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Abstract—This paper presents an off-the-grid estimator for
ISAC systems using lifted atomic norm minimization (LANM).
The main challenge in the ISAC systems is the unknown nature
of both transmitted signals and radar-communication channels.
We use a known dictionary to encode transmit signals and show
that LANM can localize radar targets and decode communication
symbols when the number of observations is proportional to the
system’s degrees of freedom and the coherence of the dictionary
matrix. We reformulate LANM using a dual method and solve
it with semidefinite relaxation (SDR) for different dictionary
matrices to reduce the number of observations required at
the receiver. Simulations demonstrate that the proposed LANM
accurately estimates communication data and target parameters
under varying complexity by selecting different dictionary ma-
trices.

Index Terms—Integrated sensing and communication systems,
lifted atomic norm minimization, semidefinite relaxation.

I. INTRODUCTION

Recent interest in communication and radar spectrum
sharing (CRSS) has led to two main approaches: radar-
communication coexistence and integrated sensing and com-
munication (ISAC) systems [1], [2]. Radar-communication
coexistence develops interference management strategies, al-
lowing both systems to operate without disrupting each other
[3]. ISAC integrates sensing and communication within the
same system, providing real-time cooperation [4]–[7].

ISAC systems not only boost spectral and energy efficiency
but also lower hardware and signaling costs by combining both
functions [8], [9]. These advantages have expanded ISAC’s
applications to fields such as vehicular networks, indoor po-
sitioning, and covert communications [10]–[12]. Unlike tra-
ditional approaches that consider sensing and communication
as separate systems, ISAC mutually designs them for mutual
benefits, maximizing resource use and operational effective-
ness [13], [14].

The main challenge in ISAC reception is that both trans-
mit signals and channels are unknown, making traditional
radar and communication methods ineffective. ISAC receivers
estimate both target parameters and communication data si-
multaneously [1], [15]. Techniques like MUSIC [16] and
ESPRIT [17] struggle with noise and correlated targets, while
compressed sensing (CS) improves resolution but assumes
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grid-based DOAs, leading to errors [18], [19]. These methods
also fail to jointly detect DOAs and communication data.

To address basis mismatch, atomic norm minimization
(ANM) was developed, promoting signal sparsity in a con-
tinuous dictionary, serving as a continuous version of ℓ1 norm
minimization. ANM has been applied in MIMO radar [20],
line spectral estimation [21], and OFDM noise elimination
[22], outperforming conventional methods. It has also been
used for delay-Doppler and angle-delay-Doppler pair recovery
[23], [24]. Lifted ANM (LANM) handles blind detection in
super-resolution problems by estimating both spectral coeffi-
cients and transmit signals [25] [26], addressing AWGN and
differentiating radar from communication signals in spectrum
coexistence [3], [27]. We propose a novel ISAC receiver
design based on LANM that can simultaneously recover target
locations, velocities, delays, DOAs, and communication data
from reflected signals. Despite the previous developments on
the LANM in one dimensional signaling, we introduce a
theorem that adapts the LANM technique for MIMO scenarios
in ISAC systems.

Consider a bistatic radar scenario as shown in Fig. 1.
The transmitter illuminates signals while the receiver collects
echoes from K targets. The challenge is to simultaneously de-
tect the target parameters and estimate the transmitted signals
with communication data. This problem is bilinear and difficult
to solve. Traditionally, it is assumed that a reference link or
pilot signals are used, which wastes bandwidth. The estimated
signal may have demodulation errors, leading to reduced
performance [28]. Additionally, physical obstructions might
block the radio waves, making the direct link unavailable.

We propose a LANM-based approach, assuming transmitted
signals lie on a known low-dimensional random dictionary.
The received signal is modeled as a sparse combination of
low-rank matrices, addressed using LANM. We derive a dual
formulation to ensure exact solutions under certain conditions
and prove that the number of samples required for accurate
estimation is proportional to the number of targets, transmit
symbols, and the coherence of the compression matrix. Differ-
ent compression matrices lead to varying receiver complexity,
allowing us to reduce implementation complexity by either
reducing the number of antennas or lowering the sampling
rate. Simulations confirm that our estimator accurately detects
both communication data and target parameters with adjustable
complexity at the receiver.

Here, we introduce the notation used in this paper. Vectors
and matrices are denoted by boldface lowercase and uppercase
letters, respectively and scalars or entries are non-bold lower-
case. The ∥ · ∥1 and ∥ · ∥2 are ℓ1 and ℓ2 norms, respectively.
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Fig. 1: System model.

The operators tr(·) and (·)H are trace of a matrix, hermitian
of a vector, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an ISAC system with a transmitter having
Nt antennas and a receiver with Nr antennas, targeting K
objects, where K < Nt. The targets are located in the far
field of the arrays, with uniformly spaced transmit and receive
antennas, where the spacing is Nt

2fc
and Nr

2fc
, respectively. The

baseband received signal yr(t) at the r-th receive antenna,
r = {0, · · · , Nr − 1}, is the sum of reflected signals from
the targets, denoted by xk(t) for k = {0, · · · ,K − 1}.
Mathematically, this can be expressed as:

yr(t) =

K−1∑
k=0

Nt−1∑
s=0

αke
i2πrNtϕkei2πsθkxk(t− τ̄k)e

i2πv̄kt, (1)

where i =
√
−1, αk ∈ C is the complex attenuation factor

representing radar path loss and cross-section, θk = − sin(θ̃k)
2

and ϕk = − sin(ϕ̃k)
2 are the angle of departure (AoD) and

angle of arrival (AoA) for the k-th target, respectively, as
shown in Fig. 1. τ̄k and v̄k represent the delay and Doppler
shifts for the k-th target. These parameters θk, ϕk, τ̄k, v̄k can be
translated into the angle, distance, and velocity of each target
relative to the radar. Our goal is to recover the parameters
αk, θk, ϕk, τ̄k, v̄k from the received signal yr(t) and estimate
the probing signals xk(t) containing communication data.
There is no assumed direct transmitter-receiver link, as this
could waste bandwidth and introduce demodulation errors
[28], and obstacles may block direct paths. The transmit signal
is assumed to be band- and time-limited, and the received
signal is sampled at a rate of 1

B over the interval [0, Tt],
where the samples are collected into a vector yr ∈ CL̄, with
L̄ := BT . The p-th entry of yr is given by:

[yr]p =
1

L̄

K−1∑
k=0

Nt−1∑
s=0

|αk|ei2πrNtϕkei2π(sθk+θα
k )

N∑
r=−N

[(
N∑

l=−N

xk(l)e
−i2π rl

L̄

)
e−i2πpτk

]
ei2π

rp
L̄ ei2πvp,

(2)

where τk = τ̄k
T and vk = v̄k

B are the normalized time
and frequency shifts, respectively. Note that we can write
αk = |αk|ei2πθ

α
k . The goal is now to estimate the locations

of the targets, which requires determining the parameters αk,
(θk, ϕk, τk, vk) ∈ [0, 1)4, and recovering the probing signal
xk, k = {0, · · · ,K − 1} that contains communication data,
from the observation model in (2). The number of unknowns
in (2) is in order of O(L̄S), far exceeding the number of
observations, making the problem ill-posed.

To address this, we assume the probing signals xk ∈
CL̄×1, k = {0, · · · ,K − 1}, lie in a known low-dimensional
subspace, represented by a matrix D ∈ CL̄×T with T ≪ L̄,
which we call it the compression matrix. Hence, xk = Dhk,
where hk ∈ CT×1 is an unknown vector carrying the com-
munication data. Recovering xk reduces to estimating hk, as
D is known by both transmitter and receiver. Without loss
of generality, we assume that ∥hk∥2 = 1 for all k. Note that
recovering xk is equivalent to estimating hk since D is known
by both the transmitter and receiver.

Define y = [y0, · · · ,yNr−1]
T and τk := [θk, ϕk, τk, vk]

T .
The array response a(τk) is defined as:

[a(τk)](r,s,l,k,1) = ei2πrNtϕkei2π(sθk+θα
k )DN

(
l

L
− τk

)
DN

(
r

L
− vk

)
,

(3)

where r ∈ {0, · · · , Nr − 1}, s ∈ {0, · · · , Nt − 1}, l, k ∈
{−N, · · · , N}, and DN (t) is the Dirichlet kernel. Using this,
we rewrite (2) as:

[y]j =

K−1∑
k=0

αk[a(τk)](r,s,l,k,1)d
H
(j−l)hke

i2π pr
L . (4)

With the linear operator X and its adjoint X ⋆, then, we can
write

y = X (U). (5)

Equation (5) shows that recovery depends on U , which is
a sparse combination of matrices from the set of atoms

A = {va(τ )H | τ ∈ [0, 1)4, ∥v∥2 = 1}. (6)

The atomic norm of U is defined as the gauge function of
conv(A):

∥U∥A = inf
{∑

k

αk | U =

K−1∑
k=0

αkhka(τk)
H , αk ≥ 0

}
.

(7)

To estimate X (U) from (5), we propose minimizing the
atomic norm:

min
U

∥U∥A

s.t. y = X (U), (8)

Solving this is difficult, so we consider its dual as below

max
q

⟨q,yw⟩R s.t. ∥X ⋆(q)∥⋆A ≤ 1, (9)
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where q is the dual variable and ∥·∥⋆A is the dual atomic norm.
In the following, we present the main results and theorem.

Assumption 1: We assume the columns of DH , denoted as
dl ∈ CT×1, are selected independently and identically from a
population F , satisfying the following conditions:

E[dld
H
l ] = IT , l = {−N, · · · , N},

max |d(i)|2 ≤ µ, (10)

where µ is the coherence parameter and IT is the T × T
identity matrix. We also assume µT ≥ 1 for simplicity,
achievable by selecting a sufficiently large µ.

Assumption 2: We assume all hk are randomly selected
from the complex unit sphere, i.e., ∥hk∥2 = 1.

Assumption 3: The radar parameters (τk, vk, θk, ϕk), k =
{1, · · · ,K}, must satisfy the separation condition:

min
k ̸=k′

max

(
|τk − τk′ |, |vk − vk′ |,

|θk − θk′ |, |ϕk − ϕk′ |
)

≥ 10

NtNr − 1
(11)

where |a− b| is the wrap-around distance on the unit circle.
Note that D, known at both transmitter and receiver, acts as a
compression matrix, while hk can encode different QAM sig-
nals for communication. Normalizing hk still conveys QAM
information, as the receiver knows the modulation scheme and
signal size. Regarding the above discussion, we now present
our main theorem as follows:

Theorem 1: Theorem 1 states that for the linear system in
(1) and its sampled version in (2), if the unknown waveforms
can be expressed as xk = Dhk, where D satisfies Assump-
tion 1 and hk follows Assumption 2, and if the shifts meet the
minimum separation in Assumption 3, then with probability at
least 1−δ, the condition L4 ≥ CµKT log

(
10KT

δ

)
ensures that

U can be recovered through problem (5). This result shows
that, with enough radar samples relative to a logarithmic factor,
an exact solution exists under mild separation conditions.
In the following, we generalize the proposed problem when
the signal is corrupted by AWGN noise. Thus, we consider
the following observation model

yw = X (U) +w, (12)

containing both AWGN with the power ∥w∥2 ≤ σ2. To
estimate X (U) from (5), we propose minimizing the atomic
norm:

min
U

∥U∥A

s.t. ∥yw −X (U)∥2 ≤ σ2, (13)

Consequently, we can write

max
q

⟨q,yw⟩R − σ

4
∥q∥2 s.t. ∥X ⋆(q)∥⋆A ≤ 1. (14)

Solving (14) remains challenging due to the infinite-
dimensional search over [0, 1)4. To address this, we use results
from trigonometric polynomial theory [29] to propose an
semidefinite relaxation (SDR) using matrix inequalities. First,
we define the sum-of-squares relaxation degrees s′, r′, l′, k′,

and extend q by zero-padding. The SDR of problem (14) is
then:

max
q,Q⪰0

⟨q,y⟩R − σ

4
∥q∥2[

Q Q̂H

Q̂ IT×T ,

]
⪰ 0,

Tr (Θl′ ⊗Θk′ ⊗Θs′ ⊗Θr′Q) = δl′,k′,s′,r′ , (15)

where Θ are Toeplitz matrices, and δl′,k′,s′,r′ is the Dirac
function. This convex problem can be solved with tools like
CVX [30].The transmitted data can be obtained by solving the
following optimization problem:

min
gk,∀k,prpr,∀r

√√√√ L∑
j=1

(
[yw]j −

K−1∑
k=0

a(τ̂k)HD̃jgk)

)2

. (16)

In the following subsections, we introduce various compres-
sion matrices, each leading to a different µ, which in turn
impacts the required number of samples at the receiver. This
translates to variations in implementation complexity. For
instance, by fixing the number of time slots, one can reduce
the number of required receiving antennas, and vice versa,
since a smaller µ implies that fewer samples are needed to
recover both the radar parameters and the transmitted signal.

A. Sensing Vectors with Independent Components.

Suppose the components of d are independently distributed
with zero mean and unit variance, which is isotropic. More-
over, if each component follows a light-tailed distribution,
the corresponding measurements are clearly incoherent. A
notable example is when d ∼ N (0, I), known as the Gaussian
measurement ensemble, which is one of the most frequently
studied cases. In this situation, we can use µ = 6 log T as
previously discussed.

B. Subsampled Orthogonal Transforms:

Assume we have an orthogonal matrix such that U∗U = nI
where n is the size of the matrix. Now, consider a sampling
process that selects rows of U uniformly and independently
at random, then construct D. When U is the DFT, this cor-
responds to the random frequency model described earlier. In
this case, the distribution is isotropic, and µ = maxij |Dij |2.
For cases where D is either a Hadamard matrix, we have
µ = 1.

C. Subsampled Tight or Continuous Frames:

We can extend the previous example by subsampling a tight
frame or even a continuous frame. A key example of this is
the Fourier transform with a continuous frequency spectrum,
where

d(t) = ei2πωt

and ω is selected uniformly at random from [0, 1]. This
distribution is isotropic and satisfies µ = 1. One real-world
application of this concept is in magnetic resonance imaging
(MRI), where frequency samples often do not align with
an equispaced Nyquist grid. When time and frequency are
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Fig. 2: The absolute value of the dual polynomial is shown in the (ϕ, ρ) and (τ, v) domains in Figs. 2(a) and 2(b), respectively.
Blue stars indicate the estimated radar parameters.
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Fig. 3: The NMSE and SER of the proposed estimator, using
different compression matrices, are compared with ANM as a
benchmark in Figs. 3(a) and 3(b), respectively.

swapped, this approach is aim to sampling a nearly sparse
trigonometric polynomial at randomly chosen time points
within the unit interval. In the following section, we carry
out numerical experiments to evaluate the performance of
the proposed estimator and compare the results for different
compression matrices.

III. NUMERICAL RESULTS

This section evaluates the performance of LANM for joint
radar parameter and transmit data estimation, comparing it
with ANM [20]. Radar parameters are randomly generated,
with target coefficients as i.i.d. zero-mean complex Gaussian.
Number of observations and compression matrix size are
provided in each simulation. All ANM settings match LANM,
except for the compression matrix.

Our evaluation starts by plotting the norm of the dual
polynomial in X ⋆(q⋆) where q⋆ is the solution of (15) with
L = 225 observed signals. We estimate radar parameters
by identifying locations where the norm reaches 1. Fig. 2
illustrates the two-dimensional dual polynomial. Radar param-
eters (τk, vk, θk, ϕk) are detected where the dual polynomial’s
magnitude is 1. For clarity, we show the dual polynomial in

two-dimensional plots: one for (τ, v) with fixed (θ, ϕ), and the
other for (θ, ϕ) with fixed (τ, v).

Before the next simulation, we need to first define
the normalized mean-square error (NMSE) as E[∥v −
v̂∥2/∥v∥2], where v =

∑K−1
k=0 αka(τk)

H and v̂ is the
recovered radar quantity with the parameters K̂, α̂, τ̂ . Next,
we define the symbol error rate (SER) as SER =
E
[

1
KT

∑K−1
k=0

∑T
t=1 I(hk,t−ĥk,t)

]
where I is a binary indicator

such that I = 0 if hk,t = ĥk,t, otherwise, I = 1.

We compare the NMSE and SER results of LANM with
pilot-aided ANM and different compression matrices, includ-
ing Fourier, Hadamard, and Gaussian, across varying SNR
levels, defined as SNR = 10 log10

1
δ2

, with L = 225 in in
Figs. 3(a) and 3(b), respectively. The results show that as
SNR increases, the NMSE and SER improve for all methods
and matrix types. Despite estimating both the channel and
transmitted signal, LANM performs similarly to ANM, which
relies on the known transmit signal. With a fixed number of
samples, both Hadamard and Fourier matrices achieve nearly
the same NMSE and SER performance, as shown in Figs.
3(a) and 3(b). However, the Gaussian matrix performs worse
than the other two, aligning with the discussion in Section II,
where µ = 6 log T and larger than µ = 1 for the Hadamard
and Fourier transform matrices. These findings also hold for
SER, where Hadamard and Fourier matrices outperform the
Gaussian matrix. Additionally, Fig. 3(b) highlights that as SNR
increases, SER decreases, but performance declines with larger
QAM constellations.

We analyze the phase transition graphs of LANM, focusing
on the average success rate as it relates to the number of
targets and subspace dimension T for different numbers of
measurements and compression matrices. This analysis ex-
plores the trade-off between the number of detected symbols
and radar channel recovery performance. In each of the 20
Monte Carlo simulations, we compute the normalized error
|U − Û |F/|U |F , where Û represents the recovered lifted
matrix. If the error is less than or equal to 10−3, the recovery
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Fig. 4: The success rate of LANM versus the number of targets and the subspace dimension T when the number of measurements
changes in Figs. 4(a), 4(a), and 4(b) for Hadamard, Fourier transform, and Gaussian matrices, respectively, for k = 2.

is considered successful. The graphs show that increasing
the number of measurements leads to an improved number
of detected symbols. A comparison of Figs. 4(a) and 4(b)
indicates that the recovery performance of the Hadamard and
Fourier transform matrices are almost the same and outperform
the Gaussian matrix in Fig. 4(c), which is consistent with the
discussion at the end of Section II. The results across these
matrices demonstrate similar trends in both NMSE and SER.

IV. CONCLUSION

In this paper, we proposed a LANM-based estimator
for ISAC super-resolution receivers, enabling simultaneous
radar target parameter estimation and communication sym-
bol decoding. By employing different compression matri-
ces—Fourier, Hadamard, and Gaussian—we demonstrated that
LANM maintains robust performance across varying SNR
levels, with similar trends in NMSE and SER across the
matrices. The results highlight that increasing the number of
measurements improves recovery performance. Our findings
confirm LANM’s ability to efficiently balance between sensing
and communication tasks with flexibility in implementation
complexity.
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