β) = (ai, bi) for all i, then we take H to be the Grassmannian bundle

Gr(2, pr∗(α, β)
∨) over Spec (Z), the construction of X is the same as the hypersurface

case, the only difference is that we will take the tautological bundle of the Grassmannian

instead of O(−1).
Case 2 - If (α, β) = (a1, b1) and (α, β) 6= (a2, b2) we denote π : H1 −→ Spec (Z)

and pr : X −→ Spec (Z), where H1 := H(a1,b1) and X1 := X(a1,b1). We have an exact

sequence

0 OX×H1
((−a1,−b1);−1) OX×H1

OX1
0,

and if we tensor it by OX×H1
((a2, b2); 0) then we keep this sequence exact, since for every

fiber the cohomology H1(O((a2 − a1, b2 − b1);−1)) = 0. From [4, Proposition 12.11-a]

we have R1pr∗O((a2 − a1, b2 − b1);−1) = 0 and thus the push forward pr∗ keeps the

exact sequence as well. Finally, we apply the pullback π∗

0 F(−a1,−b1)⊗OH1
(−1) F pr∗ OX1

(a2, b2) 0,

where F = π∗pr∗OX(a2, b2), from Proposition 19, the sheaf pr∗OX1
(a2, b2) is locally

free. Thus H will be the projective bundle P(pr∗OX1
(a2, b2)

∨) over H(a1,b1) whose fibers

are

P

(

H0(XK ,OXK
(a2, b2))

〈F〉

)

for every F ∈ H(a1,b1), where 〈F〉 is the K-space of forms of bidegree (a2, b2) which have

F as component. The universal family X will be the pre-image of X(a,b).

Case 3 - For (α, β) 6∈ {(a1, b1), (a2, b2)}, let Vi be the closed (see Lorenzo [3, Subsec-

tion 1.3]) subset of H(ai,bi) ×H(α,β) defined by

Vi := {(Fi, G) | Fi ∈ G.H0(X,OX(ai − α, bi − β))}.
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In particular, π1(Vi) is a closed set of H(ai,bi) generated by reducible forms of bidegree

(ai, bi) and since ai + bi > 1, then π1(Vi) = Vi is proper. Similarly,

V1,2 = (V1 ×H(a2,b2)) ∩ (V2 ×H(a1,b1)) (5)

= {(F1, F2, G) | Fi ∈ G.H0(X,OX(ai − α, bi − β)) for all i} (6)

is a closed subset of H(a1,b1)×H(a2,b2)×H(α,β) and its projection V1,2 is a proper closed

subset of H(a1,b1) × H(a2,b2). For every (α′, β′) 6= (0, 0) such that 0 ≤ α′ ≤ α and

0 ≤ β′ ≤ β we can construct closed sets of H(a1,b1) ×H(a2,b2) where its points (F1, F2)
are such that F1 and F2 have a common component of bidegree (α′, β′). Let’s consider

V1,2 the union of these closed sets. By considering H be the complement of V1,2, we have

a natural projection π : H −→ H(a1,b1) and the universal family X is the pre-image of

X(a1,b1) under the morphism id× π : X ×H −→ X ×H(a1,b1).

�

We have observed that in codimensions of at most 2, the Hilbert scheme is smooth and

irreducible. Additionally, we could computer its dimension in both cases. As codimension

grows, the problem becomes more complicated. Fortunately, when it is ACM, we have

ai − bi < m + 1, which puts us in a privileged position. Now let’s describe H for the

curves (not necessarily smooth) of genus 7 of the Example 10. For simplicity, we denote

V (r, s) := H0(X,OX(r, s))∨ and P(r, s) := P(H0(X,OX(r, s))∨):

(1) For (a1, b1) = (1, 1), (a2, b2) = (3, 3) and X = P1 × P2 we are in case 2 and we

have a projective bundle π : H −→ P(1, 1) whose fiber π−1(F ) = P( V (3,3)
F.V (2,2) )

has dimension 21, which implying dimH = 26.

(2) Let (a1, b1) = (1, 1), (a2, b2) = (a3, b3) = (1, 2) and X = P1 × P3. Combining

Case 1 with Case 2, we have a Grassmannian bundle π : H −→ P(1, 1), whose

fibers π−1(F ) = G(2, V (1,2)
F.V (0,1) ) has dimension 28, which implying dimH = 35.

(3) Let (a1, b1) = (a2, b2) = (1, 1), (a3, b3) = (2, 2) and X = P2 × P2. Combining

Case 1 with Case 2, we have a projective bundle π : H −→ G(2, V (1, 1)), whose

fibers are π−1(F,G) = P( V (2,2)
F.V (1,1)+G.V (1,1) ). Thus,

dim(F.V (1, 1) + G.V (1, 1)) = 9 + 9− 1 = 17,

which implies dimπ−1(F,G) = 17, thus dimH = 32.

We hope to do the same for the remaining cases in example 10, but unfortunately, the

bidegrees don’t behave so well. In the next section, we will construct the Hilbert scheme

for ACM complete intersections, the idea is derived from [6, Section 2.2.2].

5.2. On Complete Intersection ACM. In this subsection, we will find the scheme H
that represents the contravariant functor F when we consider complete intersections ACM

of codimension greater than 2 in X . We will establish an order on the bidegrees of

the bihomogeneous forms and we apply the tools of [6] to construct H. Let’s denote

(α1, β1), · · · , (αs, βs) the distinct bidegrees (ai, bi), in other words

(a1, b1) = · · · = (am1
, bm1

) = (α1, β1)

(am1+1, bm1+1) = · · · = (am1+m2
, bm1+m2

) = (α2, β2)
... · · ·

...
...

(am1+···+ms−1+1, bm1···+ms−1+1) = · · · = (am1+···+ms
, bm1+···+ms

) = (αs, βs).
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We will show that F is representable by a scheme H with a universal family X . We

construct this universal family Xr and an integral smooth scheme Hr on Spec(Z) by in-

duction on 0 ≤ r ≤ s such that the natural morphism pr : Xr ⊂ X × Hr −→ Hr is flat

and has fibers ACM defined by mt equations of bidegree (αt, βt), t = 1, · · · , r.

If r = 0 we take H0 = Spec(Z) and X0 = X . Now we suppose, by induction hypothe-

sis, thatXr−1 andHr−1 are constructible. From Proposition 19, Er = pr−1,∗OXr−1
(αr, βr)

is locally free sheaf and commutes with base change, hence we can consider the Grassman-

nian bundle Gr = Gr(mr, E∨
r ) and πr : Gr −→ Hr−1 its natural projection. From this

construction, we get the following commutative diagram

π∗
rXr−1 Xr−1

Gr Hr−1

pr pr−1

πr

We consider the inclusion of the tautological sheaf Fr −→ π∗
rEr on the Grassmannian

bundle Gr and by changing the basis of the morphism πr, this injection is rewritten as

Fr −→ pr,∗Oπ∗

rXr−1
(αr, βr). Pulling back on π∗

rXr−1 and using adjunction we get a

morphism of vector bundles p∗rFr −→ Oπ∗

rXr−1
(αr, βr). The locus of zeros of this mor-

phism is a closed subscheme of π∗
rXr−1 which we denote by Zr.

This last part of the construction is the same one made by Olivier in 6 and we replicate

it by considering bihomogeneous forms on X instead of homogeneous forms in PN . Let

V be the mr-dimensional vector subspace of Er,x = H0(Xr−1,x,OXr−1,x
(αr, βr)) which

corresponds y ∈ Gr with x = πr(y). Then, by construction, Zr,y is identified by a sub-

scheme of Xr−1 defined by {F = 0 | F ∈ V } and this implies that Zr,y has codimension

at most mr in Xr−1. Let Hr be the open of Gr such that the Zr,y has minimal dimension.

The set Zr,y is the locus of complete intersection defined by mi equations of bidegree

(αi, βi) for all 1 ≤ i ≤ r. Thus we consider Xr to be the inverse image of Hr restricted to

Zr and all hypotheses about Xr and Hr are satisfied as desired.

Proposition 23. The Hilbert scheme of ACM complete intersections is H, as constructed

above.

Since ACM complete intersections in X are independent of change of basis c.f. Propo-

sition 18 and are stable by generation, see Proposition 20, we can enunciate the following

theorem whose proof is a simple replication of the arguments used by Olivier in [6, Propo-

sition 2.2.5] and so we will omit it.

Theorem 24. The scheme H constructed in the Propositions 21, 22 and 23 represents the

functor F and the map pr : X → H is the universal family.

Example 25. For simplicity, we denote V (r, s) := H0(X,OX(r, s))∨ and P(r, s) :=
P(H0(X,OX(r, s))∨). From Example 10 we have:

(1) Let (a1, b1) = (0, 2), (a2, b2) = (a3, b3) = (1, 1), (a4, b4) = (1, 2) and X =
P1 × P4. We have a projective bundle π : Y −→ U , where U is the locus of

complete intersection of G(2, V (1, 1))× P(0, 2), whose fibers are

π−1(H1, H2, F ) = P(
V (1, 2)

H1.V (0, 1) + H2.V (0, 1) + F.V (1, 0)
).

Take H to be the open set of complete intersection of Y .



16 AISLAN LEAL FONTES AND MAXWELL DA PAIXÃO DE JESUS SANTOS

(2) Let (a1, b1) = (1, 1), (a2, b2) = (1, 2), (a3, b3) = (2, 1) and X = P2 × P2. Take

π : Y −→ P(1, 1), whose fibers are π−1(H) = P( V (1,2)
F.V (0,1)) × P( V (2,1)

F.V (1,0) ). Thus,

H is the open of complete intersection of Y .
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6. MODULI OF COMPLETE INTERSECTION IN THE BIPROJECTIVE SPACE P1 × P1

We will consider G one of the following groupsPGL(2)×PGL(2) or SL(n)×SL(n).
Let Q := P1 × P1 be a smooth quadric in P3 and denote by π1 and π2 the natural projec-

tions. We are interested in the case where C = V (F ) is a smooth curve. Without loss of

generality, we can assume d1 ≤ d2 and F be a form of bi-degree (d1, d2).
We recall some results about determinants which can be found in [10, pg 433]. The dis-

criminant of a homogeneous polynomial f(x0, · · · , xn) of degree d is an irreducible poly-

nomial ∆(f) in the coefficients of f which vanishes if and only if all the partial derivatives

∂f/∂x0 · · ·∂f/∂xn have a common zero in kn+1 − {0}. Under the geometric approach,

the discriminant corresponds to the Veronese embedding

P
n = P(kn+1) −→ P(Sdkn+1).

For f(x0, x1) homogeneous polynomial of degree d, we have ∆(f) has degree 2d− 2.

The action of GL(2) on P1 induces an linear action on homogeneous polynomials via

(A∗f)(x0 : x1) := f(A−1(x0 : x1)), for every A ∈ GL(2) (similarly, we have an action

of GL(2)× GL(2) in an form F ). We have that ∆(A∗f) = (detA−1)d(d−1)∆(f), for a

proof see [10, pg 404].

Let

F (x0, x1, y0, y1) =
∑

i+j=d

xi
0x

j
1Gi(y0, y1) (7)

be a form of bidegree (d1, d2), where Gi(y0, y1) is a homogeneous polynomial of degree

d2. Now we define the discriminant (∆F )(y0, y1) or just ∆(F ), where we take F as

polynomials in the variables xi and coefficients in Gi(y0, y1). For example:

(1) If d1 = 2, then

∆(F ) = G2
1 − 4G0G2

(2) If d1 = 3, then

∆(F ) = G2
1G

2
2 − 4G0G

3
2 − 4G3

1G3 − 27G2
0G

2
3 + 18G0G1G2G3

(3) If d1 = 4, then

∆(F ) = 256G3
0G

3
4 − 27G2

0G
4
3 − 27G2

4G
4
1 + 16G0G

4
2G4 − 4G0G

3
2G

2
3 − 4G2

1G
3
2G4

−4G3
1G

3
3 +G2

1G
2
2G

2
3 − 192G2

0G1G
2
4G3 − 128G2

0G
2
2G

2
4

+144G2
0G2G4G

2
3 + 144G0G2G

2
4G

2
1 − 6G0G

2
3G4G

2
1

−80G0G1G
2
2G3G4 + 18G0G1G2G

3
3 + 18G3

1G2G3G4

Remark 26. Let F be a form of bidegree (d1, d2), where di ≥ 3. From [10, Proposition

1.2, p.g 445]we have that C = V (F ) is smooth if, only if, every root of (∆F )(y0, y1) and

(∆F )(x0, x1) is simple.

Theorem 27. Let F ∈ k[x0, x1, y0, y1] be a nonsingular form of bidegree (d1, d2), where

di ≥ 3. Then F is invariant under at most finitely many g ∈ G.

Proof. Using the equation (7) we can write F with variables xi where their coefficients are

forms of degree d2 and its discriminant will be a homogeneous polynomial in the variables

yi which we denote by ∆(y0, y1). Since d1 ≥ 2 we have

deg(∆(y0, y1)) = (2d1 − 2)(d2) ≥ 12.
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Take g = (A,B) ∈ G such that g ∗ F = F . The discriminant we have

∆(g ∗ F ) = B∗((detA−1)d1(d1−1)∆(y0, y1)), (8)

but F is smooth, which implies that the discriminant ∆(y0, y1) has distinct roots, cf. Re-

mark 26, hence the action of B on ∆(y0, y1) will fix the set of its roots. As the set of roots

of ∆(y0, y1) It is finite and has at least 12 elements, so B is a scalar multiple of the iden-

tity matrix. Similarly, using ∆(x0, x1) we have that A is a scalar multiple of the identity

matrix.

Let B = b · Id and A = a · Id for some a, b ∈ C
∗. If G = PGL(2)× PGL(2), then g

is the identity of G while for G = SL(2)×SL(2) we get a, b ∈ {−1, 1} and in both cases

there are finitely many g ∈ G such that g ∗ F = F .

�

Remark 28. The Theorem 27 is not true for GL(2) × GL(2). Indeed, if F is a form of

bidegree (d1, d2), then g ∗ F = F for every g ∈ H , where

H = {(a · Id, b−1 · Id) ∈ GL(2)×GL(2) | a ∈ k∗ an b is an (d2)-root of ad1}.
The Theorem 27 is true for any subgroup of K ⊂ GL(2)×GL(2) where #(K∩H) < ∞.

Let p(t) = (d1 + d2)t+1− (d1− 1)(d2− 1) an Hilbert polynomial, if C ∈ Hp(t)
Q , then

C has bidegree (d1, d2) or (d2, d1). To avoid confusion, we can take the action of G⋊ Z2

on Hp(t)
Q , this is equivalent to the action of G on P(H0(Q,OQ(d1, d2))).

Fix a bidegree (d1, d2), every form F in this bidegree corresponds to a point of PN =
P(H0(Q,OQ(d1, d2))), where N = (d1 + 1)(d2 + 1) − 1. Denote by Ud1,d2

⊂ P
N the

locus of smooth curve of bidegree (d1, d2), it is an affine variety.

Corollary 29. Suppose di > 2, then every point of Ud1,d2
is stable for the action of G.

Therefore, there exists a good quotient [ Ud1,d2
/G].

Proof. From equation 8, for g = (A,B) ∈ G and F ∈ Ud1,d2
, the multiplicity of the

zeros of the discriminant does not change by this action, and thus G acts on the projective

space P(H0(Q,OQ(d1, d2))) preserving the open set Ud1,d2
of smooth curves. On the

other hand, since every point of Ud1,d2
has a finite stabilizer, it follows from [2, Corollary

5.14, pg 166] that Ud1,d2
is stable. Since GL(2)×GL(2) is linearly representable, then G

is linearly representable, in particular, see [2, Corollary 5.17, pg 167], the quotient [U/G]
exists. �

The Corollary 29 shows that the quotient [ Ud1,d2
/G] is a coarse moduli space for

smooth curves on a fixed quadric of P3.
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S/N, 49506-036 ITABAIANA/SE, BRAZIL

Email address: aislan@ufs.br
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