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Abstract

We study the distributional implications of uncertainty shocks by developing a

model that links macroeconomic aggregates to the US distribution of earnings and

consumption. We find that: initially, the fraction of low-earning workers decreases,

while the share of households reporting low consumption increases; at longer hori-

zons, the fraction of low-income workers increases, but the consumption distribution

reverts to its pre-shock shape. While the first phase reduces income inequality and

increases consumption inequality, in the second stage income inequality rises, while

the effects on consumption inequality dissipate. Finally, we introduce Functional

Local Projections and show that they yield similar results.
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1 Introduction

An extensive line of research stimulated by Bloom (2009) has studied the effects of un-

certainty shocks on economic fluctuations.2 It is generally agreed that an unexpected

increase in the level of uncertainty about the future state of the economy generates a sig-

nificant drop in output, employment and asset prices. Notwithstanding the importance

of uncertainty shocks as drivers of the business cycle, little attention has been devoted to

their distributional implications.

In this paper, we investigate the consequences of this type of shocks on the earnings

distribution among employed people and on the overall consumption distribution in the

US. Focusing on both consumption and earnings is indeed crucial for understanding the

propagation mechanisms of uncertainty, and whether or not inter-temporal transfers can

protect consumption from shocks that affect income (see e.g. Attanasio and Pistaferri

(2016) for a discussion). The main econometric specification we use is a Functional Struc-

tural Vector Autoregression (F-SVAR) model, which represents a generalization in the

functional space of the popular SVAR model commonly used in the empirical macroeco-

nomics literature. Despite having been abundantly developed in the statistical literature,

models for functional data are not yet popular among econometrics practitioners. Nev-

ertheless, many recent methodological and empirical contributions have shown the high

potential such models have for economic and financial analysis. Kowal et al. (2017) and

Chang et al. (2024) develop Bayesian methods for inference in functional linear models,

applying their techniques to analyze the dynamics of yield curves and income distribution

respectively. Chang et al. (2016) and Hu and Park (2016) provide methods to analyze

functional time series in a frequentist setting. Other applications of models for functional

data in econometrics include Diebold and Li (2006) Tsay (2016), Meeks and Monti (2022),

Inoue and Rossi (2021), Chang and Schorfheide (2024) and Bjørnland et al. (2023). Most

of these papers, with the exception of Chang and Schorfheide (2024), assume that the

function of interest is directly observed, while we recognize that only a sample from the

2See Castelnuovo (2019) and Fernández-Villaverde and Guerrón-Quintana (2020) for recent surveys
of the literature.
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distribution of interest is available but the full probability density remains unknown.

In the recent period, macroeconomics research has dedicated more and more atten-

tion to the interplay between macroeconomic phenomena and distributional developments.

The aggregate effects of distributional dynamics are studied, among others, by Heathcote

et al. (2010b), Athreya et al. (2017) and Rognlie et al. (2019); while the distributional

implications of aggregate shocks are the focus, for instance, of Anderson et al. (2016),

De Giorgi and Gambetti (2017), Mumtaz and Theophilopoulou (2017), Ahn et al. (2018),

Kaplan and Violante (2018), and Bayer et al. (2020). By means of a functional time series

model, we contribute to the latter strand of the macroeconomics literature by showing

that uncertainty shocks produce relevant and non trivial distributional effects.

From an econometric point of view, we adopt a three-step procedure along the lines

of Petersen and Muller (2016) and Petersen et al. (2022). In the first step, we interpolate

the cross-sectional data for each time period using kernel estimators (see, e.g., Silverman

(2018)) to obtain period-by-period continuous earnings and conusmption distributions,

in order to be able to monitor the entire densities rather than only the observed data.

In the second step, we transform the continuous earnings and consumption distributions

to remove the unit-integration and non-negativity constraints as in Petersen and Muller

(2016) and approximate the resulting curve with a set of basis functions (see e.g. Ramsay

and Silverman (2002)). Specifically, we use functional principal components (FPCs), along

the lines of Kneip and Utikal (2001) and Petersen and Muller (2016). In the final step,

we jointly model the FPCs and a set of macroeconomic and financial indicators with a

(Bayesian) VAR. By doing this, we are able to assess the effects of the uncertainty shocks

on the FPCs, and then to reconstruct the Impulse Response Functions (IRFs) of the entire

earnings and consumption distributions.

An alternative one-step approach would be to simply insert percentiles or moments

of the earnings and consumption disaggregated data directly into the third step BVAR.

Yet, in the case of percentiles, crossing could be an issue (see e.g. Chang et al. (2024))

and the BVAR dimension could easily become very large, if the goal is to get a granular

view of the effects of uncertainty shocks on the earnings or consumption distribution, as
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one would have to include a large number of percentiles into the model. A similar issue

occurs in the case of moments, with the addition that higher order moments would be

hardly interpretable, and their theoretical counterpart could also not exist in the pres-

ence of a heavy tailed distribution.3 Other empirical studies, including Mumtaz and

Theophilopoulou (2017), Theophilopoulou (2022), and Choi and Phi (2023), only con-

sider inequality measures, such as Gini coefficients or interquantile ranges, as endogenous

variables in a VAR model. Such approach, however, conveys an inevitably partial ac-

count of the distributional dynamics, possibly providing misleading insights as discussed

by Heathcote et al. (2010a) and Choi and Phi (2023).

Due to the three-step procedure, our methodology requires the use of ”generated”

regressors. Specifically, in the second step we rely on kernel-based estimated continuous

distributions. In order to address concerns related to the generated regressors problem,

one could either allow for the presence of measurement error, as e.g. in Chang et al.

(2024), or use a kernel estimator that ensures consistency also in the presence of trun-

cated distributions, see e.g. Petersen and Muller (2016). We follow the latter approach,

in combination with a quite large cross-sectional dimension (about 10.000 units). Sim-

ilarly, in the third step, we use the FPC in place of the estimated continuous earnings

and consumption distributions. It can be shown, however, that the approximation error

disappears as the cross-sectional dimension increases, when using a large enough number

of FPCs (see e.g. Kneip and Utikal (2001)). In related contemporaneous work, Huang

(2023) studies the asymptotic behaviour of a similar three-steps, but fully frequentist,

procedure, and shows consistency of the kernel estimators of the density and the func-

tional principal components, under proper assumptions. Huang (2023) also shows that the

method works well in a classical context in MC experiments, and discusses an interesting

application about the distributional effects of tax cuts in the UK.

To assess the empirical performance of our functional structural VAR in finite sam-

3One may be also tempted to perform standard Principal Component Analysis (PCA) directly on
disaggregated data and use them in a standard VAR as in Bernanke et al. (2005). However, disaggregated
data are usually collected in the form of repeated cross-section rather that in panel data form, making
the use of standard PCA invalid.
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ples, we conduct two sets of simulation experiments. In the first one, we generate data

from two different types of F-VARs, while, in the second one, we use data simulated

from the log-linearized solution of the version of the Krusell and Smith (1998) heteroge-

neous agents model considered in Chang et al. (2024). In all cases our approach returns

estimated responses remarkably close to the true ones.

In our empirical analysis, we find that the propagation mechanism of uncertainty

shocks on aggregated macroeconomic and financial data resulting from our functional

VAR is similar to that reported by Jurado et al. (2015). Instead, their distributional

effects are novel in the literature and can be broken down in two phases. First, in the

short-run phase, as employment and output drop, a larger share of low-income workers

are likely laid off, while those that keep their jobs see their wage increase relative to the

GDP per capita level. This is reflected in a significant reduction of the mass of employed

people with an income-to-GDP per capita ratio smaller than unit, which is presumably

due to a larger increase of unemployment among the less specialized workers. At the

same horizons, the response of the consumption distribution shows that the proportion of

households reporting a low level of consumption increases significantly after the shocks,

while the mass in the middle part of the distribution decreases. The response is therefore

compatible with a short-run propagation mechanism in which some of the workers with

a low degree of specialization, and belonging to the middle part of the consumption

distribution, become unemployed and have to cut down their consumption level due to

their inability to access consumption smoothing channels. On the other hand, in a longer

horizon phase, while the effects on unemployment and output dissipate, the mass of

workers with a low relative income increases again, supposedly due to the increase of the

employment rate among the unskilled workers, and the stronger decrease of their labor

productivity generated by the investment foregone in the first phase. At the same time, the

consumption distribution reverts to its pre-shock shape. While the first phase reduces the

overall earnings disparity among employed people but increases the degree of inequality

in the distribution of consumption people, in the second stage the Gini coefficient of the

income distribution rises considerably and that of the consumption distributions returns
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to its pre-shock level.

Interestingly, this resembles the two-wave economic contraction in response to un-

certainty shocks pointed out by Carriero et al. (2023). Just as at the aggregate level

the investments foregone following an uncertainty shock generate lower economic growth

in the long run, at a more granular level those missed investments may also reduce the

productivity of lower-income employees and their compensation as a result.

Finally, we introduce Functional Local Projections (F-LPs), showing that they rep-

resent a viable alternative to the estimation of F-SVARs. To the best of our knowledge,

we are the first to suggest the use of F-LPs in the literature. The F-LPs are obtained

by regressing the FPCs on uncertainty and a set of controls. Our FPCs summarize the

dynamics of the cross-section. Treating them independent of each other thus might have

adverse effects on the estimated density response and we propose modeling them jointly

in a system of equations. Since, as mentioned above, estimation uncertainty around

the FPCs disappears in large cross-sections so that one can treat the estimated FPCs

as observable variables, one can expect that FPC-based functional LPs and functional

SVARs should lead to similar results, as standard LP and SVARs, see Plagborg-Møller

and Wolf (2021). Indeed, we show that for both the simulated data and the actual data,

the two methods yield comparable results, which provides additional robustness to the

distributional effects of uncertainty that we have described.

The remainder of the paper is organized as follows: Section 2 describes the functional

time series model and the econometric methods employed. Section 3 tests the ability of

the model to track the propagation of structural shocks to the distribution of interest

with simulated data while Section 4 extends the empirical analysis of Jurado et al. (2015)

to study the distributional effects of macro uncertainty shocks. Section 5 introduces

and demonstrates the merits of Functional Local Projections. Section 6 summarizes and

concludes. A set of appendices provide additional results.
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2 Functional Vector Autoregressions

In this section, we introduce our econometric framework, which is closely related to Chang

et al. (2024). The first sub-section develops a model that is capable of capturing dynamic

relations between the aggregate economy and the cross-sectional distribution of earnings

or consumption. Sub-section 2.2 then discusses the transformation and approximation

techniques used to summarize cross-sectional dynamics with a few unconstrained latent

factors. In Sub-section 2.3 we summarize our Bayesian prior setup and sketch the posterior

simulation algorithm.

2.1 Combining cross-sectional densities with aggregate time series

We aim to model the joint dynamics of a cross-sectional density, labeled pt(ξ) for ξ ∈ Ξ,

with Ξ denoting the domain on which the probability density function (pdf) is defined,

and a set of nv aggregate economic random variables yt = [y1,t, ..., ynv ,t]
′. Time runs from

t = 1, . . . , T . The cross-sectional density, in our case, will alternately be the distribution

of earnings or consumption in the US. We assume that we do not observe pt(ξ) directly

but we are given a set of identically and independently distributed (iid) draws from pt(ξ),

ξit for i = 1, . . . , N . Let ft = g(pt) denote an invertible transformation of the density

describing the distribution of interest. Additionally, let f̄ = 1
T

∑T
t=1 ft be the sample

mean of ft, and f̃t = ft − f̄ be the deviation of ft form this mean.

The F-VAR with p lags then consists of two blocks:

yt = cy +

p∑
l=1

Bl,yyyt−l +

p∑
l=1

∫
Bl,yf (x́) f̃t−l (x́) dx́+ uy,t, (1)

f̃t (x) = cf (x) +

p∑
l=1

Bl,fy (x) yt−l +

p∑
l=1

∫
Bl,ff (x, x́) f̃t−l (x́) dx́+ uf,t (x) , (2)

where x and x́ are in the domain of the transformed distribution f̃t, and uy,t and uf,t(x)
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are innovations with zero mean and variance given by:

Ω(x, x́) =

 Ωyy Ωyf (x́)

Ωfy (x) Ωff (x, x́)

 .

Notice that the innovations are correlated across the aggregate macro series in yt but

also across the two blocks. This implies that structural economic shocks (such as the

uncertainty shock we consider in this paper) can impact yt but also have a direct effect

on f̃t(x). It is also worth stressing that dynamic inter-dependencies are captured through

the inclusion of lagged y′ts in (2) but also by including lags of the log-densities in (1).

Since the functions f̃t(·) and uf,t(·) are continuous, the dimension of the model is

infinite. In order to be able to conduct inference about the parameters of the infinite

dimensional model, we resort to the Karhunen-Loève theorem (see e.g. Bosq (2000),

Theorem 1.5) and write the function f̃t(·) as an infinite order expansion:

f̃t (x) =
∞∑
k=1

ζk (x)× αk,t, (3)

with ζk(·) and αk,t denoting time-invariant orthogonal functional bases and time-varying

factors, respectively. Conditional on choosing an appropriate truncation level K, we can

approximate (3) through:

f̃t (x) ≈
K∑
k=1

ζk (x)× αk,t = ζ(x)′αt, (4)

where αt = [α1,t, . . . , αK,t]
′ and ζ(x) = [ζ1(x), . . . , ζK(x)]

′. Likewise, the other components

of equations (1) and (2) can be approximated in a similar way:

uf,t (x) ≈ ζ(x)′ũf,t, cf (x) ≈ ζ(x)′c̃f , Bl,yf (x́) ≈ B̃l,yfδ (x́) , Bl,fy (x) ≈ ζ(x)′B̃l,fy

(5)

and Bl,ff (x, x́) ≈ ζ(x)′B̃l,ffδ (x́). Here, ζ (x) and δ (x́) are K-dimensional vectors of

8



time-invariant orthogonal functional bases, ũf,t is a vector of time-varying factors, and c̃f ,

B̃yf , B̃fy, and B̃ff are matrices of scalar coefficients.

Using these finite approximations, the F-VAR in (1) and (2) can then be written as

a finite dimensional VAR: yt

αt

 =

 cy

c̃f

+

p∑
l=1

 Bl,yy B̃l,yfCα

B̃l,fy B̃l,ffCα


 yt−l

αt−l

+

 uy,t

ũf,t

 , (6)

where Cα =
∫
δ (x́) ζ ′ (x́) dx́, and ut =

[
u′
y,t, ũ

′
f,t

]′
has zero mean and variance Ω. Con-

ditional on knowing αt, the model in (6) is a standard VAR model and inference can be

performed applying conventional frequentist or Bayesian techniques. IfK is large (i.e., the

time variation in cross-sectional densities is complex and multi-dimensional and requires

many modes of variation to approximate their behaviour), frequentist estimation of the

model might suffer from overfitting issues. Hence, our approach will be Bayesian and we

describe it in more detail in Sub-section 2.3 below.

It is worth stressing that the covariance matrix Ω is a full matrix. Hence, to attribute

a structural interpretation to the model and to recover the structural shocks, we need to

back out the structural representation of the model. This can be achieved by introducing

suitable restrictions on the matrix A−1
0 , such that Ω = A−1

0

(
A−1

0

)′
, which defines the

impact matrix, and then map back the impulse responses (IRFs) of αt to the original

functional space to which f̃t (·) belongs. For instance, the structural form of the VAR is

exactly identified if we assume that the system (6) is driven by n = nv +K iid structural

shocks with unit variance, εt, and that the responses of the variables in the system to the

shocks are such that we can write:

A0ut = εt, (7)

with A0 an invertible lower-triangular matrix. In this case, the matrix A0 can be simply

found by inverting the lower-triangular Cholesky factor of the estimate obtained for Ω.

This type of identifying restrictions are popular in the empirical macroeconomics litera-
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ture and will be used in subsequent sections to identify uncertainty shocks. Noticeably,

nothing prevents the use of other, more sophisticated, identification strategies in other

applications of this class of models. As in standard SVARs, the impact matrix A−1
0 could

be identified through a variety of second- or higher-moments assumptions (see e.g. Kilian

and Lütkepohl (2017)) . We focus on the ”Cholesky” identification scheme because it is

the one adopted by the important contribution of Jurado et al. (2015) to the literature on

uncertainty shocks, which represents the foundation of the model we employ in Section 4

to study distributional responses.

2.2 Modeling cross-sectional dynamics using functional princi-

pal components

Up to this point, we have not specified the kernel density estimation method we employ,

what the transformation g (·) does to the density pt, and what kind of bases are contained

in ζ (·) and δ (·). Hence, in this sub-section we describe how we estimate the continu-

ous earnings and consumption distributions starting from an observed sample, we define

the transformation g (·) applied to pt to enforce the necessary non-negativity and unit-

integration constraints, and illustrate the method we use to determine the functional basis

that best approximates f̃t (·) for any given truncation point K. We should mention that

in these choices we differ from Chang and Schorfheide (2024), for the reasons discussed

below.

2.2.1 Kernel density estimation

Since we want to model the dynamics of the entire continuous distributions of earnings

and consumption, but only observe a sample from it, a density estimator has to be applied.

To this end, we use a Gaussian kernel estimator specifying the bandwidth size following

Silverman’s rule of thumb, which has been shown to be a reliable choice in much of the

applied statistics literature (see e.g. Kokoszka et al. (2019)).4 Because in our application

4In our simulations and application, we have experimented with different choices of kernel functions
and bandwidth sizes, which did not produce relevant differences in the results.
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(and in most practical cases) the support of the distributions of earnings Ξ and consump-

tion are bounded due to the non-negativity of such variables and the censoring adopted

by statistical agencies when conducting surveys, we apply a boundary correction to the

kernel density estimator by augmenting data with their reflection near the boundaries.

More precisely, we adopt the following density estimator:

p̂t (ξ) =
1

Nh

N∑
i=1

{
k

(
ξ − ξit

h

)
+ k

(
ξ − ξLit

h

)
+ k

(
ξ − ξUit

h

)}
, (8)

where ξLit = 2L − ξit and ξUit = 2U − ξit, with L and U being respectively the lower and

upper bound of the support Ξ.

2.2.2 Log Quantile Density transformation

An important challenge when modeling the dynamics of a distribution is to ensure that it

always satisfies the non-negativity and unit-integration constraints intrinsic in the space

of distributions. For example, one must always ensure that the predicted distribution h

periods after a shock (i.e. the distribution IRF at horizon h) is non-negative at every

point in the domain and integrates to one. One could simply set g(pt) = pt and apply

the approximation (4) to the deviations of the distribution f̃t = pt − 1
T

∑T
t=1 pt. As

the sample mean 1
T

∑T
t=1 pt has integral equal to 1 by construction, the unit integration

constraint can be enforced by ensuring that each of theK basis functions integrate to 0 (for

example by using FPC as basis, which have zero integral by construction). As discussed

by Petersen and Muller (2016), however, the fact that the basis have zero integral also

implies that they must have some negative parts, which can generate approximations of

the distribution taking inadmissible negative values in some regions of the support. This

problem is particularly important in the context of a F-VAR, in which the structural

shocks move the coefficients αt that multiply the functional basis. In such a context, if a

large shock is estimated to have a large effect on some of the αt, the negative part of the

associated basis can become so important that it leads the predicted distribution to have

negative regions after the shock.
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To avoid this issue, most of the existing literature has applied the approximation

in equation (4) to the logarithm of the density function, which naturally enforces the

non-negativity constraint. This however is not sufficient to enforce the unit-integration

constraint, and therefore leads again the functional IRFs to leave the space of probability

functions. Some of the literature, then, brings the functional IRFs back to the space of

distributions by re-normalizing them ad hoc to have unit integral.

Although this strategy may seem appealing, Petersen and Muller (2016) warn about

the important potential flaws of such practice. The problem originates from the fact that

standard functional data methods (e.g. FPCA) are designed to model the behaviour of

random functions in the Hilbert space L2, while the space of densities is only a subspace

of L2. A sensible modeling strategy would therefore need either to use functional data

methods that restrict the analysis to the space of densities, or to transform the density

in an unconstrained function in the Hilbert space L2. Petersen and Muller (2016) pro-

pose a coherent and straightforward strategy to do the latter. In particular, they suggest

to apply standard functional data analysis to the Log Quantile Density (LQD) function

associated with the distribution of interest, in place of working directly with the distribu-

tion itself. Even if there exists a one-to-one mapping between the LQD and the density

function defined on a given support, the LQD has the remarkable advantage of being an

unconstrained function in L2, and hence no special care is needed when applying (4) and

(6) to its de-meaned version f̃t. As the mapping between the LQD and the density func-

tion is one-to-one, in fact, a simple inverse transformation can be applied to retrieve the

IRFs of the distribution of interest from those inferred for the LQD. The resulting distri-

butional impulse responses will then satisfy, by construction, the required non-negativity

and unit-integration constraints.

Given the clear advantage of the approach proposed by Petersen and Muller (2016)

and the success of its application in Kokoszka et al. (2019) and Petersen et al. (2022),

in what follows we define the function ft (·) to be the LQD associated to the earnings or

consumption distribution; the transformation g (·) is therefore the mapping that defines

the LQD function associated with pt(ξ). The LQD associated with a probability distribu-
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tion pt(ξ) is the logarithm of the first derivative of the quantile function Q(z) = F−1(z)

(also known as inverse cumulated density function, icdf):

ft (x) = g {pt(·)} = log

{
d

dz
Q(z)

∣∣∣∣
z=x

}
, (9)

where x ∈ [0, 1]. The resulting LQD function is therefore defined on [0, 1] and looses

information about the support Ξ. Its great advantage, however, is that the LQD is

unrestricted and lies in the L2 space, and thus can be modeled without difficulty.

As the support Ξ is known, the distribution of interest pt(·) can be easily derived

back from ft(x) using the inverse transformation. It simply amounts to computing the

quantile function Q(x) = θ
∫ x

0
exp[ft(z)]dz, where θ = supξ∈Ξ ξ ×

{∫ 1

0
exp[ft(z)]dz

}−1

,

and then computing the first derivative of the associated cumulative distribution function

d
dξ
F (ξ) = d

dξ
Q−1(ξ).

Figure 1 helps to visualize the LQD transformation and to highlight why it is conve-

nient. The figure refers to a Gamma(2,1) distribution censored to have support Ξ = [0, 5].

The four panels represent the four steps that the mapping g(·) applies to pt(·) (panel (a))

to find its LQD (panel (d)). In the first three panels, the transformation runs through

three alternative ways of describing the same distribution, namely the pdf, the cdf, and the

quantile function. These three objects are familiar, contain exactly the same amount of

information, and are all subject to some constraint, that is, the pdf must be non-negative

and integrate to 1, the cdf must be non-negative, non-decreasing, and take values from 0

to 1, the quantile function must be non-decreasing and take values in Ξ. In practice, once

the kernel estimate of the pdf is available, the cdf (and hence its inverse, the quantile

function) can be easily obtained by numerical integration. The only unfamiliar function in

the figure is the LQD, which is simply the logarithm of the first derivative of the quantile

function in panel (c), which can also be easily computed numerically. However, the LQD

does not obey to any constraint and therefore represents an ideal modeling device.

As can be seen from the figure, the LQD looses the information about the support,

but, since Ξ is known to the researcher, it is easy to retrieve any of the functions in panels

13



Figure 1: LQD Transformation
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(a),(b), or (c), once the LQD is available. To recover the Q(z) once the LQD is known, for

example, it is sufficient to integrate numerically exp [LQD] over [0, z], and to re-normalize

it so that Q(1) = supξ∈Ξ ξ = 5.

2.2.3 Functional Principal Component Analysis

As regards the functional basis used in the approximations of equation 4 and 5, the choice

of δ (·) is of no practical relevance as long as its inner product with ζ (·), Cα, is finite;

while the choice of the basis ζ (·) used to expand the function of interest, f̃t(·), represents

a central theme in the literature on functional data analysis (for a recent survey, see Wang

et al. (2016)).

Various alternative methods are available. For instance, Chang et al. (2024) con-
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sider splines to approximate the cross-sectional distribution. While their approach is

flexible and non-parametric, the truncation point K (i.e. number of spline knots) needed

to approximate sophisticated distributions can easily become very large, which in turn

undermines inference for the associated VAR in equation (6). In this paper, we rely on

the computation of Functional Principal Component Analysis (FPCA) described in Tsay

(2016). We adopt FPCA due to its ease of use and the fact that it can be flexibly ap-

plied to summarize the bulk of the dynamic variation observed in f̃t (·) through a limited

number of factors αt.

To set the stage, let Z denote a T × NZ matrix with (j, t)th element zjt = f̃t(xjt).

We let NZ denote the number of grid points on which we evaluate the LQD. Typically

we set this to a large value (such as 1000). The matrix Z can be decomposed using a

truncated singular value decomposition (SVD):

Z = SV D′ + E (10)

where S is a T × K matrix containing the first K left eigenvectors, V is a K × K-

dimensional diagonal matrix with the first K largest eigenvalues on its main diagonal and

D is a NZ×K matrix of right eigenvectors. The term E measures the approximation error

committed by just considering the first K eigenvectors. In what follows, we are going to

use the first K principal components, computed as A = SV with αt = A′
t· denoting the

tth row of A. The associated orthogonal basis are therefore the K columns of D.

The key intuition behind FPCA is that we aim to summarize cross-sectional informa-

tion using a small number of factors. For example, if the density we wish to approximate

is a time-varying Gaussian, the first two principal components of Z will be closely re-

lated to the time-varying mean and standard deviation. In this case, two factors will be

sufficient to adequately approximate the associated f̃t. If the cross-sectional density is

non-Gaussian and exhibits more complex variation, the number of factors necessary to

approximate f̃t becomes larger. In practice, several strategies can be used to determine

the truncation point K. As with standard factor models, one can rely on information
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criteria as in Bai and Ng (2002), perform cross-validation as suggested by Tsay (2016),

or stop the truncation when the share of variation explained in the observed cross-section

is above a desired threshold. Alternatively, one can try different K to check how robust

the analysis is to different choices. In this paper, we follow the latter strategy and repeat

each application with different plausible Ks, showing that the differences between the re-

sulting functional IRFs of interest are mostly negligible. We also experimented with very

small K and found that, although the model was still able to replicate the crucial features

of the responses, increasing the truncation point to K = 3 for earnings and K = 5 for

consumption improved the performance of the model, while increasing it further did not

generate any relevant differences.

One advantage of this approach is that we introduce relatively little parametric

restrictions. We start out by using a kernel density based estimate of the cross-sectional

densities and transform it to become a simple function in L2. By doing so we can decide

on the grid of points at which the LQD is evaluated. Since the number of grid points

determines the size of the cross-section, we can use results such as the ones in Stock and

Watson (2016) and show that the principal components are consistent estimators of the

true factors. What is more important, however, is that estimation uncertainty surrounding

the factors declines appreciably. This implies that we do not have to estimate a full state

space system but can simply plug in the PCA-based estimates of the latent factors.

Before discussing the estimation of the SVAR, it is worth stressing that the result-

ing functional VAR resembles a factor-augmented VAR similar to the one proposed in

Bernanke et al. (2005). This implies that the choice of how we capture dynamics in the

cross-sectional densities impacts the intrinsic nature of the reduced form innovations uα,t,

but it does not affect the labeling of the first nv structural shocks in εt, εy,t, in a Cholesky

identification scheme. As long as the orthogonal decomposition is able to reflect the time

dependence between the aggregate variables and the cross-sectional distribution of inter-

est, the performance of identification schemes used to disentangle the aggregate structural

shocks of interest is not influenced by the chosen functional basis.
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2.3 Bayesian inference

Once the scores αt are obtained via FPCA, the VAR in (7) is estimated with Bayesian

methods. We specify a natural conjugate Gaussian-Inverse Wishart prior distribution for

the reduced form parameters, see, e.g., Sims and Zha (1998); Koop et al. (2010); Giannone

et al. (2015).

To simplify prior implementation, we rewrite the model more compactly as:

zt = Πxt + ut, (11)

where zt = [y′t, α
′
t]
′, xt =

[
1, z′t−1, . . . , z

′
t−p

]′
and Π = [Π0,Π1, . . . ,Πp], with Π0 =

[
c′y, c̃

′
f

]′
and Πl =

 Bl,yy B̃l,yfCα

B̃l,fy B̃l,ffCα

 for l = 1, . . . , p. This is a standard multivariate regression

model which explains the observed aggregate macro series and the functional PCs using

only lagged values of zt.

The natural conjugate Gaussian-Inverse Wishart prior distribution for the reduced

form parameters is factorized as

p (vec (Π′) ,Ω) = p (Ω)× p (vec (Π′) | Ω) ,

where p (Ω) is Inverse Wishart with ν degrees of freedom and scale matrix Φ, and

p (vec (Π′) | Ω) is Gaussian with mean vec (Ψ) and variance Ω ⊗ Γ. In specifying the

parameters of these priors, we follow the Minnesota tradition of Doan et al. (1984) and

set Ψ to be a n×m (m = np+ 1) matrix of zeros, except for the (i, i+ 1)th element that

is set to 1 if the i-th variable of the system is known to be persistent. The component of

the prior variance Γ is a diagonal m ×m matrix with the (i, i)th element equal to 103 if

i = 1, and
λ2
1

σj lλ2
otherwise, where j and l are the index and lag of the right hand variable

to which the j-th column of Π refers, and σj is the error variance of an AR(1) model

estimated by OLS for the j-th variable. Finally, the parameters of the Inverse Wishart

prior p (Ω) are set to ν = n + 2 and Φ = diag[σ1, . . . , σ2]. Throughout the paper, the
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hyperparameters λ1 and λ2 are set to 0.2 and 2 respectively, values commonly used in the

VAR literature.

Given these priors, the posterior distribution is also Gaussian-Inverse Wishart

p (vec (Π′) ,Ω | Y ) = p (Ω | Y )× p (vec (Π′) | Y,Ω) .

Specifically, p (vec (Π′) | Y,Ω) is a Gaussian distribution

p (vec (Π′) | Y,Ω) = N (Ψ̄,Ω)

with variance and mean given by, respectively:

Ω = Ω⊗ Γ̄, Γ̄ =
(
Γ−1 +X ′X

)−1
,

Ψ̄ = Γ̄
(
Γ−1Ψ+X ′Y

)
,

with X = [x′
1, . . . , x

′
T ]

′ and Y = [z′1, . . . , z
′
T ]

′ denoting stacked data matrices.

The posterior of the covariance matrix follows an inverse Wishart distribution:

p (Ω | Y ) = W−1(ν̄, Φ̄).

The posterior degrees of freedom are ν̄ = ν + T and the scaling matrix is Φ̄ = Φ+ Y ′Y +

Ψ′Γ−1Ψ− Ψ̄′Γ̄−1Ψ̄.

The posterior just described is convenient because draws from the stationary distri-

bution can be easily obtained by direct Monte Carlo, sampling from p (Ω | Y ) first, and

then drawing from p (vec (Π′) | Y,Ω). This completes the description of our functional

VAR model. In Section 3, we will illustrate that it works well in terms of recovering the

true impulse responses using simulated data.
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2.4 Construction of distributional IRFs

Before focusing on the application of the described procedure to artificial and real-world

data, it is worth describing in more detail how we obtain posterior draws of the distribu-

tional IRFs. Following Chang et al. (2024), we assume that the system is at its steady

state when the shock hits. For a given posterior draw of the model parameters, the LQD

function before the shock is therefore fss(·) = ζ(·)′αss + f̄ , where αss is the uncondi-

tional mean implied by the model parameters. The steady state distribution to which

it corresponds, pss(·), can then be easily found by applying the inverse transformation,

pss(·) = g−1(fss(·)), described in Section 2.2.2.

The response of the functional PC, αt, to a structural shock of interest can be com-

puted, for every posterior draw of the SVAR parameters, by standard methods, assuming

that only the shock of interest at h = 0 differs from zero. The resulting standard IRFs are

therefore defined as IRFα,j,d,h = E {αt+h|It−1, εt,j = d, εt,−j = 0} − E {αt+h|It−1, εt = 0}.

These IRFs can then be used to find the expected value of the LQD function h periods

after the shock, which we define as: fss+h(·) = ζ(·)′(αss + IRFα,j,d,h) + f̄ , and to the

corresponding distribution of interest, pss+h(·) = g−1(fss+h(·)), using the inverse transfor-

mation described in Section 2.2.2. The distributional IRFs that we report throughout the

paper are then simply computed as the difference between pss+h(x) and pss(x), for every

x in a thin grid belonging to the support Ξ.

An important feature to take into consideration when constructing distributional

IRFs is that, although the SVAR is linear, the map from p(·) to f(·) is not, which implies

that both the initial level of the distribution, pss(·), and the size of the shock, d, are

relevant and must be chosen carefully. In our applications, pss(·) is chosen to be the

steady state implied by the SVAR parameters, while the shock size is set in terms of

standard deviations.

It is also important to notice that, unlike most of the existing literature, we do not

need to re-normalize pss+h(x) to ensure that it is positive and integrates to 1 , since the use

of the LQD ensures it by construction. In light of the discussion of Petersen and Muller
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(2016), we believe that this represents a crucial advantage of our econometric procedure,

since the re-normalization step operated by all the existing contributions to our knowledge

can generate spurious shapes in the differences between pss+h(x) and pss(x).

3 Artificial Data Experiments

In this section we assess the ability of the F-SVAR, estimated through FPCA and the

Bayesian routine just described, to capture the propagation of the aggregate structural

shocks εy,t to the distribution pt. We do this by running three experiments with data

simulated from known Data Generating Processes (DGPs). In the first experiment, the

DGP is a simple F-SVAR of the form in (7), in which the endogenous function is the

deviation of the LQD from its sample mean, f̃t, which has an exact finite factor structure,

as in (4). In the second experiment the endogenous function of the F-SVAR is instead the

logarithm of the distribution pt itself, which is also assumed to have an exact finite factor

structure. In both cases, at each period a sample is drawn from the generated distribution

and assumed to be observed, together with the realizations of the endogenous variables

yt . In the final simulation experiment, the DGP is taken from Section 5 of Chang et al.

(2024), which is based on a log-linearized solution of the Krusell and Smith (1998) HANK

model. In that case the endogenous function in the DGP represents the distribution of

assets among the employed population. Finally, in Section 3.4 we use the three DGPs to

examine how the choice of the transformation g(pt(·)) affects the goodness of fit of the

approximation delivered by FPCA.

3.1 F-SVAR: DGP 1

The data used for the first experiment are generated by simulating forward the model in

(11),5 setting p = 4, nv = 2, and Ktrue = 3. The realizations of the Ktrue-dimensional

vector time series αt are then transformed in LQD functions, using as basis the FPC

computed from the LQDs of 50 realizations of a mixture of Gamma distribution, where

5The exact model parameters used to simulate the data are reported in Appendix A.
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Figure 2: Modes of variation: DGP 1
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Notes: The black line depicts the sample mean of the distributions generated by the DGP. Red
(blue) lines show the change implied by an increase (decrease) in αk,t of 2 standard deviations.

the mixing distribution is a Beta(a, b), with a and b uniformly distributed in [0, 3]. Doing

so, ft is obtained for t = 1, . . . , 500, and then transformed into a distribution on Ξ = [0, 6]

through applying the inverse mapping g−1. From the resulting distribution, a sample of

sizeN = 8000 is drawn at every period and assumed to be observed by the econometrician.

To get an idea of the distributional dynamics generated by the DGP, in Figure 2 we

report the modes of variation implied by the DGP, that is the effect of a two standard

deviations increase/decrease of each element of αt on the endogenous distribution.

Once the data have been simulated, we estimate the distribution p̂t using the kernel

estimator described in Sub-section 2.2.1, and then transform it to the LQD f̂t = g (p̂t). We

apply FPCA to the deviation from the mean of this functional data, setting K = 7,6 and

conduct inference about the VAR parameters employing the Bayesian methods described

in the previous section.

Figure 3 shows the h-step-ahead IRFs of pt to the first nv = 2 structural shocks (εy)

implied by the DGP (red), together with the posterior median (solid blue) and the 90%

credible bands (dashed blue) obtained for the model-based functional IRFs. We consider

h ∈ {0, 4, 12, 24}. The two rows refer to the two structural shocks, while each panel

in every row focuses on one of the horizons considered. As explained in Section 2.4, the

distributional IRFs are computed as the difference between the distribution h periods after

the shock and that corresponding to the steady-state. Hence, the horizontal axis reports

the support Ξ of the distribution. The figure shows that the methodology described in

6Results with different truncation points K are reported in the appendix.
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Figure 3: Functional impulse responses arising from the F-SVAR: DGP 1

Notes: Red lines show the true responses of pt (ξ) to one standard deviation shocks to ε1 (upper
panels) and ε2 (lower panels). The solid blue lines represent the posterior median response,
while dashed blue lines delimit the 90% credible bands. h denotes the horizon at which the
response is measured.

Section 2 does a remarkably good job in tracking the propagation of the two shocks to

the distribution of interest at all horizons. In particular, the model-based IRFs track the

horizon-specific IRFs along the cross-section well. Only in some rare cases, the actual

IRFs are outside the credible intervals. It is also interesting to note how the functional

IRFs change as the number of principal components K included in the estimated model

changes. The responses produced by the F-SVAR with K = 1, 2, 3, 15 are reported in

the appendix and show that, as the number of principal components increases from 1 to

3, the accuracy of the inferred IRFs improves steadily, while for K ≥ 3 the responses

produced by the model are virtually the same. In particular, the model including only

one principal component, although able to capture important features of the IRFs, fails

to replicate the impact responses adequately. On the other hand, when at least three

principal components are included, the model is able to track most of the distributional

variation with credible bands that contain the true response most of the time. As seen

from Figure A4, increasing the number of factors included to a moderately large number

does not translate into substantially larger credible bands. We take this as evidence that
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Bayesian prior shrinkage does a good job in limiting the efficiency loss resulting from

estimating a larger model.

To check that the desirable properties we have described so far for a specific real-

ization from the DGP are maintained in repeated samples, we generate 200 additional

samples from the same DGP and apply the inference procedure described. For every repli-

cation and different values of K, we compute the correlation between the true functional

responses to the nv aggregated shocks εy at various horizons and the posterior median

functional IRF inferred by the estimated F-SVAR. In particular, we consider functional

responses at horizons h = 0, 1, 2, 3, 4, 8, 12, 24, and repeat the inference procedure for

K = 1, 2, 3, 5, 7, 15. In addition, we consider the case in which K is set to be the small-

est values for which the variance explained by the FPC is at least 90% (we refer to this

method as ’scree plot’ method using the terminology of Tsay, 2016). The bar charts

in Figure 4 show the average correlation coefficients attained across replications. As in

the single replication reported above, for K sufficiently large, the responses inferred by

the F-SVAR are able to replicate the bulk of the distributional changes generated by the

structural shocks in the true model. Moreover, as discussed earlier, increasing the number

of principal components from 1 to 3 generates a substantial gain in the accuracy of the

functional IRFs, but setting K above 5, or selecting it through the ’scree plot’ method,

does not produce any additional benefit.

3.2 F-SVAR: DGP 2

The data used in the first experiment were generated from a model that differed only

slightly from the model used to conduct inference.7 We now want to assess the reliability

of our inference procedure in a more challenging setting.

In the second experiment, we increase the degree of mis-specification of the estimated

model by assuming that the endogenous function in the DGP is the logarithm of the

distribution pt, rather than the LQD as postulated by the estimated model. Since the

7The difference between the DGP and the estimated model is in the functional basis used and in the
true number of factors αt, however the endogenous function in the VAR DGP is the LQD, as postulated
by the estimated model.
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Figure 4: Average correlation between median and true functional IRF: DGP 1
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Notes: The coefficient is computed as the average across Monte Carlo repetitions and refers to
the correlation between the point-wise median of the posterior distribution of functional IRFs
and the true responses implied by the DGP.

transformation g(·) from pt to the LQD ft is highly non-linear, the true dynamics of the

ft’s are also highly non-linear, while our procedure assumes they follow a linear VAR.

This second experiment therefore represents a notably more demanding challenge for the

estimated model. As in the previous sub-section, we generate 500 observations of the

vector time series [y′t, α
′
t]
′ by simulating the model in (11) forward. We set p = 4, nv = 2,

and Ktrue = 3.8 Differently from the first experiment, however, the obtained αt’s are

directly used to generate realizations of log pt (with support Ξ = [0, 6]) using as basis the

first Ktrue FPC of the logarithm of the mixture of Gamma distributions described in the

previous sub-section. At every time period in the sample we normalize the obtained pt to

have unit integral and draw a sample of N = 8000 observations from it. Figure 5 depicts

the modes of variation implied by the DGP.

Figure 6 compares the IRFs of pt to the εy shocks implied by the DGP (red), with

8Again, the exact model parameters used to simulate the data are reported in Appendix A.

24



Figure 5: Modes of variation: DGP 2
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Notes: The black line depicts the sample mean of the distributions generated by the DGP. Red
(blue) lines show the change implied by an increase (decrease) in αk,t of 2 standard deviations.

Figure 6: Functional impulse responses arising from the F-SVAR: DGP 2
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Notes: Red lines show the true responses of pt (ξ) to one standard deviation ε1 (upper panels)
and ε2 (lower panels). The solid blue lines represent the posterior median response, while
dashed blue lines delimit the 90% credible bands. h denotes the horizon at which the response
is measured.

the posterior median (solid blue) and the 90% credible bands (dashed blue) obtained by

the estimated model setting K = 7.9 Despite the higher degree of mis-specification of the

estimated model, our procedure is able, also in this case, to replicate satisfactorily the

salient features of the responses of the distribution of interest to the first nv structural

shocks, especially at shorter and medium horizons.

Next, as we did in the previous sub-section, we produce 200 additional replications

of the experiment to check that the good performance just described is not limited to the

9Results with different truncation points K are very similar and are reported in the appendix.
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Figure 7: Average correlation between median and true functional IRF: DGP 2
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Notes: The coefficient is computed as the average across Monte Carlo repetitions and refers to
the correlation between the point-wise median of the posterior distribution of functional IRFs
and the true responses implied by the DGP.

particular sample obtained. The average correlation coefficients between the median of

the posterior of functional IRFs and the ones implied by the DGPs are again large and are

shown in Figure 7. Also in this case the correlation values are generally large, increasing

the number of FPCs from 1 to 3 improves the accuracy of the inferred functional responses

considerably, but the improvement of setting K to larger values is negligible on average.

3.3 Krusell and Smith (1998) DGP

The third experiment we perform is inspired by Chang et al. (2024) and makes use of the

Krusell and Smith (1998) model as DGP. The log-linearized solution of the model proposed

by Krusell and Smith (1998) implies a VAR law of motion for the productivity level,

the capital stock, the employment level, and the centered moments of the distribution

of assets among the employed. Chang et al. (2024) generate 160 artificial observations

from this VAR and use them to estimate their proposed model. In this section, we use
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Figure 8: Functional impulse responses arising from the F-SVAR: Krusell and
Smith (1998) DGP
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Notes: Red lines show the true responses of the asset distribution to a one standard deviation
productivity shock. The solid blue lines represent the posterior median response, while dashed blue
lines delimit the 90% credible bands. h denotes the horizon at which the response is measured.
Notice that the horizons for which responses are reported are the same as those in Figure 6 of
Chang et al. (2024), the difference in the panels titles only stems from different timing conventions.

the same artificial data kindly made available by the authors.10 For inference, we set

p = 1, K = 7,11 and specify the natural conjugate prior described in the previous section.

Figure 8 compares the functional IRFs implied by the estimated F-SVAR (blue) with the

true responses implied by the DGP. While the inferred responses tend in some cases to

underestimate the deviation of the shocked distribution from the steady state counterpart,

Figure 8 shows that the F-SVAR is still able to reproduce the salient features of the

dynamic responses.

10We obtained the data from Frank Schorfheide’s website: web.sas.upenn.edu/schorf/working-papers/.
11Results with different truncation points K are very similar and are reported in the appendix.
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3.4 Alternative Transformations of pt(·)

Although we have shown that the econometric strategy described in Section 2 works

well in a variety of settings, and despite we have already discussed the advantages of

making use of the LQD transformation, in this section we want to understand how the

goodness of fit of the FPC approximation of the distribution is affected when different

transformations g(pt(·)) are considered. Specifically we compare the use of the LQD with

the cases in which FPCA is performed on the deviation from the mean (i) of density itself,

i.e g(pt(·)) = pt(·), and (ii) of the logarithm of the density, i.e. g(pt(·)) = log(pt(·)). In

order to do that, we implement a cross-validation exercise using samples of distributions

generated by the DGPs described in Sections 3.1, 3.2, and 3.3. For each DGP and

different truncation points K, we extract FPCs from 80% of the distributions in the

sample (randomly selected), and use those to approximate the remaining 20% of the

available distributions. More specifically, once we extract the basis ζ (x) through FPCA

from the training sub-sample, we estimate by OLS the αt coefficients associated with the

distributions in the validation sub-sample. The obtained approximations are then used

to compute the Mean Integrated Squared Error over the validation sub-sample:

MISE =
1

T

T∑
t=1

∫
Ξ

(p̂t (ξ)− pt (ξ))
2 dξ (12)

where p̂t (ξ) = g−1
(
f̄ + ζ (ξ)′ α̂t

)
. We repeat the exercise 100 times and report the

average MISE attained by each method in Table 1.

The Table shows that performing FPCA directly on the distribution provides the

most efficient approximation, i.e. it achieves the lowest MISE for a given number of

FPCs. The nonlinear transformations operated by the logarithm and by the LQD, instead,

deteriorate to some extent the goodness of fit of the approximation. Intuitively, FPCA is

designed to provide an optimal approximation in the transformed space, but the goodness

of fit inevitably decreases once the approximation is projected back to the density space.

The Table, however, shows that the use of the LQD allows a substantially better
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approximation of the distribution when compared to the log-transformation. To summa-

rize, although there is some loss in the goodness of fit provided by the implementation

of FPCA on the LQD rather than on pt(·) itself, we think that the advantages discussed

in Section 2.2.2, and the superiority in terms of approximation errors when compared to

the logarithm transformation, justify our preference for the use of LQD over alternative

transformations. In addition, Petersen and Muller (2016) provide examples in which the

goodness of the approximation obtained by performing FPCA on the LQD can even ex-

ceed that obtained by performing FPCA directly on pt(·). This mainly happens when

large horizontal variation is observed across the distributions in the sample.

Table 1: Cross-validation exercise: MISE

K
1 2 3 4 5

D
G
P
1 pt (·) 1 0.465 0.249 0.127 0.069

log pt (·) 1.879 1.457 0.996 0.730 0.594
LQD 1.085 0.644 0.530 0.370 0.307

D
G
P
2 pt (·) 1 0.102 0.053 0.032 0.022

log pt (·) 5.150 1.982 3.143 1.671 1.128
LQD 2.334 1.167 0.678 0.421 0.337

D
G
P
3 pt (·) 1 0.598 0.486 0.395 0.324

log pt (·) 1.908 1.857 1.467 1.339 1.260
LQD 1.449 1.199 1.174 1.066 1.020

Ratios relative to the MISE attained by the first approach for K = 1.

4 The Distributional Implications of Uncertainty Shocks

Having demonstrated the reliability of the adopted econometric procedure, the aim of this

section is to apply these techniques to study the distributional consequences of uncertainty

shocks. We start by discussing the dataset and how we identify an uncertainty shock

before discussing the reaction of the macroeconomic aggregates to uncertainty shocks.

Afterwards, we focus on how the cross-sectional distributions of earnings and consumption

reacts to unexpected movements in economic uncertainty.
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4.1 Data overview, structural identification and model specifi-

cation

We analyze the relationship between economic uncertainty, macro aggregates and the

distributions of earnings and consumption by building on the linear VAR model put forth

in Jurado et al. (2015, JLN). In addition to the aggregate series discussed below, this

amounts to including alternately the distribution of earning among employed people or

the distribution of consumption as endogenous functional variable. We compile time series

of earnings-to-GDP distributions using data constructed by Chang et al. (2024) based on

the Current Population Survey (CPS). When we focus on the consumption distribution,

we employ the micro data from the Consumption Expediture Survey (CE) used by Chang

and Schorfheide (2024). In this dataset, every observation is divided by the per capita

consumption level, so that an observation equal to 1 represents a household consuming

the national per capita level.12 Since in Chang et al. (2024)’s and Chang and Schorfheide

(2024)’s datasets the micro data are available at quarterly frequency, we convert the

monthly SVAR(12) of JLN into a quarterly F-SVAR(4) model. The sample period for

the F-VAR including the earnings distribution runs from 1989:Q1 to 2017:Q3. When we

focus on the consumption distribution, the sample period goes from 1990:Q2 to 2016:Q4.

As endogenous aggregate series, we include 11 series in the model. These are:

real GDP (rGDP), real PCE (rPCE), the GDP deflator (GDPdef), real wages (rW), real

investments (rINV), labor productivity (Lprod), the unemployment rate (unr), the Fed-

eral Funds Rate (ffr), the S&P500 index (sp500), the M2 growth rate (M2) and the

macro-uncertainty measure constructed by JLN (Um h3).13 All variables are considered

in logarithm, except for the interest rate and uncertainty measure.

To these variables we append the K factors αt obtained through FPCA of the LQD

12Both datasets can be downloaded from Frank Schorfheide’s website:
web.sas.upenn.edu/schorf/working-papers/.

13All variables can be downloaded from the FRED MD database, except for the uncertainty measure
which is available at www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes.
While real GDP, real PCE, the GDP deflator, real wages, real investments, labor productivity, the

unemployment rate are available at quarterly frequency, the Federal Funds Rate, the S&P500 index, the
M2 growth rate and the macro-uncertainty measure are aggregated from the monthly series.
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associated to the earnings or the consumption data. The chosen value of K is that for

which the cumulative share of in-sample variance explained by the FPCs is closest to

90%. The scree plot in Figure 9 shows that, for earnings-to-GDP data, the first three

FPCs are able to explain already 70% of the in-sample variation observed in the demeaned

LQD, while the subsequent four PCs explain an additional share that accounts for over

20%. The first seven FPCs are therefore sufficient to explain more than 90% of the total

variation observed. For consumption data, on the other hand, the first three FPCs explain

60% of the time-variation, and nine FPCs are enough to explain 90% of the in-sample

variance. The relatively small value of FPCs required to reflect the bulk of the variation

observed in the function of interest is indeed one of the main advantages of using FPCA

instead of alternative functional bases, such as splines, for which a larger number would

be needed. Furthermore, in our case, the exact choice of K does not appear to be crucial

for the analysis, as long as it is not set to an excessively small number. In fact, we have

experimented with different choices of K and noticed that different values did not produce

any relevant differences in the results, as long as the value was greater than 2 for earning

data and greater than 4 for consumption data.14

As CPS and CE data are top-coded with censoring values changing several times

along the sample period, we limit the support of the distribution to the smallest censoring

values applied in the surveys, which is slightly above an earnings-to-DGP per-capita ratio

equal to 2 for CPS data, and around 3.2 times the per capita level of consumption for

CE data. Our analysis remains therefore silent about the dynamics concerning the higher

end of the earnings and consumption distributions, the study of such dynamics is left for

future research.

Following JLN, the macro uncertainty shock is identified by ordering the uncertainty

measure last among the endogenous variables in a Cholesky identification scheme. The

idea behind this strategy is to reflect a structural source of fluctuation in the uncertainty

measure that remains after accounting for other contemporaneous developments affecting

14Figures in Appendix E show functional IRFs obtained by setting K = 3 or K = 15 for earnings data
and K = 5 or K = 15 for consumption data.
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Figure 9: Share of variance explained by Functional PC
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Notes: The blue line denotes the cumulated share of in-sample variation explained by the Functional PC.
The dashed red line denote the threshold we apply for selecting the truncation point K.

the macroeconomy.

4.2 Dynamic reactions of the aggregate economy to uncertainty

shocks

We start our discussion by focusing on the responses of the aggregate macro series first.

These are shown in Figure 10. To understand the effects of adding the cross-sectional

distribution of earnings or consumption to the VAR, we contrast the reactions of the

F-SVAR (in blue) to the ones of a standard SVAR that features aggregate series only (in

red).15 All these responses are to a one standard deviation shock, and we report 68%

credible bands in both cases.

At a general level, the figure indicates that the responses are consistent with what

has been found in the literature (Bloom (2009), Jurado et al. (2015), Castelnuovo (2019),

Carriero et al. (2023)). Real output, consumption, investments and stock prices decline

while the unemployment rate increases. As opposed to the earlier literature, we do not

find evidence supporting an overshoot in real activity in the medium run. Real Wages

15In the Figure we report the IRFs generated by the F-VAR including the earnings distribution. Those
generated by the F-VAR including the distribution of consumption are virtually identical.

32



Figure 10: Impulse response of the macroeconomic aggregates to a one standard devi-
ation uncertainty shock
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Notes: The solid lines represent the posterior median response, while dashed lines delimit the 68%
credible bands. The horizon on the horizontal axis is expressed in quarters. Blue lines are generated by
the F-SVAR, red lined are generated by the standard VAR.

and labor productivity display a similar behavior: after a muted short-run reaction, both

decline at medium to long response horizons. Comparing the results between our F-SVAR

and the SVAR points towards no discernible effects of including information in the form

of the cross-section of earnings or consumption to the model.

The fact that our model produces IRFs that are in line with the previous literature

gives confidence about the ability of the model to identify the desired shock, and assures

that the model, although more densely parameterized than a simple SVAR, is still capable

of reproducing the established features of the propagation of uncertainty shocks. It also

suggests that the distributional dynamics related to uncertainty shocks, while relevant as

we will see at the micro level, do not contain information that is not spanned by the set

of variables considered by JLN.
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4.3 Dynamic reactions of the cross-sectional distributions

We now turn to how the cross-sectional distribution of earnings-to-GDP reacts to uncer-

tainty shocks.

It is worth emphasizing again at this point that, for each impulse response horizon,

we enforce the unit integration of the earnings distribution by construction. As a result,

the distribution of earnings for which the changes in response to an uncertainty shock

are shown below, only refers to employed people and does not contain information about

variations of unemployment generated by the shock. The way we construct the distri-

butional IRFs is therefore different from that in the empirical analysis of Chang et al.

(2024), as they re-normalize the distribution at every horizon after the shock to integrate

to (1 − unr), implying that the resulting distributional IRFs in their paper also reflect

changes in the ratio between employed people and total population. As a consequence

of this difference, the functional IRFs we show throughout the paper always integrate to

zero, while those shown by Chang et al. (2024) in their empirical section integrate at each

horizon to the change of the employment ratio generated by the shock. Despite account-

ing for the change of the mass of employed people has its merit, it requires artificially

re-normalizing the area under the distribution at every horizon. For this reason, we prefer

to focus on the distribution of earnings among employed people and to let the distribution

integrate to one (and its change to zero) at every horizon, as implied by the use of the

LQD transformation.

Figure 11 shows the change in the earnings-to-GDP and in the consumption dis-

tribution produced by the identified uncertainty shock at different horizons. In the first

three years from the shock (i.e., for h = 1, 4, 12), the proportion of employed people re-

ceiving an income below the GDP per-capita level (i.e. earnings-to-DGP per-capita ratio

equal to unity) decreases significantly, while the share of employed with salary between

one and two times GDP per-capita increases. At the same time, the mass in the lower

part of the consumption distribution increases significantly, reflecting households cutting

down their consumption from an average level to a low level.
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When we consider longer-run responses, however, the distributional consequences of

uncertainty shocks change markedly. Specifically, the figure for h = 24 suggests that the

portion of employed people receiving low salaries increases considerably, while the share

of people earning salaries at the GDP per-capita level drops. At the same horizon, the

median response for the consumption distribution also shows a slight decrease of the mass

in the lowest part of the distribution; the uncertainty around this response is however too

large to support any conjecture.

Figure 11: Functional responses of the earnings and consumption distributions to a one
standard deviation uncertainty shock.

0 1 2 3

-0.01

0

0.01

0.02

C
on

su
m

pt
io

n

h = 1

0 1 2 3

-0.01

0

0.01

0.02
h = 4

0 1 2 3

-0.01

0

0.01

0.02
h = 12

0 1 2 3

-0.01

0

0.01

0.02
h = 24

0 0.5 1 1.5 2
-0.015

-0.01

-0.005

0

0.005

0.01

E
ar

ni
ng

s

h = 1

0 0.5 1 1.5 2
-0.015

-0.01

-0.005

0

0.005

0.01
h = 4

0 0.5 1 1.5 2
-0.015

-0.01

-0.005

0

0.005

0.01
h = 12

0 0.5 1 1.5 2
-0.015

-0.01

-0.005

0

0.005

0.01
h = 24

Notes: The first (second) row of the figure shows the difference between the earnings (consumption)
distribution after a standard deviation shock and the one prevailing in the steady state. The solid
blue lines represent the posterior median response, while dashed blue lines delimit the 68% credible
bands. h denotes the horizon at which the response is measured. In the first (second) row, the
measure on the horizontal axis is the earnings-to-GDP per-capita (households consumption - to -
per-capita consumption) ratio.

A first important consideration when interpreting these results is that the distri-

bution of earnings only refers to employed people, therefore it is very likely that the

immediate decrease of the mass in the left part of the distribution does not only reflect

people moving from the low-income category to a higher class. It may well be that the

decline is also due to a higher proportion of the people laid off formerly belonging to a

low-income class. This is strongly supported by the opposite change seen in the distribu-
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tion of consumption, where a significant share of households move from the central part

to the lower tail.

Another important consideration is that the functional IRFs in Figure 11 must be

read in conjunction with the IRFs of aggregate variables, in particular with the response

of real wages and labour productivity. In fact, Figure 10 shows that the average real wage

level actually increases at short horizons after the shock, but then it declines significantly,

together with labour productivity, and reaches its trough between five and six years from

the shock. This corroborates the existence of two stages in the propagation of uncertainty

shocks, also evident from Figure 11.

To gain a better understanding of how uncertainty impacts specific quantiles of the

distributions, we now focus on the responses of the 5th, 50th and 95th quantiles of the

earnings and consumption distribution to a one standard deviation uncertainty shock.

This is shown in Figure 12 and the corresponding IRFs are obtained by picking the relevant

quantiles from the posterior of the functional responses of the distributions of interest.

From the upper panels, it is clear that, while the entire distribution of earnings shift to

the right, the median quantile is the one that displays the most significant percentage

increase. This reflects an increase of the share of employed receiving salaries close to

the per-capita GDP level, suggesting that the distributional developments triggered by

uncertainty tend to concern to a minor extent the people receiving very high income. From

the consumption side, the whole distribution shifts to the left, but the largest declines (in

percentage) is again observed in the left part of the distribution.

A related but distinct examination that the F-SVAR allows us to consider is the

assessment of how the relative weight of each earnings and consumption class changes

in response to the identified shock. In Figure 13 we track the share of employed people

belonging to four classes, each corresponds to one fourth of the distribution support.

As for earnings, the figure suggests that the share of employed people belonging to the

bottom income class decreases significantly in a first phase, while the relative weight of

the classes whose earnings belong to the right half of the support increases. In a second

phase, however, the share of low-income employed increases (although the credible bands
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Figure 12: Responses of specific quantiles of the earnings and consumption distribution
to a one standard deviation uncertainty shock.
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Notes: The first (second) row shows the percentage change of specific percentiles of the of the
Earnings-to-GDP ratio (consumption) distribution. The solid blue lines represent the posterior
median response, while the dashed area represent the 68% credible bands. The horizon on the
horizontal axis is expressed in quarters.

also contain the zero line at larger horizons), at the cost of mid-low income class.

As for consumption, on the other hand, the uncertainty shock affects almost exclu-

sively the relative weights of the low- and mid-low consumption classes. In fact, the figure

shows that the fast increase in the proportion of households reporting low consumption

levels is associated with an almost identical decrease in the proportion of households re-

porting consumption level in the second fourth of the support. Meanwhile, the relative

weight of the consumption classes belonging to the upper half of the support remain al-

most unchanged. This makes it even clearer that the decrease of the mass in the left part

of the earnings distribution is mainly due to an increase of the pool of unemployed, who

are then compelled to cut down consumption, due to their inability to access consumption

smoothing channels.

In summary, we conjecture that the propagation of uncertainty shocks happens in

two phases. In the short run, the rise in unemployment concerns to a larger extent people

at the lower end of the earnings distribution, who therefore cut down their consump-

tion, while the part of low-income workers that is not laid off actually sees its relative
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Figure 13: Responses of earnings and consumption classes to a one standard deviation
uncertainty shock
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Notes: The first (second) row shows the response of the share of the employed (total) population
belonging to specific earnings (consumption) classes. The solid blue lines represent the posterior
median response, while the dashed area represent the 68% credible bands. The horizon on the
horizontal axis is expressed in quarters.

earnings increased or kept constant. In the subsequent phase, when unemployment is

finally reabsorbed, the size of the low-income group rises at the cost of middle-income

employed people, who however do not seem to reduce their consumption level. This ev-

idence is in line with the findings of Choi and Phi (2023), who show that uncertainty

shocks affect more adversely poor people, while it is in contrast with the results obtained

by Theophilopoulou (2022) for the UK, where poor people income and consumption ap-

peared to be sustained more vigorously by social benefits.

It is interesting to see the reflection of the mechanisms just described in the responses

of the Gini coefficient, which measures the degree of inequality in the distributions and

can be computed from the functional responses produced by the F-SVAR. Figure 14 shows

that the short-run developments generated by the uncertainty shock reduces the total level

of income inequality among employed people but increases the degree of consumption

inequality significantly, while the subsequent phase of the propagation mechanism causes
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Figure 14: Responses of the Gini coefficient to a one standard deviation uncertainty
shock
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Notes: The solid blue lines represent the posterior median response, while dashed blue lines
delimit the 68% credible bands. The horizon on the horizontal axis is expressed in quarters.

a considerable rise in the Gini coefficient, which is reabsorbed only eight years after the

shock. This pattern is consistent with Fischer et al. (2021) who show that an increase in

uncertainty triggers an immediate decline in the Gini coefficient and a subsequent increase

after around three years.

It is also worth noticing that the responses depicted in Figure 14 are very similar

to those that would be obtained by a standard quarterly SVAR(4) in which the Gini

coefficients computed on CPS an CEX data are appended to the vector of macro variables.

These responses are reported in Figure A11 and display the same two-phase propagation

found by the F-SVAR. Clearly, the similarity of the result points to the robustness of our

main findings, but does not imply that a standard SVAR would be sufficient to perform

the analysis. The scope of the F-SVAR is much broader, as it gives the possibility to focus

on any characteristic of interest of the earnings and consumption distributions, and to

enforce the restrictions that are inherent in the space of distributions automatically. On

the other hand, any standard SVAR alternative would inevitably limit the analysis to the

characteristics included in the vector of endogenous variables, and would not guarantee

that responses of these characteristics will be admissible. For example, in a standard
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SVAR containing the Gini coefficient, the corresponding responses could take values below

zero or larger than one; in a standard SVAR containing quantiles, the implied IRFs could

be charachterized by quantile crossing or could take values outside of the domain, e.g.

negative income or consumption levels.

This discussion demonstrates that simply considering how summary statistics, such

as the Gini coefficient, react to uncertainty shocks paints an inevitably partial picture

of the overall distributional dynamics, and could run into problems that undermine the

reliability of the results. For this reason, we believe the F-SVAR represents a more suitable

tool to answer the central empirical question of this paper.

4.4 Investigating the mechanism: Unemployment reactions across

educational levels

One important conjecture we made in the previous subsection is that the decline in the

mass in the left tail of the earnings distribution is driven by changing employment levels

across income classes.

To check that this is the case, we study the responses to uncertainty shocks of

unemployment rates computed for different categories of the work-force. Unfortunately,

we are not aware of any dataset providing employment information for sub-groups of

the population based on their previous income level. However, the Bureau of Labour

Statistics (BLS) provides unemployment rates computed monthly for sub-groups based

on educational attainments, which can serve as a proxy of income classes.16 In particular,

the BLS distinguishes between four educational levels: (i) less than a high school diploma,

(ii) high school diploma but no college, (iii) some college but no degree or some associate

degree, (iv) Bachelor’s degree or higher.

Since the BLS series start in January 1992, using the quarterly dataset would imply

too few observations. Hence, to understand how different education-specific unemploy-

16The average income differential between the categories is indeed substantial and reported periodically
by the BLS. Figure A12 shows the evolution of the median weekly earnings level for the four categories
in the time period for which it is available.
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Figure 15: Dynamic responses of different unemployment categories to a one standard
deviation uncertainty shock
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Notes: The four different lines depict the posterior median of different unemployment rates
across education levels.

ment rates react to an uncertainty shock we add the (logarithm) of these granular unem-

ployment series in the monthly SVAR of Jurado et al. (2015). The auxiliary VAR model

is estimated on a sample going from 1992:M01 (the start of the BLS series) to 2019:M12

(to avoid having to deal with Covid-19-specific outliers in the data).

In Figure 15, we report the (point-wise) posterior median IRFs obtained for the

four sub-groups. The responses provide substantial evidence that workers with a lower

education attainment, who tend to occupy the left part of the earnings distribution, are

those that are lied off more often after an uncertainty shock. The figure tells a remark-

ably consistent story that employment reactions tend to become weaker with increasing

educational attainment.

Considering only posterior medians neglects posterior uncertainty surrounding the

estimates of the IRFs and one might ask whether differences across educational categories

are statistically different form each other. To shed light on this, we report pairwise differ-

ences of the posterior distribution of impulse responses in Figure 16. Since these are the

responses of the differences, we can assess whether a specific horizon h IRF between two

educational levels differs by simply checking whether the corresponding credible intervals

include zero or not.
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Figure 16: Differences between IRFs of different categories
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Notes: Solid lines show the median difference between IRFs of the unemployment rate com-
puted for different categories of the population. Shaded areas represent 68% credible bands.
Categories are: (i) No high school: civilian population 25 years with less than a high school
diploma; (ii) Diploma: civilian population 25 years graduated from high school but no college;
(iii) Some College/Assoiate: civilian population 25 years who attended some college but did
not graduate, or obtained some associate degree; (iv) BA or higher: civilian population 25
years with a Bachelor’s degree or higher educational attainment.

The pairwise comparisons in the figure reveal that the differences are, in fact, highly

significant. Notice that these significant differences persist throughout the impulse re-

sponse horizon, turning insignificant only after around 80 months. This relatively simple

analysis, therefore, supports our conjecture that the short-run decrease of the mass in the

most-left part of the earnings distribution highlighted in Figure 11 is, at least in part,

due to a greater proportion of the people laid off belonging to a low-income class. If

the insights collected from Euro-Area survey responses by Coibion et al. (2024) hold also

for US citizens, then the difference in the unemployment risk of different income classes

can also explain the results we have obtained for the consumption distribution. In fact,

according to their evidence, the households that cut down expenditure more aggressively

in the presence of uncertainty are those whose income is more at risk in periods of high

uncertainty, which we have shown include less specialized workers.
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5 Functional Local Projections

Just as for standard scalar aggregate variables the IRFs can be estimated by Local Pro-

jections (LPs, see Jordà (2005)), the response of distributions to the structural shock

of interest can be estimated by Functional Local Projections (F-LPs). As a matter of

fact, the reason why a F-VAR process was assumed for the joint dynamics of aggregate

variables and the endogenous function f̃t was to have a tractable model in terms of scalar

variables yt and αt, which would allow us to infer the responses of the distribution pt(·)

to an uncertainty shock. However, this assumption is not essential, and nothing prevents

the use of LPs to perform inference about the IRFs of αt, which we defined as IRFα,j,d,h,

and to map them to distributional IRFs as described in Section 2.4. This is the approach

we follow in this section to show that all the results we have discussed so far are not

determined by the modelling choice described in 2.1 or by the priors discussed in 2.3.

Although the estimation of F-LPs is straightforward and can simply be done by

OLS, two points are worth considering. First, as the steady state distribution, pss(·),

cannot be implied by the model, we take it to be the one associated with the sample

average f̄(·), so that pss(x) = g−1
(
f̄(c)

)
. Second, unlike in standard LP applications, we

are not interested in the IRF of one variable at a time. Instead, we are interested in the

joint response of the whole vector αt, IRFα,j,d,h, which then determines the distributional

IRF as: pss+h(·)−pss(·) = g−1
(
ζ(·)′IRFα,j,d,h + f̄

)
−pss(·). As a result, when conducting

frequentist inference, the variance of the estimator of IRFα,j,d,h must account not only

for the presence of serial correlation in the residuals arising in standard LP inference, but

also for the cross correlation across residuals associated with the different αtk’s. Newey

and West (1987) covariance estimator is therefore not enough, Driscoll and Kraay (1998)’s

method is required in this context.

Furthermore, since the shock identification strategy used in this paper only relies

on timing assumptions, it is easy to incorporate them in the estimation of the LP for

αt, as explained by Plagborg-Møller and Wolf (2021). More specifically, continuing to

assume that the uncertainty shock is ordered last in Cholesky-type identification scheme,
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IRFα,N,1,h is given by the βh
1,U coefficient in the following regression:

αt+h = ah +Bh
1

[
y′t,\U , α′

t

]′
+ βh

1,UUm,t +

p∑
l=1

Bh
l+1

[
y′t−l, α′

t−l

]′
+ eh,t, (13)

where we have defined as yt,\U the vector of all aggregate variables except Um,t.

Since in this section we perform inference employing frequentist methods, we cannot

make use of priors to shrink irrelevant parameters toward zero. 17 Furthermore, as there

are 10 variables in the vector yt,\U , the number of parameters to estimate in (13) can

become excessively large when we consider many lags, p, and many FPCs, K. For this

reason, in this section we set p = 1 and K = 3 when focusing on the earnings distribution,

and p = 1 and K = 5 when focusing on the consumption distribution.

To demonstrate that F-LPs are a viable alternative to the F-SVAR, we repeated all

the three artificial data experiments described in Section 3 performing inferences about

IRFα,N,1,h via LP. In the interest of space, the resulting figures are reported in Appendix

H. The results show that also F-LPs do a good job in estimating the responses of interest.

Moreover, the figures in Appendix H also suggest that the well known variance-bias trade-

off that characterizes the comparison between standard LPs and standard SVARs carries

over to the comparison between both approaches. In fact, while at short horizons the

uncertainty around F-LP-based estimates is very limited, at long horizons the variance

of the estimator grows substantially. This does not hold for the F-SVAR in which the

credible bands never inflate excessively. Such comparison is definitely worth more research

and we leave a thorough assessment for future work.

Additionally, in order to show that the regression in (13) actually allows us to

estimate the response to the same shock studied in the previous section, in Figure 17 we

report the IRFs of the macro aggregates estimated by LP. Apart from erratic behaviours

peculiar to LP, the responses are very similar to those estimated through the F-SVAR

and shown in Figure 10.

17Although performing Bayesian inference on F-LP coefficients is possible following the approach of
Ferreira et al. (2023), eliciting priors for such parameters and accounting for the autocorrelation of
projection residuals are not standard tasks. For these reasons, we choose to apply standard frequentist
methods and to leave the Bayesian treatment of F-LPs for future research.
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Figure 17: Impulse response of the macroeconomic aggregates to a one standard devia-
tion uncertainty shock
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Notes: The solid blue lines represent the posterior median response, while dashed blue lines
delimit the 68% credible bands. The horizon on the horizontal axis is expressed in quarters.

Confident that the LP in (13) is able to retrieve the responses to the uncertainty

shock of interest, Figure 18 depicts the distributional IRFs estimated by F-LPs. Although

there are some differences with respect to Figure 11, the general features highlighted by

the two methods are very similar, especially for horizons up to one year.

6 Conclusion

Since the distributional consequences of uncertainty shocks have remained relatively unex-

plored by the literature, we introduced a Functional VAR model to study the propagation

of such shocks on the earnings and consumption distributions.

After showing that the adopted econometric technique is able to reproduce distribu-

tional developments in response of structural shocks in a variety of challenging simulated

experiments, we used the Functional VAR methodology to extend the popular analysis of

Jurado et al. (2015) and to take into account the dynamics of the earnings and consump-
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Figure 18: Distributional LP
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Notes: The first (second) row of the figure shows the difference between the earnings (con-
sumption) distribution after a standard deviation shock and the one prevailing in the steady
state. The solid blue lines represent the posterior median response, while dashed blue lines
delimit the 68% credible bands. h denotes the horizon at which the response is measured. In
the first (second) row, the measure on the horizontal axis is the earnings-to-GDP per-capita
(households consumption - to - per-capita consumption) ratio.

tion distributions. In particular, the Functional VAR we employ is based on a Functional

Principal Component Analysis of the Log Quantile Density associated with the distri-

bution of earnings and consumption, which is in turn estimated starting from available

survey data using kernel methods. Furthermore, we also showed that the same type of

analysis can be easily carried out estimating Functional LP.

Our results show that the effects of uncertainty shocks unfold in two phases. In a

first phase, the economic contraction triggered by the shock is coupled with an increase of

unemployment and a drop in stock prices. At this stage, the fraction of employed people

earning less than the GDP per capita level decreases, and the share of higher-income

workers increases. In a second phase, the unemployment level is gradually reabsorbed

and labour productivity decreases. At the same time, the fraction of employed low-

income people increases, while the employed medium-income class is reduced in size.

As a consequence, the uncertainty shock reduces significantly the total level of earnings
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inequality among employed people in the short run, as measured by the Gini coefficient,

while in the medium term it causes a considerable rise in it,

A potential explanation for this pattern is that, in the short run, a larger proportion

of less specialized low-income workers are laid off due to the economic contraction, while

those that are not laid off see their earnings kept constant. In the longer run, however,

the pool of unemployed people is reabsorbed, but labour productivity declines due to

the previous foregone investments. The lower labor productivity can in turn explain the

increase in the share of low-income employed relative to the steady state distribution, at

the expense of the middle class.
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Online Appendix



A F-SVAR DGP

The reduced form parameters of the VARs used to simulate the data in Section 3.1 and 3.2 are:

Π0 =



0

0

0

0

0


;

Π1 =



0.85 −0.15 0.15 0.15 −0.25

−0.2 0.85 −0.15 −0.25 −0.2

0.15 −0.15 0.85 −0.15 0

0.1 0.15 −0.2 0.85 −0.2

−0.25 0.15 0.15 0.15 0.85


;

Π2 =



−0.3 0.1 0.15 −0.15 −0.1

−0.1 −0.3 0.1 0.15 0.15

−0.05 0.1 −0.3 0.05 −0.1

0.15 −0.1 −0.05 −0.3 −0.05

0.15 −0.15 0.1 −0.1 −0.3


;

Π3 =



0.15 0 0 0 0

0 0.15 0 0 0

0 0 0.15 0 0

0 0 0 0.15 0

0 0 0 0 0.15


;

A1



Π4 =



0.05 0 0 0 0

0 0.05 0 0 0

0 0 0.05 0 0

0 0 0 0.05 0

0 0 0 0 0.05


;

The Omega matrix is formed sampling 100 random matrices R with elements equal to the

product of two standard normal draws multiplied by 0.1, and setting Omega = R ∗ R′. the

matrix A−1
0 is then set to be the lower-tringular Cholesky factor of Ω.
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B F-SVAR DGP 1 - Results with Different K

Figure A1: Functional IRFs - F-SVAR DGP 1 - K = 1

Notes: Red lines show the true responses of pt (ξ) to one standard deviation ε1 and ε2. The
solid blue lines represent the posterior median response, while dashed blue lines delimit the
90% credible bands. h denotes the horizon at which the response is measured.

Figure A2: Functional IRFs - F-SVAR DGP 1 - K = 2

Notes: Red lines show the true responses of pt (ξ) to one standard deviation ε1 and ε2. The
solid blue lines represent the posterior median response, while dashed blue lines delimit the
90% credible bands. h denotes the horizon at which the response is measured.
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Figure A3: Functional IRFs - F-SVAR DGP 1 - K = 3

Notes: Red lines show the true responses of pt (ξ) to one standard deviation ε1 and ε2. The
solid blue lines represent the posterior median response, while dashed blue lines delimit the
90% credible bands. h denotes the horizon at which the response is measured.

Figure A4: Functional IRFs - F-SVAR DGP 1 - K = 15

Notes: Red lines show the true responses of pt (ξ) to one standard deviation ε1 and ε2. The
solid blue lines represent the posterior median response, while dashed blue lines delimit the
90% credible bands. h denotes the horizon at which the response is measured.
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C F-SVAR DGP 2 - Results with Different K

Figure A5: Functional IRFs - F-SVAR DGP 2 - K = 3
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Notes: Red lines show the true responses of pt (ξ) to one standard deviation ε1 and ε2. The
solid blue lines represent the posterior median response, while dashed blue lines delimit the
90% credible bands. h denotes the horizon at which the response is measured.

Figure A6: Functional IRFs - F-SVAR DGP 2 - K = 15
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Notes: Red lines show the true responses of pt (ξ) to one standard deviation ε1 and ε2. The
solid blue lines represent the posterior median response, while dashed blue lines delimit the
90% credible bands. h denotes the horizon at which the response is measured.
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D Krusell and Smith (1998) DGP - Results with Different K

Figure A7: Functional IRFs - Krusell and Smith (1998) DGP - K = 3
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Notes: Red lines show the true responses of the asset distribution to a one standard deviation
productivity shock. The solid blue lines represent the posterior median response, while dashed
blue lines delimit the 90% credible bands. h denotes the horizon at which the response is
measured. Notice that the horizons for which responses are reported are the same as those in
Figure 6 of Chang et al. (2024), the difference in the panels titles only stems from different
timing conventions.

Figure A8: Functional IRFs - Krusell and Smith (1998) DGP -K = 15
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Notes: Red lines show the true responses of the asset distribution to a one standard deviation
productivity shock. The solid blue lines represent the posterior median response, while dashed blue
lines delimit the 90% credible bands. h denotes the horizon at which the response is measured.
Notice that the horizons for which responses are reported are the same as those in Figure 6 of
Chang et al. (2024), the difference in the panels titles only stems from different timing conventions.
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E Uncertainty Shocks - Results with Different K

Figure A9: Functional IRFs - Effects of Uncertainty Shocks on Earings and Consumptio
Distribution - K = 3 and K = 5 respectively
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Notes: The solid blue lines represent the posterior median response, while dashed blue lines delimit the
68% credible bands. h denotes the horizon at which the response is measured.

Figure A10: Functional IRFs - Effects of Uncertainty Shocks on Earnings and Con-
sumption Distribution - K = 15
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Notes: The solid blue lines represent the posterior median response, while dashed blue lines delimit the
68% credible bands. h denotes the horizon at which the response is measured. The measure on the
horizontal axis is the earnings-to-DGP per-capita ratio.
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F Standard SVAR Results

Figure A11
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Notes: The solid red lines represent the posterior median response to a one-standard deviation shock,
while dashed red lines delimit the 68% credible bands. The horizon is measured in quarters.
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G IRFs Unemployment by Educational Attainment

Figure A12: Median weekly earnings
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Notes: The lines show the median weekly earnings of the four categories.
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H F-LP: Artificial Data Experiments

H.1 DGP 1

Figure A13: F-LP: DGP 1

Notes: Red lines show the true responses of pt (ξ) to one standard deviation shocks to ε1 (upper
panels) and ε2 (lower panels). The solid blue lines represent the posterior median response,
while dashed blue lines delimit the 90% credible bands. h denotes the horizon at which the
response is measured.

Figure A14: F-LP vs F-SVAR: DGP 1
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Notes: The solid red line shows and the dashed red lines show the posterior median and the
90% credible bands of the responses inferred by the F-SVAR. The solid blue lines represent
the estimated F-LP, while the light blue area delimits the associated 90% confidence interval.
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H.2 DGP 2

Figure A15: F-LP: DGP 2

Notes: Red lines show the true responses of pt (ξ) to one standard deviation ε1 (upper panels)
and ε2 (lower panels). The solid blue lines represent the posterior median response, while
dashed blue lines delimit the 90% credible bands. h denotes the horizon at which the response
is measured.

Figure A16: F-LP vs F-SVAR: DGP 2
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Notes: The solid red line shows and the dashed red lines show the posterior median and the
90% credible bands of the responses inferred by the F-SVAR. The solid blue lines represent
the estimated F-LP, while the light blue area delimits the associated 90% confidence interval.
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H.3 Krusell and Smith (1998) DGP

Figure A17: F-LP: Krusell and Smith (1998) DGP
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Notes: Red lines show the true responses of the asset distribution to a one standard deviation
productivity shock. The solid blue lines represent the posterior median response, while dashed
blue lines delimit the 90% credible bands. h denotes the horizon at which the response is
measured. Notice that the horizons for which responses are reported are the same as those in
Figure 6 of Chang et al. (2024), the difference in the panels titles only stems from different
timing conventions.
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