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RELATIVE TRACE FORMULA AND SIMULTANEOUS

NONVANISHING FOR GL3 ×GL1 AND GL3 ×GL2 L-FUNCTIONS

PHILIPPE MICHEL, DINAKAR RAMAKRISHNAN AND LIYANG YANG

Abstract. Fix a Dirichlet character χ and a cuspidal GL(2) eigenform φ
with relatively prime conductors. Then we show that there are infinitely many
cusp forms π on GL(3)/Q such that L(1/2, π × χ) and L(1/2, π × φ) are
simulaneously non-zero. We achieve this by use of Jacquet’s Relative Trace
Formula. We derive an expression of the average over the GL(3) cuspidal
spectrum as a sum of a non-zero main term and two subsidiary terms which
are forced to be zero for large enough level by use of a suitable test function.
This article is dedicated to the memory of Harish Chandra, on the occasion of
his hundredth birthday.

Dedicated to Harish Chandra, with admiration, on the centenary of his birth
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1. Introduction

Harish Chandra was a mathematical giant who revolutionized the theory of repre-
sentations of semisimple Lie groups G, which many of us utilize in several different
facets of modern mathematics, from number theory at one end to geometry at the
other. The basic objects of the theory are the discrete series whose criterion for
existence (that G possesses a compact Cartan subgroup) and whose mirific prop-
erties were established by him. They lead directly to tempered representations via
parabolic induction of discrete series, and then on to the general Langlands clas-
sification and admissible (Lie(G),K)-modules. Of particular interest to us three
(writing this article) is the unitary representation L2(Γ\G) for a discrete subgroup
Γ of congruence type, where G acts by right translation ρ. The uninitiated could
first look at the case when Γ is cocompact, in which case L2(Γ\G) decomposes
discretely into a Hilbert direct sum of ireducible unitary representations of G, each
occurring with finite multiplicity. The simplest case is when G is SL(2,R) and Γ
the group of integral units in an indefinite quaternion division algebra B over Q.

We are especially interested in the case when G is PGL3(R), which already
carries some of the difficulties encountered beyond SL2(R). We are in particular

Date: November 20, 2024.

1

http://arxiv.org/abs/2411.12609v1


2 PHILIPPE MICHEL, DINAKAR RAMAKRISHNAN AND LIYANG YANG

concerned with the periods over cycles defined by (discrete quotients of) suitable
Lie subgroups H1 and H2, which are intimately related to the central values of
Rankin-Selberg L-functions of GL(3)×GL(1) and GL(3)×GL(2); this relationship
follows from the integral representations of Jacquet, Piatetski-Shapiro and Shalika
in these two (very different) settings [JPSS83, JPSS79]. We utilize for their study
the relative trace formula of G (acting on L2(Γ\G)) with respect to (H1, H2). The
spectral side furnishes the periods, and the essential difficulty of the paper is in
analyzing the geometric side, isolating the main term and showing the remaining
terms to be negligible.

We will be interested in congruence subgroups Γ, which are not cocompact. But
we are able to move to the adelic picture, and work with automorphic representa-
tions π of GL3(A), with A being the adele ring of Q, and by a suitable choice of a
test function f =

∏
v fv, restrict to those π which have a supercuspidal component

at a fixed prime v0, which simplifies the trace formula and allows one to focus just
on the discrete part, which is a big help. We will actually consider the periods
weighted by a fixed character χ of H1 and a fixed cusp form σ on H2 = PGL(2).
The final objective is to show that for infinitely many cusp forms π of GL(3),
L(1/2, π ⊗ χ) and L(1/2, π × σ) are simultaneously non-zero.

The second author of this article (D.R.) gave a lecture at the Harish Chandra
Centennial conference at HRI in Allahabad in October, 2023, when he focused on a
similar, but much more difficult case of U(2, 1)× U(1, 1) (see [MRY23]). The case
considered here is much shorter and is more amenable to an easier exposition. We
hope it will be of some use.

Let us begin with a quick review of Jacquet’s relative trace formula, which the
experts can skip. For simplicity let us pretend that Γ\G is compact. Every smooth
compactly supported test function f on G acts as a nice compact operator on
L2(Γ\G) by ρ(f)ϕ := ϕ 7→

∫
Γ\G

f(g)ρ(g)ϕdg, where dg is the quotient measure

induced by the Haar measure on G. Since ϕ is left invariant under Γ, ρ(f)ϕ is
the pairing 〈ϕ,Kf |∆

〉Γ\G, where Kf is the kernel function on Γ\G× Γ\G given by

(x, y) 7→
∑

γ∈Γ f(x
−1γy), and ∆ denotes the diagonally embedded Γ\G. This leads

to the expression of the trace of f as the integral of Kf over ∆. On the one hand,
a spectral analysis of L2(Γ\G) as

∑
π∈Ĝ mπVπ into a sum of irreducible unitary

representations (π, Vπ) with multiplicity mπ. On the other hand, the geometric
side expands

∫
∆
Kf as

∑
{γ} vol(Γγ\Gγ)Oγ(f), where {γ} is the set of conjugacy

classes of γ (with representative γ), Gγ (resp. Γγ) is the centralizer of γ in G
(resp. Γ), vol(Γγ\Gγ) is the volume of the quotient space of Gγ under the left
action of Γγ , and Oγ(f) denotes the orbital integral

∫
Gγ\G

f(x−1γy)dx. Comparing

the two sides one often gets many beautiful consequences. When f is a Hecke
operator, the geometric picture to keep in mind is the intersection of the graph
of the Hecke correspondence with the diagonal. Jacquet’s ingenious idea was to
replace the diagonal by a product Z1 ×Z2 of suitable codimension in (Γ\G)2 (so it
is not too big or too small), and consider the integral - “period” - of the kernel Kf

over Z1 × Z2. To be able to apply representation theory, one is led to restrict the
“cycles” Zj , j = 1, 2 to be arithmetic quotients Γ′

j\Hj , with Hj Lie subgroups of G

and Γ′
j = Γ∩Hj ; note that the Hj are not necessarily semisimple. A simple example

is G = PGL(2,R), Γ cocompact defined by an indefinite quaternion division algebra
B over Q, Γ\G a circle bundle over the Riemann surface Γ\H (where H is the upper
half plane) and Hj is (for j = 1, 2) the torus defined by the algebraic integers of
norm one in a real quadratic field Fj where B splits; here the image of Z1 × Z2

in (Γ\H)2 is a product of two circles (and has the same dimension as the diagonal
Riemann surface).
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Often one also integrates against a weight function (ξ1, ξ2) on Z1 × Z2. The

kernel function Kf can be expanded spectrally as
∑

r
ρ(f)ϕr⊗ϕr

〈ϕr,ϕr〉
, where the sum is

over an orthogonal basis {ϕr|r ∈ N} of the automorphic spectrum. This leads to the
spectral side of the relative trace formula for

∫ ∫
Z1×Z2

Kf(x, y)ξ1(x)ξ2(y)dxdy to

be
∑

r P1(ρ(f)ϕr , ξ1)P2(ϕr, ξ2), where P1(ρ(f)ϕr, ξ1), resp. P2(ϕr, ξ2), equals the
weighted period

∫
Z1
ρ(f)(ϕr)(x)ξ1(x)dx, resp.

∫
Z2
ϕr(y)ξ2(y)dy. In some cases, ρ(f)

acts as a scalar λr on ϕr, simplifying the first period. A miracle is that in certain
cases, the period integrals are related to L-values, as it is in the case we analyze in
this article. (For a discussion of the simpler case of PGL(2)/Q with H1 = H2 = T ,
the diagonal torus, see [RR05].) Writing H = H1 ×H2 and Γ′ = Γ′

1 × Γ′
2, we may

expand the geometric side as
∑

γ∈Γ/≡ vol(Γ′
γ\Hγ)Oγ(f, ξ), where Γ/ ≡ is the set

of equivalence classes of γ ∈ Γ with the equivalence γ ≡ δ (in Γ) iff δ = h1γh2
for some h1, h2 , Hγ (resp. Γ′

γ) is the stabilizer of γ in H (resp. Γ′), and Oγ(f, ξ)

denotes the integral
∫
Hγ\H

f(x−1γy)ξ1(x)ξ2(y)dxdy.

In our case of interest, where G =PGL(3), we take H2 to be PGL(2), and the
period is given (thanks to [JPSS83]) essentially by L(1/2, ϕr × σ) if the weight
function on H2 is given by a cusp form in the space of σ. Even more interesting is

the fact that if we take H1 to be
{



a 0 b

1 c
1



}
, whose abelianization is GL(1),

then the corresponding period is (essentially) L(1/2, ϕr × χ), for ξ1 a character χ
([JPSS79]). And our object is to prove that for many ϕr belonging to different
cuspidal automorphic forms on G, these two periods are simultaneously non-zero.
We can achieve this because there are, for our choice of a test function f , three
terms on the geometric side, and two of those happen to be zero (after some work)
by suitable shrinking the support of f . The remaining (main) term is shown to be
non-zero, as the (prime) level of the GL(3) forms becomes large. We have not tried
here to quantify here the amount of non-vanishing, as have done in [MRY23].

We conclude the Introduction with a few comments. In our main result below,
it should be possible with some work to deal with the more general case where we
do not require (by our choice of f) any supercuspidal component of π, but it will be
more delicate. Much harder will be the case of π′ (on GL(2)) not cuspidal, which
will require a subtle regularization and consequently some additional terms, and it
will be impressive to solve this case. In a different direction, one could try to get
the second moment of GL(3) × GL(1) L-functions, where we will take H2 to be
the same as the H1 used here; the geometric side is quite difficult in this case. By
contrast, the case of the second moment of the GL(3) × GL(2) L-functions work
out a bit better, though still difficult; in fact the third author of this paper has
achieved that for GL(n+ 1)×GL(n) L-functions ([Yan23]) for any n ≥ 2.

Ph.M. was partially supported by the SNF grant 200021_197045. D.R. was
supported by a grant from the Simons Foundation (award Number: 523557).

2. The Main Result

Theorem A. Let χ be a unitary Hecke character of F×\A×
F . Let σ be a unitary

cuspidal automorphic representation of GL2/F . Then there are infinitely many

unitary cuspidal automorphic representations π of PGL3/F such that

L(1/2, π × χ)L(1/2, π × σ) 6= 0.(2.1)

Remark 2.2. More precisely, we will prove that (2.1) holds for π’s such that

• π∞ is contained in a compact subset of the unitary dual of GL3(F∞),
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• there is a fixed finite split place v0, at which πv0 is isomorphic to (fixed)
supercuspidal representation of PGL3(Fv0),

• π has an Iwahori invariant vector at some prime ideal N with NrF/Q(N)
sufficiently large (in particular distinct from v0),

• π is unramified at every other finite place.

For NrF/Q(N) large enough the number of such π is ≍ NrF/Q(N)3. One may then
asked for how such π satisfy (2.1). In [MRY23] we could establish that this was
the case for ≫ NrF/Q(N)δ for some fixed δ > 0. The proof used the amplification

method to bound individually the relevant period integrals; by design these were
non-negative. In the present case, we lack this positivity property. Instead, using
the mollification method one could show that (2.1) holds for ≫ log(NrF/Q(N))δ for
some fixed δ > 0. We leave this to the interested reader.

Notation Guide.

Number Fields and Measures. Let F be a number field with ring of integers OF .
Let NF be the absolute norm. Let OF be the different of F. Let AF be the adele
group of F. Let ΣF be the set of places of F. Denote by ΣF,fin (resp. ΣF,∞) the
set of non-Archimedean (resp. Archimedean) places. For v ∈ ΣF , we denote by
Fv the corresponding local field. For a non-Archimedean place v, let Ov be the
ring of integers of Fv, and pv be the maximal prime ideal in Ov. Given an integral
ideal I, we say v | I if I ⊆ pv. Fix a uniformizer ̟v ∈ pv. Denote by ev(·) the
evaluation relative to ̟v normalized as ev(̟v) = 1. Let qv be the cardinality of
Fv := Ov/pv. We use v | ∞ to indicate an Archimedean place v and write v < ∞
if v is non-Archimedean. Let | · |v be the norm in Fv. Put | · |∞ =

∏
v|∞ | · |v and

| · |fin =
∏

v<∞ | · |v. Let | · |AF
= | · |∞ ⊗ | · |fin. We will simply write | · | for | · |AF

in calculation over A×
F or its quotient by F×.

Let ψQ be the additive character on Q\AQ such that ψQ(t∞) = exp(2πit∞), for
t∞ ∈ R →֒ AQ. Let ψF = ψQ ◦ TrF , where TrF is the trace map. Then ψF (t) =∏

v∈ΣF
ψv(tv) for t = (tv)v ∈ AF . For v ∈ ΣF , let dtv be the additive Haar measure

on Fv, self-dual relative to ψv. Then dt =
∏

v∈ΣF
dtv is the standard Tamagawa

measure on AF . Let d×tv = ζFv
(1)dtv/|tv|v, where ζFv

(·) is the local Dedekind zeta
factor. In particular, Vol(O×

v , d
×tv) = Vol(Ov, dtv) = NFv

(DF )
−1/2 for all finite

place v. Moreover, Vol(F\AF ; dtv) = 1 and Vol(F\A
(1)
F , d×t) = Res

s=1
ζF (s), where

A
(1)
F is the subgroup of ideles A×

F with norm 1, and ζF (s) =
∏

v<∞ ζFv
(s) is the

finite Dedekind zeta function. Denote by
̂

F×\A
(1)
F the Pontryagin dual of F×\A

(1)
F .

Reductive Groups. For an algebraic group H over F , we will denote by [H ] :=
H(F )\H(AF ). We equip measures on H(AF ) as follows: for each unipotent group
U of H, we equip U(AF ) with the Haar measure such that, U(F ) being equipped
with the counting measure. The measure of [U ] is 1.We equip the maximal compact
subgroup K of H(AF ) with the Haar measure such that K has total mass 1. When
H is split, we also equip the maximal split torus of H with Tamagawa measure
induced from that of A×

F .
In this paper we set G = GL(3) and G′ = GL2. Let B be the group of upper

triangular matrices in G. Let G = Z\G and B0 = Z\B, where Z is the center of
G. Let N be the unipotent radical of B. Let θ be the generic character induced by
ψF :

(2.2) θ (u) = ψF (u12 + u23), u = (uij) ∈ N(AF ).

Then θ = ⊗vθv, where θv (uv) := ψv(u12,v + u23,v), v ∈ ΣF .
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Let K ′ = ⊗vK
′
v be a maximal compact subgroup of G′(AF ), where K ′

v = U2(C)
if v is complex, K ′

v = O2(R) if v is real, and K ′
v = G′(Ov) if v <∞. For v ∈ ΣF,fin,

m ∈ Z≥0, define

(2.3) Kv[m] :=
{
(kij)1≤i,j≤3 ∈ G(Ov) : k31, k32 ∈ pmv

}
.

Define the following matrices:

w1 =




1

1
1



 , w2 =




1

1
1



 .

Other Conventions. Denote by α ≍ β for α, β ∈ R if there are absolute constants c
and C such that cβ ≤ α ≤ Cβ.

Throughout the paper, we fix a number field F , functions hv ∈ C∞
c (GL3(Fv))

at v | ∞ supported in a small neighborhood of the identity I3 with hv(I3) = 1, a
supercuspidal representation πv0 , a unitary Hecke character χ of F , and a unitary
cuspidal automorphic representation σ of GL2/F with a cusp form φ ∈ σ. All
implied constants in ≪ or O(·) will depend at most on F , hv’s, πv0 , χ and φ.

3. Test Functions and the Two Sides of RTF

Intrinsic Data.

Automorphic Representations. Let χ = ⊗vχv be a unitary Hecke character of
F×\A×

F . Let σ = ⊗vσv be a unitary automorphic representation of GL2/F .
For v <∞, we denote by rχv

and rσv
the exponent of the arithmetic conductor

of χv and σv, respectively. Let

• Σχfin
:=

{
v <∞ : rχv

> 0
}
, the set of ramified places of χfin = ⊗v<∞χv.

• Σσfin
:=

{
v <∞ : rσv

> 0
}
, the set of ramified places of σfin = ⊗v<∞σv.

Then Σχfin
and Σσfin

are finite sets.

Cusp Forms in σ. For v | ∞, let αv ∈ C∞
c (F×

v ) be such that αv(1) = 1 and
αv(tv) = 0 if |tv−1| > ε. Let Wv be the function in the Whittaker model satisfying

Wv

(
av

1

)
= αv(av), av ∈ F×

v .

For v ≤ ∞, we let Wv be the local new vector in the Whittaker model of σv,
normalized as Wv(I2) = 1.

Let φ be the cusp form in σ corresponding to the Whittaker vector ⊗v≤∞Wv.

Ramifications. Let N ( OF be a prime ideal. Let

(3.1) I(N) := IN[1]
∏

v<∞, v∤N

Kv,

where IN[1] is the Iwahori subgroup of level 1 at v = N. Suppose the absolute
norm NF (N) is sufficiently large so that χv and πv are unramified at v = N.

Supercuspidal Components. Let v0 be a fixed finite split place such that rχv0
=

rσv0
= 0 and v0 ∤ N. Let πv0 be a unitary supercuspidal representation of PGL3/Fv0 .

Let Wv0 be the vector in the Whittaker model of πv0 (relative to ψv0) such that

(3.2) Wv0

(
yv0

1

)
= 1K′◦

v0
[1](yv0), yv0 ∈ GL2(Fv0 ).
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Here K ′◦
v0 [1] is the congruence subgroup defined by

K ′◦
v0 [1] :=

{(
k11 k12
k21 k22

)
: k21 ∈ pv0 , k22 − 1 ∈ pv0

}
.

By Kirillov model theory, such a Whittaker vector Wv0 is uniquely determined
by (3.2). Moreover, we have the following property of the matrix coefficient.

Lemma 3.1. Let notation be as before. Let yv0 :=




1 bv0

1 cv0
1




(
xv0

1

)
, where

bv0 , cv0 ∈ Fv0 , and xv0 ∈ GL2(Fv0). Then

(3.3) 〈πv0(yv0)Wv0 ,Wv0〉 = ψv0(cv0)Vol(K
′◦
v0 [1])1bv0 ,cv0∈p−1

v0
1K′◦

v0
[1](xv0).

Proof. By definition, the matrix coefficient is

〈πv0 (yv0)Wv0 ,Wv0〉 =

∫

N(Fv0 )\GLv(Fv0)

Wv0

((
g

1

)
yv0

)
Wv0

(
g

1

)
| det g|vdg.

Substituting (3.2) into the above integral yields

(3.4) 〈πv0(yv0)Wv0 ,Wv0〉 =

∫

K′◦

v0
[1]

Wv0



(
k

1

)

1 bv0

1 cv0
1




(
xv0

1

)
 dk.

Write k =

(
k11 k12
k21 k22

)
∈ K ′◦

v0 [1]. Then it follows from (3.4) that

(3.5) 〈πv0 (yv0)Wv0 ,Wv0〉 =

∫

K′◦

v0
[1]

ψv0(k21bv0 + k22cv0)Wv0

(
kxv0

1

)
dk.

Notice that Wv0

(
kxv0

1

)
= 1K′◦

v0
[1](xv0). We thus derive (3.3) from (3.5),

along with orthogonality of the additive character ψv0 . �

Construction of the Test Function.

• at v = v0, we take

fv0(gv0) := Vol(K ′◦
v0 [1])

−2〈πv0(gv0)Wv0 ,Wv0〉, gv0 ∈ GL3(Fv0).

• at v | N, we take

fv(gv) := Vol(Iv[1])
−1

∫

F×

v

1Iv[1](zvgv)d
×zv, gv ∈ GL3(Fv),

where Iv[1] is the Iwahori subgroup of level 1.
• at v ∈ Σχfin

⋃
Σσfin

, we take

fv(gv) :=
1

τ(χv)

∑

αv∈(Ov/p
rχv
v )×

χv(α)
∑

βv∈Ov/p
rσv
v

∫

F×

v

(1
U1(αv̟

−rχv
v )Kv

∗ 1
U2(βv̟

−rσv
v )Kv

)(zvgv)d
×zv,

where τ(χv) is the Gauss sum relative to χv and ψv, and for γv ∈ Fv,

(3.6) U1(γv) :=



1 γv

1
1


 , U2(γv) :=



1 γv

1
1


 .

• at the remaining finite places v, we take

fv(gv) :=

∫

F×

v

1GL3(Ov)(zvgv)d
×zv, gv ∈ GL3(Fv).
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• at Archimedean places v | ∞ we take

(3.7) fv(gv) :=

∫

F×

v

hv(zvgv)d
×zv, gv ∈ GL3(Fv),

where hv ∈ C∞
c (GL3(Fv)) is a fixed smooth function, with hv(I3) = 1, and

supported in an ε-neighborhood of the identity I3 (ie. defined by ‖gv‖v ≤ ε
for some fixed norm on M3(Fv)) with ε > 0 fixed sufficiently small.

Let f = ⊗v≤∞fv be the test function constructed as above. Henceforth we will
work below with this test function in the relative trace formula, or RTF for short.

The Relative Trace Formula. Let f be the test function defined in §3. Let

(3.8) K(g1, g2) :=
∑

γ∈PGL3(F )

f(g−1
1 γg2), g1, g2 ∈ GL3(AF )

be the automorphic kernel function associated with f . Since f has compact support,
K(g1, g2) converges absolutely.

Let s = (s1, s2) ∈ C2 be such that Re(s1) ≫ 1 and Re(s2) ≫ 1. Let φ be an
automorphic form in σ. Define

J(f, φ, s) :=

∫

F×\A×

F

d×a

∫

(F\AF )2
dbdc

∫

[GL2]

K








a b

1 c
1



 ,

(
y

1

)

χ(a)ψ(c)

|a|s1−
1
2φ(y)| det y|s2dy.

The Spectral Side. Since fv is a matrix coefficient of a supercuspidal represen-
tation at v = v0, only the cuspidal spectrum appears in the spectral decomposition
of K(·, ·). Hence,

(3.9) K(g1, g2) =
∑

π

∑

ϕ∈B
I(N)
π

π(f)ϕ(g1)ϕ(g2),

where Bπ is an orthonormal basis of π, invariant under the action of I(N) :=∏
v<∞Kv[ev(N)]. Substituting (3.9) into the definition of J(f, φ, s) yields

(3.10) J(f, φ, s) =
∑

π

∑

ϕ∈B
I(N)
π

P1(1/2 + s1, π(f)ϕ, χ)P2(1/2 + s2, ϕ, φ),

where P1(1/2 + s1, π(f)ϕ, χ) is defined by

∫

F×\A×

F

∫

(F\AF )2
π(f)ϕ




a b

1 c
1



χ(a)ψ(c)|a|s1−
1
2 dbdcd×a,

and P2(1/2 + s2, ϕ, φ) is defined by

∫

[GL2]

ϕ

(
y

1

)
φ(y)| det y|s2dy.

Notice that P1(1/2+s1, π(f)ϕ, χ) is the Rankin-Selberg integral representing the
L-function L(1/2+ s1, π×χ), and P2(1/2+ s2, ϕ, φ) represents L(1/2+ s2, π̃× σ),
where π̃ is the contragredient of π.

Due to the rapid decay of cusp forms and Rankin-Selberg theory, the function
J(f, φ, s) converges absolutely in Re(s1) ≫ 1 and Re(s2) ≫ 1, and admits a holo-
morphic continuation to C2.
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The Geometric Side. Let P be the parabolic subgroup of GL3 of type (2, 1), and
let P0 be the mirabolic subgroup. Let Nw2 be the unipotent subgroup consisting

of matrices of the form



1

1 ∗
1


, and let Nw1w2 be the unipotent subgroup

consisting of matrices of the form



1 ∗ ∗

1
1


.

Then, we have the Bruhat decomposition:

(3.11) GL3(F ) = P (F ) ⊔Nw2(F )w2P (F ) ⊔Nw1w2(F )w1w2P (F ).

Substituting (3.8) and (3.11) into the definition of J(f, φ, s) yields

(3.12) J(f, φ, s) = JSmall(f, φ, s) + JI
Reg(f, φ, s) + JII

Reg(f, φ, s),

where

JSmall(f, φ, s) :=

∫

F×\A×

F

∫

(F\AF )2

∫

[GL2]

∑

γ∈P0(F )

f






a b

1 c
1




−1

γ

(
y

1

)



χ(a)ψ(c)|a|s1−
1
2φ(y)| det y|s2dydbdcd×a,

the function JI
Reg(f, φ, s) is defined by

∫

F×\A×

F

∫

(F\AF )2

∫

[GL2]

∑

γ∈Nw2(F )w2P0(F )

f







a b

1 c
1




−1

γ

(
y

1

)



χ(a)ψ(c)|a|s1−
1
2φ(y)| det y|s2dydbdcd×a,

and the function JII
Reg(f, φ, s) is defined by

∫

F×\A×

F

∫

(F\AF )2

∫

[GL2]

∑

γ∈Nw1w2(F )w1w2P0(F )

f







a b

1 c
1




−1

γ

(
y

1

)



χ(a)ψ(c)|a|s1−
1
2φ(y)| det y|s2dydbdcd×a.

We will refer to JSmall(f, φ, s) as the small cell orbital integral, while JI
Reg(f, φ, s)

and JII
Reg(f, φ, s) will be called the regular orbital integrals of type I and II, re-

spectively.
In the following sections, we will show that JSmall(f, φ, s) is the main term on

the geometric side (3.12), and that

JI
Reg(f, φ, s) ≡ JII

Reg(f, φ, s) ≡ 0

as the absolute norm NF (N) becomes sufficiently large.

4. The Small Cell Orbital Integral

In this section we will investigate the small cell orbital integral

JSmall(f, φ, s) :=

∫

F×\A×

F

∫

(F\AF )2

∫

[GL2]

∑

γ∈P0(F )

f







a b

1 c
1




−1

γ

(
y

1

)



× χ(a)ψ(c)|a|s1−
1
2φ(y)| det y|s2dydbdcd×a.
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Proposition 4.1. Let notation be as before. Then JSmall(f, φ, s) converges abso-

lutely in Re(s1) ≫ 1 and Re(s2) ≫ 1. Moreover, it admits a holomorphic continu-

ation to C2, and

(4.1) JSmall(f, φ,0) ≫ NF (N)3,

where the implied constant depends only on χ, φ, and hv’s at v | ∞.

Proof. By the change of variables b 7→ −ab, c 7→ −c, and y 7→ ay, we have

JSmall(f, φ, s) =

∫

A2
F

∫

GL2(AF )

f








1 b

1 c
1




(
y

1

)

ψ(c)P(y;φ, s)| det y|s2dydbdc,

where

P(y;φ, s) :=

∫

F×\A×

F

φ

((
a

1

)
y

)
χ(a)|a|s1+s2+1/2d×a.

Since φ is a cusp form, P(y;φ, s) converges absolutely for each y, defining a
continuous function of y. Also, the construction of f ensures that

f





1 b

1 c
1




(
y

1

)
 ≡ 0

unless y lies in a compact set of GL2(AF ), and (b, c) lie in a certain compact set of
A2

F . Hence, the integral JSmall(f, φ, s) converges absolutely for all s ∈ C2.
Utilizing the Fourier expansion of φ we obtain

P(y;φ, s) =

∫

A×

F

W

((
a

1

)
y

)
χ(a)|a|s1+s2+1/2d×a,

where W is the Whittaker function of φ relative to the additive character ψ. There-
fore, we obtain the local factorization:

JSmall(f, φ, s) =
∏

v≤∞

JSmall,v(f, φ, s), Re(s1) ≫ 1, Re(s2) ≫ 1,

where

JSmall,v(f, φ, s) :=

∫

GL2(Fv)

∫

F 2
v

fv





1 bv

1 cv
1




(
yv

1

)
ψv(cv)dbvdcv

∫

F×

Wv

((
av

1

)
yv

)
χv(av)|av|

s1+s2+1/2
v d×av| det yv|

s2
v dyv.

• Let v = v0. By Lemma 3.1, we have

ψv(cv)Vol(K
′◦
v [1])1bv ,cv∈p

−1
v
1K′◦

v [1](yv)

JSmall,v(f, φ, s) =Vol(K ′◦
v [1])−1

∫

K′◦

v [1]

∫

p
−1
v

∫

p
−1
v

dbvdcv

∫

F×

Wv

((
av

1

)
yv

)
χv(av)|av|

s1+s2+1/2
v d×avdyv,

which simplifies to

(4.2) JSmall,v(f, φ, s) = q2vLv(1 + s1 + s2, σv × χv).



10 PHILIPPE MICHEL, DINAKAR RAMAKRISHNAN AND LIYANG YANG

• Let v ∈ Σχfin

⋃
Σσfin

. Then

JSmall,v(f, φ, s) =
1

τ(χv)

∑

αv∈(Ov/p
rχv
v )×

χv(α)
∑

βv∈Ov/p
rσv
v

∫

GL2(Fv)

∫

F 2
v

∫

F×

v

ψv(cv)

1Kv



zvU1(−αv̟
−rχv
v )




1 bv

1 cv
1




(
yv

1

)
U2(βv̟

−rσv
v )



 d×zv

dbvdcv

∫

F×

Wv

((
av

1

)
yv

)
χv(av)|av|

s1+s2+1/2
v d×av| det yv|

s2
v dyv,

where U1(−αv̟
−rχv
v ) and U2(βv̟

−rσv
v ) are defined by (3.6).

By the change of variable yv 7→ U1(αv̟
−rχv
v )yv, along with

Wv

((
av

1

)
U1(αv̟

−rχv
v )yv

)
= ψv(avαv̟

−rχv
v )Wv

((
av

1

)
yv

)
,

we thus simplify JSmall,v(f, φ, s) to

∑

βv∈Ov/p
rσv
v

∫

GL2(Fv)

∫

F 2
v

1Kv





1 bv

1 cv
1




(
yv

1

)
U2(βv̟

−rσv
v )


ψv(cv)dbvdcv

∫

F×

Wv

((
av

1

)
yv

)
χv(̟

ev(av)
v )|av|

s1+s2+1/2
v d×av| det yv|

s2
v dyv.

Write y =

(
y11 y12
y21 y22

)
. By the change of variable

(
bv
cv

)
7→

(
bv
cv

)
−

yv

(
βv̟

−rσv
v )
0

)
, we obtain

JSmall,v(f, φ, s) =
∑

βv∈Ov/p
rσv
v

∫

Kv

∫

O2
v

ψv(cv − y21βv̟
−rσv
v )dbvdcv

∫

F×

Wv

((
av

1

)
yv

)
χv(̟

ev(av)
v )|av|

s1+s2+1/2
v d×avdyv,

which, due to a straightforward calculation, boils down to

(4.3) JSmall,v(f, φ, s) = q
rσv
v Vol(Kv[rσv

])Lv(1 + s1 + s2, σv × χv).

• Let v <∞ and v /∈ Σχfin

⋃
Σσfin

⋃
{v0}. Then

JSmall,v(f, φ, s) =Vol(Iv [ev(N)])−1

∫

GL2(Fv)

∫

O2
v

1Iv[ev(N)]

((
yv

1

))
ψv(cv)dbvdcv

∫

F×

Wv

((
av

1

)
yv

)
χv(av)|av|

s1+s2+1/2
v d×av| det yv|

s2
v dyv.

As a consequence, we obtain

(4.4) JSmall,v(f, φ, s) = cFv
Vol(Iv[ev(N)])−1Lv(1 + s1 + s2, σv × χv),

where cFv
is a positive constant depending only on the discriminant of F .

In particular, cFv
= 1 if v is not a ramified place.

• Let v | ∞. By definition of fv (cf. (3.7)), we have

∫

F 2
v

fv








1 bv

1 cv
1




(
yv

1

)

ψv(cv)dbvdcv ≡ 0
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unless ‖yv − I2‖v ≪ ε, and

(4.5)

∣∣∣∣
∫

GL2(Fv)

∫

F 2
v

fv








1 bv

1 cv
1




(
yv

1

)

ψv(cv)dbvdcv| det yv|
s2
v dyv

∣∣∣∣ ≫ 1.

Let|Re(s1)|, |Re(s2)| ≤ 1. By the mean value theorem,

∣∣∣∣JSmall,v(f, φ, s)−

∫

GL2(Fv)

∫

F 2
v

fv





1 bv

1 cv
1




(
yv

1

)
ψv(cv)dbvdcv

∫

F×

Wv

(
av

1

)
χv(av)|av|

s1+s2+1/2
v d×av| det yv|

s2
v dyv

∣∣∣∣ ≪ ε,

where the implied constant depends on ε, fv and σ. In conjunction with
(4.5), we deduce, by taking ε to be sufficiently small, that

(4.6) JSmall,v(f, φ, s) ≫
∣∣∣
∫

F×

Wv

(
av

1

)
χv(av)|av|

s1+s2+1/2
v d×av

∣∣∣ ≫ 1.

Here the last inequality is a consequence of the definition of Wv in §3.

Therefore, (4.2) follows from (4.2), (4.3), (4.4) and (4.6). �

5. Regular Orbital Integrals of Type I

Let JI
Reg(f, φ, s) be the orbital integral defined as in §3. In this section, we aim to

show that JI
Reg(f, φ, s) converges absolutely in Re(s1) ≫ 1 and Re(s2) ≫ 1, and

moreover, that it vanishes in this region.

Local Analysis. Let f be the test function constructed in §3. Let C = ⊗v≤∞Cv,
where Cv is a compact subset of G(Fv) with Z(Fv)Cv = supp fv. In particular,
Cv = Kv if v <∞ and v 6∈ Σχfin

⋃
Σσfin

or v ∤ v0N. Hence,

(5.1) f





y1 y1u+ y2b b

y2c β−1 + c
y2 1




(
k

1

)
 ≡ 0

unless there exists some zv ∈ F×
v such that

(5.2) zv



y1,v y1,vuv + y2,vbv bv

y2,vcv β−1 + cv
y2,v 1


 ∈ Cv

(
K ′

v

1

)
,

where K ′
v is a maximal compact subgroup of GL2(Fv).

Archimedean plaves. Let v | ∞. By (5.2), we obtain




|zvy1,v|v ≍ 1, |z2vy2,vβ
−1|v ≍ 1

|zv(y1,vuv + y2,vbv)|v ≪ 1, |zvbv|v ≪ 1

|zvy2,v|v ≪ 1, |zvy2,vcv|v ≪ 1, |zv|v ≪ 1, |zv(β
−1 + cv)|v ≪ 1,

where the implied constant depends only on hv ∈ C∞
c (GL3(Fv)) (cf. (3.7)). So

(5.3)





|zv|v ≪ 1, |z2vy2,v|v ≍ |β|v, |zvy2,v|v ≪ 1 ⇒ |β|v ≪ |zv|v ≪ 1

|zv(y1,vuv + y2,vbv)|v ≪ 1, |zvbv|v ≪ 1

|zvy1,v|v ≍ 1, |zvy2,vcv|v ≪ 1, |zv(β
−1 + cv)|v ≪ 1.
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Non-Archimedean places: ramification. Let v ∈ Σχfin

⋃
Σσfin

or v | v0. Write l =
ev(zv). It follows from (5.2) that

(5.4)





|2l + ev(y2,v)− ev(β)| ≪ 1

|l + ev(y1,v)| ≪ 1

l + ev(y2,v) ≫ −1

l + ev(y2,v) + ev(cv) ≫ −1

l ≫ −1

l + ev(β
−1 + cv) ≫ −1

l + ev(y1,vuv + y2,vbv) ≫ −1

l + ev(bv) ≫ −1,

where the implied constants depend on χ, πv0 , σ, and F . It follows from (5.4) that

(5.5)





ev(β) ≫ −1, −1 ≪ l ≪ 1 + |ev(β)|

|2l+ ev(y2,v)− ev(β)| ≪ 1

|l + ev(y1,v)| ≪ 1

l + ev(y2,v) + ev(cv) ≫ −1

l + ev(β
−1 + cv) ≫ −1

l + ev(y1,vuv + y2,vbv) ≫ −1

l + ev(bv) ≫ −1.

In particular, for each β, the constraints (5.5) forces the variables y1,v, y2,v, uv,
cv and bv lie in compact sets depending only on χ, πv0 , σ, F , and β.

Non-Archimedean places: unramified places. Let v <∞ with v 6∈ Σχfin

⋃
Σσfin

and
v ∤ v0. Write l = ev(zv). In this case we have Cv = Kv[ev(N)]. So (5.2) boils down
to

(5.6)






ev(β) = 2l + ev(y2,v)

l+ ev(y2,v) ≥ ev(N)

l+ ev(y1,v) = 0

l+ ev(y2,v) + ev(cv) ≥ 0

l ≥ 0

l+ ev(β
−1 + cv) ≥ 0

l+ ev(y1,vuv + y2,vbv) ≥ 0

l+ ev(bv) ≥ 0.

In particular, we have ev(β) ≥ ev(N). Moreover, when ev(N) ≥ 1, we have

(5.7)

{
ev(β) = ev(y2,v) ≥ ev(N), ev(y1,v) = 0

ev(β
−1 + cv) ≥ 0, ev(y1,vuv + y2,vbv) ≥ 0, ev(bv) ≥ 0.

Now we assume ev(N) = 0, so that Cv = Kv. Consider the following scenarios.

• Suppose ev(β) = 0. Then

(5.8)

{
ev(β) = ev(y2,v) = ev(y1,v) = 0

ev(cv) ≥ 0, ev(uv) ≥ 0, ev(bv) ≥ 0.

• Suppose ev(β) ≥ 1. We have the following scenarios.
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– Suppose l = 0. Then

(5.9)





ev(β) = ev(y2,v) ≥ 1

ev(y1,v) = 0

cv = −β−1 +Ov

ev(uv) ≥ 0

ev(bv) ≥ 0.

– Suppose l ≥ 1. Then

(5.10)






ev(β) = 2l+ ev(y2,v) ≥ l

l + ev(y2,v) = 0

l + ev(y1,v) = 0

l + ev(y2,v) + ev(cv) ≥ 0

l ≥ 1

l + ev(β
−1 + cv) = 0

l + ev(y1,vuv + y2,vbv) ≥ 0

l + ev(bv) ≥ 0

⇒






ev(β) = l ≥ 1

ev(y2,v) = ev(y1,v) = −l

ev(cv) ≥ 0

l + ev(y1,vuv + y2,vbv) ≥ 0

ev(bv) ≥ −l.

Back to Archimedean places. Suppose that (5.1) holds. By (5.5) and (5.6) there
exists a fractional ideal I, depending only on F , πv0 , χ and σ, such that β ∈
NI− {0}. So N(β) ≫ 1. Combining this with |β|v ≪ |zv|v ≪ 1 for each v | ∞, we
derive that |zv|v ≍ 1, v | ∞. Hence, (5.3) reduces to

(5.11)





|zv|v ≍ 1, |y2,v|v ≪ 1 ⇒ |β|v ≪ 1

|y1,vuv + y2,vbv|v ≪ 1, |bv|v ≪ 1

|y1,v|v ≍ 1, |β−1 + cv|v ≪ 1.

In particular, under the constraint (5.1), we have β ∈ NI − {0} with |β|v ≪ 1
at all v | ∞. In particular, there are only O(1) such β’s.

Convergence and Vanishing.

Lemma 5.1. Let notation be as before. Let φ be a cusp form in σ. Let Re(s1) ≥ 10
and Re(s2) ≥ 20. Then

JI :=

∫

F×\A×

F

∫

(F\AF )2

∫

GL2(AF )

∑

α,β,γ∈F

∣∣∣f (X) |a|s1−
1
2φ(y)| det y|s2

∣∣∣dydbdcd×a <∞,

where X refers to the matrix

(5.12)



a−1

1
1






1 −b

1 −c
1






1

1 γ
1


w2



1 α

1 β
1




(
y

1

)
.

Proof. Due to the construction of fv at v | N, we may assume β ∈ F× in the above
inner sum. Taking advantage of



1 α

1 β
1






1 −δ

1
1


 =



1 −δ

1
1






1 α+ δβ

1 β
1


 ,

we can preform a series of change of variables y 7→

(
1 −αβ−1

1

)
y, b 7→ b+ αβ−1,

c 7→ c + γ, and y 7→

(
a

1

)
y, in conjunction with the Iwasawa coordinate y =
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(
y1 y1u

y2

)
k, to obtain

JI =

∫

F×\A×

F

∫

(AF )2

∫

GL2(AF )

∑

β∈F×

∣∣∣∣f








1 b

1 c
1



w2




y1 y1u

y2 β
1




(
k

1

)



|a|s1+
1
2φ

((
a

1

)
y

)
| det y|s2

∣∣∣∣dydbdcd
×a.

A straightforward calculation leads to


1 b

1 c
1


w2



y1 y1u

y2 β
1


 =



y1 y1u+ y2b βb

y2c 1 + βc
y2 β


 .

Consequently, we obtain, by the change of variable y1 7→ βy1 and y2 7→ βy2, that

JI =
∑

β∈F×

∫

F×\A×

F

∫

(A×

F
)2

∫

(AF )3

∫

K′

∣∣∣∣f





y1 y1u+ y2b b

y2c β−1 + c
y2 1




(
k

1

)


|a|s1+
1
2φ

((
ay1

y2

)(
1 u

1

)
k

)
|y1y2|

s2

∣∣∣∣dkdudbdcd
×y1d

×y2d
×a.

Utilizing (5.5), (5.7), (5.8), (5.9), (5.10), and (5.11) in §5, which characterize the
support of the variables y1, y2, u, b, c and a, in conjunction with the decaying of
cusp forms

φ

((
ay1

y2

)(
1 u

1

)
k

)
≪ min{1, |ay1|

−15|y2|
15},

where the implied constant depends on φ and F , we obtain JI <∞. �

Remark 5.2. In the above proof the cuspidality of φ is essentially used. In fact, JI
may not converge if φ is an Eisenstein series.

Corollary 5.3. Let notation be as before. Let NF (N) be sufficiently large. Let φ
be a cusp form in σ. Let Re(s1) ≥ 10 and Re(s2) ≥ 20. Then JI

Reg(f, φ, s) ≡ 0.

Proof. By definition,

JI
Reg(f, φ, s) =

∫

F×\A×

F

∫

(F\AF )2

∫

GL2(AF )

∑

α,β,γ∈F

f (X)

χ(a)ψ(c)|a|s1−
1
2φ(y)| det y|s2dydbdcd×a,

where X is defined by (5.12). By Lemma 5.1, JI
Reg(f, φ, s) is equal to

∑

β∈F×

∫

F×\A×

F

∫

(A×

F
)2

∫

(AF )3

∫

K′

f





y1 y1u+ y2b b

y2c β−1 + c
y2 1




(
k

1

)


χ(a)ψ(c)|a|s1+
1
2φ

((
ay1

y2

)(
1 u

1

)
k

)
|y1y2|

s2dkdudbdcd×y1d
×y2d

×a,

which converges absolutely by the control theorem.
By the analysis in §5, there exists a fractional ideal I, depending only on F ,

πv0 , χ and σ, such that β ∈ NI − {0}. Also, by (5.11) we have |β|v ≪ 1 for
all v | ∞, which contradicts β ∈ NI − {0} if NF (N) is sufficiently large. Hence,
JI
Reg(f, φ, s) = 0 in Re(s1) ≥ 10 and Re(s2) ≥ 20. �
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6. Regular Orbital Integrals of Type II

Let JII
Reg(f, φ, s) be the orbital integral defined in §3. In this section, we aim to

show that JII
Reg(f, φ, s) converges absolutely in Re(s1) ≫ 1 and Re(s2) ≫ 1, and

moreover, that it vanishes in this region.

Local Analysis. Let f be the test function constructed in §3. Let C = ⊗v≤∞Cv,
be as in §5. We have

f





a−1y1 a−1(y1u+ y2b) a−1(β−1 + b)
y1 y1u+ y2c c

y2 1




(
k

1

)
 ≡ 0

unless

(6.1) zv



a−1
v y1,v a−1

v (y1,vuv + y2,vbv) a−1
v (β−1 + bv)

y1,v y1,vuv + y2,vcv cv
y2,v 1


 ∈ Cv

(
K ′

v

1

)
.

Archimedean places. It follows from (6.1) that






|z3va
−1
v β−1y1,vy2,v|v ≍ 1

|zva
−1
v y1,v|v ≪ 1, |zvy1,v|v ≪ 1

|zva
−1
v (y1,vuv + y2,vbv)|v ≪ 1, |zva

−1
v (β−1 + bv)|v ≪ 1

|zvy2,v|v ≪ 1, |zvcv|v ≪ 1, |zv|v ≪ 1, |zv(y1,vuv + y2,vcv)|v ≪ 1,

where the implied constant depends only on hv ∈ C∞
c (GL3(Fv)) (cf. (3.7)). So

(6.2)





|z3va
−1
v β−1y1,vy2,v|v ≍ 1, |β|v ≪ |zv|v ≪ 1

|zva
−1
v y1,v|v ≪ 1, |zvy1,v|v ≪ 1

|zva
−1
v (y1,vuv + y2,vbv)|v ≪ 1, |zva

−1
v (β−1 + bv)|v ≪ 1

|zvy2,v|v ≪ 1, |zvcv|v ≪ 1, |zv(y1,vuv + y2,vcv)|v ≪ 1.

Non-Archimedean places: ramification. Let v ∈ Σχfin

⋃
Σσfin

or v | v0. Write l =
ev(zv). The constraint (6.1) amounts to

̟l
v



a−1
v y1,v a−1

v (y1,vuv + y2,vbv) a−1
v (β−1 + bv)

y1,v y1,vuv + y2,vcv cv
y2,v 1


 ∈ Cv,

which leads to

(6.3)





|3l − ev(β)− ev(av) + ev(y1,v) + ev(y2,v)| ≪ 1

l + ev(y2,v) ≫ −1, l ≫ −1, l + ev(cv) ≫ −1

l − ev(av) + ev(y1,v) ≫ −1, l+ ev(y1,v) ≫ −1

l − ev(av) + ev(y1,vuv + y2,vbv) ≫ −1

l + ev(y1,vuv + y2,vcv) ≫ −1

l − ev(av) + ev(β
−1 + bv) ≫ −1,
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where the implied constants depend on χ, πv0 , σ, and F . It follows from (6.3) that

(6.4)






ev(β) ≫ −1, −1 ≪ l ≪ 1 + |ev(β)|

|3l− ev(β) − ev(av) + ev(y1,v) + ev(y2,v)| ≪ 1

ev(av) ≫ l − ev(β), l + ev(cv) ≫ −1

−1 ≪ l + ev(y2,v) ≪ 1 + |ev(β)|

−1 ≪ l − ev(av) + ev(y1,v) ≪ 1 + |ev(β)|

−1 ≪ l + ev(y1,v) ≪ 1 + |ev(β)|

l − ev(av) + ev(y1,vuv + y2,vbv) ≫ −1

l + ev(y1,vuv + y2,vcv) ≫ −1

l − ev(av) + ev(β
−1 + bv) ≫ −1.

In particular, for each β, the constraints (6.4) forces the variables y2,v, uv, cv
and bv lie in compact sets depending only on χ, πv0 , σ, F , and β. Moreover, y1,v
and av satisfy the restrictions

(6.5) ev(av) ≫ −1− |ev(β)|, ev(y1,v) ≫ −1− |ev(β)|.

Non-Archimedean places: unramified places. Let v <∞ with v 6∈ Σχfin

⋃
Σσfin

and
v ∤ v0. Write l = ev(zv). We have Cv = Kv[ev(N)], and (6.1) reduces to

(6.6)






ev(β) = 3l − ev(av) + ev(y1,v) + ev(y2,v)

l+ ev(y2,v) ≥ ev(N)

l ≥ 0

l+ ev(cv) ≥ 0

l− ev(av) + ev(y1,v) ≥ 0

l+ ev(y1,v) ≥ 0

l− ev(av) + ev(y1,vuv + y2,vbv) ≥ 0

l+ ev(y1,vuv + y2,vcv) ≥ 0

l− ev(av) + ev(β
−1 + bv) ≥ 0.

When ev(N) ≥ 1, (6.6) simplifies to

(6.7)





ev(β) = ev(y2,v) ≥ ev(N) ≥ 1

ev(cv) ≥ 0, ev(av) = ev(y1,v) ≥ ev(N)

−ev(av) + ev(y1,vuv + y2,vbv) ≥ 0

ev(β
−1 + bv) ≥ ev(N).

Now we assume ev(N) = 0, so that Cv = Kv. Consider the following scenarios.

• Suppose ev(β) = 0. Then

(6.8)

{
ev(av) = ev(y1,v) ≥ 0 ev(y2,v) = 0, ev(cv) ≥ 0

ev(y1,vuv + y2,vbv) ≥ ev(av), ev(β
−1 + bv) ≥ ev(av).

• Suppose ev(β) ≥ 1. Then

(6.9)






ev(β) = 3l− ev(av) + ev(y1,v) + ev(y2,v) ≥ 1

l + ev(y2,v) ≥ 0, l ≥ 0

l − ev(av) + ev(y1,v) ≥ 0 ev(cv) ≥ −l

l + ev(y1,v) ≥ 0, l − ev(av) + ev(y1,vuv + y2,vbv) ≥ 0

l + ev(y1,vuv + y2,vcv) ≥ 0, l − ev(av) + ev(β
−1 + bv) ≥ 0.

Consider the following scenarios according to the sign of ev(av).
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– Suppose ev(av) ≥ 0. Then (6.9) reduces to






2l + ev(y2,v) = ev(β) ≥ 1

ev(av) ≥ 0, l ≥ 0, l+ ev(y2,v) ≥ 0

l + ev(cv − bv − β−1) ≥ 0

l − ev(av) + ev(y1,v) = 0

l − ev(av) + ev(y1,vuv + y2,vbv) ≥ 0

l + ev(y2,v) + ev(cv − bv) ≥ 0

l − ev(av) + ev(β
−1 + bv) ≥ 0.

∗ Suppose l = 0. Then

(6.10)





ev(y2,v) = ev(β) ≥ 1

ev(y1,v) = ev(av) ≥ 0

ev(cv) ≥ 0

ev(y1,vuv + y2,vbv) ≥ ev(av)

ev(y2,v) + ev(cv − bv) ≥ 0

ev(β
−1 + bv) ≥ ev(av)

⇒





ev(y2,v) = ev(β) ≥ 1

ev(y1,v) = ev(av) ≥ 0

ev(cv) ≥ 0

ev(y1,vuv + y2,vbv) ≥ ev(av)

ev(β
−1 + bv) ≥ ev(av).

∗ Suppose l ≥ 1. Then

(6.11)






ev(β) = l ≥ 1, ev(y2,v) = −ev(β)

ev(av) ≥ 0, ev(y1,v) = ev(av)− ev(β)

ev(y1,vuv + y2,vbv) ≥ ev(av)− ev(β)

ev(cv − bv) ≥ 0, ev(β
−1 + bv) ≥ ev(av)− ev(β).

– Suppose ev(av) ≤ −1. Then (6.9) reduces to

(6.12)






2l− ev(av) + ev(y2,v) = ev(β)

l + ev(y2,v) ≥ 0, l ≥ 0

l + ev(cv) ≥ 0, l + ev(y1,v) = 0

l − ev(av) + ev(y2,v) + ev(bv − cv) ≥ 0

l + ev(y1,vuv + y2,vcv) ≥ 0

l − ev(av) + ev(β
−1 + bv − cv) ≥ 0.

∗ Suppose l = 0. Then (6.12) becomes

(6.13)





ev(β) = −ev(av) + ev(y2,v) ≥ 1, ev(y2,v) ≥ 0 ⇒ ev(av) ≥ −ev(β)

ev(cv) ≥ 0, ev(y1,v) = 0

ev(bv) ≥ −ev(β), ev(uv) ≥ 0

−ev(av) + ev(β
−1 + bv) ≥ 0

.

∗ Suppose l ≥ 1. Then (6.12) becomes

(6.14)





ev(β) ≥ 1, ev(y1,v) = ev(y2,v) = −ev(av)− ev(β)

ev(av) ≥ 1− ev(β), ev(cv) ≥ −ev(av)− ev(β)

−ev(av) + ev(bv − cv) ≥ 0, ev(y1,vuv + y2,vcv) ≥ −ev(av)− ev(β).

Back to Archimedean places. Suppose that (6.1) holds. By (6.7), (6.8) and (6.9)
there exists a fractional ideal J, depending only on F , πv0 , χ and σ, such that
β ∈ NJ−{0}. So N(β) ≫ 1. Combining this with |β|v ≪ |zv|v ≪ 1 for each v | ∞,
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we derive that |zv|v ≍ 1, v | ∞. Hence, (6.2) reduces to

(6.15)






|a−1
v β−1y1,vy2,v|v ≍ 1, |y1,v|v ≪ 1, |y2,v|v ≪ 1 ⇒ |av|v ≪ |β|v

|β|v ≪ 1, |a−1
v y1,v|v ≪ 1

|a−1
v (y1,vuv + y2,vbv)|v ≪ 1, |a−1

v (β−1 + bv)|v ≪ 1

|cv|v ≪ 1, |y1,vuv + y2,vcv|v ≪ 1.

In particular, under the constraint (6.1), we have β ∈ NJ − {0} with |β|v ≪ 1
at all v | ∞. In particular, there are only O(1) such β’s.

Convergence and Vanishing.

Lemma 6.1. Let notation be as before. Let φ be a cusp form in σ. Let Re(s1) ≥ 10
and Re(s2) ≥ Re(s1) + 10. Then

JII :=

∫

F×\A×

F

∫

(F\AF )2

∫

GL2(AF )

∑

α,β,γ,δ∈F

∣∣∣f (Y ) |a|s1−
1
2φ(y)| det y|s2

∣∣∣dydbdcd×a

converges absolutely, where Y refers to the matrix

(6.16)



a−1

1
1






1 b

1 c
1






1 γ δ

1
1


w1w2



1 α

1 β
1




(
y

1

)
.

Proof. By the definition of f in §3, we have f(Y ) ≡ 0 unless β, γ ∈ F×. For β 6= 0,
we have

w1w2



1 α

1 β
1






1 αβ−1

1
1


 =



1

1 αβ−1

1


w1w2



1

1 β
1


 .

Therefore, by a change of variable, we obtain

JII =

∫

F×\A×

F

∫

(AF )2

∫

GL2(AF )

∑

β,γ∈F×

∣∣∣f (Y ′) |a|s1−
1
2φ(y)| det y|s2

∣∣∣dydbdcd×a,

where

Y ′ :=




a−1

1
1








1 γ b

1 c
1



w1w2




1

1 β
1




(
y

1

)
.

Utilizing the algebraic relation

(
1 γ

1

)
=

(
γ

1

)(
1 1

1

)(
γ−1

1

)
we may

perform the change of variable a 7→ γa to write JII as

JII =

∫

F×\A×

F

∫

(AF )2

∫

GL2(AF )

∑

β∈F×

∣∣∣f (Y ′′) |a|s1−
1
2φ(y)| det y|s2

∣∣∣dydbdcd×a,

where

Y ′′ :=




a−1

1
1








1 1 b

1 c
1



w1w2




1

1 β
1




(
y

1

)
.

Write y =

(
y1

y2

)(
1 u

1

)
k in the Iwasawa coordinates. Performing the

change of variables y1 7→ βy1 and y2 7→ βy2, we derive that

JII =
∑

β∈F×

JII(β),
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where JII(β) is defined by

∫

(A×

F
)3

∫

(AF )3

∫

K

∣∣∣∣∣f





a−1y1 a−1(y1u+ y2b) a−1(β−1 + b)
y1 y1u+ y2c c

y2 1




(
k

1

)


∣∣∣∣∣

× |a|Re(s1)−
1
2 |φ(y)|| det y|Re(s2)dydbdcd×a.

Recall the discussion in §6, JII(β) ≡ 0 unless β ∈ NJ− {0} and |β|v ≪ 1 at all
v | ∞. By Dirichlet’s unit theorem, the number of such β’s is finite:

(6.17)
∑

β∈NJ−{0}
|β|v≪1 v|∞

1 ≪ 1.

Let ‖φ‖∞ be the sup-norm of φ. Since φ is a cusp form, ‖φ‖∞ <∞. Therefore,

JII(β) ≤ ‖φ‖∞
∏

v≤∞

JII,v(β),

where JII,v(β) is defined by

∫

(F×

v )3

∫

(F )3

∫

Kv

∣∣∣∣∣fv








a−1
v y1,v a−1

v (y1,vuv + y2,vbv) a−1
v (β−1 + bv)

y1,v y1,vuv + y2,vcv cv
y2,v 1




(
kv

1

)


∣∣∣∣∣

× |av|
Re(s1)−

1
2

v | det yv|
Re(s2)
v dyvdbvdcvd

×av.

Let β ∈ NJ − {0} with |β|v ≪ 1 at all v | ∞. Then there exists a finite set S
of non-Archimedean places such that ev(β) = 0 for v < ∞ and v 6∈ S. The set S
depends at most on F , hv’s, πv0 , χ and φ.

• Let v <∞ with v 6∈ Σχfin

⋃
Σσfin

⋃
S and v ∤ v0. From the discussion in §6

and the assumption that v 6∈ S, we have ev(β) = 0, and the variables y1,v,
y2,v, uv, bv, and cv satisfy the constraints:

{
ev(av) = ev(y1,v) ≥ 0 ev(y2,v) = 0, ev(cv) ≥ 0

ev(y1,vuv + y2,vbv) ≥ ev(av), ev(β
−1 + bv) ≥ ev(av).

(6.8)

As a consequence, we obtain

JII,v(β) =

∫

Ov

dcv

∫

Ov−{0}

|av|
Re(s1)+Re(s2)−

1
2

v

∫

O×

v

∫

avO
×

v

∫

ev(β−1+bv)≥ev(av)∫

ev(y1,vuv+y2,vbv)≥ev(av)

duvdbvd
×y1,vd

×y2,vd
×av.

With a straightforward we deduce

(6.18) JII,v(β) = Vol(O×
v )

3 Vol(Ov)
3ζv(1/2 + Re(s1) + Re(s2)).

• Let v ∈ Σχfin

⋃
Σσfin

⋃
S or v | v0N. According to (6.4), (6.5), (6.7),

(6.8), (6.9), (6.10), (6.11), (6.13), and (6.14), along with the assumptions
Re(s1) ≥ 10 and Re(s2) ≥ Re(s1) + 10, we derive that

(6.19) JII,v(β) ≪ 1,

where the implied constant depends on s1, s2, F , πv0 , χ and φ.
• Let v | ∞. By (6.15), and the assumptions Re(s1),Re(s2) ≥ 10, we obtain

(6.20) JII,v(β) ≪ 1,

where the implied constant depends on s1, s2, F , hv’s, πv0 , χ and φ.

Therefore, Lemma 6.1 follows from (6.17), (6.18), (6.19), and (6.20). �
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Remark 6.2. In the above proof, we have leveraged the fact that the cusp form φ
is bounded.

Corollary 6.3. Let notation be as before. Let φ be a cusp form in σ. Let Re(s1) ≥
10 and Re(s2) ≥ Re(s1) + 10. Then JII

Reg(f, φ, s) ≡ 0.

Proof. By definition,

JII
Reg(f, φ, s) =

∫

F×\A×

F

∫

F\AF

∫

AF

∫

GL2(AF )

∑

α,β,γ∈F

f (Y )

χ(a)ψ(c)|a|s1−
1
2φ(y)| det y|s2dydbdcd×a,

where Y refers to the matrix defined as in (6.16). Therefore, it follows from Lemma
6.1 and the triangle inequality that JII

Reg(f, φ, s) converges absolutely in the region

Re(s1) ≥ 10 and Re(s2) ≥ Re(s1) + 10. Furthermore,

JII
Reg(f, φ, s) =

∑

β∈NJ−{0}
|β|v≪1 v|∞

∫

(A×

F
)3

∫

(AF )3

∫

K

f (Y ∗)

χ(a)ψ(c)|a|s1−
1
2φ(y)| det y|s2dydbdcd×a,

where Y ∗ is defined by



a−1y1 a−1(y1u+ y2b) a−1(β−1 + b)
y1 y1u+ y2c c

y2 1




(
k

1

)
.

However, when NF (N) is large enough, there is no β satisfying β ∈ NJ − {0}
and |β|v ≪ 1 v | ∞. Hence, JII

Reg(f, φ, s) ≡ 0. �

7. Conclusion of the Proof

Let Re(s1) ≥ 10 and Re(s2) ≥ Re(s1) + 10. Let I(N) be defined as in (3.1). By
the relative trace formula from (3.10) and (3.12), together with Corollaries 5.3 and
6.3, we obtain

∑

π

∑

ϕ∈B
I(N)
π

P1(1/2 + s1, π(f)ϕ, χ)P2(1/2 + s2, ϕ, φ) = JSmall(f, φ, s),

as an identity of holomorphic functions in the region Re(s1) ≥ 10 and Re(s2) ≥
Re(s1) + 10.

By Proposition 4.1 the function JSmall(f, φ, s) admits an analytic continuation
to C2. Hence, by the uniqueness of the continuation, we obtain

(7.1)
∑

π

∑

ϕ∈B
I(N)
π

P1(1/2 + s1, π(f)ϕ, χ)P2(1/2 + s2, ϕ, φ) = JSmall(f, φ, s)

as an identity of entire functions on C2. Evaluating (7.1) at s = (0, 0), along with
the estimate (4.1) in Proposition 4.1, we deduce

(7.2)
∑

π

∑

ϕ∈B
I(N)
π

P1(1/2, π(f)ϕ, χ)P2(1/2, ϕ, φ) ≫ NF (N)3,

when NF (N) is sufficiently large. It follows from (7.2) that similarly to the calcu-
lation in [MRY23, §13], we have

(7.3)
∑

π

∑

ϕ∈B
Kfin
π

P1(1/2, π(f)ϕ, χ)P2(1/2, ϕ, φ) ≪ 1,
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where Kfin :=
∏

v<∞Kv. Therefore, it follows from (7.2) and (7.3) that
∑

π

∑

ϕ∈B
I(N)
π −B

Kfin
π

P1(1/2, π(f)ϕ, χ)P2(1/2, ϕ, φ) ≫ NF (N)3,

from which we derive that there is a unitary cuspidal automorphic representation
π of PGL3/F of level I(N) such that

L(1/2, π × χ)L(1/2, π̃ × σ) 6= 0.

Therefore, Theorem A follows upon replacing σ with its contragredient σ̃ and
the functional equation of L(s, π̃ × σ).
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