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NON-PERSISTENCE OF STRONGLY ISOLATED SINGULARITIES, AND
GEOMETRIC APPLICATIONS

ALESSANDRO CARLOTTO, YANGYANG LI, ZHIHAN WANG

Abstract. We obtain a generic regularity result for stationary integral n-varifolds assumed to

have only strongly isolated singularities inside N -dimensional Riemannian manifolds, without

any restriction on the dimension (n ≥ 2) and codimension. As a special case, we prove that

for any n ≥ 2 and any compact (n + 1)-dimensional manifold M the following holds: for a

generic choice of the background metric g all stationary integral n-varifolds in (M, g) will either

be entirely smooth or have at least one singular point that is not strongly isolated. In other

words, for a generic metric only “more complicated” singularities may possibly persist. This

implies, for instance, a generic finiteness result for the class of all closed minimal hypersurfaces

of area at most 4π2 − ε (for any ε > 0) in nearly round four-spheres: we can thus give precise

answers, in the negative, to the questions of persistence of the Clifford football and of Hsiang’s

hyperspheres in nearly-round metrics. The aforementioned main regularity result is achieved

as a consequence of the fine analysis of the Fredholm index of the Jacobi operator for such

varifolds: we prove on the one hand an exact formula relating that number to the Morse indices

of the conical links at the singular points, while on the other hand we show that such an index

is non-negative for all such varifolds if the ambient metric is generic.
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1. Introduction

1.1. Context and geometric motivations. In 1983, Hsiang [22] solved Chern’s spherical

Bernstein conjecture by constructing a sequence of infinitely many, pairwise distinct, embedded

minimal hyperspheres in the round four-dimensional sphere. This result is to be compared with

what happens in one dimension less, as determined by the earlier rigidity theorems obtained

by Almgren [4] and Calabi [10]. Such hyperspheres are constructed by means of equivariant

methods and the analysis of the resulting singular ODE system in the quotient space. It turns

out that their (unit multiplicity) varifold limit is the spherical suspension of a Clifford torus

inside an equatorial three-sphere, thus a singular minimal subvariety (henceforth refereed to

as Clifford football), which is smooth at all points except the north and south pole.

It is an interesting question, brought to the attention of the first-named author about a

decade ago by Neves, whether such a picture persists when considering nearly-round metrics

on S4. In particular, one may ask whether for any metric g sufficiently close to the round one

- say in the smooth topology - the Riemannian manifold (S4, g) still contains infinitely many

(embedded) minimal hyperspheres. This question stems from the well-known link between

rigidity phenomena characterizing special submanifolds in round spheres, and the resulting

scarcity phenomena for slightly deformed metrics. Indeed, as a reflex of the well-known char-

acterization of simple closed geodesics on the round two-sphere as equatorial circles it was

proven by Morse that there are nearly-round metrics on S2 that have only three simple closed

geodesics, and similarly (as a reflex of the aforementioned rigidity theorems by Almgren and

Calabi) White [47] proved that there are nearly-round metrics on S3 that have only four min-

imal hyperspheres. Aiming for an understanding of the situation in ambient dimension more

naturally leads to the question above.

In principle, one may attack this problem by means of a perturbative approach of essentially

PDE-theoretic nature, by first showing (ideally) that any nearly-round metric allows for a -

suitably defined - singular minimal subvariety modelled on the aforementioned Clifford football,

and then desingularizing the football in question to obtain the desired minimal hyperspheres.

Such an approach turns out to be at the very least challenging, because a direct application of

the implicit function theorem is (unsurprisingly) obstructed by the large kernel of the Jacobi

operator of the football; in suitable weighted Sobolev spaces such a kernel has actually dimen-

sion 18 (cf. [11], see later discussion in Section 3) and it is unclear how to possibly handle it by
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means of a Lyapunov-Schmidt reduction; in fact, it is a consequence of the present work (see,

specifically, the statements of Corollary 1.4 and Corollary 1.6 below), that such a program is

inevitably doomed to fail.

1.2. Main results. For indeed, in this article we approach Neves’ question from a totally

different perspective, and answer it in strong negative terms. Such a conclusion ultimately

descends from our main theorem, which can be stated as follows:

Theorem 1.1. Given a closed manifold M of dimension N ≥ 3, there exists a generic subset

G0 of the space of smooth metrics on M with the following property: for every g ∈ G0, any

g-stationary integral n-varifold in (M, g), 2 ≤ n < N , will:

(i) either be entirely smooth, or

(ii) have at least one singular point that is not strongly isolated, or

(iii) have only strongly isolated singular points all having Morse index equal to N.

The precise notion of “strongly isolated singularity” is recalled in Definition 2.3. In partic-

ular, in the codimension one case (that is to say: when N = n + 1) the third alternative may

not possibly happen (see Remark 2.9) and so we conclude an unconditional generic regularity

result.

Corollary 1.2. Given a closed manifold M of dimension n + 1 ≥ 3, there exists a generic

subset G0 of the space of smooth metrics on M with the following property: for every g ∈ G0,

any g-stationary integral varifold will either be entirely smooth or have at least one singular

point that is not strongly isolated.

Remark 1.3. In the statements above and throughout this article the notion of “genericity” is

understood in the sense of Baire; a well-known result by White (see [47, 49]) ensures that the

set of smooth (C∞) Riemannian metrics such that any closed, embedded minmal hypersurfaces

are non-degenerate (namely: have no non-trivial Jacobi fields) is indeed generic. We can thus

assume to have fixed, once and for all, a subset G of the class of smooth Riemannian metrics

enjoying such a property, and when we write - for instance - that g ∈ N (ε) is a generic metric

we mean g ∈ N (ε) ∩ G . In particular, in the previous statement we shall tacitly agree that

G0 ⊂ G .

Now, the connection with the geometric question we started with, and more specifically with

the problem of perturbing the Clifford football to nearby minimal varifolds lies in the fact that,

if we impose an area bound - that is to say: a suitable upper bound on the mass of our integral

varifold - then the same varifold necessarily has a very special singular set (all singularities are

indeed strongly isolated) and thus has the structure of what we call an MSI (see Definition

2.3 and Proposition 5.1). Informally speaking, one can say that under such bound the Clifford

football represents, in terms of regularity, the worst that can possibly happen. As a result, we

have the following geometric consequence:

Corollary 1.4. Given any ε > 0, there is a neighborhood N (ε) of the round metric in the

space of smooth metrics on S4 such that for a generic metric g ∈ N (ε), the following is true:

Every mod 2 cyclic g-stationary integral varifold with mass less that 4π2− ε is entirely smooth.
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This statement does not, in itself, give a direct response to Neves’ question, although it

indicates a definite obstruction to the possible “perturbation-desingularization” approach de-

scribed above. But, in fact, Theorem 1.1 also implies a generic finiteness result under a pure

area bound:

Corollary 1.5. Given any ε > 0 there exists a neighborhood N (ε) of the round metric on S4

such that for a generic choice of g ∈ N (ε) the Riemannian manifold (S4, g) shall contain only

finitely many closed, embedded minimal hypersurfaces of area less that 4π2 − ε.

We recall that 2π2 equals the area of an equatorial S3 in round S4; we expect the threshold

4π2 to be sharp, based on the following argument. As will also be mentioned later (in Remark

1.7), any nearly-round metric on S4 will support (at least) five minimal hyperspheres, any pair

of which shall interesect by virtue of the Frankel property. Now, one expects that the desin-

gularization of (any) such pair would give rise to infinitely many closed minimal hypersurfaces

with area arbitrarily close to 4π2 (by virtue of the implicit function theorem).

A statement describing the implications at the level of the “perturbation” problem we posed

above requires some notation and a brief digression. One can “parametrize” the Hsiang hy-

perspheres by an integer k ∈ N, agreeing that Mk is the Hsiang hypersphere intersecting the

Clifford football transversely along exactly 2k + 1 tori; in particular for k = 0 one recovers

the equatorial three-dimensional hypersphere. Of course, one can act (both on the the Clif-

ford football, and on any of Hsiang’s hypersurfaces) via isometries of round S4; considering

such actions is already necessary if one attempts to perturb such hypersurfaces “one (minimal)

hypersphere at a time” (see the sequel of this introduction for more on this matter).

For an open set N of Riemannian metrics on S4 (with N ∋ g0) let us assume to have a

continuous map

(1) Ψk : N → O(5) × C1(Mk;R)

such that Ψ
(2)
k (g) defines a normal graph over the image through T (k) =: Ψ

(1)
k (g) of Mk - a

hypersurface henceforth simply denoted Mk(g) - that is minimal in metric g; in particular, if

this is the case we note that the “area” map N ∋ g 7→ ‖Mk(g)‖ is itself continuous.

That being said, and recalling that the area of the Clifford football equals π3 ≃ 31.00063 it fol-

lows from the aforementioned varifold convergence that there exist at most finitely many (con-

jecturally none) Hsiang hyperspheres whose area exceeds the threshold value 4π2 = 39.47842;

thus note that the conclusion of Corollary 1.5 cannot possibly true if we remove the genericity

assumption (one counterexample being indeed the round metric). With all of this notation in

place and keeping in mind all these remarks, the preceding statement implies this one:

Corollary 1.6. For any ε > 0 the following holds.

Given any neighborhood N ∋ g0 of smooth Riemannian metrics on S4 there are only finitely

many integers k1 < k2 < . . . , kℓ and, for each such integer, only a finite set I(kj) such that a

continuous map Ψ
ij
kj
, (ij ∈ I(kj)) as per (1) and satisfying

sup
g∈N

‖M ij
kj

(g)‖ < 4π2 − ε

can possibly exist.
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This means that, no matter how small the neighborhood of nearly-round metrics we con-

sider (and no matter how cleverly we choose the isometries T (k)), only finitely many Hsiang

hyperspheres shall possibly persist.

Remark 1.7. We explicitly stress that the finiteness result given in Corollary 1.5 cannot possibly

be upgraded to a uniform bound. For indeed, a standard application of the Lyapunov-Schmidt

reduction (applied “one hypersphere at a time”) plus simple Morse-theoretic arguments (cf.

[47]) allows to conclude, for any k ∈ N the existence of a neighborhood Nk ∋ g0 such that for any

g ∈ N the Riemannian manifold (S4, g) shall contains at least one minimal hypersphere defined

by continuous deformations - understood in the sense above - of exactly as many isometric copies

Mk; in particular for any metric g ∈ ⋂0≤k≤k Nk the manifold (S4, g) shall contain a finite but

arbitrarily large number of closed embedeed minimal hypersurfaces, provided one takes k big

enough.

Let us add some comments on our “generic regularity” theorem, that is Theorem 1.1, without

restricting to the codimension one case. When considering the class of n-dimensional stationary

varifolds with only strongly isolated singularities (cf. Definition 2.3) in an N -dimensional

Riemannian manifold, we can rule out, generically, all singularities whose link has Morse index

strictly larger than N (note that the weak inequality is, in fact, always satisfied, see Remark

2.9). It is appropriate for us to remark that, when the link in question is disconnected, such a

condition is, in fact, certainly fulfilled with the sole (well justified) exception of links consisting

of the disjoint union of exactly two half-dimensional equatorial spheres (that is to say: 2n = N).

The fact that there may (in fact: there should) be persistent isolated singularities in the case of

connected link is less obvious, although e. g. we can note that the Veronese embedding of CP2

inside the 7-dimensional round sphere does not bound any smooth five-dimensional manifold

(so that the cone over such CP2 cannot possibly be smoothed out by minimal submanifolds).

This clearly provides partial albeit compelling evidence in that direction; we refer the reader

to the striking recent work by Liu [28] for a thorough discussion of these aspects and the

construction of a number of different examples of homologically area-minimizing submanifolds

with non-smoothable singularities.

Remark 1.8. More generally, one can study (after Cartan) the following three examples of

focal submanifolds of isoparametric minimal hypersurace in spheres. For F = R,C,H set

m = dimR(F) and consider the embedding map FP2 → S3m+1 ⊂ R3m+2 = F3 × R2 defined by

[u : v : w] 7→ (|u|2 + |v|2 + |w|2)−1 ·
(√

3vw̄,
√

3wū,
√

3uv̄,
3

2
(|u|2 − |v|2), 1

2
(2|w|2 − |u|2 − |v|2)

)

This gives the classical Veronese minimal RP2 in S4, a minimal CP2 in S7 and a minimal HP2

in S13. It is by now standard to prove that none of the three projective planes in question

bounds a smooth manifold (of real dimension, respectively, 3, 5, 9) since they have odd Euler

characteristic. We are led to believe that all of the corresponding minimal submanifolds have

Morse index equal to 3m + 2 (i. e. N in the notation of Theorem 1.1) - which at the moment

is only known for F = R, see Remark 2.9 - and provide models of persistent singularities.

1.3. Previous work. In recent years we have witnessed impressive advances on the theme of

“generic regularity” of minimal hypersurfaces [12,14,15,17,25–27], not to mention the related

(equally striking) advances on the study of generic mean curvature flows, which can simply



6 ALESSANDRO CARLOTTO, YANGYANG LI, ZHIHAN WANG

not properly be accounted for here. (For various significant results on generic properties of

geodesics and geodesic nets the reader is instead referred to [13,31] as well as references therein.)

Besides being constrained to the codimension one case, many such results typically concern

area-minimizing hypersurfaces, either with respect to a fixed boundary (i. e. in the framework

of Plateau’s problem) or with respect to a fixed homology class (cf. [50, Problem 108] and

[3, Problem 5.16]); this is the case, in particular, for [14,15], which very significantly refined the

pioneering theorem by Smale [42]. Instead [12,17,25–27,43] rather deal (in various forms) with

the somewhat more general case of minimal hypersurfaces arising from min-max techniques (in

the spirit of Almgren-Pitts) thus not necessarily (and not typically) stable ones; however such

works are constrained to ambient dimension 8 and allow for singularities that are modelled

on stable minimal hypercones (as reflected by the assumption of local stability of the minimal

hypersurfaces in question). (We wish to stress that, on the contrary, [14, 15] allow for more

general singular sets, which in particular do not need to consist of isolated points.)

It is to be remarked that many of such contributions build upon the pioneering work by

Hardt and Simon [21]: going beyond the results in Bombieri-De Giorgi-Giusti [8] (constructing

minimal smoothings of the Simons cone in R2n, 2n ≥ 8, by an ODE approach) they proved that,

in fact, every regular minimizing hypercone can be uniquely (up to scaling) perturbed to one

side to produce a smooth minimizing hypersurface asymptotic to it near infinity. Making using

of this, they succeded in showing that minimizing hypersurfaces with a generic boundary in

R8 are actually smooth. Such results about the minimal smoothing of a minimizing hypercone

were generalized by the third-named author without assuming the hypercone in question being

regular (see [44]), while the strong uniqueness (up to a scaling) of such one-sided smoothing was

then established by Edelen-Szekelyhidi [18] for “cylindrical” hypercones under a pure density

assumption.

All that said, there are two aspects of substantial novelty in the present work: on the one

hand we deal here with isolated singularities that are modelled on regular yet not necessarily

stable cones (which is in fact necessary to ultimately resolve the geometric questions we posed

at the very beginning of this introduction, as already displayed by the aforementioned Clifford

football) while on the other hand our analysis applies to minimal n-dimensional submanifolds

in an N -dimensional ambient manifold, without restricting to the codimension one case. The

case of surfaces (n = 2 thus N ≥ 4) is somewhat special and can tackled with tools that

are quite different than the ones employed here; the reader should in particular compare our

results with those of White [45,46] (obtaining, respectively a full “generic regularity result” for

surfaces minimizing area with respect to a fixed boundary, or in a fixed homology class), and

the ones by Moore [33,34] (much related to earlier work by Böhme and Tromba, [7]) which are

casted in the language of (prime) parametric minimal surfaces.

1.4. Approach. Our main results here, while crucially building on previous work of the second

and third author (see, in particular, [27]), and to some extent on the deep contributions by

Edelen [17], are obtained by a blend of different techniques and ideas. In a nutshell, our

approach consists in studying the Fredholm index of the Jacobi (stability) operator of minimal

submanifolds with only strongly isolated singularities (see Definition 2.3 of MSI), acting on

suitably defined weighted Sobolev spaces. Employing powerful tools in linear Analysis, we

first obtain an exact formula giving the value of such an index in terms of the normalized

Morse index of links of the cones at the singular points; we refer the reader to Theorem 3.2
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for a precise statement. Roughly speaking, the presence of singularities perturbs the natural

Fredholm index zero Schrödinger operator, in a way that is solely encoded by the structure of

the singularities. Such a counting formula, in spite of its striking simplicity, appears to be new

to the best of our knowledge. Since, by virtue of general lower bounds for the Morse index of

minimal submanifolds in round spheres, the local contributions are all non-positive (i. e. ≤ 0)

they force the Fredholm index of any MSI to be itself less or equal than zero, with strict

inequality in many case of interest (for instance: unconditionally in the codimension one case).

We then complement such a result by showing that, on the other hand, generically (in the

sense of Baire) such an index must be non-negative (i. e. ≥ 0); the approach that we present

(see Section 4) essentially follows - at least at a conceptual level - ideas going back to the

fundamental work of White [47], where one obtained suitable local and global Sard’s lemmata

for the natural projector of metric-MSI pairs onto the first factor; while in that context

one could exploit a Banach manifold structure (and thus ultimately invoke Smale’s Sard’s

theorem) here the use of (pseudo-)canonical neighborhoods, which are significantly wilder than

metric balls, does not allow for the employment of such pre-existing methodologies, and we

rather need to work harder to unwind such tools and recast/adapt them to our own setting.

It is in that respect that we crucially exploit the tools of [27] and [43]; we warn the reader,

however, that due to our necessity of dealing with unstable (infinite Morse index) cones, and

without any codimensional restriction, several changes (and corresponding adaptations) had

to be performed, thereby not allowing for a direct quote of technical lemmata (which would

have shortened and simplified this manuscript).

1.5. Organization of the paper. Besides the present introduction, this manuscript consists

of four sections plus five appendices, that contain technical yet essential material that we de-

cided to separate from the main body of the paper with the sole scope of improving readability,

thereby leading to a more direct path towards the main theorems. In Section 2 we present the

general setup of this work and collect some of the basic definitions we employ in the sequel.

Then, Section 3 combines some preliminary facts about analysis on regular minimal cones with

the proof of our “counting formula” for the Fredholm index of the Jacobi operator of an MSI.

Hence, we move to the detailed study of the generic behaviour of such an operator, which

we carry through in Section 4, crucially building upon various results proven in the various

appendices. We then capitalize such efforts in Section 5, devoted to the proofs of the main

theorems, also getting back to the motivating geometric applications we presented above.

Concerning the “technical material”, we start in Appendix A by collecting certain key fea-

tures of the minimal surface equation (system) in arbitrary codimension and then proving

several useful facts about the “transfer of normal sections” between nearby subvarieties. It is

already at this level that one can get an appreciation of the difference in complexity between

the codimension one case and the case of higher codimension: while in the former setting the

transfer of normal section is - at least at a local level - essentially trivial (since one can just

pre-compose with the parametrization map), in the latter one needs to project back onto the

normal bundle of the base submanifold, which poses the problem of discussing how natural

geometric PDEs transform under this operation, and how one may handle the error terms in

the resulting equations. We then move on to Appendix B, devoted to certain three-circle in-

equalities, which allow to compare the behaviour of an MSI at different scales thereby deriving

L2-decay (more generally L2-non concentration) estimates that are key to analyzing the limit
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behaviour of tame Jacobi fields (cf. Definition 4.12). In Appendix C we discuss the problem of

quantitative (uniform) uniqueness of tangent cones at strongly isolated singularities, which in

particular allows to obtain Corollary C.2 concerning the “uniform convergence at all scales” of

a stationary integral varifold on approach to a strongly isolated singularity (crucially building

on both [38] and, more closely and recently, on the advances in [17]). In turn, such a statement

serves as input for Appendix D devoted to a fine analysis of the mutual parametrization of

two (possibly three) nearby MSI, that comes into play in the core of the paper when we prove

the fundamental limit equation (see Lemma 4.25). We expect that some of these tools will

also be helpful for other related studies in the near future. Lastly, in Appendix E we discuss

(following Edelen’s study of the codimension one case) how to effectively “parametrize” the

space of all MSI inside a Riemannian manifold, and thus how to obtain a controlled covering

theorem (namely: Theorem 4.23) for the space of metric-MSI pairs by means of countably

many (carefully designed) canonical pseudo-neighborhoods. Note that, in comparison to [17],

for submanifolds in codimension other than one one loses the natural “order structure” coming

from the trivialization of the normal bundle, thereby requiring the introduction of new tech-

niques, e. g. to handle the combinatorics of “cascades” of isolated conical singularities. The

covering theorem in question is then one of the three crucial ingredients in the proof of the

global Sard theorem, Theorem 4.1, that we alluded to before.

2. Notation, setup and preliminary results

2.1. MSI and general setup. Let us start with some basic definitions; since we will be

working with ambient metrics of possibly finite degree of regularity, say Ck,α, it is appropriate,

to avoid ambiguity, to state what we mean by regular set of an integral varifold.

Definition 2.1. Let (M, g) be a Riemannian manifold of dimension N ≥ 3. Given an integral

varifold V , of dimension 2 ≤ n < N , we say that p ∈ spt(‖V ‖) ⊂M belongs to its regular set if

there exists r > 0 such that spt(‖V ‖)∩Bg(x, r) is a smooth, embedded, compact, connected n-

dimensional submanifold of class C2 with boundary contained in ∂Bg(x, r). The set of regular

points of V shall be denoted by Reg(V ); its complement in spt(‖V ‖) will be referred to as

singular set of V , i. e. we let Sing V = spt(‖V ‖) \ Reg(V ).

Remark 2.2. Of course, Reg(V ) (respectively: Sing V ) is open (respectively: closed) in spt(‖V ‖).

More importantly, by standard elliptic regularity (Schauder theory applied to the minimal sur-

face system) if - in the setting of the preceding definition - p ∈ Reg(V ) and the ambient

metric g is Ck,α then, in fact, spt(‖V ‖) is n-dimensional submanifold of class Ck+1,α in an open

neighborhood of the point in question (see Appendix A, specifically Proposition A.1 therein);

in particular if the ambient metric is smooth (by which we shall mean C∞) then so will be

spt(‖V ‖) away from the singular set of V .

Let us proceed and introduce the the objects that we study throughout this article:

Definition 2.3. Let (M, g) be a Riemannian manifold of dimension N ≥ 3. For every sta-

tionary integral varifold V , of dimension 2 ≤ n < N , we call a point p ∈ Sing(V ) strongly

isolated, if some tangent cone of V at p is regular, i. e. it is of multiplicity one and has

smooth link (equivalently: if the singular set of such a cone coincides with the origin). We

will then say that a stationary integral varifold V has only strongly isolated singularities

(and refer to it as MSI) if either Sing(V ) = ∅, or every p ∈ Sing(V ) is strongly isolated.
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Remark 2.4. We remark that, in the setting of the preceding definition, at any singular point p ∈
Sing(V ) there holds uniqueness of the tangent cone in question, thanks to a deep result of Simon

[38] (see also [40]). Furthermore, the corollary stated after Theorem 5 therein implies that every

such singular point has a neighborhood where there is exactly one singular point: hence, since

Sing(V ) is closed and thus compact whenever the ambient manifold is, the finite covering

property tells us that there are only finitely many such singular points (thereby justifying the

terminology we employ).

Remark 2.5. Relying on the content of the previous remark, we will switch to a somewhat more

natural (or, possibly, more convenient) notation: given one such varifold, we will rather employ

the letter Σ = Σn to denote it, meaning that V = |Σ| (that is to say: V is the multiplicity 1

integral varifold associated to the submanifold Σ) and in our work we will practically identify Σ

with the regular part of Σ. Thus Σ is treated as a regular (cf. Remark 2.2) but not necessarily

closed submanifold. The (unique) tangent cone of Σ at a singular point p is denoted by Cp(Σ),

or simply Cp if there is no risk of confusion.

Based on White’s natural homomorphism one can associate to an integral varifold a mod 2

flat chain (see [48]); if such object has zero boundary (in the sense of the standard boundary

operator in the latter setting) we will simply refer to it as mod 2 cyclic varifold.

Remark 2.6. For later reference, let us note the following fact: an MSI Σ can always be

regarded (in the sense of White’s natural homomorphism [48]) as a mod 2 cyclic stationary

varifold. This can be justified as follows. By Sard’s theorem and the slicing theorem, we

can choose a sequence ri → 0 such that Σi := Σ \ Bri(Sing Σ) is a mod 2 flat chain with

boundary ∂Σi, and, as soon as n ≥ 2, the mass of ∂Σi converges to 0 as i → ∞. By the

Federer-Fleming compactness theorem ([20], see also [19]), Σ = limi Σi is a mod 2 flat chain

and ∂Σ = limi ∂Σi = 0. Hence, Σ is a cycle.

To fix the notation, we then let Σ have only strongly isolated singularities p1, . . . , pℓ with

(respectively) regular cones C1, . . . ,Cℓ and associated links S1, . . . , Sℓ (that is to say: Si :=

Ci ∩ SN−1). When we wish to stress the role of the basepoint (rather than the label) we shall

write Cp and Sp instead. In this setting and under such assumptions, one can find a compact

set Σ0 ⊂ Σ such that Σ \ Σ0 =
⊔ℓ

i=1Ei and for each value of the index i we have that Ei is

diffeomorphic to the product of the corresponding link with the interval (1,∞). That said, we

let ρΣ,g : Σ → R denote a smooth (C∞) positive function equal to the distance ρi, in metric g,

from the singular point pi along Ei.

2.2. First and second variation. For a smooth submanifold Σ = Σn (not necessarily closed,

cf. Remark 2.5) in a Riemannian manifold (M, g) we shall denote by TΣ its tangent bundle

and we let V := V(Σ,M) denote its normal bundle instead. For sections X, Y ∈ Γ(TΣ) the

second fundamental form of Σ inside M is defined by

IIΣ,g(X, Y ) = (∇XY )⊥

where ∇ is the Levi-Civita connection in metric g, and ⊥ = ⊥,g stands for the orthogonal

projection onto V; the trace of the second fundamental form is then the (vector-valued) second

fundamental form

HΣ,g = trΣ(IIΣ,g).
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In the setting of Definition 2.3, it is a standard consequence of the first variation formula that

an MSI has mean curvature identically equal to zero on its regular part.

We will routinely work with sections of the bundle V and corresponding differential operators;

in particular we let ∇⊥ := ∇⊥
Σ,g denote the metric connection on V that is determined by ∇,

and shall further denote by ∆⊥
Σ,g the Laplace operator on the normal bundle of Σ, namely V.

If we then consider the second variation of the n-dimensional area functional at the g-critical

point Σ we fill find, for any section (here assumed smooth) u ∈ Γ(V)

(2) δ2Σ[u] = −
ˆ

Σ

g(u, LΣ,gu) d‖Σ‖

where LΣ,g is the “Jacobi operator” of Σ, which takes the form (see e. g.[41])

(3) LΣ,gu = ∆⊥
Σ,gu+ g(IIΣ,g, u) IIΣ,g + trΣRg(u, ·, ·)

with Rg denoting the (1, 3)-curvature tensor of the ambient manifold (M, g); if {X1, . . . , Xn}
is any local orthonormal frame of the tangent sub-bundle TΣ then we mean

g(IIΣ,g, u) IIΣ,g =
n∑

i,j=1

g(IIΣ,g(Xi, Xj), u) IIΣ,g(Xi, Xj), and trΣRg(u, ·, ·) =
n∑

i=1

Rg(u,Xi, Xi).

Remark 2.7. For later reference, let us recall here the following basic fact. If u ∈ Γ(V) and

X, Y are (any otherwise unspecified) sections of TΣ, in the setting above, then the identity

g(Y, u) = 0 implies, by covariant differentiation in the direction of X , that

g(Y,∇Xu) = −g(IIΣ,g(X, Y ), u).

By the arbitrariness of X, Y this identity allows to identify the “tangential” component of ∇u
as −g(IIΣ,g, u) and thereby, to relate bounds for ∇u to bounds for ∇⊥u by reference to the

second fundamental form of the submanifold in question.

There is a special case that warrants further discussion (and partly special notation): for a

regular minimal cone C, of dimension n, in RN , we define the link S := C ∩ SN−1 (note that

Sd shall henceforth denote the round unit sphere in Euclidean Rd+1); here we are not assuming

S to be orientable, however recall that in the codimension one case (N = n + 1) a simple

topological argument ensures that any such S is two-sided hence orientable. At the link S we

thus associate a Jacobi operator LS that has the form

LSu := ∆⊥
Su+ (g(IIS, ·) IIS +(n− 1))u

where the background unit round metric is understood throughout, and whose spectrum is a

discrete sequence

λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λk . . .→ +∞,

under the sign convention that LSuj = −λjuj. We shall now introduce the following - a

posteriori very convenient - notion of “effective Morse index”.

Definition 2.8. Let Σ denote a closed, embedded minimal submanifold in the round sphere

of dimension N − 1, i. e. SN−1 ⊂ RN , and let C denote the cone over Σ having vertex at the

origin 0 ∈ RN (that is: C := 0××Σ). Then we define the effective Morse index of Σ as

(4) I(C) := ( index of the Jacobi operator of C ∩ SN−1 ) −N.

(Here it is to be stressed that we are not assuming Σ to be connected.)
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The following recollections will be repeatedly referred to in the sequel of this article.

Remark 2.9. (A) In the codimension one case it is well-known that the Morse index of any

non-equatorial S is at least N + 1: there always holds I(C) ≥ 1.

(B) In the case of higher (in fact: arbitrary) codimension Simons proved in [41] that the

Morse index of the Jacobi operator of C ∩ SN−1 is at least N for any connected n-

dimensional minimal submanifold that is not a great sphere (and any equatorial n-

sphere has of course index equal to N − n). Hence, there always holds I(C) ≥ 0 since

if the link is disconnected then necessarily n ≤ N/2 and so the total Morse index of

the link is at least 2(N − n) ≥ 2(N/2) = N . It is an open question to determine

all (n− 1)-dimensional minimal submanifolds Σ in SN−1 whose Morse index equals N

(thereby saturating the preceding bound): as noted by Kusner-Wang [24, Theorem 4.8]

recent work by Karpukhin [23] implies that the Veronese embedding RP2 → S4 does

provide such an example, whether by contrast all minimal 2-tori in S4 have index at

least 6.

2.3. Functional spaces and augmentation by translation-like sections. For any given

ambient Riemannian manifold (M, g) and a smooth submanifold Σ = Σn (again: not necessarily

closed) we will be working with functional spaces of maps that are either R-valued, or V-

valued (that is to say: sections of the aforementioned normal vector bundle V = V(Σ,M)).

We will routinely write Lp(Σ) (respectively: Lp(Σ;V)) for Lebesgue spaces of R-valued (resp.:

V-valued) maps, as well as W k,p(Σ) (and W k,p(Σ;V)) for standard Sobolev spaces instead.

(Of course, such vector spaces may or may not have desirable functional-analytic properties

depending on the actual, additional assumptions on Σ). Furthermore, we will deal with the

vector spaces of smooth sections, namely C∞(Σ) and C∞(Σ;V), and with smooth compactly

supported ones, that are C∞
c (Σ) and C∞

c (Σ;V). The local counterparts of such spaces will also

prominently come into play, in particular, Lp
loc,W

k,p
loc and Ck,α

loc (with either target). Here we

wish to stress and reiterate that, in the case of an MSI, as per Definition 2.3, we are working

on the open manifold corresponding to the regular part of the integer varifold in question.

In the specific case when Σ is (the regular part of) an MSI we will further define weighted

spaces, as follows. Given a multi-index β = (β1, . . . , βℓ) ∈ Rℓ, we shall now define the functional

spaces we need. To that aim, let us agree to denote by ρβ a positive function that equals ρβi

Σ,g

along the end Ei ⊂ Σ; in fact, without loss of generality, it is convenient for the purposes of

the present paper to assume that ρ ≤ 1 at all points of Σ. For k ≥ 0 and finite p ≥ 1 we let

W k,p
β (Σ) to be the Banach space completion of C∞

c (Σ) with respect to the norm

‖u‖W k,p
β

:=

(
k∑

j=0

ˆ

Σ

|ρ(−β+j)∇(j)u|pρ−n d‖Σ‖
)1/p

.

It is also possible to define weighted Sobolev spaces W−k,p
β (Σ) using the language of dis-

tributions; for manifolds with asymptotically cylindrical ends this is done e. g. in reference

[32] and it is standard to adapt the treatment to manifolds with asymptotically conical or

conically singular (CS) ends (see e. g. [35]), which in particular allows to cover the case under

consideration. A posteriori, there holds a Banach space isomorphism (W k,p
β (Σ))∗ ≃W−k,p′

−β−n(Σ).
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Similarly, one defines Ck,α
β (Σ) to be the Banach space completion of C∞(Σ) with respect to

the norm

‖u‖Ck,α
β

:=
k∑

j=0

sup
Σ
ρ(−β+j)|∇(j)u|+ sup

x 6=y∈Σ
distg(x,y)<ρ(x)/2

|ρ(−β+k+α)(x)∇(k)u(x) − ρ(−β+k+α)(y)∇(k)u(y)|
dg(x, y)α

.

If α = 0, we denote Ck,0
β (Σ) simply by Ck

β(Σ).

Some fundamental facts about Analysis on manifolds with conical singularities or, more

generally, on conifolds have been collected, for instance, in [35] (see also references therein); for

our purposes we recall the following version of the Sobolev embedding theorem. In the setting

above, assume k ∈ N, l ∈ N∗ and p ≥ 1. Given a multi-index β for all β′ ≤ β the following

statements hold:

(i) If lp < m then there exists a continuous embedding W k+l,p
β (Σ) →֒ W

k,p∗
l

β′ (Σ);

(ii) If lp = m then there exists a continuous embedding W k+l,p
β (Σ) →֒ W k,q

β′ (Σ) ;

(iii) If lp > m then there exists a continuous embedding W k+l,p
β (Σ) →֒ Ck,α

β′ (Σ).

Here we have denoted the Sobolev-dual exponent of p by p∗ℓ , namely p∗ℓ = mp
m−ℓp

; the second

item holds true for all q ∈ [p,∞), and the third item for all α ∈ [0,min {1, ℓ−m/p}).

Now, all the definition and basic results above can easily be adapted to the case of sections

of any fixed (real) vector bundle over Σ, as opposed to the simplest case of scalar-valued

maps; in particular, again in the setting above, we will be interested in V := V(Σ,M) and the

corresponding spaces W k,p
β (Σ;V) and Ck,α

β (Σ;V). That being said, we wish to single out a case

that warrants special notation: when for some τ ∈ R we take βi = τ (for all i = 1, . . . , ℓ) we

shall simply write W k,p
τ (Σ;V) or Ck,α

τ (Σ;V) in place of W k,p
β (Σ;V) or, respectively, Ck,α

β (Σ;V).

Lastly, we will need to possibly “augment” such spaces in the terms that follow.

Definition 2.10. We define a function (section) φ ∈ Ck,α
loc (Σ;V) translation-like if for every

q ∈ Sing(Σ), there is a neighborhood U ∋ q in M and v ∈ TqM (viewed as a vector field in U

using the normal coordinates) such that under normal coordinates xi centered at q,

φ|U(x) = Π⊥
x (v),

where

Π⊥
x : TxM → TxM

is the g-orthogonal projection map onto T⊥
x Σ(= Vx).

Hence:

Definition 2.11. If W k,p
loc (Σ;V) and Ck,α

loc (Σ;V) are the spaces of sections that are locally W k,p

or, respectively, Ck,α then one sets

Ŵ k,p
τ (Σ;V) := {u ∈ W k,p

loc (Σ) : ‖u− φ‖W k,p
τ

< +∞ for some translation-like function φ}.
and

Ĉk,α
τ (Σ;V) := {u ∈ Ck,α

loc (Σ) : ‖u− φ‖Ck,α
τ

< +∞ for some translation-like function φ}.

Let us discuss, very concretely, the effects of such an “augmentation”; we will refer, for

the sake of notational definiteness, to weighted Sobolev spaces, but the discussion would be
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identical in the case of weighted Hölder spaces. In essence, for τ > 0 (thus imposing decay at

the singular tips of the limit cones) we simply have that

(5) Ŵ k,p
τ (Σ;V) = W k,p

τ (Σ;V) ⊕XTS

where the vector space XTS has dimension exactly equal to Nℓ (notation as in Section 2.1),

with a basis being given by the collection of functions

(6)
{

(1 − ζΣ,g,r0) × Π⊥
x (v) : i = 1, . . . , ℓ, v ∈ TpiM

}

where ζΣ,g,r0 is the smooth cutoff function defined in the dedicated paragraph of Section 2.6

(so that 1 − ζΣ,g,r0 transitions from the value 1 for rΣ,g ≤ r0 and 0 for rΣ,g ≥ 2r0 in terms of a

suitable scale r0 > 0).

Remark 2.12. Note that the vector space XTS comes naturally equipped with a quotient norm;

however, being finite-dimensional, such a norm is equivalent to any norm of our liking. For

technical reasons that will emerge at a later stage (cf. Corollary B.6 and Lemma 4.26) we will

assume to work with the L∞ norm determined by the ambient Riemannian manifold (M, g).

2.4. Normal graphs and transfer of sections. For each of the following definitions, we let

(M, g) denote an ambient Riemannian manifold (not necessarily complete) and Σ0,Σ1 denote

smooth submanifolds, again possibly open. Furthermore, set V0 (respectively: V1) denote

the normal bundle of Σ0 (respectively: Σ1) in (M, g). We shall now present two related, yet

different, notions of “graphicality”: the first notion is essentially local and has to do with the

description of a (suitable portion of a) submanifold as a graph over its tangent space at a point,

while the second rather pertains to viewing an MSI as a normal graph over a nearby reference

MSI.

Definition 2.13. In the setting described above, we define the regularity scale of Σ0 to be

the function

rΣ0,g : Σ0 → R+

determined by letting rΣ0,g(x) be the supremum (least upper bound) of all r > 0 such that the

following conditions hold:

(i) r < injradM,g(x), and r−2‖(exp−1
x )∗g − geuc‖C4(B(r)) ≤ 1;

(ii) there exists φ : dom(φ) ⊂ TxΣ0 → T⊥
x Σ0, of class C2, satisfying the inequality

r−1|φ| + |∇̊φ| + r|∇̊2φ| ≤ 1 and

(expx)−1(Σ0 ∩Bg(x, r)) = graphTxΣ0
(φ)

where we identify the pair (TxΣ0, TxM) with (Rn,RN) and set

graphTxΣ0
(φ) = {(x, φ(x)) : x ∈ dom(φ))} .

Remark 2.14. Note that, by the very definition above “a bound on the regularity scale implies

a curvature bound, as well as an area bound”, i. e. in the setting above

(7) | IIΣ0,g(y)|g ≤ C/rΣ0,g(x), ∀y ∈ Bg(x, rΣ0,g(x)/C)

and

(8) ‖Σ0‖(Bg(x, rΣ0,g(x)/C)) ≤ CrnΣ0,g(x)

for a constant C = C(M, g) ≥ 2 only depending on the ambient manifold. Hence, if the

ambient manifold is compact we can - by means of a standard covering argument - derive a
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global, uniform area bound as soon as we are given a positive, uniform lower bound on the

regularity scale of Σ. Therefore, it is by now standard to show (cf. e. g. [37]) that a uniform,

positive lower bound on the regularity scale implies a compactness result with respect to

graphical, smooth convergence (with multiplicity one); we will invoke this result for a sequence

{Σj}j≥1 of smooth, closed minimal submanifolds of dimension n− 1 in the unit round sphere

of dimension N − 1.

Remark 2.15. We wish to explicitly stress that, in absence of restrictions on the range of n

(with respect to N), assuming a uniform bound on the second fundamental form and area does

not imply smooth graphical convergence with multiplicity one. For instance, one may consider

Σ = Σ(d) to be the disjoint union of the two spheres in S5 obtained by intersecting with two

three-dimensional subspaces only meeting at the origin, whose distance is equal to d in G(3, 6):

as d → 0+ clearly Σ(d) will converge to an equatorial two-sphere with multiplicity two. This

phenomenon is ruled out by a positive lower bound on the regularity scale.

Definition 2.16. In the setting above we shall say that Σ1 is a κ-Ck graph over Σ0 in an

open subset U ⊂M if there exist U ∩ Σ0 ⊂ Ω0 ⊂ Σ0 and φ ∈ Ck(Ω0;V0),

Σ1 ∩ U ⊂ graphΣ0
(φ) := {expx(φ(x)) : x ∈ Ω0} ⊂ Σ1

implicitly assuming such a definition is well-posed, depending on the injectivity radius of the

ambient manifold, and moreover
∑

p=0...,k

sup
x∈Σ0

(
r
p−1
Σ0,g

(x) · |(∇⊥)pφ(x)|g
)
≤ κ.

Remark 2.17. Let δ0 ∈ (1/4) be the dimensional constant determined by Lemma D.1. If for

i ∈ {1, 2}, Σi is a δ20-C2 graph over Σ0 in U , then for every x̌ ∈ Σ0 such that Bg(x̌, rΣ0,g(x̌)) ⊂
U , the assumptions of Lemma D.1 are satisfied for η̌−1(Σj), ř−2η̌∗g in place of Σj , g therein,

j ∈ {0, 1, 2}, where ř := δ0rΣ0,g(x̌) and η̌ : x 7→ expg
x̌(řx). Therefore, Lemma D.1 allows us to

quantitatively compare the graphical section of Σ2 over Σ1 with the difference of the graphical

sections of Σi over Σ0, i ∈ {1, 2} as well as of slightly translated graphs. For this important

technical reason, we introduce the following convention:

In the setting of Definition 2.16, we call Σ1 a C2 graph if it is a δ20-C
2 graph.

Definition 2.18. In the context of the preceding definition, under the specification that Σ0

be an MSI in (M, g), we define the graphical radius rΣ1
Σ0,g

(x) of Σ1 over Σ0 (in the precise

sense just declared) under metric g as the infimum over all nonnegative function r on Sing(Σ0)

so that Σ1 is a C2 graph over Σ0 in the open set

M \
⋃

x∈Sing(Σ0)

Bg(x, r(x)) .

We use GΣ1
Σ0,g

to denote the (uniquely defined) graphical section over Σ0 of Σ1 under metric

g wherever defined, which we then extend by zero to an L∞ section on the whole Σ0, so that

GΣ1
Σ0,g

∈ L∞(Σ0;V0).

Remark 2.19. We explicitly point out that the previous definition (like the following one) will

sometimes be employed, as a special case, for pairs of n-dimensional (non-trivial, yet regular)

minimal cones in Euclidean RN .
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Definition 2.20. Let (M, g) be a Riemannian manifold of dimension N ≥ 3, and let {gj}j≥1

be a sequence of Ck,α Riemannian metrics converging, in that Banach space, to g as j → ∞.

Assume further, to be given an MSI Σ in (M, g) as well as for every j ≥ 1 an MSI Σj in

(M, gj). We shall say that the sequence {Σj}j≥1 converges to Σ in Ck′,α′

loc (for 0 ≤ k′ ≤ k + 1

and 0 ≤ α′ ≤ α) if, as one lets j → ∞, the following two conditions hold:

r
Σj

Σ,g(x) → 0 for all x ∈ Sing(Σ)

and for any r > 0

‖GΣj

Σ,g‖Ck′,α′(Σ\Bg(Sing(Σ),r)) → 0.

That said, whenever we have “graphical convergence” we can in fact “transfer sections”

employing the exponential map. In order to clarify this point, we give the following:

Definition 2.21. In the setting of Definition 2.16, set Σ1 = graphΣ0
(φ). Given any u : Σ1 →

V1 we let TΣ1
Σ0,g

(u) : Σ0 → V0 be defined as follows

TΣ1
Σ0,g

(u)(x) = [(expx(φ(x)))−1
∗ (u(expx(φ(x))))]⊥g .

In practice, in this paper we will deal with “transferring sections” in two special cases:

• a sequence of MSI {Σj}j≥1 converging (in F-metric, with multiplicity one) and in Ck′,α′

loc

as per Definition 2.20 to a reference “base” MSI Σ;

• an MSI that – based on [38] – can be written, locally around q ∈ Sing(Σ) as a normal

graph over its unique tangent cone Cq = Cq(Σ) in TqM .

Note that the second instance can also be phrased in terms of “convergence” on approach to q

by the decay properties of the defining normal section.

The key analytic features of the transfer operators are collected in Proposition A.3, in a way

that is equally well applicable to both circumstances. The second special case (normal graph

over tangent cone) will also feature prominently in the second part of Appendix B, whose key

results will in turn be employed in Section 4.

2.5. An ancillary computation about translation-like sections. The following result

will be profitably used throughout the paper (for instance in the proof of Lemma 4.14).

Lemma 2.22. Let (M, g) be a closed Riemannian manifold, and let Σ be a g-stationary varifold

with only strongly isolated singularities (MSI). For any translation-like section φ : Σ → V :=

V(Σ,M) belonging to the space XTS there holds LΣ,gφ ∈ L∞(Σ) and there exists a constant

C = C(g,Σ) such that, if φ = x⊥ around q ∈ Sing(Σ) then (in that same neighborhood)

‖LΣ,gx
⊥‖L∞ ≤ C|x|,

where |x| denotes the norm of x ∈ TqM with respect to the metric g. In particular, there holds

LΣ,gφ ∈ W 0,p
−ε (Σ;V) for any p ≥ 1 and any ε > 0.

Proof. We work in the neighborhood of q ∈ Sing(Σ) endowed with geodesic normal coordinates

centered at the point in question. Thus, with slight notational abuse, we will assume Σn ⊂
(RN , g) and φ = x⊥; we shall employ the well-known asymptotic expansion

(9) gij(x) = δij −
1

3
Rijkℓx

kxℓ +O(|x|3), (x→ 0).
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Hence, by letting as usual r := |x|, there holds in particular for the Christhoffel symbols and

their first derivatives

(10) Γk
ij = O(r), and Γk

ij,ℓ = O(1), (r → 0+).

Now, it suffices in fact to consider the case when g(x,x) = 1 at q and prove the desired local

L∞ bound, for the claim then comes by a standard scaling argument.

That said, for a fixed vector field x =
∑N

i=1 xi∂
i we need to compute at any x ∈ Σ

(11) (LΣ,g(x
⊥))(x) =

[
d

ds

]

s=0

HΣ+sx,g(xs)

where xs is the unique element in the intersection ∪t∈[0,2s] expx(tx⊥) ∩ (Σ + sx), which is well-

defined for s = s(x) sufficiently small. In fact, due to the assumed minimality of Σ we have
[
d

ds

]

s=0

HΣ+sx,g(xs − (x+ sx)) = g(HΣ,g,x
⊥ − x) = 0

and so we are actually left with computing
[
d

ds

]

s=0

HΣ+sx,g(x+ sx) =

[
d

ds

]

s=0

HΣ,τ∗sxg(x)

where the right-hand side is now the variation of mean curvature of a fixed submanifold with

respect to a deformation of the ambient metric, and we have set τW (x) = x + W . To move

further let us recall that, if we denote h := [ d
dt

]|t=0g(t) then there holds in general, again under

the minimality assumption
[
d

dt

]

t=0

HΣ,g(t) = −g(IIΣ,g, h) + ((divΣh)#)⊥g − 1

2
trΣ ∇⊥gh;

working in local coordinates
{
x1, . . . xn, xn+1, . . . , xN

}
where {∂1, . . . ∂n} (and, respectively:

{∂n+1, . . . , ∂N}) form a local basis for the the tangent (resp. normal) space to Σ the three

terms above need to be understood as follows :

−g(IIΣ,g, h) = −gipgjqhpqΓa
ij∂a, ((divΣh)#)⊥g = gijgabhib,j∂a, trΣ ∇⊥gh = −gijgabhij,b∂a

for indices 1 ≤ i, j, p, q ≤ n, n+ 1 ≤ a, b ≤ N and summation over repeated indices. (This can

indeed be checked, for instance, by means of a simple computation in such local coordinates.)

As a result, since in our case
[
d

ds

]

s=0

τ ∗sxg = Lxg = Sym(∇x)

(that is: the Lie derivative of the metric g in the direction x, which equals the “symmetrized

covariant derivative” of x with respect to the metric g) we will have, in the end

(12) LΣ,g(x
⊥) = −g(IIΣ,g, Sym(∇x)) + ((divΣ Sym(∇x))#)⊥g − 1

2
trΣ ∇⊥g Sym(∇x).

At this stage we simply need to note that the tensor h := Sym(∇x) satisfies, in view of (10)

and the constancy of x the bound ‖h‖g = O(r) as r → 0+, and so, by inspecting all terms of

the right-hand side of (12) we conclude that each of them is uniformly bounded as r → 0+ and

so will the same conclusion hold for LΣ,g(x
⊥), as claimed. �
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Remark 2.23. By inspecting the previous proof it is straightforward to see that, in fact, the

constant C = C(g,Σ) can be chosen uniformly for all pairs (as per Definition 4.10 below)

(g′,Σ′) ∈ Mk,α
n (M) satisfying the bounds

‖g′‖Ck,α ≤ Λ, rΣ′,g′ ≥ Λ−1ρΣ′,g′

where we recall that ρΣ′,g′ denotes the distance function to Sing(Σ′) in (M, g′). That is to say:

the claim of Lemma 2.22 holds true for all φ ∈ XTS for a constant C = C(Λ).

2.6. Conventions. We shall collect here some more notation and conventions that are implic-

itly assumed throughout the paper.

Cutoff functions. First of all, let ζ ∈ C∞(R; [0, 1]) be a cutoff function (fixed once and

for all) such that ζ ≡ 0 on (−∞, 1] and ζ ≡ 1 on [2,+∞). Hence, given as above an ambient

Riemannian manifold (M, g), an MSI Σ and r0 > 0, we let

(13) ζΣ,g,r0(x) := ζ(distg(x, Sing(Σ))/r0).

When convenient we will simplify this notation; for instance given a sequence of data of the

type above we may write ζj in place of ζΣj ,gj ,rj . Specific conventions of this sort will however

always be declared.

Metric notions. In RN we shall denote by geuc the standard Euclidean metric, by distgeuc
the associated distance and by ∇̊ its Levi-Civita connection. Furthermore, we let B(x, r) denote

the open Euclidean ball of center x ∈ RN ; in the special case of balls centered at the origin

we shall simply write B(r). Lastly, for Euclidean annuli we write A(x, r, s) = B(x, s) \ B(x, r);

when x is the origin we convene to write A(r, s). In a Riemannian manifold (M, g) we let distg
denote the corresponding distance and by ∇ the Levi-Civita connection. (We agree that all

metrics are smooth, i. e. C∞, unless otherwise stated.) It is convenient to explicitly indicate the

background metric when talking about balls and annuli, so we will write Bg(x, r) (respectively:

Ag(x, r, s)) for the ball of center x ∈ M and radius r > 0 (respectively: for the annulus of

center x and radii 0 < r < s). At certain (relatively rare) points of the paper we will need to

deal simultaneously with multiple metrics, in which case we will rather indicate the selected

metric explicitly, like e g. for ∇g in lieu of ∇ and for expg
x in lieu of expx when employing the

exponential map; in particular, this will be the case in Appendix A.

Use of constants. Throughout this article we shall employ the letter C to denote a

constant that is allowed to vary from line to line (or even within the same line); we shall stress

the functional dependence of any such constant on geometric quantities by including them in

brackets, writings things like C = C(Λ, σ) or similar. The dimension of the ambient manifold

(that is: N) and of the subvarieties we work with (namely: n) are fixed (i. e. we do not need

to ever vary them in our arguments) and so, for notational simplicity, we agree not to indicate

them among the parameters our constants depend upon; the only (explicitly stated) exception

to such a rule is Appendix D, where (for instance) we determine the constant δ0 = δ0(N) that

was mentioned above after the definition of κ-Ck graph (Definition 2.16). Lastly, in the rare

cases when – within a certain proof – it is appropriate to keep track of different constants

(for instance because they display different functional dependence, or need to be chosen in a
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certain order) we avoid ambiguities by employing different labels or numbers to indicate such

constants. This will always be explicitly remarked if appropriate.

3. An index-theoretic perspective on generic regularity

As anticipated in the introduction, we shall prove in this section an “index-counting formula”

of independent interest. To get there, it is convenient to open a short digression pertaining

to the analysis of the Jacobi operator of regular minimal cones in Euclidean space, which

will anyways come into play multiple times along the course of this work (for instance, most

prominently in Appendix B).

3.1. Analysis on a regular minimal cone. Given n ≥ 2 and N > n let CN,n denote

the collection of non-trivial regular n-dimensional minimal cones C in Euclidean RN , always

understood as multiplicity one varifolds.

Thus, for C ∈ CN,n be a regular minimal cone, recall that S := C ∩ SN−1 is a smooth

minimal submanifold in SN−1 that is not an (n− 1)-dimensional equator; as a result, we stress

in particular that CN,n is actually empty when N = 3 and n = 2. We can parametrize C by

(0,+∞) × S → C, (r, ω) 7→ x = rω.(14)

At the cone C ⊂ RN one deals with the Jacobi operator (r := |x|)

LC = ∂2r +
n− 1

r
∂r +

1

r2
(LS − (n− 1)).

(Note that, compared to the general notational conventions stipulated in Section 2 here we

omit the explicit indications of the background metric for LC and LS.)

If one looks for homogenenous Jacobi fields, arguing by separation of variables (cf. [9]) the

only possible rates of growth/decay are those solving the algebraic equation (one for each choice

of the label j parametrizing the eigenfunctions on the link, with the sign conventions declared

above)

γ2 + (n− 2)γ − (λj + (n− 1)) = 0

and so we get

(15) γ±j (C) = −
(
n− 2

2

)
±
√(

n− 2

2

)2

+ (λj + (n− 1)) ∈ C.

We collect these numbers in the set (henceforth referred to as asymptotic spectrum of C)

(16) Γ(C) := {deg(w) : w is a homogeneous Jacobi field on C} ≡ {ℜ(γ±j ) : j ≥ 1} ⊂ R

and conveniently define

(17) γ−(C) := sup(Γ(C) ∩ R<1) < 1 .

Remark 3.1. Note for later reference that the inequality λj < 0 (that corresponds to the “index

contributions” of the link) is true if and only if

(18) γ+j = −
(
n− 2

2

)
+

√(
n− 2

2

)2

+ (λj + (n− 1)) < 1.

With this in mind, it is convenient for us to set γ∗ = −(n− 1) and γ∗ = 1 (that are the roots

corresponding to setting λj = 0). Furthermore, due to the presence of translations in Euclidean

RN , it is always the case that 0 ∈ Γ(C) and so it follows that γ−(C) ≥ 0 for any C ∈ CN,n.
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That said, and conveniently set µj = λj + (n− 1) for any j ≥ 1, a general real-valued Jacobi

field v ∈ C∞
loc(C) is thus given by a linear combination of homogeneous Jacobi fields,

v(r, ω) =
∑

j≥1

(v+j (r) + v−j (r))ϕj(ω),(19)

where

v+j (r) = c+j · rγ+
j ;

v−j (r) =

{
c−j · rγ−

j , if µj 6= − (n−2)2

4
;

c−j · rγ−

j log r, if µj = − (n−2)2

4
.

(20)

for some c±j ∈ R if µj ≥ −(n− 2)2/4, while instead c±j ∈ C, c−j = c+j when µj < −(n− 2)2/4.

3.2. An index-counting formula. Here is the main result of this section:

Theorem 3.2. Let (M, g) be an N-dimensional closed Riemannian manifold and let Σ be a

stationary integral n-varifold with only strongly isolated singularities (as per Definition 2.3 of

MSI). Let

(21) τ ∈
(

sup
p∈Sing(Σ)

γ−(Cp), 1

)
.

Then for every integer k ≥ 2, the Jacobi operator

LΣ,g : Ŵ k,2
τ (Σ;V) →W k−2,2

τ−2 (Σ;V)

is a Fredholm operator of index

îndexτ (LΣ,g) = −
∑

p∈Sing(Σ)

I(Cp) .

Towards the proof of this result, let us first handle the effect of the aforementioned “augmen-

tation”. We will employ the following functional-analytic statement, whose proof is straight-

forward:

Lemma 3.3. Let X, Y be Banach spaces and let T : X → Y be a bounded linear operator.

Assume X0 ⊂ X be a closed subspace of finite codimension equal to d ∈ N and let T0 denote the

restriction of T to X0. Then T is Fredholm if and only if T0 is, and the corresponding indices

are related by the equation

index(T ) = index(T0) + d.

Proof of Theorem 3.2. We claim that the operator LΣ,g : W k,2
τ (Σ;V) → W k−2,2

τ−2 (Σ;V) is Fred-

holm and that its index satisfies

(22) indexτ (LΣ,g) = −
∑

p∈Sing(Σ)

(I(Cp) +N) = −Nℓ−
∑

p∈Sing(Σ)

I(Cp)

where, we recall, ℓ is the notation we employ to denote the number of singular points of Σ.

If that is the case, then the desired conclusion comes at once from Lemma 3.3 since - like

we discussed in Section 2.3 - as soon as τ > 0 (which is indeed the case, cf. Remark 3.1)

W k,p
τ (Σ;V) is a closed subspace of Ŵ k,p

τ (Σ;V) of codimension equal to Nℓ.

That said, in order to prove (22) we will appeal to Lockhart-McOwen theory (specifically to

Theorem 6.2 and Section 7 in [29]; see also Section 9 of [35], to be specified to the “conically
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singular” (CS) case only). For this reason we shall consider the set Γ(Ci) (as per (16)) and

further set

(23) Γ(Σ) :=
{
γ = (γ1, . . . , γℓ) ∈ Rℓ : γi ∈ Γ(Ci) for some i ∈ {1, . . . , ℓ}

}
.

Let then L∗
Σ,g denote the formal adjoint of LΣ,g : W k,2

τ (Σ;V) → W k−2,2
τ−2 (Σ;V), so (by the

duality result recalled in Section 2.3) we will then have

(24) L∗
Σ,g : W 2−k,2

2−τ−n(Σ;V) → W−k,2
−τ−n(Σ;V);

let indexτ (L∗
Σ,g) denote the Fredholm index of such an adjoint. Since however LΣ,g is formally

self-adjoint (when acting on smooth, compactly supported sections) and by elliptic regularity

the Fredholm index of LΣ,g is independent of the choice of k within any connected component

of Rℓ \ Γ(Σ) (namely: in any connected component of the complement of the union of all

hyperplanes determined by indicial roots) we have that indexτ (L∗
Σ,g) = index2−τ−n(LΣ,g). On

the other hand, we can rely on the usual “orthogonality relations” for the adjoint, which (in

the context under consideration) give indexτ (L∗
Σ,g) = − indexτ (LΣ,g). Hence combining these

two equations we finally get

(25) index2−τ−n(LΣ,g) = − indexτ (LΣ,g).

The next step is then to compute the difference indexτ (LΣ,g) − index2−τ−n(LΣ,g) at least for

suitably chosen values of τ ; it is here that the indicial roots (and their multiplicities) come into

play. In order to relate this number to the Morse index of the links, keeping in mind Remark

3.1 we note that picking

τ ∈
(

sup
p∈Sing(Σ)

γ−(Cp), 1

)

there holds in fact −n + 1 < 2 − τ − n < τ and the interval (2 − τ − n, τ) intercepts all

(and only) those indicial roots associated to negative eigenvalues of the links, namely to index

contributions. That said, we further note that each such eigenvalue “generates” two indicial

roots (possibly coinciding, i. e. one root with multiplicity two).

Hence, for any such fixed value of τ the weight-crossing formula in [29] gives

indexτ (LΣ,g) − index2−τ−n(LΣ,g) = −2
∑

j=1...,ℓ

(I(Cj) +N)

and so, by (25) we then get the claimed conclusion. �

3.3. The case of the Clifford football in the four-sphere. Let us now revisit the previous

discussion by specializing to the case of our primary interest, that is the application of this

result to the analysis of the Clifford football in S4.

Example 3.4. In this case we have N = 4, n = 3 and ℓ = 2, each of two singularities being

modelled on the “Clifford cone”, the cone over the Clifford torus in S3. The eigenvalues of the

Jacobi operator of the link are computed - by separation of variables - to be

λp,q = 2[(p2 + q2) − 2], (p, q ∈ N)

so that, in particular (properly accounting for the multiplicity of the associated eigenspaces)

λ1 = −4, λ2 = λ3 = λ4 = λ5 = −2, λ6 = λ7 = λ8 = λ9 = 0
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and λk > 0 for any k ≥ 10. We then get the corresponding values of γ:

γ±1 = −1

2
±

√
−7

2
, γ+2 = γ+3 = γ+4 = γ+5 = 0, γ−2 = γ−3 = γ−4 = γ−5 = −1

γ+6 = γ+7 = γ+8 = γ+9 = 1, γ−6 = γ−7 = γ−8 = γ−9 = −2

and for k ≥ 10 we will have instead γ+k > 1 and γ−k < −2.

Hence γ−(C1) = γ−(C2) = 0 and so Theorem 3.2 is a statement about the Fredholm index

of the Clifford football when each weight βj (equivalently: τ in that setting) lies in the open

interval (0, 1). Next, referring to the previous discussion, the counting of the indicial roots

refers to the interval (−2, 1) and gives indexτ (LΣ) = −10 for all τ ∈ (0, 1)2; note that for

τ ∈ (1, 2) we get instead indexτ (LΣ) = −18.

4. Meagerness of singularities with positive normalized Morse index

In this section we will complement the previous, general index-counting formula with the

following assertion about the generic sign of the Fredholm index of the Jacobi operator. We

let, throughout, n ≥ 2, N > 2 and assume k ≥ 4 as well as α ∈ (0, 1).

Theorem 4.1. Let (M, g) be an N-dimensional closed Riemannian manifold with a generic

choice of metric g, understood either in Ck,α or in C∞, and let Σ be a stationary integral

n-varifold with only strongly isolated singularities. Let τ satisfy equation (21). Then

îndexτ (LΣ,g) ≥ 0 .

Remark 4.2. As apparent from the preceding statement, there are in fact two versions of this

theorem, depending on the (regularity of the) space of metric we work with. For the vast

majority of this section we will in fact work with the space of Ck,α metrics, and - at the very

end - we will present the argument that allows to derive the smooth version of the theorem

from that in finite regularity.

4.1. Compact subclasses of regular minimal cones.

Definition 4.3. Recalling the definition of CN,n given at the beginning of Section 3, we shall

set for any Λ > 0

CN,n(Λ) := {C ∈ CN,n : inf
C∩SN−1

rC(x) ≥ Λ−1},

where, just by specializing Definition 2.13,

rC(x) := sup
{
r > 0 : C ∩ B(x, r) = graphTxC

(u), r−1|u| + |∇̊u| + r|∇̊2u| ≤ 1
}

for φ : dom(φ) ⊂ TxC → T⊥
x C, of class C2.

Remark 4.4. In view of Remark 2.14 we note that a positive, uniform lower bound on the

regularity scale of the link C ∩ SN−1 implies an upper bound on its (n− 1)-dimensional area,

hence on the density of the cone θC(0).

Lemma 4.5. For every Λ ≥ 1, CN,n(Λ) is compact in F-metric and in C∞ topology along the

cross-section.
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Proof. For every C ∈ CN,n(Λ), its cross-section Σ := C ∩ SN−1 is a minimal submanifold of

dimension n−1, which (by definition) satisfies a positive, uniform lower bound on the regularity

scale.

Therefore, in view of Remark 2.14, every sequence {Ci}i≥1 ⊂ CN,n(Λ) has a subsequence,

still denoted by {Ci}, such that Σi := Ci ∩ SN−1 converges to a minimal submanifold Σ∞ of

SN−1 in C∞. Here, we stress once again that the convergence occurs with multiplicity one.

In particular, Ci → C∞ := 0 ××Σ∞ (the minimal cone over Σ∞) under the F-metric. Note

that Σ∞ cannot be a standard Sn, because if it were, C∞ would be an n-dimensional subspace;

thus, by Allard’s regularity theorem [2], this would imply that Ci is a smooth cone (for any

large enough i) and therefore also an n-dimensional subspace, which contradicts the assumption

that Ci ∈ CN,n. Lastly, as a direct consequence of the definition of regularity scale, one can

verify that 0 ××Σ∞ ∈ CN,n(Λ). �

Remark 4.6. If {Ck}k≥1 is a family of regular cones such that

F(|Ck|, |C∞|) → 0

(with multiplicity one) then the asymptotic spectrum also converges in the following sense: for

every j ≥ 1, as k → ∞,

γ±j (Ck) → γ±j (C∞) .

So, in particular this conclusion applies whenever we are within the range of applicability of

the previous lemma.

As a simple application of the previous compactness result we prove the following inequality,

which we will employ in the sequel of this paper.

Lemma 4.7. Given Λ > 0 there exists a constant C = C(Λ) such that the following holds: for

any cone C ∈ CN,n(Λ), set A(1, 2) := C ∩ A(1, 2), there holds

(26) |x| ≤ C(Λ)‖x⊥‖L2(A(1,2)).

Proof. Assume, towards a contradiction, that there exists a sequence {Ck}k≥1 in CN,n(Λ) and

corresponding vectors xk ∈ RN (say normalized to have unit norm) such that

‖x⊥
k ‖L2(Ak(1,2)) ≤ 1/k,

where we have set (in analogy with the above) Ak(1, 2) = Ck ∩ A(1, 2) Now, by Lemma 4.5,

possibly extracting a subsequence (which we do not rename) there holds F(|Ck|, |C∞|) → 0 for

some C∞ ∈ CN,n(Λ). (We stress that, in particular, this implies the non-triviality of the limit

cone.) In addition, the sequence (xk) has itself a converging subsequence to a limit element

x∞ ∈ RN with |x∞| = 1.

Hence, passing to the limit in the previous inequality we would obtain ‖x⊥
∞‖L2(A∞(1,2)) = 0,

which is only possible if the flow of translations generated by x∞ in RN preserves C∞. However,

this contradicts the fact that Sing(C∞) = {0} (which is not kept still by any translation).

Thereby the proof is complete. �

We proceed with a (by now well-known) result on the discreteness of the space of densities

of minimal cones, which is key (among other things) to prove our Theorem 4.23, whose proof

is the object of Appendix E.

Lemma 4.8. {θC(0) : C ∈ CN,n(Λ)} is a finite subset of R.
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Proof. Suppose by contradiction that there exists a sequence of {Ci}i≥1 ⊂ CN,n(Λ) with pair-

wise distinct densities at the origin.

By the preceding compactness result (Lemma 4.5), Σi := Ci ∩ SN−1 converges in C∞ to a

minimal submanifold Σ∞. Let then C∞ := 0 ××Σ∞. Hence, for sufficiently large i, Σi can be

expressed as the graph of a smooth normal section

ui : Σ∞ → Σ⊥
∞ .

It follows from the  Lojasiewicz-Simon inequality [38, Theorem 3] that for every µ ∈ (0, 1),

there exist ϑ(Σ∞) ∈ (0, 1
2
), and ς(Σ∞, µ) ∈ (0, β) such that every C2,µ normal section u : Σ∞ →

Σ⊥
∞ with |u|C2,µ ≤ ς shall satisfy the bound

|H n−1(graphΣ∞
(u)) − H

n−1(graphΣ∞
(0))|1−ϑ ≤ ‖M (u)‖L2(Σ∞) ,

where M (u) = 0 corresponds to the minimal surface equation. In particular, for sufficiently

large i, |ui|C2,µ ≤ ς and thus,

|H n−1(graphΣ∞
(ui)) − H

n−1(graphΣ∞
(0))|1−ϑ = 0 ,

which implies that θCi
(0) = θC∞

(0), a contradiction to our assumption. �

Remark 4.9. Following up on the preceding Remark 4.4, we note that Lemma 4.5 implies that

we can define

(27) Θ(Λ) := sup
C∈CN,n(Λ)

θC(0) > 0

which does in fact determine a monotone function Θ : R+ → R+.

4.2. Key definitions and tools. Now, we move on towards the proof of Theorem 4.1; we

shall work with the following spaces.

Definition 4.10. Given a smooth, boundaryless compact manifold M of dimension N ≥ 3,

and fixed a reference (smooth) background metric g0, we let (for k ≥ 4, α ∈ (0, 1)):

• Gk,α(M) denote the space of Ck,α Riemannian metrics on M , endowed with its natural

Banach manifold structure;

• Mk,α
n (M) denote the space of pairs (g,Σ), where g ∈ Gk,α(M) and Σ is a connected

n-dimensional minimal submanifold with only strongly isolated singularities (MSI) in

(M, g) for 2 ≤ n < N ;

• Π : Mk,α
n (M) → Gk,α(M) denote the projection onto the first factor.

Remark 4.11. The space Mk,α
n (M) is endowed with the topology induced by Ck,α convergence

in the g factor, where it is understood that the norms of all tensors are measured with respect

to g0, and multiplicity 1 F-convergence (following [36]) in the Σ factor.

Definition 4.12. For (g,Σ) ∈ Mk,α
n (M), we shall call a normal section u on Σ of τ-growth

if u ∈ Ŵ 0,2
τ (Σ;V). When τ satisfies (21), we shall also call such sections tame. We denote by

K̂erτ (LΣ,g) the space of all the Jacobi fields of τ -growth on Σ in the ambient manifold (M, g).

Definition 4.13. For an L2
loc-normal section v defined near q, we introduce the notion of

asymptotic rate of v at q as follows

ARq(v) := sup

{
γ ∈ R : lim

sց0

ˆ

Ag(q,s,2s)

|v|2 · ρ−n−2γ d‖Σ‖ = 0

}
,(28)
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where, as stipulated above, ρ(x) = ρΣ,g(x) is the distance function to the singular set (as

discussed above). We use the convention that sup ∅ = −∞.

Heuristically, if v grows like ργ near q, then ARq(v) = γ. Note that in the setting of

hypersurfaces, a similar (yet not identical) notion of asymptotic rate was introduced in [43]

and studied in [26, 27].

Lemma 4.14. Suppose p, k ≥ 2, τ ∈ R satisfies (21), u ∈ W 2,2
loc (Σ;V) is a non-zero normal

section.

(i) If LΣ,gu ∈ W 0,p
τ−2(Σ;V) then ARq(u) ∈ {−∞} ∪ Γ(Cq) ∪ {−(n − 2)/2} ∪ [τ,+∞] for

every q ∈ Sing(Σ), where Cq := Cq(Σ).

(ii) If u ∈ W 0,p
τ (Σ;V) (or, respectively: Ŵ 0,p

τ (Σ;V)), then ARq(u) ≥ τ (respectively:

ARq(u) ≥ 0) for every q ∈ Sing(Σ).

(iii) If ARq(u) ≥ τ for every q ∈ Sing(Σ) and LΣ,gu ∈ W k−2,p
τ−2 (Σ;V), then u ∈ W k,p

τ ′ (Σ;V)

for every τ ′ < τ .

Remark 4.15. If u1, u2 are L2
loc-normal sections of an MSI Σ in (M, g) both defined around

q ∈ Sing(Σ) then, by the Minkowski (triangle) inequality there holds

(29) ARq(u1 + u2) ≥ min
i=1,2

{ARq(u1);ARq(u2)} .

Remark 4.16. We note the following weighted version of the Hölder inequality. If Σ = Σn is

an MSI in a Riemannian manifold (M, g) then, and 1/p1 + 1/p2 = 1, then

(30) ui ∈ W 0,pi
τi

(Σ;V), i = 1, 2 ⇒
{
u1 · u2 ∈ L1(Σ;V) for τ1 + τ2 ≥ −n
u1 · u2 ∈ W 0,1

τ (Σ;V) for τ1 + τ2 ≥ τ

and there hold the respective estimates (under the corresponding finiteness assumptions):

(31) ‖u1 · u2‖L1(Σ) ≤ ‖u1‖W 0,pi
τi

(Σ)
‖u2‖W 0,p2

τi
(Σ)
, ‖u1 · u2‖W 0,1

τ (Σ) ≤ ‖u1‖W 0,pi
τi

(Σ)
‖u2‖W 0,p2

τi
(Σ)

where the unit constant descends from the fact that we had stipulated the convention ρ ≤ 1; else

one would have to keep track of an inessential constant depending on the ambient Riemannian

manifold. The proof is done by straightforward reduction to the unweighted (standard) Hölder

inequality. (Of course, a fully analogous version of these results holds true for scalar-valued

functions u1, u2 in place of sections of the bundle V).

Proof. To prove (i), it suffices to show that if γ := ARq(u) ∈ (−∞, τ), then γ ∈ Γ(Cq) ∪
{−(n−2)/2}. To see this, suppose for contradiction that γ does not belong to such a set, then

there exist σ > 0 and γ′ < γ < γ′′ such that

[γ′ − σ, γ′′ + σ] ∩ (Γ(Cq) ∪ {−(n− 2)/2} ∪ [τ,+∞)) = ∅ .

Since the tangent cone of Σ at q is a regular cone of multiplicity 1, there exist s0 > 0 and

Λ > 0, both depending on Σ, such that:

• after pulling back to TqM using the exponential map, Σ is a graph over C := Cq in

Bg(q, 2s0); we use that graphical parametrization to define v := TΣ
C,geuc

(u), that is a

section defined on Cq;
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• for every s ∈ (0, s0], (65) in Corollary B.5 holds for Σ with respect to the scaled metric

s−2g (for Λ, σ as defined above), (66) also holds for γ′ in place of γ, and in addition (by

our assumption on ARq(u))

lim sup
sց0

ˆ

A(s,2s)

|v|2 · |x|−n−2γ′′

d‖C‖ = +∞ .

Hence, relying on such an equation, we can construct a monotonically decreasing sequence

{sj}j≥1 contained in the interval (0, s0/2), tending to 0 as j → ∞, such that
ˆ

A(s1,2s1)

|v|2 · |x|−n−2γ′′

d‖C‖ > 0

and for every j ≥ 1 and every s ∈ [sj , s1], we have
ˆ

A(sj ,2sj)

|v|2 · |x|−n−2γ′′

d‖C‖ ≥
ˆ

A(s,2s)

|v|2 · |x|−n−2γ′′

d‖C‖ .

Equivalently, by letting vj(x) := v(sjx), there holds
ˆ

A(1,2)

|vj|2 · |x|−n−2γ′′

d‖C‖ ≥
ˆ

A(s,2s)

|vj|2 · |x|−n−2γ′′

d‖C‖, ∀ s ∈ [1, s−1
j s1] .(32)

Note that this in particular implies, for every j ≥ 1,

‖vj‖2L2(A(1,2)) ≥ C(γ′′)

ˆ

A(1,2)

|vj |2 · |x|−n−2γ′′

d‖C‖(33)

≥ C(γ′′)

ˆ

A(s−1
j

s1,2s
−1
j

s1)

|vj|2 · |x|−n−2γ′′

d‖C‖(34)

= C(γ′′)s2γ
′′

j

ˆ

A(s1,2s1)

|v|2 · |x|−n−2γ′′

d‖C‖ > 0 .(35)

On the other hand, by applying Corollary B.5 to the data Σ,M, gj := s−2
j g, uj as defined

above and γ′, we see that for every j ≥ 1 and s ∈ (0, 1), since A(K−1s, s) is contained in

A(K−ℓ−2, K−ℓ) for some non-negative integer ℓ, we have

‖vj‖L2(A(K−1s,s)) ≤ C(Λ, σ)
(
Fj + ‖vj‖L2(A(K−1,1))

)
sn/2+γ′

,(36)

where, letting fj(x) := s2j
(
TΣ

C,geuc(LΣ,gu)
)

(sjx),

Fj ≤
∥∥∥|x|2−γ′−n/2fj

∥∥∥
L2(B(2))

≤ C(σ,Λ, τ)‖LΣ,gu‖L2
τ−2(B

g(q,2s0)) · sτj .

Combined with (35), this estimate implies,

Fj ≤ C(σ,Λ, τ, γ′′, u, LΣ,gu, s1)s
τ−γ′′

j ‖vj‖L2(A(1,2)) .(37)

By (32), (36), (37) and the Rellich Compactness Theorem for W 2,2 →֒ L2, ‖vj‖−1
L2(A(K−1,2)) · vj

subconverges to some v̂∞ in L2
loc(C), which is non-zero by the choice of normalization, satisfying

LCv̂∞ = 0 and the decay estimate near 0 and ∞:

sup
s>1

ˆ

A(s,2s)

|v̂∞|2 · |x|−n−2γ′′

d‖C‖ < +∞ ; sup
s∈(0,1)

(
ˆ

A(K−1s,s)

|v̂∞|2
)
· s−n−2γ′

d‖C‖ < +∞ .

But since in particular [γ′, γ′′] ∩ Γ(C) = ∅, there is no such non-zero Jacobi fields on C, which

is a contradiction.
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For part (ii), let us first assume u ∈ W 0,p
τ (Σ;V); let τ ′ < τ (without further restrictions).

Then, due to the Hölder inequality in the annulus, since p ≥ 2 we have
ˆ

Ag(q,s,2s)

|u|2·ρ−n−2τ ′ d‖Σ‖ ≤
(
ˆ

Ag(q,s,2s)

|u|p · ρ−n−pτ d‖Σ‖
)2/p(ˆ

Ag(q,s,2s)

ρ−n+
2p(τ−τ ′)

p−2 d‖Σ‖
)1−2/p

therefore, as one lets sց 0 both factors on the right-hand side tend to zero and so will the left-

hand side. But then, by the arbitrariness of τ ′ < τ this precisely means that ARq(u) ≥ τ for

every q ∈ Sing(Σ). When instead one works in the augmented spaces, namely if u ∈ Ŵ 0,p
τ (Σ;V)

then u = u0 + φ for u0 ∈ W 0,p
τ (Σ;V) and φ ∈ XTS (cf. Definition 2.10), and thus it suffices to

note that, thanks to the Minkowski (triangle) inequality (see Remark 4.15) there holds

ARq(u) ≥ min
i=1,2

{ARq(u0);ARq(φ)}

and ARq(u0) ≥ τ (as just shown) while trivially ARq(φ) ≥ 0; since by (21) in particular

τ ∈ (0, 1) the conclusion follows at once.

To prove (iii), first notice that by applying Corollary B.5 in the same way as the proof of

(i), for every τ ′ < τ and every q ∈ Sing(Σ), there exists s0 > 0 small enough and K > 2 such

that for all s ∈ (0, s0],

‖u‖W 0,2

τ ′
(Ag(q,K−1s,s)) ≤ C(Σ, g, τ, τ ′)

(
‖LΣ,gu‖W 0,2

τ ′−2
(Bg(q,s0))

+ ‖u‖L2(Ag(q,K−1s0,s0))

)
.

On the other hand, the interior elliptic estimate (in scaling-invariant form) reads for every

s ∈ (0, s0],

‖u‖W k,p

τ ′
(Ag(q,K−1s,s)) ≤ C(Σ, g)

(
‖LΣ,gu‖W k−2,p

τ ′−2
(Ag(q,K−2s,2s)) + ‖u‖L2

τ ′
(Ag(q,K−2s,2s)

)
.

Thus, if we plug-in the former in the latter we get for all s ≤ s0/2 that

‖u‖W k,p

τ ′
(Ag(q,K−1s,s)) ≤ C(Σ, g, τ, τ ′)

(
‖LΣ,gu‖W k−2,p

τ−2 (Σ) + ‖u‖L2(Ag(q,K−1s0,2s0))

)

that is a bound independent of s. As a result, if we take any τ ′′ < τ ′, since there clearly holds

‖u‖W k,p

τ ′′
(Ag(q,K−1s,s)) ≤ s(τ

′−τ ′′)‖u‖W k,p

τ ′
(Ag(q,K−1s,s))

we can bound

‖u‖W k,p

τ ′′
(Ag(q,K−Js,s)) ≤ C(Σ, g, τ, τ ′, u)s(τ

′−τ ′′)
J−1∑

j=0

[
Kp(τ ′−τ ′′)

]−j

.

Letting J → ∞ and observing that the uniform bound on the right-hand side (which is a

geometric series) implies the finiteness of ‖u‖W k,p

τ ′′
(Bg(q,s0))

, by arbitrariness of τ ′′, τ ′ we readily

get to the desired conclusion. �

Corollary 4.17. For τ ∈ R satisfying (21), K̂erτ (LΣ,g) is independent of τ (hence, from

now onward, we will simply denote it by K̂er(LΣ,g)); furthermore, any u ∈ K̂er(LΣ,g) satisfies

ARq(u) ≥ 1 for every q ∈ Sing(Σ).

Proof. Let u ∈ K̂erτ (LΣ,g) for some τ satisfying (21) and let τ ′ ∈ (τ, 1). Recall that u = φ+ u0
for u0 ∈ W 0,2

τ and φ a translation-like section; note, also, that such φ is uniquely determined

as soon as τ > 0 and, in addition, by direct computation there holds LΣ,gφ ∈ W 0,2
−ε (Σ;V) for

all ε > 0 (see Lemma 2.22).



NON-PERSISTENCE OF STRONGLY ISOLATED SINGULARITIES 27

The latter remark (together with the very definition of Jacobi field, which gives LΣ,gu = 0)

implies in particular that LΣ,gu0 ∈ W 0,2
τ ′−2(Σ;V) and so, by items (i) and (ii) above there holds

ARq(u0) ≥ τ ′ for every q ∈ Sing(Σ). At that stage, we appeal to item (iii) to conclude that

u0 ∈ W 0,2
τ ′′ (Σ;V) for any τ ′′ < τ ′, which – by the arbitrariness of τ ′ – completes the proof. �

4.3. Canonical neighborhoods. We shall begin here with a definition that will repeatedly

be employed in the sequel of this section.

Definition 4.18. For (g,Σ) ∈ Mk,α
n (M), Λ > 0 such that Θ(Λ) > max{supp∈Sing(Σ){θ|Σ|(p)}, 1}

(based upon (27)), and δ > 0, we set

injrad(g,Σ) := min{injrad(M, g),min{distg(p, p
′)/2 : p 6= p′ ∈ Sing(Σ)}} ,

and define Lk,α(g,Σ; Λ, δ) to be the space of all pairs (g′,Σ′) ∈ Mk,α
n (M) such that:

• ‖g′‖Ck,α ≤ Λ, and ‖g − g′‖Ck ≤ δ;

• Σ′ is a connected MSI in (M, g′) satisfying

(38) rΣ′,g′ ≥ Λ−1ρΣ′,g′, and F(|Σ|g, |Σ′|g′) ≤ δ,

where ρΣ′,g′ denotes the distance function to Sing(Σ′) in (M, g′).

• there exists a bijection Sing(Σ) → Sing(Σ′), such that for every p ∈ Sing(Σ), its image

p′ ∈ Sing(Σ′) satisfies,

(39) distg(p, p
′) ≤ injrad(g,Σ)/2, θ|Σ′|(p

′) = θ|Σ|(p).

We call such Lk,α(g,Σ; Λ, δ) a canonical (pseudo-)neighborhood of (g,Σ) in Mk,α
n (M),

and its topology is the one induced from Mk,α
n (M).

Clearly, when g,Σ are fixed, Lk,α(g,Σ; Λ, δ) is monotonically increasing (with respect to set-

theoretic inclusion) in both Λ and δ. Also note that in general, Lk,α(g,Σ; Λ, δ) is not a genuine

topological neighborhood of (g,Σ) in Mk,α
n (M), as it is not necessarily an open subset (nor

will it contain an open subset). Indeed, there might be (g′,Σ′) ∈ Mk,α
n (M) arbitrarily close to

(g,Σ) but not contained in Lk,α(g,Σ; Λ, δ), which happens, for example, when multiple singular

points collapse to a single one.

Remark 4.19. Note that for every (g′,Σ′) ∈ Lk,α(g,Σ; Λ, δ), (38) implies (cf. Remark 4.9) that

every tangent cone of Σ′ at any of its singular points also belongs to CN,n(Λ).

One of the main reasons behind this specific definition of canonical neighborhood lies in the

associated compactness property, which we now state.

Lemma 4.20 (Compactness of canonical neighborhoods). For every (g,Σ) ∈ Mk,α
n (M) and

every Λ > 0 such that Θ(Λ) > max{supp∈Sing(Σ){θ|Σ|(p)}, 1}, there exists δ0(g,Σ,Λ, k, α) ∈
(0, 1) with the following property.

For every δ ∈ (0, δ0), Lk,α(g,Σ; Λ, δ) is compact under Ck-norm in the first factor and F-

distance in the second factor. Moreover, there holds C2
loc convergence in the second factor.

Proof. The first claim easily follows from the Arzelà-Ascoli compactness theorem, the definition

of canonical neighborhood and the definition of regularity scale (see in particular Remark 2.14).

The second relies on the first together with the fact that, again by virtue of the definition of

canonical neighborhood, we are assuming a uniform bound on the regularity scale of all MSI

in Lk,α(g,Σ; Λ, δ) and thus Remark 2.14 applies. �
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A second, important reason to consider such canonical neighborhoods is that the following

local Sard-Smale-type theorem holds.

Theorem 4.21. Let (g,Σ) ∈ Mk,α
n (M) with îndexτ (LΣ,g) < 0, τ ∈

(
supp∈Sing(Σ) γ−(Cp), 1

)
and

Λ > 0 such that Θ(Λ) > max{supp∈Sing(Σ){θ|Σ|(p)}, 1}. Then there exists κ0 = κ0(g,Σ,Λ) > 0

such that for every κ ∈ (0, κ0),

Gk,α(g,Σ; Λ, κ) := Gk,α(M) \ Π
(
Lk,α(g,Σ; Λ, κ)

)

is an open dense subset of Gk,α(M).

Remark 4.22. Going through spaces of metrics of finite regularity is forced by our necessity of

having local compactness (i. e. compactness of balls in the space of metrics we work with). As

mentioned before, the way to gain Theorem 4.1 as it is stated (namely for C∞ metrics) will be

discussed at the very end of this section.

Heuristically, recalling that one of the key points of [47], îndexτ (LΣ,g) < 0 (which implies

the non-surjectivity of the Jacobi operator of Σ in (M, g)) suggests that the “tangent map” of

Π restricted to Mk,α
n is itself not surjective at (g,Σ). Hence one may think of G(g,Σ; Λ, κ0) as

the set of regular values of Π|L(g,Σ;Λ,κ0). When we only focus on regular minimal hypersurfaces,

such a Sard-Smale Theorem was proved in [47] by showing that - working with spaces of

metrics having finite, in fact Ck,α, degree of regularity - Mk,α is a Banach manifold, and Π is a

Fredholm map with Fredholm index 0. The discussion about how to derive the corresponding

result for smooth metrics was then later presented in [49] (see also [5, Section 7] for a thorough

study of this aspect, and the application to the free-boundary counterpart of such a result).

Here, however, it is hard to expect any Banach manifold structure on Lk,α(g,Σ; Λ, δ). The

way we prove Theorem 4.21 is rather by unwrapping the proof of the infinite dimensional Sard-

Smale Theorem by hand. More precisely, we will prove the controlled behavior of tame Jacobi

fields for a convergent sequence in Lk,α(g,Σ; Λ, κ0), and design a good way to slice Gk,α(M) into

union of finite-dimensional subspaces {Fg′,Σ′} such that each Π−1(Fg′,Σ′) ∩ Lk,α(g,Σ; Λ, κ0) is

bi-Lipschitz to a compact subset in the finite dimensional vector space K̂er(LΣ′,g′). The proof

of Theorem 4.21 occupies most of the rest of this section.

To derive a global Sard-Smale type theorem on Mn(M), it thus suffices to show that it can

be covered by countably many canonical neighborhoods.

Theorem 4.23. Let κ : Mk,α
n (M) × R+ → R+ be a positive function, not necessarily contin-

uous. Then there exists a countable number of triples {(gj,Σj ; Λj)} ∈ Mk,α
n (M) × R+ such

that

Mk,α
n (M) =

⋃

j≥1

L(gj,Σj ; Λj, κj),

where κj := κ(gj ,Σj; Λj).

Theorem 4.23 will be proved in Section E, based on decomposition arguments inspired by

the work [17].
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4.4. Induced Jacobi fields for pairs. Given a pair (g,Σ) ∈ Mk,α
n (M), for sufficiently small

δ and sufficiently large Λ, we can define a semi-metric on Lk,α(g,Σ; Λ, δ) by

DL[(g1,Σ1), (g2,Σ2)] := ‖g1 − g2‖Ck,α(M)

+ ‖GΣ2
Σ1,g1

‖
L2(Σ1\Bg1 (Sing(Σ1),CLr

Σ2
Σ1,g1

)) + ‖Σ2‖g2(Bg1(Sing(Σ1), 2C
LrΣ2

Σ1,g1
))

+ ‖GΣ1
Σ2,g2

‖
L2(Σ2\Bg2 (Sing(Σ2),CLr

Σ1
Σ2,g2

)) + ‖Σ1‖g1(Bg1(Sing(Σ2), 2C
LrΣ1

Σ2,g2
)) .

Here, the constant CL is defined as follows. Since Σ is a MSI in (M, g), by Definition 2.3 and

Remark 2.5, there are finitely many singular points Sing(Σ) = {pi}Qi=1 and at each singular

point pi Σ has a unique tangent cone Ci := Cpi(Σ). Using the fact that each set Γ(Ci) is

discrete, we can choose a small enough σ := σ(g,Σ) ∈ (0, 1) such that for every pi ∈ Sing(Σ),

1 − 2σ > γ−(Ci), distR(1 − 2σ,Γ(Ci) ∪ {−(n− 2)/2}) ≥ 2σ .

We set

(40) CL := C2(1 − 2σ, σ,Λ) > 0

as in Corollary D.4. It is worth noting that CL depends on the choice of σ, but we will fix one

admissible σ for each pair (g,Σ) from now on.

Recall that (consistently with Definition 4.10) norms of tensors are taken with respect to

the reference metric g0 which we have fixed earlier in the discussion. The reason we call DL a

semi-metric rather than a metric is that it satisfies all the metric axioms except, possibly, for

the triangle inequality.

Remark 4.24. By Allard’s regularity theorem [2], a sequence (gj ,Σj) converges to (g∞,Σ∞)

in Lk,α if and only if DL[(gj ,Σj), (g∞,Σ∞)] → 0 when j → ∞. And, as in Lemma 4.20, if

that is the case then there holds C2
loc convergence of of Σj to Σ∞ (graphical convergence with

multiplicity one).

The following statement is an application of Corollary D.4 and Corollary D.5.

Lemma 4.25. Given (g,Σ) ∈ Mk,α
n (M), r ∈ (0, injrad(g,Σ)), Λ > 0, and δ > 0, suppose that:

(i) F be a finite-dimensional subspace of Ck,α(M), consisting of functions supported in the

complement of Bg(Sing(Σ), r) = ∪p∈Sing(Σ)B
g(p, r);

(ii) {(ḡj, Σ̄j)}j, {(g0j ,Σ
0
j )}j and {(g1j ,Σ

1
j )}j be three sequences in Lk,α(g,Σ; Λ, δ) such that

(ḡj, Σ̄j) → (g,Σ) as j → ∞, for every j, (g0j ,Σ
0
j ) and (g1j ,Σ

1
j ) are distinct pairs, and

both sequences (gij,Σ
i
j) → (g,Σ) as j → ∞;

(iii) for i = 0, 1 and j ≥ 1, gij = (1 + f i
j)ḡj for f i

j ∈ F , and either f 0
j ≡ f 1

j (in which case

we set f∞ ≡ 0), or

f 1
j − f 0

j

‖f 1
j − f 0

j ‖Ck,α(M)

→ f∞ in Ck,α(M)

with the limit function satisfying the condition that ∇⊥
Σ,g(f∞) := (∇f∞)⊥Σ,g is not iden-

tically 0.

For all j ≥ 0 and i ∈ {0, 1}, we set

dj := DL[(g0j ,Σ
0
j), (g

1
j ,Σ

1
j)] > 0 , u

(i)
j := G

Σi
j

Σ̄j ,ḡj
∈ L∞(Σ̄j;Vj) , v

(i)
j := T

Σ̄j

Σ,g(u
(i)
j ) ∈ L∞(Σ;V)
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where Vj (respectively: V) denotes the normal bundle to Σ̄j with respect to the metric ḡj (resp.:

to Σ with respect to the metric g). Then we have, after passing to a subsequence, as j → ∞,

d−1
j · (v

(1)
j − v

(0)
j ) → û∞ in C2

loc(Σ;V), d−1
j · (f 1

j − f 0
j ) → f̂∞ in Ck,α(M),

where V is the normal bundle to Σ with respect to the metric g, f̂∞ is a non-negative multiple

of f∞ and û∞ is a non-zero solution of

LΣ,gû∞ =
n

2
∇⊥

Σ,g(f̂∞).

Moreover, û∞ is a tame section.

Proof. For a fixed pair (g,Σ), we choose σ as in the definition of CL in (40). Since Σ̄j ,Σ
0
j ,Σ

1
j →

Σ in Lk,α, for all sufficiently large j, for any (necessarily non-trivial) tangent cone C at points

belonging to Sing(Σ̄j), Sing(Σ0
j ) or Sing(Σ1

j ), we have

(41) distR(1 − 2σ,Γ(C) ∪ {−(n− 2)/2}) ≥ σ .

Note that in Bg(Sing(Σ), r), for all j,

ḡj = g0j = g1j

Therefore, together with (41), we can apply Corollary D.4 (keeping in mind the C2
loc convergence

of both Σ0
j and Σ1

j to Σ, cf. Remark 4.24) with γ = 1 − 2σ, so there exist C0 = C0(σ,Λ) > 0,

C̃0 = C̃0(σ,Λ) > 0, and r0 = r0(g,Σ; Λ, σ) ∈ (0,min(r/(2C̃0 + 1), 1/2)) such that, for every

x̄j ∈ Sing(Σ̄j), let x0
j and x1

j be the unique element in Sing(Σ0
j ) ∩ Bḡj(x̄j , r0) and Sing(Σ1

j ) ∩
Bḡj(x̄j , r0), respectively, and for i = 0, 1, we have

(42) |x1
j − x0

j | ≤ r
(i)
j := r

Σi
j

Σ1−i
j ,ḡj

≤ C0‖G
Σi

j

Σ1−i
j ,ḡj

‖L2(Aḡj (x1−i
j ,2r0,C̃0r0))

,

(43) ‖GΣi
j

Σ1−i
j

,ḡj
‖
C0(Aḡj (x1−i

j ,C2r
(i)
j ,2r0))

≤ C0‖G
Σi

j

Σ1−i
j

,ḡj
‖L2(Aḡj (x1−i

j ,2r0,C̃0r0))
.

In addition, we note that, letting j → ∞ in the equation gij = (1 + f i
j)ḡj we get (by virtue

of the convergence assumptions (ii), based on the specification in (iii)) in fact

(44) ‖f i
j‖C2(M) → 0, i = 0, 1 (j → ∞).

It follows from the minimal submanifold system (see Appendix A, cf. [27, Theorem B.1])

that, for sufficiently large j, wj := u
(1)
j − u

(0)
j satisfies the equation

(45) LΣ̄j ,ḡjwj −
n

2
∇⊥

Σ̄j ,ḡj
(f 1

j − f 0
j ) + ∇⊥

Σ̄j ,ḡj
· b̃0 +

b̃1
ρj

= 0

on Σ̄j \Bḡj(Sing(Σ̄j). Here, ρj := ρΣ̄j ,ḡj is the distance function to Sing(Σ̄j), and b̃0 and b̃1 are

error terms satisfying pointwise estimates

(46)

|b̃0|, |b̃1| ≤ C ′
0 ·
(∑

i=0,1

(
|u(i)j |
ρj

+ |∇⊥u
(i)
j | +

∑

ℓ=0,1,2

|∇(ℓ)f i
j |
))

·
(
|wj|
ρj

+ |∇⊥wj| +
∑

ℓ=0,1,2

|∇(ℓ)(f 1
j − f 0

j )|
)

where, for notational convenience, we have written ∇⊥ in lieu of ∇⊥
Σ̄j ,ḡj

, and C ′
0 is a constant

independent of j.
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Claim 1. For any subsequence of {j}, we can find a further subsequence such that

(f 1
j − f 0

j )

dj
→ f̂∞ = c · f∞ ,

for some c ≥ 0. The value of c could depend on the chosen subsequence.

Proof. If f 1
j = f 0

j , then this is trivially true with c = 0.

Otherwise, by definition,

dj ≥ ‖g1j − g0j‖Ck,α(M) ≥ ‖g1j − g0j‖L∞(M) ≥ C(g)‖f 1
j − f 0

j ‖L∞(M) ,

and the existence of the limit (recalling the finite-dimensionality of F) follows immediately. �

Claim 2. Let d′j := ‖wj‖L2(Σ̄j\B
ḡj (Sing(Σ̄j),r0))

. Then

lim inf
j→∞

dj
d′j

∈ (0,+∞) .

Proof. Without loss generality, and without renaming we can restrict to a subsequence whose

limit is equal to lim infj→∞
dj
d′j

. Suppose for the sake of contradiction that limj→∞
dj
d′j

= 0 or

+∞.

Case 1. lim
j→∞

dj
d′j

= 0 .

Note that by definition

dj ≡ DL[(g0j ,Σ
0
j ), (g

1
j ,Σ

1
j )] ≥ ‖GΣ1

j

Σ0
j ,g

0
j

‖
L2(Σ0

j\B
g0
j (Sing(Σ0

j ),r0/2))
.

Next, by the convergence assumptions in item (ii), for any δ > 0 there exists j0 = j0(δ) such

that j ≥ j0(δ) implies that outside of Bg0j (Sing(Σ0
j ), r0/8), the submanifolds Σ0

j , Σ1
j and Σ̄j are

all δ-C3 graphs over Σ. Note, in particular, that for all sufficiently large j, there holds the

inclusion Bg0j (Sing(Σ0
j ), r0/2) ⊂ Bḡj(Sing(Σ̄j), r0). It then follows from (76) in Lemma D.1 with

a suitable covering that for all sufficiently large j, there exists a constant C1 > 0 independent

of j such that

d′j = ‖GΣ1
j

Σ̄j ,ḡj
−G

Σ0
j

Σ̄j ,ḡj
‖L2(Σ̄j\B

ḡj (Sing(Σ̄j),r0))

≤ ‖GΣ1
j

Σ̄j ,ḡj
−G

Σ0
j

Σ̄j ,ḡj
‖
L2(Σ̄j\B

g0
j (Sing(Σ0

j ),2r0/3))

≤ C1‖G
Σ1

j

Σ0
j ,g

0
j

‖
L2(Σ0

j\B
g0
j (Sing(Σ0

j ),r0/2))

≤ C1dj .

Therefore,
dj
d′j

≥ 1
C1

. This contradicts our assumption that limj→∞
dj
d′j

= 0.

Case 2. lim
j→∞

dj
d′j

= +∞. In this case, we can divide the PDE (45) by dj, and then passing to

a subsequence such that

T
Σ̄j

Σ,gwj

dj
→ w̃∞ in C2

loc(Σ;V),
(f 1

j − f 0
j )

dj
→ f̂∞ in C2(M) ,
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by (46), we obtain

(47) −LΣ,gw̃∞ +
n

2
∇⊥

Σ,g(f̂∞) = 0 .

We remark that the convergence of T
Σ̄j

Σ,gwj/dj follows again from (76) in Lemma D.1 and the

standard elliptic estimates, whereas the convergence of (f 1
j −f 0

j )/dj follows from Claim 1. Note

that in this case, we have

‖w̃∞‖L2(Σ\Bḡ(Sing(Σ),r0)) = lim
j→∞

‖wj‖L2(Σ̄j\B
ḡj (Sing(Σ̄j),r0))

dj
= lim

j→∞

d′j
dj

= 0 .

Here, we use the fact that Sing(Σj) → Sing(Σ∞) in Lk,α(g,Σ; Λ, δ). Therefore, w̃∞ ≡ 0 in

Σ\Bg(Sing(Σ), r0). Since f̂∞ ≡ 0 in Σ∩Bg(Sing(Σ), 2r0), by the unique continuation property

of the solution to (47) (for which [6] would suffice), we know that w̃∞ ≡ 0 on Σ.

Since ∇⊥
Σ,g(f∞) is not identically 0 and f̂∞ = cf∞, we have c = 0, i.e., f̂∞ ≡ 0. As a result,

as one lets j → ∞ there holds

‖g1j − g0j‖Ck,α(M)

dj
→ 0 .

Again by (76) in Lemma D.1, there exists a constant C2 independent of j such that

‖GΣ1
j

Σ0
j ,g

0
j

‖
L2(Σ0

j\B
g0
j (Sing(Σ0

j ),2r0))
+ ‖GΣ0

j

Σ1
j ,g

1
j

‖
L2(Σ1

j\B
g1
j (Sing(Σ1

j ),2r0))

dj

≤ C2

‖wj‖L2(Σ̄j\B
ḡj (Sing(Σ̄j),r0))

dj
→ 0 ,

as j → ∞. By the pointwise estimates for G
Σ1

j

Σ0
j ,g

0
j

and G
Σ0

j

Σ1
j ,g

1
j

in (43), there exists C̃2 > 0

independent of j such that

‖GΣ1
j

Σ0
j
,g0

j

‖
L2(

⋃
x∈Sing(Σ0

j
)
Aḡj (x;CLr

(1)
j ,2r0))

+ ‖GΣ0
j

Σ1
j
,g1

j

‖
L2(

⋃
x∈Sing(Σ1

j
)
Aḡj (x;CLr

(0)
j ,2r0))

dj

≤ C̃2 ·
‖GΣ1

j

Σ0
j ,g

0
j

‖L2(
⋃

x∈Sing(Σ0
j
)
Aḡj (x;2r0,C̃0r0))

+ ‖GΣ0
j

Σ1
j ,g

1
j

‖L2(
⋃

x∈Sing(Σ1
j
)
Aḡj (x;2r0,C̃0r0))

dj

≤ C̃2 ·
‖GΣ1

j

Σ0
j ,g

0
j

‖
L2(Σ0

j
\B

g0
j (Sing(Σ0

j
),2r0))

+ ‖GΣ0
j

Σ1
j ,g

1
j

‖
L2(Σ1

j
\B

g1
j (Sing(Σ1

j
),2r0))

dj
→ 0 ,

as j → ∞. Hence, we can conclude that

‖GΣ1
j

Σ0
j
,g0

j

‖
L2(‖Σ0

j‖g0
j
)\B

g0
j (Sing(Σ0

j ),C
Lr

(1)
j )

+ ‖GΣ0
j

Σ1
j
,g1

j

‖
L2(‖Σ1

j‖g1
j
)\B

g1
j (Sing(Σ1

j ),C
Lr

(0)
j )

dj
→ 0.

Moreover, since both Σ0
j and Σ1

j converge to Σ in Lk,α, by (42),

r
Σ0

j

Σ1
j ,g

1
j

, r
Σ1

j

Σ0
j ,g

0
j

→ 0 .
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It follows from Corollary C.2 that for each x̄j ∈ Sing(Σ̄j), let x ∈ Sing(Σ) be the unique

element in Sing(Σ) ∩ Bḡj(x̄j , r0) and we have, in the varifold sense,

η−1

x̄0
j ,2C

Lr
Σ0
Σ1,g1

(Σ0
j ) → Cx(Σ) , η−1

x̄1
j ,2C

Lr
Σ1
Σ0,g0

(Σ1
j ) → Cx(Σ) .

Therefore, for sufficiently large j, there exists a constant C3 independent of j such that

‖Σ1
j‖g1j (Bg0j (Sing(Σ0

j ), 2C
Lr

Σ1
j

Σ0
j ,g

0
j

) + ‖Σ0
j‖g0j (Bg1(Sing(Σ1), 2C

Lr
Σ0

j

Σ1
j ,g

1
j

)

dj

≤ (# Sing(Σ))C3

(
r
Σ1

j

Σ0
j ,g

0
j

)n
+
(
r
Σ0

j

Σ1
j ,g

1
j

)n

dj

≤ (# Sing(Σ))C3C0
n

‖GΣ1
j

Σ0
j ,g

0
j

‖n
L2(Σ0

j\B
g0
j (Sing(Σ0

j ),2r0))
+ ‖GΣ0

j

Σ1
j ,g

1
j

‖n
L2(Σ1

j\B
g1
j (Sing(Σ1

j ),2r0))

dj
→ 0

where this last conclusion follows from 42.

These three facts, that we just collected, together contradict the definition of dj. �

By Claim 2, if we divide the PDE (45) by dj, up to a subsequence of {T
Σ̄j
Σ,g

wj

dj
}j, we obtain a

non-zero solution û∞ to

−LΣ,gû∞ +
n

2
∇⊥

Σ,g(f̂∞) = 0 .

By Corollary D.5, for each x̄j ∈ Sing(Σ̄j),
x
0
j−x

1
j

dj
converges, which induces a translation-like

section φ ∈ XTS = XTS(Σ). Moreover, by the last inequality in Corollary D.5, for every

p ∈ Sing(Σ),

ARp(û∞ − φ) ≥ γ > γ−j (Cp) ,

so û∞ ∈ Ŵ 0,2
γ (Σ;V) is a tame section. �

4.5. The local Sard-Smale theorem. Recalling the notion of canonical neighborhoods Lk,α

presented in Definition 4.18, let us start with the first preparatory statement:

Lemma 4.26 (Compactness of tame Jacobi fields). Let (M, g) be a closed Riemannian man-

ifold of dimension N ≥ 3, let Σ be a connected, n-dimensional MSI therein, and let δ0 =

δ0(g,Σ,Λ) > 0 be as in Lemma 4.20. Assume the existence of a sequence {(gj,Σj)}j≥1 of pairs

in Lk,α(g,Σ; Λ, δ0) satisfying the following two conditions:

(i) (gj,Σj) → (g∞,Σ∞) ∈ Lk,α(g,Σ; Λ, δ0) in Mk,α
n (M) as j → ∞;

(ii) for every j ≥ 1 there exists a tame Jacobi field uj ∈ K̂er(LΣj ,gj) on Σj such that

‖uj‖L2(Σj) = 1.

Then, after passing to a subsequence, vj := T
Σj

Σ∞,g∞
(uj) converges to some tame Jacobi field

u∞ in C2
loc(Σ∞;V); furthermore for any ε > 0 there exist s = s(ε) ∈ (0, 1) and j0 = j0(ε) such

that there holds ∑

pj∈Sing(Σj)

ˆ

Bgj (pj ,s)

|uj|2 d‖Σj‖ ≤ ε, for all j ≥ j0 ;

as a consequence, in particular ‖u∞‖L2(Σ∞) = 1.
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Proof. By classical (interior) elliptic estimates, the sequence {vj} subconverges to some Jacobi

field u∞ on Σ∞ in C2
loc. The effort here is to prove the non-concentration claim, and to show

that u∞ is tame.

We first fix σ ∈ (0, 1) such that

min
p∈Sing(Σ∞)

distR(1 − σ,Γ(CpΣ∞)) = σ .

For every p ∈ Sing(Σ∞), there exists r0 = r0(Σ∞, g∞) > 0 such that the assumptions in

Corollary B.6 are satisfied for (Σ∞, r
−2
0 g∞) near p. By the way we have defined the notion of

convergence in Lk,α - if pj ∈ Sing(Σj) are approaching p∞, thus with θΣj
(pj) = θΣ∞

(p) - we

know that for j large enough, the assumptions in Corollary B.6 are also satisfied for (Σj , r
−2
0 gj)

near pj. Therefore, Corollary B.6 provides an ε1(Λ, σ) ∈ (0, 1) and a uniform C2
1−σ-estimate on

uj near pj of the form

(48) ‖φj‖L∞(Σj) + ‖uj − φj‖C1
1−σ(B

gj (pj ,r0)∩Σj) ≤ C(Λ, σ)‖uj‖L2(Agj (pj ,ε
′′r0,2r0)∩Σj)

for some translation-like function φj ∈ XTS = XTS(Σj). In particular, this implies for every

s ∈ (0, r0)

‖uj‖L2(Bgj (pj ,s)) ≤ C(Λ, σ)sn/2

and from this inequality it is straightforward to derive the L2-nonconcentration claim in the

statement: specifically we get at once that

(49)

ˆ

Σ∞

|u∞|2 d‖Σ∞‖ ≥ 1.

Moreover, by passing to the limit as j → ∞ for the transferred sections, (48) also holds with

u∞ in place of uj and some translation-like function φ∞ ∈ XTS(Σ∞) on Σ∞ in place of φj .

Then, by the choice of σ and item (iii) of Lemma 4.14, u∞ is also a tame Jacobi field; as a

result it will then satisfy the same non-concentration property near Sing(Σ∞) and so, at this

stage, the C2
loc-convergence implies that in fact equality must hold in (49), which completes the

proof. �

Corollary 4.27. (Setting as above.) There exists κ1(g,Σ,Λ) ∈ (0, δ0) such that for every

(g′,Σ′) ∈ Lk,α(g,Σ; Λ, κ1), we have

dim K̂er(LΣ′,g′) ≤ dim K̂er(LΣ,g) .

Proof. Let us argue by contradiction: if the assertion was false, then for any j ≥ 1 large

enough one could find (gj,Σj) ∈ Lk,α(g,Σ; Λ, 1/j) such that dim K̂er(LΣj ,gj) > dim K̂er(LΣ,g).

In particular, such a sequence of pairs will converge to (g,Σ) in Mk,α
n . One can then take for

each such j an L2(Σj ;Vj)-orthonormal family, of cardinality exactly equal to d := K̂er(LΣ,g)+1,

in K̂er(LΣj ,gj), say {u(1)j , . . . , u
(d)
j }; we then know, by appealing to Lemma 4.26 that one can

extract, after passing to a subsequence, limit elements u
(1)
∞ , . . . , u

(d)
∞ in L2(Σ;V) such that for

each i = 1, . . . , d there holds T
Σj

Σ,g(u
(i)
j ) → u

(i)
∞ in C2

loc(Σ;V) as j → ∞. But, in fact, it follows

at once from the non-concentration claim proven above (also part of Lemma 4.26) that the

family in question consists of pairwise orthogonal sections also having unit norm in L2(Σ;V);

hence K̂er(LΣ,g) would have dimension no less than d, a contradiction. �
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Let then

Lk,α
top (g,Σ; Λ, δ) := {(g′,Σ′) ∈ Lk,α(g,Σ; Λ, δ) : dim K̂er(LΣ′,g′) = dim K̂er(LΣ,g)} .

Lemma 4.26 and Corollary 4.27 imply that Lk,α
top (g,Σ; Λ, δ) is closed in Lk,α(g,Σ; Λ, δ) for δ ≤ κ1.

In the setting above, we further set for notational convenience

I := dim K̂er(LΣ,g) , J := dim Ĉoker(LΣ,g) .

Note that by Theorem 3.2 there always holds J ≥ I.

For (ḡ, Σ̄) ∈ Lk,α
top (g,Σ; Λ, κ1), let

πL2

Σ̄,ḡ : L2(Σ̄;V) → K̂er(LΣ̄,ḡ)

be the L2-orthogonal projection to the finite dimensional (hence: closed) subspace. The fol-

lowing Lemma guarantees that we can parametrize slices of Lk,α
top by compact subset of K̂er.

Lemma 4.28. Let κ1 be as in Corollary 4.27. Then there exist constants κ2(g,Σ,Λ) ∈ (0, κ1),

r0(g,Σ,Λ) > 0 and a linear subspace F ⊂ Ck,α
c (M \ Bg(Sing(Σ), 10r0)) of dimension J , also

depending only on Σ, g,Λ with the following property.

(i) For every (ḡ, Σ̄) ∈ Lk,α
top (g,Σ; Λ, κ2) and every non-zero f ∈ F , there is no tame solution

v ∈ Ŵ k,2
τ (Σ̄;V) to LΣ̄,ḡv = ∇⊥

Σ̄,ḡ
(f).

(ii) Denote for simplicity F · ḡ := {(1 + f)ḡ : f ∈ F}. For every (ḡ, Σ̄) ∈ Lk,α
top (g,Σ; Λ, κ2),

the map

Pḡ,Σ̄ : Lk,α
top (g,Σ; Λ, κ2) ∩ Π−1(F · ḡ) → (K̂erLΣ̄,ḡ),

(g′,Σ′) 7→ πL2

Σ̄,ḡ

(
GΣ′

Σ̄,ḡ · ζΣ̄,ḡ,r0

)
,

is bi-Lipschitz onto its image, with bi-Lipschitz constant ≤ C(g,Σ,Λ), and thus injec-

tive. (Here we employ the definition of ζΣ̄,ḡ,r0 given in (13).)

Remark 4.29. Note that, for what pertains to the second part of the statement above, it is

understood that the semi-metric we use on Lk,α
top is DL. Furthermore, it is convenient to assume

F endowed with the L2 metric determined by the ambient Riemannian manifold (M, g), which

is anyways equivalent to any other norm on the same J-dimensional vector space.

Proof. To prove (i), we start with specifying the choice of r0 and F . Take ϕ1, ..., ϕJ ∈
W k−2,2

τ−2 (Σ;V) be a basis (after projecting to the quotient space) of Ĉoker(LΣ,g); without loss of

generality (by a cutoff) we can assume all such sections to be supported away from the singular

set of Σ.

Set then

r0(g,Σ, ζ) ∈ (0, min
1≤i≤J

{injrad(g,Σ), distg(spt(ϕi), Sing(Σ))}/40)

chosen small enough that the linear map

K̂er(LΣ,g) → K̂er(LΣ,g), v 7→ πL2

Σ,g(ζΣ,g,r0 · v)

is an isomorphism, where ζΣ,g,r0 is defined in (13). Then, by a standard regularization argument

(via convolutions) we choose fi ∈ Ck,α
c (M \ Bg(Sing(Σ), 10r0)) such that after projecting to

the quotient space spanR〈∇⊥
Σ,gfi : 1 ≤ i ≤ J〉 = spanR〈ϕi : 1 ≤ i ≤ J〉 along Σ, and thus define

F := spanR〈fi : 1 ≤ i ≤ J〉 .
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To see that for every non-zero f ∈ F , LΣ̄,ḡv = ∇⊥
Σ̄,ḡ

(f) has no solution v ∈ Ŵ k,2
τ (Σ̄; V̄) for

every (ḡ, Σ̄) ∈ Lk,α
top (g,Σ; Λ, δ) and δ sufficiently small, suppose, for a contradiction, that there

exist (gj,Σj) → (g,Σ) in Lk,α
top (g,Σ; Λ, κ1), fj ∈ F non-zero and uj ∈ Ŵ k,2

τ (Σj ;Vj), with unit

L2(‖Σj‖)-norm, such that

LΣj ,gj(uj) = ∇⊥
Σj ,gj

fj , πL2

Σj ,gj
(uj) = 0

Note that since fj = 0 inBg(Sing(Σ), 10r0), uj are in fact Jacobi fields in Σj∩Bg(Sing(Σj), 10r0);

such Jacobi fields are tame by assumption. Now, after passing to a subsequence (which we do

not rename), we may assume fj → f ∈ F as j → ∞ and, on the other hand, since vj := T
Σj

Σ,g

are tame Jacobi fields near Sing(Σj), arguing as in the proof of the Lemma 4.26 (ultimately

appealing to Corollary B.6), one shows that vj has uniform growth upper bound near Sing(Σj),

hence subconverges to some L2-unit v∞ ∈ W k,2
loc (Σ;V) (and in C2

loc) tame section near Sing(Σ)

that still satisfies

LΣ,gv∞ = ∇⊥
Σ,gf∞ , πL2

Σ,g(v∞) = 0 .

The aforementioned pointwise bound (which implies a bound on the asymptotic rate at each

singular point, exactly as in the aforementioned previous proof) then implies, by item (iii) of

Lemma 4.14, that v∞ ∈ Ŵ k,2
τ (Σ;V). But by our choice of F , this is impossible.

To prove (ii), we also argue by contradiction. Suppose Pḡj ,Σ̄j
is not uniformly bi-Lipschitz

for (ḡj, Σ̄j) ∈ Lk,α
top (g,Σ; Λ, κ1) with (ḡj, Σ̄j) → (g,Σ) in Lk,α. Then there exists a sequence of

pairs (g0j ,Σ
0
j), (g

1
j ,Σ

1
j) → (g,Σ) in Lk,α

top (g,Σ; Λ, δ) such that

• gij = (1 + f i
j)ḡj, i = 0, 1, f i

j ∈ F ;

• set u
(i)
j := G

Σi
j

Σ̄j ,ḡj
, v

(i)
j = T

Σ̄j

Σ,g(u
(i)
j ); ζj := ζΣ̄j ,ḡj ,r0, dj := DL((g0j ,Σ

0
j), (g

1
j ,Σ

1
j )) one of the

following holds:

either ‖πL2

Σ̄j ,ḡj
((u

(1)
j − u

(0)
j )ζj)‖L2(Σ̄j) ≤

dj
j
,(50)

or ‖πL2

Σ̄j ,ḡj
((u

(1)
j − u

(0)
j )ζj)‖L2(Σ̄j) ≥ j · dj.(51)

By Lemma 4.25 the normalized difference (f
(1)
j − f

(0)
j )/dj subconverges in C2(M) to some

f̂∞ ∈ F and (v
(1)
j − v

(0)
j )/dj subconverges to some non-zero, tame section û∞ in C2

loc, solving

LΣ,gû∞ =
n

2
∇⊥

Σ,g(f̂∞).(52)

Now, since ζj is supported away from Sing(Σ), by the convergence above it is straightforward

to check that ζj(v
(1)
j − v

(0)
j )/dj subconverges in L2 to û∞ · ζΣ,g,r0 and thus (51) cannot possibly

hold for j large enough.

We then need to rule out the other possibility, namely (50). Towards that goal, by (52) and

the result of item (i) above, we derive f̂∞ = 0, which means 0 6= û∞ ∈ K̂er(LΣ,g). Then since

ζj(v
(1)
j − v

(0)
j )/dj subconverges in L2(Σ) to û∞ · ζΣ,g,r0, passing to the limit as j → ∞ in (50)

we would conclude πL2

Σ,g(û∞ · ζΣ,g,r0) = 0. However, by the choice of r0 in item (i), this would

force û∞ to be the trivial section, a contradiction. �

Remark 4.30. (Topological interpretation of Lemma 4.28) It may be enlightening to discuss,

a posteriori, the topological content of part (ii) of the preceding statement. To do so we

shall focus on the simplest possible case, namely when I = 0, J > 0 and g = g, Σ = Σ.
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In that case, the statement in question implies that the domain of the map Pḡ,Σ̄, which is

Lk,α
top (g,Σ; Λ, κ2) ∩ Π−1(F · ḡ), must consist of a single point. This corresponds to saying that

(locally around (g,Σ)) the two sets Π−1(F · ḡ) and Lk,α
top (g,Σ; Λ, κ2) (that is necessarily the

same as Lk,α(g,Σ; Λ, κ2) when I = 0) shall meet transversely.

Having established this, we can prove Theorem 4.21 by unwrapping the proof of the Sard-

Smale Theorem, as we are now about to explain.

Proof of Theorem 4.21. Openness follows directly from Lemma 4.20: indeed, the image - via

the continuous map Π - of the compact set Lk,α(g,Σ; Λ, δ) is compact with respect to Ck

convergence and therefore closed (in Gk,α(M)).

That being said, we shall prove the denseness inductively on I := dim K̂er(LΣ,g) ≥ 0. By

induction, we can assume that the denseness has been established for every pair (g,Σ) with

dim K̂er(LΣ,g) ≤ I − 1 (Note that when I = 0, the base case of induction, we are actually

making no assumption.) The goal now is to prove it for I.

Claim. For each ḡ ∈ Gk,α(M) \ Gk,α(g,Σ; Λ, δ) = Π(Lk,α(g,Σ; Λ, δ)), there exists a sequence

of metrics gj ∈ F · ḡ \ Π(Lk,α
top (g,Σ; Λ, δ)) such that gj → ḡ in Gk,α(M) when j → ∞.

We first finish the proof of denseness assuming this claim: it suffices to show that each

gj in the claim can be approximated by metrics in Gk,α(g,Σ; Λ, δ). Since Lk,α
top (g,Σ; Λ, δ) =

Lk,α(g,Σ; Λ, δ) when I = 0, we only need to handle the case I ≥ 1.

Let j ≥ 1 be fixed. Suppose, without loss of generality, that gj /∈ Gk,α(g,Σ; Λ, δ). Hence

Π−1(gj) ∩ Lk,α(g,Σ; Λ, δ) 6= ∅. By definition of Lk,α
top and Corollary 4.27 we have, for every

(gj,Σ
′) ∈ Lk,α(g,Σ; Λ, δ), dim K̂er(LΣ′,gj) ≤ I − 1. Hence by the inductive assumption, there

exists δgj ,Σ′ = δ(gj,Σ
′,Λ) > 0 such that G(gj,Σ

′; Λ, δgj,Σ′) is open and dense in Gk,α(M). Since

Lk,α(gj,Σ
′; Λ, δgj,Σ′) contains an open neighborhood of (gj,Σ

′) in Lk,α(g,Σ; Λ, δ) and, by Lemma

4.20, Π−1(gj) ∩ Lk,α(g,Σ; Λ, δ) is compact, we thus know that there exists a finite sequence of

pairs (gj,Σ
(1)), (gj,Σ

(2)), . . . , (gj,Σ
(i)) ∈ Π−1(gj) ∩ Lk,α(g,Σ; Λ, δ), 1 ≤ i ≤ i0, such that

i0⋃

i=1

Lk,α(gj,Σ
(i); Λ, δgj ,Σ(i)) ⊃ Π−1(gj) ∩ Lk,α(g,Σ; Λ, δ).(53)

Since Gj :=
⋂i0

i=1 G(gj,Σ
(i); Λ, δgj ,Σ(i)) is still open and dense in Gk,α(M), there exists a sequence

{g′m}m≥1 ⊂ Gj such that g′m → gj in Gk,α as m→ ∞. Again by compactness of Lk,α(g,Σ; Λ, δ),

when m ≥ m0 is large enough,

Lk,α(g,Σ; Λ, δ) ∩ Π−1(g′m) ⊂
i0⋃

i=1

Lk,α(gj,Σ
(i); Λ, δgj,Σ(i)) .

By our choice of g′m this is only possible if Lk,α(g,Σ; Λ, δ) ∩ Π−1(g′m) = ∅, and so g′m ∈
Gk,α(g,Σ; Λ, δ) for m large enough. This concludes the proof of denseness assuming the Claim.

Proof of Claim. Suppose, without loss of generality, that (ḡ, Σ̄) ∈ Lk,α
top (g,Σ; Λ, δ), otherwise

just taking gj ≡ ḡ proves the Claim.
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Recall by Lemma 4.28, Lk,α
top (g,Σ; Λ, δ) ∩ Π−1(F · ḡ) is bi-Lipschitz embedded as a compact

subset of finite dimensional Euclidean space K̂er(LΣ̄,ḡ); we let, for the sake of notational con-

venience, Z := Pḡ,Σ̄(Lk,α
top (g,Σ; Λ, δ) ∩ Π−1(F · ḡ)) be its image in K̂er(LΣ̄,ḡ). Consider the

composite map,

Π : Z ∼= Lk,α
top (g,Σ; Λ, δ) ∩ Π−1(F · ḡ)

Π→ F · ḡ ∼= F ,
that is a Lipschitz map between (compact subsets of) vector spaces.

Since îndexτ (LΣ,g) < 0, we know that I < J and therefore Π(Z) is an I-dimensional compact

subset in F · ḡ ∼= F (which, by definition, has dimension J). Hence it has dense complement

and we can find gj ∈ F · ḡ \Π(Lk,α
top (g,Σ; Λ, δ)) to approximate ḡ, thereby finishing the proof of

the claim.

�

4.6. Proof of Theorem 4.1. We will proceed in two steps: first we prove the theorem for

metrics of finite, in fact Ck,α, regularity (which is the setting we have so far considered in this

section) and then we shall discuss the simple argument that allows to derive the smooth version

of the result (namely: Theorem 4.1 in the specific form we have stated). For that purpose we

will employ the following lemma about nested metric spaces.

Lemma 4.31. Let {(Xk, dk)}k≥k0 be a sequence of complete metric spaces, with associated

inclusions ιk : Xk+1 →֒ Xk such that

dk (ιk(x), ιk(y)) ≤ dk+1(x, y) , ∀ k ≥ k0 .(54)

We identify, using such maps, each Xk as a subset of X0, and define

X∞ :=
⋂

k≥k0

Xk , d∞(x, y) :=
∑

k≥k0

2−ℓ · dℓ(x, y)

1 + dℓ(x, y)
, ∀ x, y ∈ X∞ .

Suppose that X∞ is dense in (Xk, dk) for all k ≥ k0 and, in addition, that G ⊂ (Xk0, dk0) is an

open (respectively Gδ) subset such that for every k ≥ k0, G ∩ Xk is dense in (Xk, dk). Then

G ∩X∞ is an open (resp. Gδ) dense subset in (X∞, d∞).

Proof. The case when G is a Gδ subset follows from the case when G is open and the Baire

Category Theorem. So we shall prove the statement assuming G is open.

First notice that for every k ≥ k0, since (Xk, dk) →֒ (Xk0, dk0) is continuous (being a finite

composition of continuous maps), G ∩ Xk is open in (Xk, dk); the openness of G ∩ X∞ in

(X∞, d∞) analogously follows from the continuity of the inclusion (X∞, d∞) → (Xk0 , dk0),

which can be checked at once by the way we have defined the distance d∞.

To prove the denseness of G ∩ X∞ in (X∞, d∞), let x ∈ X∞ be an arbitrary point. By

the denseness of G ∩ Xk in (Xk, dk), for each k ∈ N there exists xk ∈ G ∩ Xk such that

dk(xk, x) ≤ 1/k; on the other hand, by the denseness of X∞ in (Xk, dk), there exists a sequence{
xjk
}
j≥0

in X∞ such that

lim
j→∞

dk(xjk, xk) = 0.

Hence, by the openness of G ∩Xk in (Xk, dk), for every k ≥ k0 we can find an index jk large

enough that

x̄k := xjkk ∈ (G ∩Xk) ∩X∞ = G ∩X∞ , dk(x̄k, x) ≤ 2/k .
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Then, recalling the definition of d∞, we find,

d∞(x, x̄k) ≤
k∑

m=k0

2−m · 2/k

1 + 2/k
+

∞∑

m=k+1

2−m ≤ 4/k + 2−k → 0 as k → ∞ .

Hence x is in the closure of G ∩X∞ in (X∞, d∞). �

Proof of Theorem 4.1.

Step 1: metrics of finite regularity Ck,α

For every (g,Σ) ∈ Mk,α
n (M) with îndexτ (LΣ,g) < 0 and Θ(Λ) > max{supp∈Sing(Σ){θ|Σ|(p)}, 1},

by Theorem 3.2, we know that for some p ∈ Sing(Σ),

I(Cp) > 0 .

Note that there exists δ(Cp) > 0 such that for any (regular minimal) cone C ∈ CN,n satisfying

F(Cp ∩ SN−1,C ∩ SN−1) ≤ δ(Cp), we also have I(C) > 0. Hence, by Definition 4.18 and the

compactness Lemma 4.20, we can choose κ(g,Σ,Λ) ∈ (0, κ0(g,Σ,Λ)), where κ0 is the threshold

given by Theorem 4.21, with the following property:

For every (g′,Σ′) ∈ Lk,α(g,Σ; Λ, κ(g,Σ,Λ)), there exists p′ ∈ Sing(Σ′) such that

F(Cp ∩ SN−1,Cp′ ∩ SN−1) ≤ δ(Cp) ,

and thus,

I(Cp′) > 0 .

We can then extend the definition of the function κ by letting 2κ(g,Σ,Λ) = κ0(g,Σ,Λ) for

all (g,Σ) ∈ Mk,α
n (M) with îndexτ (LΣ,g) ≥ 0 and Θ(Λ) > max{supp∈Sing(Σ){θ|Σ|(p)}, 1}. In

particular, îndexτ (LΣ′,g′) < 0 holds for every (g′,Σ′) ∈ Lk,α(g,Σ; Λ, κ(g,Σ,Λ)).

By Theorem 4.23, for such a function κ : Mk,α
n (M) × R+ → R+, we can obtain a countable

cover consisting of canonical neighborhoods:

Mk,α
n (M) =

⋃

j≥1

Lk,α(gj,Σj ; Λj, κj),

where κj := κ(gj,Σj ; Λj).

For every integer j ≥ 1, we let

Lk,α
− (gj,Σj ; Λj, κj) := {(g,Σ) ∈ Lk,α(gj,Σj; Λj, κj) : îndexτ (LΣ,g) < 0} .

We claim that, for any fixed j ≥ 1, the set Lk,α
− (gj,Σj ; Λj, κj) can also be covered by countably

many Lk,α(g,Σ; Λ, κ(g,Σ,Λ)) with îndexτ (LΣ,g) < 0. Indeed, by the compactness Lemma 4.20

again (now considering a countable exhaustion of Lk,α
− (gj,Σj ; Λj, κj) by closed - hence compact

- sets, defined e. g. as 1/i-sublevel sets of the distance function from the complement of such

Lk,α
− in Lk,α(gj,Σj ; Λj, κj)) it suffices to show that for every (g,Σ) ∈ Lk,α

− (gj ,Σj; Λj, κj), there

exists a Θ(Λ) > max{supp∈Sing(Σ){θ|Σ|(p)}, 1} such that Lk,α(g,Σ; Λ, κ(g,Σ,Λ)) contains an

open neighborhood of (g,Σ) in Lk,α(gj,Σj ; Λj, κj).

Suppose for the sake of contradiction that there exists (g,Σ) ∈ Lk,α(gj,Σj; Λj, κj) and a

sequence {(gℓ,Σℓ)} ⊂ Lk,α(gj,Σj ; Λj, κj) \ Lk,α(g,Σ; Λj, κ(g,Σ,Λj)), so that

(gℓ,Σℓ) → (g,Σ) in Mk,α
n (M).
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(Note that here we have chosen Λ = Λj , which is legitimate by virtue of the very definition of

canonical neighborhood.) For large enough ℓ, based on the definition of Lk,α(gj,Σj ; Λj, κj) and

the notion of convergence in Mk,α
n , we have

• gℓ is a Ck,α metric on M with ‖gℓ‖Ck,α ≤ Λj and ‖g − gℓ‖Ck ≤ κ(g,Σ,Λj);

• Σℓ is a MSI in (M, gℓ) satisfying

F(|Σℓ|gℓ, |Σ|g) ≤ κ(g,Σ,Λj), rΣℓ,gℓ ≥ Λ−1ρΣℓ,gℓ.

We further note that (since (gℓ,Σℓ) ∈ Lk,α(gj,Σj ; Λj, κj)) there is an ordered bijection between

the points of Sing(Σℓ) and Sing(Σj), and the densities of the corresponding cones are equal;

also, since (g,Σ) ∈ Lk,α(gj,Σj; Λj, κj) there is also a bijection between the points of Sing(Σ)

and Sing(Σj), and the densities of the corresponding cones are equal. Putting all information

together, this implies that eventually (gℓ,Σℓ) ∈ Lk,α(g,Σ; Λj, κ(g,Σ,Λj)), a contradiction.

Therefore, by now repeating the argument and construction above as one varies j ≥ 1, we

get that the set

{(g,Σ) ∈ Mk,α
n (M) : îndexτ (LΣ,g) < 0} =

⋃

j≥1

Lk,α
− (gj,Σj ; Λj, κj)

can be covered by a countable union of canonical neighborhoods {Lk,α(g′ℓ,Σ
′
ℓ; Λ′

ℓ, κ
′
ℓ)}∞ℓ=1 where

for each ℓ ≥ 1 there holds îndexτ (LΣ′
ℓ
,g′

ℓ
) < 0; here we have set κ′ℓ = κ(g′ℓ,Σ

′
ℓ,Λ

′
ℓ) for Λ′

ℓ = Λj if

(g′ℓ,Σ
′
ℓ) ∈ Lk,α(gj,Σj ; Λj, κj).

Finally, by Theorem 4.21, the subset of metrics

{g ∈ Gk,α : ∀(g,Σ) ∈ Mk,α
n (M), îndexτ (LΣ,g) ≥ 0}

= Gk,α \ {g ∈ Gk,α : ∃(g,Σ) ∈ Mk,α
n (M), îndexτ (LΣ,g) < 0}

= Gk,α \ Π(∪ℓ≥1Lk,α(g′ℓ,Σ
′
ℓ; Λ′

ℓ, κ
′
ℓ)) = ∩ℓ≥1

(
Gk,α(g′ℓ,Σ

′
ℓ; Λ′

ℓ, κ
′
ℓ)
)

is a residual set in the Baire category sense; equivalently, said otherwise, the set of Riemannian

metrics {g ∈ Gk,α : ∃(g,Σ) ∈ Mk,α
n (M), îndexτ (LΣ,g) < 0} is meagre. This completes the proof

of Theorem 4.1 for Ck,α-metrics.

Step 2: transition to smooth metrics

We apply Lemma 4.31 with k0 = 4, taking for every k ≥ k0 the metric space (Xk, dk) to be

Gk,α(M) and letting

G = {g ∈ Gk0,α : ∀(g,Σ) ∈ Mk0,α
n (M), îndexτ (LΣ,g) ≥ 0}

Note that Step 1 ensures that G is a Gδ subset in Gk0,α(M) and G ∩ Gk,α(M) is dense in Gk,α

for every k ≥ k0. Hence, the smooth version of the theorem follows at once.

�

5. Proof of the main theorems

Proof of Theorem 1.1. Straightforward by combining Theorem 3.2, Theorem 4.1 and the basic

Morse index estimate recalled in Remark 2.9. �
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Moving on, let us now see how a suitable area bound implies a definite structure of the

singular set of a stationary integral varifold. With slight notational abuse, we let here Sd

denote the round unit sphere in Rd+1, understood as a Riemannian submanifold, ωd denote

the d-dimensional measure of the unit ball in Rd and Ad be the d-dimensional measure of Sd,

hence in particular A3 = 2π2; recall that ωd = Ad−1/d.

Proposition 5.1. For every ε > 0, there exists a neighborhood N (ε) of the round metric on

S4 such that for every g ∈ N (ε), every mod 2 cyclic g-stationary integral 3-varifold V with

total mass ≤ 2A3 − ε has only strongly isolated singularities.

We must first prove the following simple density bound.

Lemma 5.2. Let V ⊂ Sn be a stationary integral (n−1)-varifold, let p ∈ spt(V ) and let ΘV (p)

denote the density of V at p; that is to say: ΘV (p) = ΘV (p, 0). Then there holds:

ΘV (p) ≤ ‖V ‖
An−1

.

Proof. Let C denote the stationary integral varifold corresponding to the “cone over V ” in

Rn+1, i. e. C := 0××V . By the monotonicity formula for stationary integral varifolds one has:

‖V ‖
An−1

= lim
r→∞

‖C‖(Br(0))

ωnrn
= lim

r→∞

‖C‖(Br(p))

ωnrn
≥ lim

r→0

‖C‖(Br(p))

ωnrn
= lim

r→0

‖V ‖(Br(p))

ωn−1rn−1
= ΘV (p).

�

In the case when V is associated to a closed embedded minimal hypersurface in Sn+1 the

density at each point is of course unitary. Hence:

Corollary 5.3. For any n ≥ 2 the equatorial n-dimensional hypersphere is the (unique) element

of least area among all closed embedded minimal hypersurfaces in Sn+1.

Proof. The (weak) inequality is implied by Lemma 5.2. By inspecting the previous proof, we

see at once that equality can only occur if the cone in question splits off the line passing through

the point p and the origin. Iterating the argument by downward induction we must conclude

that C is in fact an hyperplane through the origin in Rn+1, hence the claim. �

Lemma 5.4. Let C be an irregular, mod 2 cyclic 3-dimensional stationary integral cone in R4.

Then

ΘC(0) ≥ 2.

Proof. Let x ∈ S3 ∩Sing(C), Cx be a tangent cone of C at x that is not regular in the sense of

Definition 2.3. The case when Cx has multiplicity at least two is clear; so assume instead that

Cx has unit multiplicity but non-smooth link. It is well-known that, in this case, Cx splits:

there exists an isometry (say Φ) of R4 sending x to (0, 0, 0, 1), such that Φ∗(Cx) = R × C′
x

for some non-trivial 2-dimensional mod 2 cyclic stationary integral cone C′
x in R3. Hence,

appealing again to the standard monotonicity formula

ΘC(0) = lim
r→∞

‖C‖(Br(x))

ω3r3
≥ ΘC(x) = ΘCx

(0) = ΘC′
x
(0) ≥ 2 .

where the last inequality follows from the classification of non-trivial 2-dimensional mod 2

cyclic stationary integral cones in R3; ultimately that relies on the “structure theorem” for 1-

dimensional stationary varifolds given in [1], plus an ad hoc argument ruling out triple junctions

using the mod 2 cyclicity assumption, as can be found e. g. in [30, Lemma A.3]. �
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Proof of Proposition 5.1. We assume for the sake of a contradiction that for some ε > 0, there

exists smooth metrics gj on S4 smoothly converging to the round metric and some mod 2 cyclic

gj-stationary integral varifolds Vj with not only strongly isolated singularities and total mass

≤ 2A3 − ε. Let pj ∈ Sing(Vj) be a point having a tangent cone Cj that is not regular. Then

by Lemma 5.4,

ΘVj
(pj) = ΘCj

(0) ≥ 2 .

By Allard Compactness Theorem (see e. g. [39, Theorem 42.7]), Vj subconverges to some

stationary integral varifold V∞ under the round metric, and clearly pj subconverges to some

p∞ ∈ Sing(V∞). In particular,

‖V∞‖(S4) ≤ 2A3 − ε .

while by the upper-semi-continuity of density under varifold convergence,

ΘV∞
(p∞) ≥ ΘVj

(pj) ≥ 2

Then by Lemma 5.2,

‖V∞‖(S4) ≥ A3ΘV∞
(p∞) ≥ 2A3

which contradicts the previous bound and thereby completes the proof. �

Proof of Corollary 1.4. Straightforward, by combining Theorem 1.1 with Proposition 5.1. �

Proof of Corollary 1.5. For given ε > 0 let N (ε) as afforded by Corollary 1.4 and let g ∈ N (ε)

be a generic metric (cf. Remark 1.3). Towards a contradiction, assume the class of closed,

embedded minimal hypersurfaces of area less than 4π2 − ε contains a sequence {Σk}k≥1 with

pairwise distinct elements.

Allard Compactness Theorem implies that we can extract a subsequence (which we shall

not rename) converging to an integral stationary varifold V ; note that the mass of V is again

bounded from above by the same threshold 4π2−ε, and furthermore such a stationary varifold

is mod 2 cyclic (by appealing e g. to [48, Theorem 3.3]). Thanks to Lemma 5.2 we can thereby

derive that the density of V at any point (of its support) is strictly below 2, in fact bounded

from above by 2 − ε
2π2 .

Hence, we have by Corollary 1.4 is actually smooth at all points, i. e. it is a smooth, closed,

embedded minimal hypersurface in Sn+1, say Σ, and the aforementioned density bound implies

a posteriori that there does occur smooth graphical convergence of Σk to Σ with multiplicity

one. But then, appealing to Sharp’s analysis in [37], the minimal hypersurface Σ would be

degenerate (i. e. it would come with at least a non-trivial Jacobi field), a contradiction. �

Proof of Corollary 1.6. Straightforward from Corollary 1.5. �

Appendix A. The minimal surface system and transfer of normal sections

Proposition A.1. There exist κ1 = κ1(N) ∈ (0, 1/4) and C = C(N) > 1 such that the

following statement holds. Let

(i) g, g′ be C4 Riemannian metrics on BN(4) with ‖g − geuc‖C4 , ‖g′ − geuc‖C4 ≤ κ1;

(ii) f1, f2 ∈ C2(BN (4)) be functions such that ‖f1 − 1‖C4 , ‖f2 − 1‖C4 ≤ κ1;

(iii) Σ be a g-minimal κ1-C
3 graph in RN over Bn(2) × {0};

(iv) V be the normal bundle of Σ in (RN , g) with induced connection ∇⊥ from g;

(v) v, v1, v2 ∈ C2(Σ,V) with ‖v‖C2, ‖v1‖C2 , ‖v2‖C2 ≤ κ1.

Then we have
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(I) Φv : x 7→ expg
x(v(x)) is an embedding of Σ into RN ;

(II) there exists a C3 function Ag′ = Ag′(x, z, ξ) such that for every x ∈ Σ the map x 7→
Ag′(x, ·, ·) on V ⊕ (T ∗Σ ⊗V) satisfies

‖Φv(Σ)‖g′ =

ˆ

Σ

Ag′(x, v,∇⊥v) d‖Σ‖g(x) ,

and that under a local coordinate (xi) of Σ, pointwisely,

Ag′(x, v,∇⊥v) =

√
det[(Φ∗

vg
′)ij]

det[gij]
.

In particular, Φv(Σ) is g′ minimal if and only if

∇⊥ · ∂ξAg′(x, v,∇⊥v) − ∂zAg′(x, v,∇⊥v) = 0 ;

(III) if Φv(Σ) is minimal under metric g′, then v satisfies

LΣ,gv + ∇⊥ · b0(x) + b1 = k,

where b0 ∈ C0(Σ;T ∗Σ ⊗V), b1, k ∈ C0(Σ;V) satisfy the following estimates,

|b0| + |b1| ≤ C
(
|v| + |∇⊥v|

)2
;

‖k‖C0(Σ) ≤ C‖g′ − g‖C4 ;

(IV) if for i = 1, 2, Φvi(Σ) is minimal under metric gi := fig, then w := v2 − v1 satisfies

LΣ,gw − n

2
(∇(f2 − f1))

⊥Σ,g + ∇⊥ · b̃0(x) + b̃1 = 0,

where b̃0 ∈ C0(Σ;T ∗Σ ⊗V), b̃1,∈ C0(Σ;V) satisfy the following pointwise estimates,

|b̃0| + |b̃1| ≤ C

(
2∑

i=1

|vi| + |∇⊥vi| + ‖fi − 1‖C2

)
·
(
|w| + |∇⊥w| + ‖f2 − f1‖C2

)
.

Remark A.2. In general, given a Riemannian manifold (Σ, g) and a vector bundle V with a

fiberwise specified metric h and a metric compatible connection ∇, for every b ∈ C1(Σ, T ∗Σ ⊗
V), we can define ∇ · b ∈ C0(Σ,V) to be such that for every ϕ ∈ C1

c (Σ,V), we have
ˆ

Σ

〈∇ · b, ϕ〉h d‖Σ‖ = −
ˆ

Σ

〈b,∇ϕ〉g,h d‖Σ‖g .

It is easy to check that this is equivalent to the following explicit expression:

〈∇ · b, ϕ〉h := −d∗〈β, ϕ〉h − 〈β,∇ϕ〉g,h ,
where d∗ is the codifferetial on 1-forms on (Σ, g).

Proof. (I) follows from implicit function theorem, (II) follows from a direct, rather standard

calculation. So we shall focus here on (III) and (IV).

To start with, consider a variation vt := v+tφ, where φ ∈ C2(Σ;V). Let ~φ(x, t) := ∂tΦvt(x) ∈
TΦvt (x)

RN . Note that when v(x) = 0, ~φ(x, 0) = φ(x). Also, for each fixed x, t 7→ Φvt(x) is a

geodesic under metric g with constant speed, and ~φ(x, t) is its velocity vector field, hence is

parallel along t 7→ Φvt(x).
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Now we work in local coordinates (xi) of Σ, let gtij := (Φ∗
vtg)ij and ∂ti := ∂iΦvt . Then we

have

∂tg
t
ij = g(∂t∂iΦvt , ∂jΦvt)|Φvt

+ g(∂iΦvt , ∂t∂jΦvt)|Φvt
= g(∇g

∂t
i

~φ, ∂tj)|Φvt
+ g(∂ti ,∇g

∂t
j

~φ)|Φvt
;

∂2ttg
t
ij = g(∇g

~φ
∇∂t

i

~φ, ∂tj) + g(∂ti ,∇g
~φ
∇∂t

j

~φ) + 2g(∇g
∂t
i

~φ,∇g
∂t
j

~φ)

= −2 Riemg(~φ, ∂
t
i , ∂

t
j ,
~φ) + 2g(∇g

∂t
i

~φ,∇g
∂t
j

~φ) .

Denote for simplicity Ag[vt] := Ag(x, vt,∇⊥vt), h
t
ij := g(∇∂t

i

~φ, ∂tj). Then we derive,

d

dt
Ag[vt] =

1

2
Ag[vt] · ∂tgtij · (gt)ij = Ag[vt] · htij · (gt)ij ;

d2

dt2
Ag[vt] = Ag[vt]

[(
htij · (gt)ij

)2 − 2htijh
t
kl(g

t)ik(gt)jl − Riemg(~φ, ∂
t
i , ∂

t
j,
~φ) + g(∇g

∂t
i

~φ,∇g
∂t
j

~φ)
]

On the other hand,

d

dt
Ag[vt] = ∂zAg(x, vt,∇⊥vt) · φ+ ∂ξAg(x, vt,∇⊥vt) · ∇⊥φ ;

d2

dt2
Ag[vt] = ∂2zzAg(x, vt,∇⊥vt)(φ, φ) + 2∂2zξAg(x, vt,∇⊥vt)(φ,∇⊥φ)

+ ∂2ξξAg(x, vt,∇⊥vt)(∇⊥φ,∇⊥φ) ;

By comparing the coefficients in front of φ,∇⊥φ terms, we can find that,

Ag(x, 0, 0) = 1 , ∂zAg(x, 0, 0) = 0 , ∂ξAg(x, 0, 0) = 0 ;(55)

∂ξξAg(x, 0, 0)(ζ, ζ) = |ζ |2 , ∂2zξAg(x, 0, 0) = 0 , ∂2zzAg(x, 0, 0) = − II2Σ,g −RΣ,g(56)

where IIΣ,g denotes the second fundamental form of Σ under g, and for ϕ ∈ V,

II2Σ,g(ϕ, ϕ) := (IIij ·ϕ)(IIkl ·ϕ)gikgjl , RΣ,g(ϕ, ϕ) := Riemg(ϕ, ∂i, ∂j, ϕ)gij ,

Therefore, recalling that for any y ∈ C2([0, 1];R) there holds

|y(1) − y(0) − y′(0)| ≤ 1

2
sup
t∈[0,1]

|y′′(t)| ,

we have pointwise error estimates,
∣∣∂ξAg[v] −∇⊥v

∣∣+
∣∣∂zAg[v] + (II2Σ,g +RΣ,g)(v, ·)

∣∣ ≤ C(|v| + |∇⊥v|)2 .
Together with the following fact, which for ‖v‖C2 ≤ κ1 and κ1 = κ1(N) sufficiently small:

∣∣∣∇⊥ ·
(
∂ξAg′[v] − ∂ξAg[v]

)∣∣∣+
∣∣∣∂zAg′[v] − ∂zAg[v]

∣∣∣ ≤ C‖g′ − g‖C4

this proves (III).

To prove (IV), first notice that by (II),

Agi(x, v,∇⊥v) = (fi)
n/2 ◦ Φv · Ag(x, v,∇⊥v) .

For every ϕ ∈ C2(Σ;V), if we let vit := vi + tϕ and ~ϕi(x, t) := ∂tΦvit
(x), then,

d

dt
Agi[vit] = (fi)

n/2 ◦ Φvit
·
(
∂zAg[vit] · ϕ+ ∂ξAg[vit] · ∇⊥ϕ

)
+ ∇g(f

n/2
i ) · ~ϕi(·, t) · Ag[vit] ,
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hence we conclude that

∂ξAgi[vi] = (fi)
n/2 ◦ Φvi · ∂ξAg[vi] ;

∂zAgi[vi] · ϕ = (fi)
n/2 ◦ Φvi · ∂zAg[vi] · ϕ+ ∇g(f

n/2
i ) · ~ϕi(x, 0) · Ag[vi] .

By applying again (55) and (56), we find
∣∣∂ξAg2[v2] − ∂ξAg1[v1] −∇⊥w

∣∣

+
∣∣∣∂zAg2[v2] − ∂zAg1[v1] −

n

2
(∇g(f2 − f1))

⊥Σ,g + (II2Σ,g +RΣ,g)(w, ·)
∣∣∣

≤ C

(
2∑

i=1

|vi| + |∇⊥vi| + ‖fi − 1‖C2

)
·
(
|w| + |∇⊥w| + ‖f2 − f1‖C2

)
.

This proves (IV). �

Proposition A.3. There exist κ2 = κ2(N) ∈ (0, 1/4) and C = C(N) > 1 such that the

following statement holds. Let κ ∈ (0, κ2) and

(i) g, g′ be C4 Riemannian metrics on BN (4) with ‖g − geuc‖C4, ‖g′ − geuc‖C4 ≤ κ2 and

‖g − g′‖C4 ≤ κ;

(ii) Σ be a g-minimal κ2-C
3 graph in RN over Bn(2) × {0};

(iii) v ∈ C2(Σ,V) with ‖v‖C2 ≤ κ; Φv be defined in (I) of Proposition A.1;

(iv) V be the normal bundle of Σ in (RN , g) with induced connection ∇⊥ from g; V′ be the

normal bundle of Σ′ := graphΣ,g(v) in (RN , g′) with induced connection ∇′⊥ from g′;

(v) TΣ′

Σ,g : V′ → V be the bundle maps defined in Definition 2.21, which induces linear

maps (still denoted by TΣ′

Σ,g) for every integer 0 ≤ k ≤ n:

C0(Σ′,ΛkΣ′ ⊗V′) → C0(Σ,ΛkΣ ⊗V) .

Then,

(I) for every β ′ ∈ C0(Σ′; ΛkΣ′⊗V′), denote by β := TΣ′

Σ,g(β
′) ∈ C0(Σ; ΛkΣ⊗V). For every

x ∈ Σ, we have,

(1 − Cκ)|β(x)| ≤ |β ′(Φv(x))| ≤ (1 + Cκ)|β(x)| ;

(II) for every u′ ∈ C1(Σ′,V′) and u := TΣ′

Σ,g(u
′),

∣∣∣TΣ′

Σ,g(∇′⊥u′)(x) −∇⊥u(x)
∣∣∣ ≤ Cκ|u(x)| ;

(III) there exist bundle endomorphisms S : V → V, T : T ∗Σ ⊗ V → T ∗Σ ⊗ V such that,

denoted by 1 the identity map on either bundle in question, there holds

|S − 1| + |T − 1| ≤ Cκ

and for every β ′ ∈ C1(Σ′, T ∗Σ′⊗V′) and β := TΣ′

Σ,g(β
′), we have the pointwise estimate

∣∣∣TΣ′

Σ,g(∇′⊥ · β ′) − S(∇⊥ · T (β))
∣∣∣ ≤ Cκ|β| .

In particular, for every u′ ∈ C1(Σ′,V′) and b′0, b
′
1 ∈ C1(Σ′, T ∗Σ′ ⊗V′) such that

−LΣ′,g′u
′ + ∇′⊥ · b′0 + b′1 = 0 ,
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there exists b0, b1 ∈ C1(Σ, T ∗Σ ⊗V) such that u := TΣ′

Σ,g(u
′) solves,

−LΣ,gu+ ∇⊥ · b0 + b1 = 0 ,(57)

and

|b0(x) −TΣ′

Σ,g(b
′
0)(x)| + |b1(x) −TΣ′

Σ,g(b
′
1)(x)|

≤ Cκ
(
|b′0(Φv(x))| + |b′1(Φv(x))| + |u(x)| + |∇⊥u(x)|

)
.

(58)

Proof. Denote for simplicity T := TΣ′

Σ,g. Let

• x′ : Σ′ → Rn be the projection on to the first n-factors, x := x′ ◦ Φv;

• For every x′ ∈ Σ′ and 1 ≤ j ≤ N − n, let

e′j(x
′) := (0, . . . , 0, 1︸︷︷︸

n+j-th

, . . . , 0)
⊥T

x′
Σ′,g′ .

And let ej(x) := T(e′j)(x).

It is straightforward to note that we can take κ2(N) small enough that if (i)-(v) hold, then:

• x′ = (x′1, . . . ,x′n) and x = (x1, . . . ,xn) are coordinate systems of, respectively, Σ′ and

Σ, such that the metric g′ and g restricted to Σ′ and Σ and their Christoffel symbols

satisfy

|g′ij − δij |, |gij − δij|, |Γ′k
ij |, |Γk

ij| ≤ Cκ2 ; |Φ∗
vg

′
ij − gij | ≤ Cκ ;(59)

• {e′j} and {ej} are frames of, respectively, V′ and V, such that the induced metrics

h′ij := g′(e′i, e
′
j) and hij := g(ei, ej) satisfy

|h′ij − δij |, |hij − δij | ≤ Cκ2 ; |h′ij ◦ Φv − hij | ≤ Cκ ,(60)

the connection forms ω′i
j and ωi

j of ∇′⊥ and ∇⊥ under these two frames satisfy

|ω′i
j|g′, |ωi

j|g ≤ Cκ2 ; |Φ∗
vω

′i
j − ωi

j|g ≤ Cκ .(61)

Thus for every β ′ = β ′j ⊗ e′j ∈ C0(Σ′; ΛkΣ′ ⊗V′), we have

β := TΣ′

Σ,g(β
′) = Φ∗

vβ
′j ⊗ ej .

In particular, combined with (59) and (60), this proves (I).

Let then u′ = u′je′j ∈ C1(Σ′,V′) and uj := u′j ◦ Φv (so that u := T(u′) = ujej). Then (II)

follows directly from (59)-(61) and

T(∇′⊥u′) = T
(
(du′j + u′kω′j

k) ⊗ e′j
)

= (duj + ukΦ∗
vω

′j
k) ⊗ ej = ∇⊥u+ uk · (Φ∗

vω
′j
k − ωj

k) ⊗ ej .

To prove (III), first recall that for β ′ = β ′j ⊗ e′j = β ′j
p dx

′p ⊗ e′j ∈ C1(Σ, T ∗Σ′ ⊗V′),

∇′⊥ · β ′ = −
(
d∗(β ′jh′jk) + g′(β ′i, ω′j

k)h
′
ij

)
h′kle′l

=
(
∂q(β

′j
p · g′pqh′jk) − β ′j

ph
′
jk · ∂q(g′pq) − g′pqΓ′r

pq(β
′j
rh

′
jk) − g′(β ′i, ω′j

k)h′ij
)
h′kle′l .
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Hence, having set βj
p := β ′j

p ◦ Φv (so that βj := βj
p dx

p = Φ∗
vβ

′j and β := βj ⊗ ej = T(β ′)),

there holds

T(∇′⊥ · β ′) = ∂q
(
βj
p · (g′pqh′jk) ◦ Φv

)
(h′kl ◦ Φv)el

−
(
βj
phjk · ∂q(gpq) + gpqΓr

pq(β
j
rhjk) + g(βi, ωj

k)hij
)
hklel +ON(κ|β|g)

= ∂q

(
βj
pT j̄p

jp̄ · gp̄qhj̄k
)
hkl̄ · S l

l̄el

−
(
βj
phjk · ∂q(gpq) + gpqΓr

pq(β
j
rhjk) + g(βi, ωj

k)hij
)
hklel +ON(κ|β|g)

= S(∇⊥ · T (β)) +ON(κ|β|g) ,
where ON(κ|β|g) is a function that is pointwise bounded by Cκ|β| for C = C(N) as throughout

this appendix; T j̄p
jp̄ := (g′pqh′jk) ◦ Φv · gp̄qhj̄k; S l

l̄
:= (h′kl ◦ Φv) · hkl̄, so that there are indeed

well-defined bundle endomorphisms:

T : T ∗Σ ⊗V → T ∗Σ ⊗V , αj
p dx

p ⊗ ej 7→ αj
pT j̄p

jp̄ dx
p̄ ⊗ ej̄ ;

S : V → V , wlel 7→ wlS l̄
lel̄ .

And the estimates above as well as the estimates for |T −1|, |S −1| follows both from (I) and

(59)-(61). This finishes the proof of (III).

Finally, to prove (57) and (58), recall that using the notation in the proof of Proposition

A.1,

LΣ,gu = ∇⊥ · ∇⊥u+ II2Σ,g u+ RΣ,gu .

Hence, it suffices to combine (I)-(III) with the fact that
∥∥Φ∗

v II2Σ′,g′ − IIΣ,g

∥∥+ ‖Φ∗
vRΣ′,g′ −RΣ,g‖ ≤ Cκ .

�

Appendix B. A three-circle inequality and related decay estimates

The following growth rate monotonicity formula is a direct consequence of the decomposition

(19), which was in fact first introduced in [38] in a different form.

Lemma B.1. For any σ > 0, there exists K = K(σ) > 2 with the following property.

For any γ ∈ R and any minimal cone C ∈ CN,n satisfying

distR(γ,Γ(C) ∪ {−(n− 2)/2}) ≥ σ ,

if u ∈ C2
loc(A(K−3, 1);V) ∩ L2(A(K−3, 1);V) solves LCu = 0 then its growth rate

Jγ
K(u; r) :=

ˆ

A(K−1r,r)

|u|2 · |x|−2γ−nd‖C‖ ,

satisfies the inequality

Jγ
K(u;K−2) − 2Jγ

K(u;K−1) + Jγ
K(u; 1) ≥ 0 .

Moreover, equality holds if and only if u ≡ 0.

Recall that, consistently with the general notational convetions we have stipulated in Section

2 we have denoted by V = V(C) the normal bundle to C in RN and by A(r, s) := A(0, r, s)∩C
the annular region, on the cone, of radii r < s.
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Proof. By (19)-(20), see Section 3.1, we have

Jγ
K(v; r) =

ˆ r

K−1r

tn−1−n−2γ dt

ˆ

C∩SN−1

v(t, ω)2 dω =
∑

j≥1

ˆ r

K−1r

t−1−2γ · (v+j (t) + v−j (t))2 dt

︸ ︷︷ ︸
=: Tj

,

where of course the second equality relies upon Parseval’s identity, with respect to the orthonor-

mal (Hilbertian) basis ϕ1, ϕ2, . . . , ϕk, . . . of the space L2(C ∩ SN−1;V) of square-integrable

normal sections to the link S := C ∩ SN−1 in the unit sphere of Euclidean RN .

Recalling the definition of µj = λj + (n − 1) where λj is the j-th eigenvalue of the Jacobi

operator of the link S in question (see the second part of Section 2.2), if µj ≥ −(n−2)2/4 then

we have

Tj =

ˆ r

K−1r

(
c+j t

γ+
j −γ + c−j t

γ−

j −γ
)2
t−1 dt, if µj > −(n− 2)2

4
;

Tj =

ˆ r

K−1r

(
c+j t

−(n−2)/2−γ + c−j t
−(n−2)/2−γ log t

)2
t−1 dt, if µj = −(n− 2)2

4
;

while if µj < −(n− 2)2/4, set αj :=
√

−µj − (n− 2)2/4, 2c+j =: cje
iθj (with cj ∈ R), then

Tj =

ˆ r

K−1r

c2j
(
cos(αj log(t) + θj)t

−(n−2)/2−γ
)2
t−1 dt .

At this stage it suffices to show that for K = K(σ) large enough, the desired inequality holds

at the level of each Tj ≥ 0 with equality if and only if c±j = 0. When µj ≥ −(n − 2)2/4,

this follows from [27, Lemma A.1 and Lemma A.2]; instead when µj < −(n − 2)2/4, it is a

consequence of the following statement. �

Lemma B.2. Suppose σ > 0. Then there exists a real number K0 = K0(σ) > 2 with the

following property.

For any α, β, θ ∈ R such that λ > 0, |β| ≥ σ and any K ≥ K0, the integral

IK(r) :=

ˆ Kr

r

cos2(α log(s) + θ) s2β−1 ds,

satisfies for every r > 0,

IK(K2r) − 2IK(Kr) + IK(r) > 0 .

Proof. Notice that
ˆ Kr

r

cos2(α log(s) + θ) s2β−1 ds =

ˆ log(r)+θ/α+log(K)

log(r)+θ/α

cos2(ατ) e2βτ−2βθ/α dτ .

Therefore, if we let r′ := log(r) + θ/α, K ′ := log(K), β ′ := 2β, α′ = 2α and

ĨK ′(r′) :=

ˆ r′+K ′

r′
2 cos2(ατ) eβ

′τ dτ =

ˆ r′+K ′

r′
(1 + cos(α′τ)) eβ

′τ dτ

then it suffices to show that when K ′ ≥ K ′(σ) large enough for any r′ ∈ R there holds

ĨK ′(r′ + 2K ′) − 2ĨK ′(r′ +K ′) + ĨK ′(r′) > 0 .
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And by replacing r′ by −r′ − K ′ if necessary, we can assume without loss of generality that

β ′ ≥ 2σ > 0. Let β ′′ := β ′ + iα′ ∈ C. Then,

ĨK ′(r′) = ℜ
(
ˆ r′+K ′

r′
eβ

′τ + eβ
′′τ dτ

)
= eβ

′r′ · e
β′K ′ − 1

β ′
+ ℜ

(
eβ

′′r′ · e
β′′K ′ − 1

β ′′

)
.

We can employ this formula to rewrite the quantity we wish to prove positive; elementary

manipulations allow to write:

ĨK ′(r′ + 2K ′) − 2ĨK ′(r′ +K ′) + ĨK ′(r′)

= eβ
′r′ · (eβ

′K ′ − 1)3

β ′
+ ℜ

(
eβ

′′r′ · (eβ
′′K ′ − 1)3

β ′′

)

=
eβ

′r′(eβ
′K ′ − 1)3

|β ′′|

[
|β ′′|
β ′

+ ℜ
(
|β ′′|eiα′(r′+3K ′)

β ′′
·
(
eβ

′K ′ − e−iα′K ′

eβ′K ′ − 1

)3
)]

≥ eβ
′r′(eβ

′K ′ − 1)3

|β ′′|

[
|β ′′|
β ′

−
( |eβ′K ′ − e−iα′K ′|

eβ′K ′ − 1

)3
]
.

Since
( |eβ′K ′ − e−iα′K ′|

eβ′K ′ − 1

)2

=

(
eβ

′K ′ − cos(α′K ′)
)2

+ sin2(α′K ′)

(eβ′K ′ − 1)2

≤
(

1 +
min{α′K ′, 1}2
eβ′K ′ − 1

)2

+
min{α′K ′, 1}2
(eβ′K ′ − 1)2

.

Thus when β ′K ′ is large enough (arranged by requiring K ≥ K0(σ) for suitable K0(σ)), we

have in fact
( |eβ′K ′ − e−iα′K ′|

eβ′K ′ − 1

)6

≤ 1 +
20 min{α′K ′, 1}2

eβ′K ′ − 1
< 1 +

(α′K ′)2

(β ′K ′)2
=

( |β ′′|
β ′

)2

,

which implies the claim. �

We stress that the equality case in Lemma B.1 holds only when the section u is identically 0.

Therefore, for non-zero sections we can suitably strengthen the lemma to an open condition,

which allows us to perturb both the metrics and the coefficients in the PDE as described in

the following statement. This refinement is particularly useful in our applications.

Corollary B.3 (Perturbed version of Lemma B.1). For σ > 0 and Λ > 0, let K(σ) > 2 be the

same as in Lemma B.1. Then there exists ε(σ,Λ) > 0 small enough satisfying the following

property.

For γ ∈ [−Λ,Λ] and any C ∈ CN,n(Λ) satisfying

distR(γ,Γ(C) ∪ {−(n− 2)/2}) ≥ σ ,

let 0 6= u ∈ W 1,2
loc (A(K−3, 1);V) ∩ L2(A(K−3, 1);V) be a weak solution to

∇⊥ · (∇⊥u+ b0(x)) + 〈AC, u〉AC + |x|−1b1(x) = 0,(62)

where ∇⊥ = ∇⊥
C,geuc

is the Levi-Civita connection of the normal bundle V to C in Euclidean

RN , and b0, b1 ∈ L2(Σ;V) satisfy the following estimates a.e.,

‖(|b0| + |b1| − ε|∇⊥u|)+‖L2(A(K−3,1)) ≤ ε‖u‖L2(A(K−3,1)),(63)
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on A(K−3, 1). (Here we use the notation v+ := max{v, 0}.) Then we have,

Jγ
K(u;K−2) − 2(1 + ε)Jγ

K(u;K−1) + Jγ
K(u; 1) > 0.

Remark B.4. When Σ := graphC(φ) ∩ B(2) is a minimal submanifold, under a metric g,

parametrized by the cone C ∈ CN,n(Λ) (that, let us stress the point, is minimal in Euclidean

RN so under the metric geuc), and

‖g − geuc‖C4(B(2)) + ‖φ‖C2
1 (B(2))

≤ ε̃ ,

where ε̃ ≤ κ2 and κ2 has been defined in Proposition A.3. Then for any Jacobi field u on

Σ, the corresponding normal section v over C under this parametrization (by which we mean

v := TΣ
C,geuc(u) in the sense of Definition 2.21), solves an equation of form (62) with

|b0(x)| + |b1(x)| ≤ C(Λ)ε̃ · (|x|−1|v(x)| + |∇⊥v(x)|) .(64)

To see this, for every x̌ ∈ C, let ř := κ2rC,geuc(x̌)/4, and η̌ : x 7→ x̌ + řx, where κ2 is

the dimensional constant in Proposition A.3 (III). Then, Proposition A.3 (III) applies with

geuc, ǧ := ř−2η̌∗g, Č := η̌−1(C), Σ̌ := η̌−1(Σ), v̌ := v ◦ η̌, u ◦ η̌ in place of g, g′,Σ,Σ′, u, u′ therein,

which gives

−L
Č,geuc(v̌) + ∇⊥ · b̌0 + b̌1 = 0,

where by there hold the estimates (58),

|b̌0(0)| + |b̌1(0)| ≤ C(Λ)ε · (|v̌(0)| + |∇⊥v̌(0)|) .
Now (64) at x̌ follows by scaling back the equation and setting

b0 = b̌0 ◦ η̌−1 · ř−1, b1(x) = |x|b̌0 ◦ η̌−1 · ř−2

so that an equation of the form (62) is satisfied. As a consequence of (64), given any σ > 0

and Λ > 1, for ε(σ,Λ) determined in Corollary B.3, we can choose ε̃(σ,Λ) so small that the

error estimate assumption (63) is satisfied with v in place of u therein. Lastly, going beyond

the linear analysis of Jacobi fields, we note that (without much additional effort) a similar

equation with analogous error estimates holds for TΣ′

Σ,g(w), where w is a graphical section

defining a minimal submanifold Σ′ close to Σ, under any metric g′ suitably close to g (possibly,

but not necessarily, g itself).

Proof. Suppose, for a contradiction, that there exist sequences Cj ∈ CN,n(Λ), and uj ∈
W 1,2

loc (Aj(K
−3, 1);Vj) ∩ L2(Aj(K

−3, 1);Vj) weak solutions to (62), where b0, b1 are replaced

by bj0, b
j
1 satisfying (63) with ε = 1/j and the 3-circle inequality fails:

Jγ
K(uj;K

−2) + Jγ
K(uj; 1) ≤ 2(1 + 1/j)Jγ

K(uj;K
−1) =: 2c2j > 0.

(Note that here we have employed the usual notation Aj(r, s) = A(r, s) ∩ Cj, understood for

all j ≥ 1.) Consider then ûj := c−1
j uj, b

j
i := c−1

j bji , where i = 0, 1; of course (62) and (63)

are also satisfied with such replacements throughout. Thanks to Lemma 4.5 we can extract a

subsequence of cones converging smoothly (at the level of spherical section, hence on the whole

annulus of radii K−3/3 and 3) to a limit cone C∞, and for every p ≥ 1, as j → ∞,

γ±p (Cj) → γ±p (C∞).

Now, for j ≥ 1 large enough Aj(K
−3, 1) is a subset of graph

C∞
(φj)∩A(K−3/2, 2) and one may

consider

vj := T
Cj

C∞,geuc
(ûj)
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for a suitable sequence {φj}j≥j0
satisfying ‖φj‖C2

1 (K
−3/2,2) ≤ ε̃ chosen so that condition (63)

is fulfilled. Then, since (by its definition) ‖ûj‖L2(Aj(K−3,1)) is uniformly bounded in j ≥ 1, by

classical elliptic theory (interior estimates in Hilbertian Sobolev spaces) relying upon Remark

B.4, up to extracting a subsequence (which we shall not rename), vj converges, strongly in

L2
loc(A∞(K−3, 1);V∞) and weakly in W 1,2

loc (A∞(K−3, 1);V∞) to some non-zero section v∞ in

W 1,2
loc (A∞(K−3, 1);V∞). In particular, note that for any i = 0, 1, 2 there holds

Jγ
K(v∞, K

−i) ≤ lim sup
j→∞

Jγ
K(vj, K

−i) = lim sup
j→∞

Jγ
K(ûj, K

−i)

with equality for i = 1, that is for the “intermediate annulus”. (Also, note that the non-

triviality of the limit section v∞ follows from the L2 convergence in such an annulus.) Hence,

Jγ
K(v∞;K−2) + Jγ

K(v∞; 1) ≤ 2Jγ
K(v∞;K−1).

Lastly, by (63) the dominated convergence theorem allows to conclude that v∞ weakly solves

LCv∞ = 0 on A(K−3, 1). This contradicts Lemma B.1, thereby completing the proof. �

Corollary B.5. For σ ∈ (0, 1), Λ > 0, let K = K(σ/2) > 2 be given by Lemma B.1. Then

there exists ε0(σ,Λ) > 0 small enough satisfying the following property.

Let γ ∈ [−Λ,Λ], Σ be an MSI in a Riemannian manifold (M, g), q ∈ Sing(Σ); suppose

that, after pulling back to TqM using the exponential map, Σ ∩Bg(q, 4) ⊂ graphC(φ) for some

C ∈ CN,n(Λ) and

‖g − geuc‖C3(B(4)) < ε0 , ‖φ‖C2
1 (B(4))

< ε0.(65)

Assume further

distR(γ,Γ(C) ∪ {−(n− 2)/2}) ≥ σ .(66)

Let u ∈ W 2,2
loc (Σ;V), set v = TΣ

C,geuc(u) and f := TΣ
C,geuc(LΣ,gu) be satisfying

ARq(u) > γ , F := sup
ℓ≥0

‖|x|2−γ−n/2f‖L2(A(K−ℓ−1,K−ℓ)) < +∞ .

Then, we have for every ℓ ≥ 0,

‖v‖L2(A(K−ℓ−1,K−ℓ)) ≤ C(Λ, σ)
(
F + ‖v‖L2(A(K−1,1))

)
·K−ℓ(n/2+γ) .(67)

Proof. Firstly, by taking ε0 small enough, v satisfies (62) and

|b0|(x) + |b1|(x) ≤ ε
(
|x|−1|v|(x) + |∇⊥v|(x)

)
+ |x||f(x)|

where ε is again as in the statement of Corollary B.3. Hence, for every ℓ ∈ N, vℓ(x) := v(K−ℓx)

also solves (62) with bi,ℓ in place of bi, i = 0, 1, satisfying

|b0,ℓ|(x) + |b1,ℓ|(x) ≤ ε
(
|x|−1|vℓ|(x) + |∇⊥vℓ|(x)

)
+K−2ℓ|x||fℓ(x)|,(68)

on A(0, K−3, 1), where fℓ(x) := f(K−ℓx).

Clearly, to prove (67), it suffices to show that there exists C0(Λ, σ) so large that

ℓ 7→ Jℓ := max{K2γℓJγ
K(vℓ, 1), C2

0F
2}(69)

is monotone non-increasing in ℓ ≥ 1. To show this, suppose for contradiction that for some

ℓ0 ≥ 1, Jℓ0+1 > Jℓ0 , then

F ≤ C−1
0 C(Λ, σ)‖vℓ0‖L2(A(K−2,K−1))K

γℓ0 ,

Jγ
K(vℓ0, K

−1) = K2γJγ
K(vℓ0+1, 1) ≥ Jγ

K(vℓ0 , 1) .
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Combining the first inequality and (68), we can take C0(Λ, σ) so big that (63) holds for bi,ℓ0 in

place of bi and vℓ0 in place of u. Hence by Corollary B.3 and the second of such inequalities,

Jℓ0+2 ≥ K2(ℓ0+2)γJγ
K(vℓ0+2, 1) = K2ℓ0γJγ

K(vℓ0 , K
−2)

> K2ℓ0γJγ
K(uℓ0, K

−1) = Jℓ0+1 .

Inductively, we thus see Jℓ would be strictly increasing in ℓ ≥ ℓ0 (and thus strictly greater than

C2
0F

2). But on the other hand, by definition of ARq(u), since

K2γℓJγ
K(vℓ, 1) = Jγ

K(v,K−ℓ) → 0 , as ℓ→ ∞ .

which implies that when ℓ is large enough, Jℓ = C2
0F

2 unless F = 0. So if F > 0 then we directly

violate the aforementioned strict monotonicity, otherwise if F = 0 we get a contradiction from

the coexistence of such strict monotonicity with the fact that Jℓ → 0 as ℓ→ ∞. �

We conclude this appendix with an important “non-concentration result” for Jacobi fields.

In view of the applications in Section 4, this corollary is best stated in terms of sections of the

normal bundle of Σ. It suffices to note that, when (65) is fulfilled, we can (for ε0 sufficiently

small) assume that for any w ∈ L2
loc(Σ;V) and for any 0 < r, s ≤ 2 there holds

1

2
‖TΣ

C,geuc(w)‖L2(A(r,s)) ≤ ‖w‖L2(Ag(q,r,s)) ≤ 2‖TΣ
C,geuc(w)‖L2(A(r,s))

Hence, we have - mutatis mutandis - in particular an estimate fully analogous to (67), but in

terms of u and LΣ,gu, which we will employ in the next proof.

Corollary B.6. Let σ,Λ, K, ε0,Σ, q be the same as Corollary B.5. Then there exists ε1(Λ, σ) ∈
(0, ε0) with the following property. Suppose (65) holds for ε1 in place of ε0, γ = 1 − σ satisfies

(66) and u is a tame Jacobi field on Σ, then there exists x ∈ TqM such that

|x| + ‖u− x⊥‖C1
1−σ(B

g(q,1)) ≤ C(Λ, σ)‖u‖L2(Ag(q,ε1,2)) .(70)

Proof. By definition of Jacobi field with slower growth and Corollary 4.17 there exists x ∈ TqM

such that ARq(u − x⊥) ≥ 1; hence if we apply Corollary B.5 to ũ := u − x⊥ (also keeping

in mind the comments preceding the present proof, as well as the content of Lemma 2.22 and

Remark 2.23), we find for every ℓ ≥ 1

‖u− x⊥‖L2(Ag(q,K−ℓ−1,K−ℓ) ≤ C(Λ, σ)(|x| + ‖u− x⊥‖L2(Ag(q,K−1,1)) ·K−ℓ(n/2+1−σ)(71)

Hence, for every s ∈ (0, 1/2), by virtue of Lemma 4.7 (that is: equation (26), suitably scaled),

the Minkowski inequality (employed twice) and (71) there holds

|x| ≤ C(Λ)s−n/2‖x⊥‖L2(Ag(q,s,2s))

≤ C(Λ)s−n/2(‖u− x⊥‖L2(Ag(q,s,2s)) + ‖u‖L2(Ag(q,s,2s)))

≤ C(Λ, σ)s1−σ(‖u− x⊥‖L2(Ag(q,K−1,1)) + |x|) + C(Λ)s−n/2‖u‖L2(Ag(q,s,2s))

≤ C(Λ, σ)s1−σ(‖u‖L2(Ag(q,K−1,1)) + |x|) + C(Λ)s−n/2‖u‖L2(Ag(q,s,2s)).

Since σ ∈ (0, 1), we can take s(Λ, σ) < K−1 such that C(Λ, σ)s1−σ < 1/2 (in order to allow for

absorption on the left-hand side) and then ε1 ≤ s so that we eventually derive

|x| ≤ C(Λ, σ)‖u‖L2(Ag(ε1,1)) .(72)
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Set ũℓ(x) := ũ(K−ℓx), ℓ ≥ 1 and recalling that |LΣ,gũℓ| ≤ C(Λ)K−2ℓ|x| on Ag(q,K−2, 2), if

we combine (71) with the classical Lp-estimate (invoked for p large enough, depending on the

dimension n ≥ 2) and Sobolev embedding we find

‖u− x⊥‖C1
0 (A

g(q,K−ℓ−1,K−ℓ)) ≤ ‖ũℓ‖C1(Ag(q,K−1,1)) ≤ C(Λ, σ)
(
‖ũℓ‖L2(Ag(q,K−2,2)) +K−2ℓ|x|

)

≤ C(Λ, σ)K−ℓ(1−σ)(|x| + ‖u− x⊥‖L2(Ag(q,K−1,2))

for every ℓ ≥ 1. Together with (72) this inequality concludes the proof. �

Appendix C. Quantitative uniqueness of tangent cones in all (co-)dimensions

In [17, Theorem 6.3], Edelen proved a quantitative version of the uniqueness of tangent cones

for minimal hypersurfaces in eight-dimensional manifolds by adapting Simon’s argument [38],

based on the  Lojasiewicz inequality. That same argument can in fact be extended to general

dimension and codimension, and leads to the following statement.

Proposition C.1. Given 0 < ε < 1 and Λ > 0, there exists δ = δ(ε,Λ) > 0 with the following

property.

Let C ∈ CN,n(Λ) an n-dimensional minimal cone in RN with normal bundle V, g be a C4

metric on B(4), V ∈ In(B(4)) be a g-stationary integral varifold, and let r ∈ (0, 1/16). Suppose:

(i) ‖g − geuc‖C4(B(4)) ≤ δ;

(ii) θV (0, 2) ≤ θV (0, r) + δ;

(iii) there exists s ∈ (2r, 1/2) so that V is a δ-C2 graph over C in Ag(0, s, 2s).

Then, V is an ε-C2 graph over C in Ag(0, 2r, 1).

Proof. Suppose for contradiction, that there exist ε > 0, Λ > 0 and a sequence of metrics gj ,

stationary integral varifolds Vj ∈ In(B(4)), rj ∈ (0, 1/16), sj ∈ (2rj, 1/2) and Cj ∈ CN,n(Λ) such

that for every j ≥ 1, properties (i)-(ii)-(iii) hold for gj, Vj,Cj, rj, sj , 1/j in place of g, V,C, r, s, δ,

but Vj is not an ε-C2 graph over Cj in Agj(0, 2rj, 1).

By Lemma 4.5, after passing to a subsequence, Cj smoothly converges to some C∞ ∈ CN,n(Λ)

as j → ∞; then there exists a sequence {δj}j≥1 with δj ց 0 such that Vj is a δj-C
2 graph

over C∞ in Agj (0, sj, 2sj). Let s̄−j ≤ sj < s̄+j be radii such that A(s̄−j , s̄
+
j ) ⊂ Agj (0, rj, 2) is the

largest annulus centered at 0 in which Vj is an ε′-C2 graph over C∞, where ε′ = ε′(C∞) < ε is

to be determined at a later stage along the course of the argument (independently of j).

Our goal is to show that for infinitely many indices j ≥ 1 there hold in fact the inequalities

s̄−j ≤ 3rj/2 , s̄+j ≥ 3/2 .(73)

Note that since Cj → C∞ smoothly away from 0, this immediately implies for all such indices

(possibly with finitely many initial exceptions) Vj is an ε-C2 graph over Cj in Ag(0, 2rj, 1),

which is a contradiction.

To prove (73), we shall apply [17, Theorem 11.1]. Recalling the notation for the scaling map

ηλ : x 7→ λx, we first observe that when j → ∞, s−2
j η∗sjgj C

4-converges to geuc and by Allard

Compactness Theorem, after passing to a subsequence, V ′
j := (η−1

sj
)#Vj F-converges to some

geuc-stationary integral varifold V ′
∞ in A(r̂−, r̂

+), where

r̂− := lim
j→∞

rj/sj , r̂+ := lim
j→∞

2/sj
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so that r 7→ θV ′
∞

(0, r) is constant in r ∈ (r̂−, r̂+), and on the other hand V ′
∞ coincides with

the (multiplicity one) varifold associated to C∞ in A(1, 2) Note, in particular, that we allow

r̂± being 0 or +∞.

Hence by the rigidity case of monotonicity formula, V ′
∞ is a regular cone with multiplicity

one (namely C∞) in A(r̂−, r̂+); then by Allard Regularity Theorem, V ′
j converges smoothly,

and with unit multiplicity, to C∞ in that same annulus. This implies

lim
j→∞

s±j = r̂± ,

where s±j := s̄±j /sj, for either consistent choice of signs. Note that in particular, if r̂− > 0,

then s̄−j ≤ 3rj/2 for all sufficiently large j; and, analogously, if r̂+ < +∞, then s̄+j ≥ 3/2 for

all sufficiently large j. To prove (73), we are left to deal with the case when either r̂− = 0 or

r̂+ = +∞.

Let Σ := C∞ ∩ SN−1, and let here (with slight abuse of notation) ∇⊥ denote the normal

connection on T⊥Σ in SN−1; let uj : A(s−j , s
+
j ) → T⊥C∞ be the graphical section defining V ′

j

over C∞ in A(s−j , s
+
j ). Furthermore, set t := − log r, T±

j := − log(s±j ), vj(t, θ) := r−1uj(rθ)

defined on Σ × (T−
j , T

+
j ). Note that for all sufficiently large j we have

|vj|∗2(t) :=
∑

i+j≤2,i,j≥0

|∂it(∇⊥)jvj(·, t)|C0(Σ) ≤ C(C∞)δj , ∀ t ∈ [0, ln 2] ,

and by taking ε′(C∞) small enough, following the same argument as [17, Page 29 - 32], the

assumptions in [17, Theorem 11.1] are satisfied by vj on Σ× [0, T+
j ) with n in place of m, which

- in turn - implies that for some α = α(C∞) ∈ (0, 1/2),

|vj|∗2(t) ≤ C(C∞)δαj , ∀ t ∈ (0, T+
j ) .(74)

Also note that the assumption m > 0 in [17, Theorem 11.1] can be replaced by |m| 6= 0.

In fact, in [17] and [38], the only place where m > 0 is used is in the proof of the stability

inequality [38, Lemma 1], which lead to the L1 estimate [38, (6.34)] on the interval where

the neutral mode dominates ∂tv. This estimate can be still derived when m < 0 following

[40, 4.26-4.32]. By considering v̌j(t, θ) := vj(ln 2 − t, θ) and repeating the argument above, the

assumptions in [17, Theorem 11.1] are satisfied by v̌j on Σ× [0, ln 2 − T−
j ) with −n in place of

m, which again implies that for some α′ = α′(C∞) ∈ (0, 1/2) there holds

|v̌j |∗2(t) ≤ C(C∞)δα
′

j , ∀ t ∈ (0, ln 2 − T−
j ) .(75)

Combining (74) and (75), we conclude that V ′
j is a δ′j-C

2 graph over C∞ in A(s−j , s
+
j ) for some

sequence δ′j → 0. Therefore, again by the Allard Compactness Theorem, the characterization

of the rigidity case in the monotonicity formula and Allard Regularity Theorem, for any infinite

subset I ⊂ N, V ±
j := (η−1

s±j
)#V

′
j = (η−1

s̄±j
)#Vj will (in both cases) still C2

loc-converge to C∞ as

I ∋ j → ∞ in the annuli

A±(I) :=
⋃

k≥1

⋂

j∈I,j≥k

η−1

s̄±j
(Agj(0, rj, 2)) .

If (73) fails for all sufficiently large j, then there exists an infinite subset Ī ⊂ N such that

either A−(Ī) ⊃ A(2/3, 2), or A+(Ī) ⊃ A(1/2, 4/3). But by tracing back the scaling factor, in

the former case, Vj is an ε−j -C2 graph over C∞ in

Agj(s̄−j , s̄
+
j ) ∪Agj (3s̄−j /4, 2s

−
j ) ⊃ Agj(3s̄−j /4, s̄

+
j ) ;
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for j ∈ Ī and ε−j → 0. Similarly, A+(Ī) ⊃ A(1/2, 4/3) implies that Vj is an ε+j -C2 graph over

C∞ in

Agj (s̄−j , s̄
+
j ) ∪ Agj(s̄+j /4, 5s

+
j /5) ⊃ Agj (s̄−j , 5s̄

+
j /4) ;

for j ∈ Ī and ε+j → 0.

Thus, either way, when j is large enough A(s̄−j , s̄
+
j ) would not be the largest annulus in

Agj(0, rj , 2) centered at 0 in which Vj is an ε′-C2 graph over C∞. This is a contradiction. �

This in particular implies the following convergence result at all scales, which we will repeat-

edly employ in Appendix D.

Corollary C.2. Let Λ > 0, {Σj}j≥1 be a sequence of n-dimensional MSI in (B(4), gj) with

Sing(Σj) = {0} and rΣj ,gj ≥ Λ−1ρj in B(3), where ρj denotes the distance to 0 in metric gj.

Suppose that, as one lets j → ∞, there holds

(i) ‖gj − geuc‖C4(B(4)) → 0,

(ii) θ|Σj |(0, 2) − θ|Σj |(0) → 0.

Then there exists some C ∈ CN,n(Λ) such that after passing to a subsequence (which we do not

rename), both Σj and its tangent cone Cj at 0 are all εj-C
2 graphs over C in B(1) for some

sequence {εj} such that εj → 0 as one lets j → ∞.

Proof. First note that, by the constraint on regularity scale function, Cj ∈ CN,n(Λ). By Lemma

4.5, Cj subconverges to some C smoothly away from 0. This implies, in particular, that for

any j ≥ j0 large enough Σj is a κj-C
2 graph over C in Agj (0, sj, 2sj) for suitable sequences

{κj}j≥j0
and {sj}j≥j0

both tending to zero as one lets j → ∞.

Hence, set εj = 1/j let δj := δ(1/j,Λ) be as afforded by Proposition C.1. Thanks to the

assumptions (i), (ii), for any j ≥ j0 there exists i0 = i0(j) such that for any i ≥ i0(j) the

hypotheses of Proposition C.1 are satisfied by Σi (and gi) for any i ≥ i0(j). Thus the sequence

{Σi0(j)}j≥1 has the desired properties. �

Appendix D. Comparing graphical sections defining singular minimal

submanifolds

Lemma D.1. There exists δ0(N) ∈ (0, 1/4) and C = C(N) > 0 such that the following

statements hold true. Let Σ0 ⊂ RN be a δ0-C
3 graph over Bn(3) × {0}, g be a C4 Riemannian

metric on BN (4) with ‖g−geuc‖C4 ≤ δ0; let Σi be δ0-C
2 graphs over Σ0 in (Bg(2), g) for i = 1, 2;

and let x ∈ RN be a vector with |x| ≤ δ0. Then

(i) for all i, j ∈ {0, 1, 2}, both Σj and Σj + x are
√
δ0-C

3 graphs over Σi in Bg(1); we

denote by uji and ũji the graphical section of Σj and Σj + x over Σi, respectively;

(ii) for every i, j ∈ {0, 1, 2} there holds,

1

2
‖u20 − u10‖C0(Bg(1/8)∩Σ0) ≤ ‖u21‖C0(Bg(1/4)∩Σ1) ≤ 2‖u20 − u10‖C0(Bg(1/2)∩Σ0) ;(76)

∥∥ũji − uji − x⊥
Σi,g

∥∥
C0(Bg(1/4)∩Σi)

≤ C
(
‖uji‖C0(Bg(1/2)∩Σi) + |x|

)
|x| .(77)

Proof. (i) follows directly from implicit function theorem. To prove the estimates in (ii), we use

Φi(x, v) to denote the “Fermi coordinates” of Σi under g: more precisely, given v ∈ C2(Σi,Vi)

(where Vi denotes the normal bundle of Σi with respect to the metric g, and x ∈ Σi, we write

Φi(x, v) := expg
x(v(x)) .
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To prove the left-hand side inequality of (76), consider the map

φ : Σ0 × [0, 1] → RN , (x, s) 7→ Φ1(Φ0(x, u
1
0), su

2
1) .

Then by possibly taking δ0 smaller, for every s ∈ [0, 1], φ(Σ0, s) is a
√
δ0-C

2 graph over Σ0 in

Bg(1) with graphical section vs. Moreover, v1 = u20, v0 = u10 and

‖u20 − u10‖C0(Bg(1/8)∩Σ0) ≤ sup
s∈[0,1]

‖∂svs‖C0(Bg(1/8)∩Σ0) ≤ (1 + Cδ0)‖∂sφ‖C0((Bg(1/4)∩Σ0)×[0,1])

≤ (1 + Cδ0)‖u21‖C0(Bg(1/2)∩Σ1).

where the second inequality follows from the implicit function theorem and the last inequality

follows from a direct computation. Taking δ0 small enough finishes the proof.

To prove the right-hand side of (76), one can repeat the argument above for

ψ : Σ1 ∩Bg(1) × [0, 1] → RN , (x, s) 7→ Φ0(Π0(x), su20 + (1 − s)u10) ,

where Π0 denotes the nearest point projection onto Σ0 under g.

Lastly, in order to prove (77), it suffices to only deal with the case when j = 1, i = 0 since

the other cases are similar. Consider

ϕ : Σ0 × [0, 1]2 → RN , (x, s, t) 7→ Φ0(x, su
1
0) + tx .

Again, by possibly taking δ0 even smaller, for every s, t ∈ [0, 1], ϕ(Σ0, s, t) is a C2 graph over

Σ0 in Bg(1) with graphical section ws,t. Moreover, w1,1 = ũ10, w1,0 = u10 and ∂tw0,0 = x⊥Σ0,g .

Since

w1,1 − w1,0 − ∂tw0,0 =

ˆ 1

0

(
ˆ 1

0

d

dλ
(∂twλ,tλ) dλ

)
dt =

ˆ 1

0

(
ˆ 1

0

∂2stwλ,tλ + t∂2ttwλ,tλ dλ

)
dt .

we then find by the same reasoning as above,
∥∥ũ10 − u10 − x⊥Σ0,g

∥∥
C0(Bg(1/4)∩Σ0)

≤ sup
s,t∈[0,1]

(
‖∂2stws,t‖C0(Bg(1/4)∩Σ0) + ‖∂2ttws,t‖C0(Bg(1/4)∩Σ0)

)

≤
(
‖∂2stϕ‖C0((Bg(1/4)∩Σ0)×[0,1]2) + ‖∂2ttϕ‖C0((Bg(1/4)∩Σ0)×[0,1]2)

)

≤ C
(
‖u10‖C0(Bg(1/2)∩Σ0) + |x|

)
|x| ,

as claimed. �

Next, we show that if two MSI with a common singular point, each modeled on a minimal

cone, are sufficiently close to each other, then each can be written as a graph of the other.

Lemma D.2. Let γ, σ ∈ (0, 1) and Λ > 0. Then there exist constants δ1 = δ1(γ, σ,Λ) ∈ (0, 1),

K = K(σ) > 2 and C1(γ, σ,Λ) > 0 such that the following holds.

If Σ0 and Σ1 are MSI in (B(4), g0) and (B(4), g1), respectively, satisfying:

(i) for i ∈ {0, 1}, ‖gi − geuc‖C4 ≤ δ1;

(ii) for i ∈ {0, 1}, ‖Σi‖gi(B(4)) ≤ Λ;

(iii) for i ∈ {0, 1}, 0 ∈ Sing(Σi), the cone densities satisfy:

θ|Σi|(0, 2) − θ|Σi|(0) ≤ δ1 , θ|Σ0|(0) = θ|Σ1|(0) ,

and

distR(γ,Γ(C0(Σi)) ∪ {−(n− 2)/2}) ≥ σ ;

(iv) for i ∈ {0, 1}, the regularity scale function, defined in Definition 2.13, satisfies

rΣi,gi ≥ Λ−1 distgi(·, 0) ;
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(v) the graphical radius, defined in Definition 2.18, satisfies

rΣ
1

Σ0,g0 ≤ δ1 ;

(vi) the graphical section, u := GΣ1

Σ0,g0 ∈ L∞(Σ0), defined in Definition 2.18, satisfies

‖u‖L2
γ(A

g0 (0,1,2)∩Σ0) ≤ δ1 .

Then in B(1), Σ1 is a global C2 graph over (Σ0, g0), i. e., rΣ
1

Σ0,g0 = 0, and the graphical function

u satisfies the estimate

‖u‖C1
γ(B

g0 (0,1)∩Σ0) ≤ C1(γ, σ,Λ) ·
(
‖g0 − g1‖C4 + ‖u‖L2

γ(A
g0 (0,K−3,2)∩Σ0)

)
.

Remark D.3. Condition (v) is not redundant. Indeed, from (i) to (iv), with sufficiently small

δ1, we can only conclude that Σ0 and Σ1 are close to minimal cones, C0 and C1, respectively,

which are centered at 0 and have the same density. However, the links of C0 and C1 might

be far apart. Therefore, condition (v) ensures that these two cones are, in fact, graphical with

respect to each other.

Proof. Let K(σ) be as in Lemma B.1. It suffices to show that for any sequence of {γj ∈
[−Λ,Λ]}j≥1, any sequence of pairs of metrics {(g0j , g

1
j )}j≥1 and any sequence of pairs {(Σ0

j ,Σ
1
j )},

where Σi
j ⊂ (B(4), gij) is an MSI for i = {0, 1}, if (i)-(vi) in the lemma hold for gij,Σ

i
j , γj, 1/j

in place of gi,Σi, γ, δ1, then the conclusion of the lemma holds for all sufficiently large j and

for some finite constant C > 0. Without loss of generality, we assume that Σ0
j 6= Σ1

j for all j.

First notice that by Corollary C.2, as j → ∞, up to subsequences, Σi
j are εj-C

2 graphs

over Ci for some εj → 0 and Ci ∈ CN,n(Λ), where i = 0, 1. And since by (vi), Σ1
j and Σ0

j

are approaching each other in Ag0(0, 1, 2), we must have C0 = C1 =: C. Hence by (76) and

standard elliptic estimates, for all j large enough Σ1
j is a ε̃j-C

2 graph over Σ0
j in Bg0(0, 3/2)

where ε̃j → 0 as one lets j → ∞. Said uj the graphical section, it remains to estimate

‖uj‖C1
γ(B

g0 (0,1)∩Σ0). By the graphical parametrization of Σ0
j using C, we view uj as a section

on a subdomain of C. Then by suitably exploiting Proposition A.1 and Proposition A.3, the

same argument as in the proof of Corollary B.5 leads to the desired conclusion. �

In general, we may consider the case where the two MSI have distinct singular points that

are separated by a sufficiently small distance. Similarly, we can conclude that they are graphs

to each other, modulo some translation-like functions.

Corollary D.4. Given γ, σ ∈ (0, 1) and Λ > 0, let δ1 = δ1(γ, σ,Λ) > 0 and K = K(σ) > 2

be as in Lemma D.2. There exist constants δ2 = δ2(γ, σ,Λ) ∈ (0, δ1), δ̃2 = δ̃2(γ, σ,Λ) ∈ (0, δ2)

and C2 = C2(γ, σ,Λ) > 0 such that the following holds.

If Σ0 and Σ1 are both MSI in (B(4), g) satisfying

(i) ‖g − geuc‖C5 ≤ δ̃2;

(ii) for i ∈ {0, 1}, ‖Σi‖g(B(4)) ≤ Λ;

(iii) for i ∈ {0, 1}, there exist xi ∈ Sing(Σi) ∩ Bδ̃2
such that the cone densities satisfy:

θ|Σi|(x
i, 2) − θ|Σi|(x

i) ≤ δ̃2 , θ|Σ0|(x
0) = θ|Σ1|(x

1) ,

and

distR(γ,Γ(Cxi(Σi)) ∪ {−(n− 2)/2}) ≥ σ ;
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(iv) for i ∈ {0, 1}, the regularity scale function, defined in Definition 2.13, satisfies

rΣi,g ≥ Λ−1 distg(·,xi) ;

(v) the graphical radius, defined in Definition 2.18, satisfies

rΣ
1

Σ0,g ≤ δ̃2 ;

(vi) the graphical section, u := GΣ1

Σ0,g ∈ L∞(Σ0), defined in Definition 2.18, satisfies

‖u‖L2
γ(A

g(0,1,2)∩Σ0) ≤ δ̃2 ,

then we have the following estimates,

|x1 − x0| ≤ r := rΣ1
Σ0,g

≤ C2‖u‖L2(Ag(x0,δ2,2)∩Σ0) < 2−2024 ,(78)

‖u− (x1 − x0)⊥Σ0,g‖C0(Ag(x0,s,2s)∩Σ0) ≤ C2

(
‖u‖L2(Ag(x0,δ2,2)∩Σ0) · sγ + s−1|x1 − x0|2

)
.(79)

for every s ∈ (C2r, 1/2).

In particular, for some C̃2(γ, σ,Λ) = C̃2(C2) > 0,

(80) ‖u‖C0(Ag(x0,C2r,1)∩Σ0) ≤ C̃2‖u‖L2(Ag(x0,δ2,2)∩Σ0) .

Proof. Fix Λ and σ, and the corresponding constants δ1, C1 and K from Lemma D.2.

Claim 1. There exists δ′ > 0 and C ′ > 1 such that if δ̃2 ≤ δ′ and r ∈ (0, 1), then

(81) |x1 − x0| ≤ rΣ
1

Σ0,g ≤ C ′‖(x1 − x0)⊥Σ0,g‖C0(Ag(x0;r,2r)∩Σ0) .

Proof. Since xi is a singular point of Σi, it is clear by definition that

|x1 − x0| ≤ rΣ
1

Σ0,g .

To prove the right-hand side inequality, suppose for the sake of contradiction, that there exist

sequences {Σ0
j}j≥1 and {Σ1

j}j≥1 where Σ0
j and Σ1

j are MSI in (B(4), gj) satisfying conditions

(i) - (vi) in the corollary with 1/j in place of δ̃2, but

r
Σ1

j

Σ0
j ,gj

> j‖(x1
j − x0

j )
⊥

Σ0
j
,gj ‖C0(Agj (x0

j ,sj ,2sj)∩Σ
0
j )
.(82)

for some sj ∈ (0, 1). First note that for any j sufficiently large, we must have

√
j‖(x1

j − x0
j )

⊥
Σ0
j
,gj ‖C0(Agj (x0

j ,sj ,2sj)∩Σ
0
j )
≥ |x1

j − x0
j | .(83)

This is because otherwise, by (iii) and Corollary C.2, η−1
x0
j ,sj

(Σ0
j ) would subconverge to some

nontrivial regular minimal cone C ∈ CN,n(Λ), but the failure of (83) implies that the subse-

quential limit x̂ ∈ RN of (x1
j − x0

j )/|x1
j − x0

j | satisfies x̂⊥C,geuc = 0. Since x̂ 6= 0, this means C

splits in x̂ direction, contradicting the fact that C is a regular cone.

Now let rj := r
Σ1

j

Σ0
j ,gj

: by (iii), Corollary C.2, (82) and (83), Σ̂i
j := η−1

x0
j ,rj

(Σi
j) subconverges to

some C ∈ CN,n(Λ) for both i = 0, 1. It then follows from Allard’s regularity theorem [2] that

for sufficiently large j, Σ̂1
j is a δ20/2-C2 graph over Σ̂0

j , which contradicts the definition of r
Σ1

j

Σ0
j
,gj

.

Therefore, we conclude the claim. �
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In (B(4), geuc), let τx1−x0 be the translation map which translates x0 to x1. Define

Σ̃1 := τ−1
x1−x0(Σ

1) , g̃ := (τx1−x0)∗ (g) ,

and let the corresponding graphical function be denoted by ũ := GΣ̃1

Σ0,g.

Clearly, there exists δ′′ ∈ (0, δ′) such that if we choose δ̃2 ≤ δ′′, then the pair (Σ0, Σ̃1) satisfies

conditions (i)-(vi) in Lemma D.2 for the pair (Σ0,Σ1). In particular, Σ̃1 is a global C2 graph

over (Σ0, g) with graphical section ũ satisfying

(84) ‖ũ‖C1
γ(B

g(x0,1)∩Σ0) ≤ C ′′(σ,Λ)
(
|x1 − x0| + ‖ũ‖L2

γ(A
g0 (x0,K−3/10,1/5)∩Σ0)

)
,

since by (i) and the definition of g̃, we have ‖g̃ − g‖C4 ≤ C(N)|x1 − x0|.
Claim 2. There exist δ′′′(Λ, σ) ∈ (0, δ′′), C ′′′(Λ, σ), C ′′′′(Λ, σ) > 1 such that if δ̃2 ≤ δ′′′ and

r ∈ ((C ′′′)2rΣ
1

Σ0,g, 1/4), then we have,

(85)

‖u− ũ− (x1 − x0)⊥Σ0,g‖C0(Ag(x0,2r,3r)∩Σ0) ≤ C ′′′
(
‖ũ‖C0(Ag(x0,r,4r)∩Σ0) + |x1 − x0|

)
r−1 · |x1 − x0| ,

(86)

‖u− ũ− (x1 − x0)⊥Σ0,g‖C0(Ag(x0;2r,3r)∩Σ0) ≤ C ′′′
(
‖u‖C0(Ag(x0;r,4r)∩Σ0) + |x1 − x0|

)
r−1 · |x1 − x0| ,

and

|x1 − x0| ≤ C ′′′′(‖ũ‖C0(Ag(x0,r,4r)∩Σ0) + ‖u‖C0(Ag(0,2r,3r)∩Σ0)) .(87)

Proof. In view Remark 2.17, by choosing sufficiently small δ′′′ and large C ′′′, (85) and (86)

follow directly by applying Lemma D.1 near each x ∈ Ag(x0, r, 2r). At that stage, (87) then

follows from (85), Claim 1 and the triangle inequality by taking C ′′′ much larger than C ′. �

We set δ̃2 ≤ δ′′′ be from the previous claim. Then for any r ∈ ((C ′′′)2rΣ
1

Σ0,g, 1/4), we have

|x1 − x0| ≤ C ′′′′(‖ũ‖C0(Ag(x0,r,4r)∩Σ0) + ‖u‖C0(Ag(0,2r,3r)∩Σ0))

≤ Crγ‖ũ‖C0
γ(A

g(0,r,4r)∩Σ0) + Cr−n/2‖u‖L2(Ag(x0,r,4r)∩Σ0)

≤ Crγ ·
(
|x1 − x0| + ‖ũ‖L2(Ag0 (0,K−3/10,1/5)∩Σ0)

)
+ Cr−n/2‖u‖L2(Ag(x0,r,2)∩Σ0)

≤ C̄rγ|x1 − x0| + Cr−n/2‖u‖L2(Ag(x0,r,2)∩Σ0) .

(88)

Here, the constants C, C̄ are all only depending on Λ, σ (and possibly on N) and are changing

from line to line; the first inequality follows from (87); the second inequality follows from the

definition of C0
γ , (iv) and classical elliptic estimates; the third inequality follows from (84) and

the last inequality follows from triangle inequality and (86).

Now we fix the choice of δ2(Λ, σ) so small that C̄δγ2 < 1/2. In this way, (78) follows by

combining (88) (with r = δ2) and (81) with δ̃2 ∈ (0, δ2) small enough.

To prove (79), notice that for every s ∈ ((C ′′′)2r, 1/4) we have

‖u− (x1 − x0)⊥Σ0,g‖C0(Ag(x0,2s,3s)∩Σ0) ≤ C
(
‖ũ‖C0(Ag(x0,s,4s)∩Σ0) + s−1 · |x1 − x0|2

)

≤ C
(
‖ũ‖C0

γ(A
g(x0,s,4s)∩Σ0) · sγ + s−1 · |x1 − x0|2

)

≤ Č
(
‖u‖L2(Ag(x0,δ2,2)∩Σ0) · sγ + s−1 · |x1 − x0|2

)

Here, the constants C, Č are again only depending on Λ, σ, N and are changing line by line;

The first inequality follows from (85) and Claim 1, the second inequality follows by definition
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of C0
γ norm and (iv), while the last inequality follows by combining (84), (78) and (86). We

can now choose C2 := max{Č, 2(C ′′′)2} to obtain (79). �

For later applications, we also need to compare the graphical sections defining three different

submanifolds.

Corollary D.5. Let γ, σ ∈ (0, 1) and Λ > 0. Then there exists δ3 = δ3(γ, σ,Λ) ∈ (0, 1),

δ̃3 = δ̃3(γ, σ,Λ) ∈ (0, δ3) and C3 = C3(γ, σ,Λ) > 2 such that the following holds.

Let Σ0,Σ1,Σ2 be MSI in (B(5), g) satisfying the following conditions

(i) ‖g − geuc‖C4 ≤ δ̃3;

(ii) for i ∈ {0, 1, 2}, ‖Σi‖g(B(5)) ≤ Λ;

(iii) for i ∈ {0, 1, 2}, there exists xi ∈ Sing(Σi)∩Bδ̃3
such that x0 = 0 and the cone densities

θ|Σi|(x
i, 2) − θ|Σi|(x

i) ≤ δ̃3 , θ|Σ0|(x
0) = θ|Σ1|(x

1) = θ|Σ2|(x
2) ,

and

distR(γ,Γ(Cxi(Σi)) ∪ {−(n− 2)/2}) ≥ σ ;

(iv) For i ∈ {0, 1, 2},
rΣi,gi ≥ Λ−1 distg(·,xi) ;

(v) for i ∈ {1, 2}, the graphical radius satisfies

rΣ
i

Σ0,g ≤ δ̃3 ;

(vi) for i ∈ {1, 2}, ‖u(i)‖L2(Ag(0,1/2,2)∩Σ0) ≤ δ̃3, where u
(i) := GΣi

Σ0,g ∈ L∞(Σ0), i = 1, 2.

Then for i ∈ {1, 2}, we have

rΣ
i

Σ0,g ≤ |xi − x0| ≤ C3‖u(i)‖L2(Ag(0,δ3,2)∩Σ0) < 2−2024 ,

and, set r := maxi r
Σi

Σ0,g, x := x2 − x1, then for every s ∈ (C3r, 1/4) there holds

‖(u(1) − u(2)) + x⊥Σ0,g‖C0(Ag(0,s,2s)∩Σ0)

≤ C3‖GΣ2

Σ1,g‖L2(Ag(0,δ3,2)∩Σ1) ·
(
sγ + s−1

(
‖u(2)‖L2(Ag(0,δ3,2)∩Σ0) + |x1| + |x2|

) )
.

Proof. In (B(5), geuc), let τx be the translation map which translates x1 to x2. Define

Σ̃2 := τ−1
x

(Σ2) , g̃ := (τx)∗ (g) .

Note that Σ̃2 is singular at x1. Let ũ(2) := GΣ̃2

Σ0,g be the graphical section of Σ̃2 over Σ0, and

v := GΣ2

Σ1,g, ṽ := GΣ̃2

Σ1,g be the graphical section of Σ2 and Σ̃2 over Σ1 respectively. By making

δ̃3 small enough, we see that the assumptions in Lemma D.2 hold for Σ1, g, Σ̃2, g̃. Therefore,

since Σ̃2 is g̃-minimal and ‖g̃ − g‖C4 ≤ C|x|, we have for every s ∈ (0, 1/4),

‖ṽ‖C0(Ag(x1,s/2,3s)∩Σ1) ≤ C
(
|x| + ‖ṽ‖C0(Ag(x1,K−4,1)∩Σ1)

)
· sγ

≤ C
(
|x| + ‖v‖C0(Ag(x1,K−5,3/2)∩Σ1)

)
· sγ

≤ C‖v‖L2(Ag(x1;δ3,2)∩Σ1) · sγ .
(89)

where the first inequality follows by Lemma D.2; the second inequality follows from (77) in

Lemma D.1 and the last follows from Corollary D.4 and classical elliptic estimate if δ̃3, δ3 are

taken small enough.
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Also, by applying (79) to Σ0,Σ2, g and choosing δ3 ≤ δ2, δ̃3 ≤ δ̃2, we have for every s ∈
(C2r, 1/2),

‖u(2)‖C0(Ag(0,s,2s)∩Σ0) ≤ C2

(
‖u(2)‖L2(Ag(0,δ3,2)∩Σ0) · sγ + |x2|

)
.(90)

On the other hand, Lemma D.1 implies that for every s ∈ (2C2r, 1/4),

‖(u(1) − u(2)) + x⊥Σ0,g‖C0(Ag(0,s,2s)∩Σ0)

≤ ‖(ũ(2) − u(2)) + x⊥Σ0,g‖C0(Ag(0,s,2s)∩Σ0) + ‖u(1) − ũ(2)‖C0(Ag(0,s,2s)∩Σ0)

≤ C
(
‖u(2)‖C0(Ag(0,s/2,3s)∩Σ0) + |x|

)
s−1 · |x| + C‖ṽ‖C0(Ag(x1,s/2,3s)∩Σ1) .

Combining this with (89) and (90) allows to conclude the proof. �

Appendix E. Parametrizing the space of MSI in a Riemannian manifold

For N > n ≥ 2 be integers, recall that CN,n is the collection of non-trivial regular n-

dimensional minimal cones C in RN . For each C ∈ CN,n and every x ∈ C \ {0}, we have

(essentially as a specification of Definition 2.13)

rC(x) := sup
{
r > 0 : C ∩ B(x, r) = graphTxC

(u), r−1|u| + |∇̊u| + r|∇̊2u| ≤ 1
}

for φ : dom(φ) ⊂ TxC → T⊥
x C, of class C2. Note that rC is 1-homogeneous in the radial

direction. To obtain a compactness result, Lemma 4.5, for each Λ ≥ 1 we had set

CN,n(Λ) := {C ∈ CN,n : inf
C∩SN−1

rC(x) ≥ Λ−1};

clearly, there holds CN,n =
⋃∞

Λ=1 CN,n(Λ).

Multiplicity-one cone decomposition. In this appendix, we adapt a result of Edelen [17]

to “parametrize” the class of all minimal submanifolds with strongly isolated singular points

(MSI) inside a given Riemannian manifold. It is important to note that in his original work,

Edelen considered minimal cones and varifolds with higher multiplicities, whereas for our ap-

plications it suffices to restrict to multiplicity-one objects. On the other hand Edelen focused

on hypersurfaces, where there is a natural hierarchy among the minimal graphs over a given

region; this hierarchy does not exist in the submanifold setting (namely: for general dimension

and codimension), so we need to exploit partly different ideas.

Definition E.1 (Strong-cone region). Let g be a C2 metric on B(a, R) ⊂ RN , and V be an

n-dimensional integral varifold on (B(a, R), g). Given C ∈ CN,n, β ∈ [0, 1/4], ρ ∈ [0, R], we say

that V x(A(a, ρ, R), g) is a (C, β)-strong-cone region if there is a C∞ normal section

u : (a+ C) ∩ A(a, ρ/8, R) → C⊥

so that for any r ∈ [ρ, R]∩(0,∞) there holds V xA(a, ρ/8, R) = | grapha+C
(u)| (i. e. V coincides

in that annulus with the multiplicity one varifold associated to the graph of u) and we have

(i) small C2 norms: r−1|u| + |∇u| + r|∇2u| ≤ β;

(ii) almost constant density ratios: θC(0) − β ≤ θV (a, r) ≤ θC(0) + β.

In this case, for simplicity, we will also call A(a, ρ, R) a strong-cone region for V .
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Remark E.2. In [17, Definition 6.0.1, Definition 6.0.3], Edelen introduced notions of a weak-

cone region and a strong-cone region, respectively. It is shown in [17, Definition 6.1(3)], when

the parameters β and τ are sufficiently small, depending on the cone C, a weak-cone region is

also a strong-cone region. This result relies on a compactness theorem (Theorem 5.1 therein),

which can be replaced by Lemma 4.5 to obtain the same result in our (more general) setting.

Therefore, for simplicity, in this manuscript we shall only employ the notion of strong-cone

region.

As discussed prior to the definition, we consider only multiplicity-one objects, so we fix

the multiplicity parameter m in [17, Definition 6.0.3] to be 1. This choice will remain fixed

throughout this section.

Definition E.3 (Smooth model). Given parameters Λ, γ ∈ (0,∞), σ ∈ (0, 1/3), a tuple

(S,C, {(Cα,B(yα, rα))}α) is called a (Λ, σ, γ)-smooth model if

• S is a stationary integral n-varifold in (RN , geuc) with

θS(0,∞) ≤ Θ(Λ) ,

• C, {Cα}α ⊂ CN,n(Λ),

• {B(yα, 2rα)} is a finite collection of disjoint balls in B(1 − 3σ),

such that the following conditions are satisfied:

(i) sptS is a smooth, closed, embedded minimal submanifold S̊ in RN \ {yα}α such that

for every x ∈ S̊,

rS̊,geuc
(x) · min{1, distgeuc(x, {yα}α)} ≥ Λ−1 ,

where the regularity scale rS̊,geuc
is that of Definition 2.13;

(ii) Sx(A(0, 1,∞), geuc) is a (C, γ)-strong-cone region;

(iii) for each α, spt S ∩ A(yα, 0, 2rα) is a (Cα, γ)-strong-cone region.

(Note that the function Θ(Λ) has been defined in Remark 4.9.) If there is no ambiguity, we

will refer to the smooth model as S for simplicity.

Remark E.4. Intuitively, when a minimal submanifold is close to a cone outside some small

ball, this approximation does not necessarily extend directly into the small ball. Fortunately,

due to the volume monotonicity, on a small scale, if the minimal submanifold is modeled on

another cone, the density of the new cone is controlled by that of the original one. The notion

of smooth region, introduced below, aims at depicting, in B(1) \ ⋃α B(yα, rα/4), the region

between strong-cone regions at two different scales.

Definition E.5 (Smooth model scale constant). Given a (Λ, σ, γ)-smooth model S, we let ǫS
be the largest number ≤ min(1,minα {rα}) for which the graph map

graphS : T⊥(S̊) → RN , graphS(x, v) := x+ v ,

is a diffeomorphism from
{

(x, v) ∈ T⊥(S̊) : x ∈ B(2) \⋃α B(yα, rα/8), |v| < 2ǫS

}
onto its im-

age, and satisfies ∣∣D graphS |(x,v) − 1

∣∣ ≤ ǫ−1
S |v| .

(Here T⊥(S̊ denotes the normal bundle to S in Euclidean RN .)
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Definition E.6 (Smooth region). Given a smooth model S, a C2 metric g on B(a, R) ⊂ RN ,

and β ∈ (0, 1), we say that an integral varifold V in (B(a, R), g) is an (S, β)-smooth region

if there is a C2 function u : S̊ → S̊⊥ so that

((ηa,R)#V ) x(B(1) \
⋃

α

B(yα, rα/4)) =

[
graphS̊(u) ∩ B(1) \

⋃

α

B(yα, rα/4)

]

R−2◦η∗
a,R

(g)

,

where ηa,R is the dilation of center a and scale 1/R, and

|u|C2(S̊) ≤ βǫS ,

where ǫS is a scale constant in the previous definition.

In this case, for simplicity, we will also call B(a, R) a smooth region for V .

Definition E.7 (Local cone decomposition). Given Λ ≥ 1, γ, β ∈ R, σ ∈ (0, 1/3), and NR ∈ N,

we let

• g be a C2 metric on B(x,R) ⊂ RN ;

• V be an integral varifold in (B(x,R), g);

• S = {Ss}s be a finite collection of (Λ, σ, γ)-smooth models.

A (Λ, β,S, NR)-cone decomposition of V consists of the following parameters:

• Integers NC , NS satisfying NC + NS ≤ NR, where NC is the number of strong-cone

regions and NS the number of smooth regions;

• Points {xa}a , {xb}b ⊂ B(x,R), where {xa} are henceforth referred to as centers of

strong-cone regions and {xb} as centers of smooth regions;

• Radii {Ra, ρa | Ra ≥ 2ρa}a , {Rb}b, corresponding to radii of annuli in the definition of

strong-cone regions and of balls in the definition of smooth regions, respectively;

• Cones {Ca}a ⊂ CN,n(Λ);

• Indices {sb}b, corresponding to the smooth model Ssb;

where a = 1, · · · , NC and b = 1, · · · , NS. Such parameters determine a covering of balls and

annuli satisfying:

(i) every V x(A(xa, ρa, Ra), g) is a (Ca, β)-strong cone region and every V x(B(xb, Rb), g) is

a (Ssb, β)-smooth region;

(ii) there is either a strong-cone region A(xa, ρa, Ra) for V with Ra = R and xa = x, or a

smooth region BRb
(xb) for V with Rb = R and xb = x;

(iii) if V x(A(xa, ρa, Ra), g) is a (Ca, β)-strong-cone region and ρa > 0, then there exists either

a smooth region B(xb, Rb) for V with Rb = ρa, or another cone region A(xa′ , ρa′ , Ra′)

for V with Ra′ = ρa, xa′ = xa. If ρa = 0, then θCa
(0) > 1;

(iv) if V x(B(xb, Rb), g) is a smooth region with (S,C, {Cα̂,B(yα̂, rα̂)}α̂) ∈ S, then for any

α̂, there exists a point xb,α̂ and a radius Rb,α̂ satisfying

|xb,α̂ − (xb +Rb · yα̂)| ≤ βRbrα̂,
1

2
≤ Rb,α̂

Rbrα̂
≤ 1 + β ,

and either a strong-cone region A(xa′ , ρa′ , Ra′) for V with Ra′ = Rb,α̂, xa′ = xb,α̂, or

another smooth region B(xb′ , Rb′) with Rb′ = Rb,α̂ and xb′ = xb,α̂.

Remark E.8. In these definitions, we do not assume the stability of minimal cones. Instead,

we impose a regularity scale condition, in the definition of CN,n(Λ), to have uniform control on

the geometry of the link (cf. Section 4.1).
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Given a stationary integral varifold V in (B(1), g) with finitely many singular points Sing V ,

for every x ∈ Reg V , we define

ρV (x) := min{1, inf
p∈SingV

{distg(x, p)}} .

By Lemma 4.8, for each Λ > 0, there are only finitely many possible densities for regular

minimal cones in CN,n(Λ). Among various consequences, we have the following important local

cone decomposition theorem.

Theorem E.9 (Existence of local cone decomposition). Given parameters I ∈ N+, Λ ∈ N+,

σ ∈ (0, 1
100(Λ+1)

), γ ∈ (0, 1), there exist constants δ, NR and a finite collection of (Λ, σ, γ)-

smooth models {Ss}s = S, all depending only on (Λ, σ, γ) with the following property.

For any C3 metric g on B(1) satisfying |g − geuc|C3(B(1) ≤ δ, any stationary integral varifold

V in (B(1), g) with # Sing V ≤ I, C ∈ CN,n(Λ), if

(i) θC(0) ≤ Θ(Λ),

(ii) distH(spt V ∩ B(1),C ∩ B(1)) ≤ δ,

(iii) 1
2
θC(0) ≤ θV (0, 1/2) and θV (0, 1) ≤ 3

2
θC(0),

(iv) for all x ∈ Reg V , rReg V,g(x) ≥ Λ−1ρV (x),

where distH stands for the Hausdorff distance, then there exists a radius r ∈ (1 − 20σ, 1) so

that V xB(x, r) admits a (Λ, γ,S, NR)-cone decomposition.

Proof. The proof follows verbatim from that of [17, Theorem 7.1]. Note that by Allard’s

regularity theorem [2], the regularity scale condition rReg V,g(x) ≥ Λ−1ρV (x) and the assumption

# Sing V ≤ I ensure that the convergence is smooth and of multiplicity one outside a finite

set, and thus, only Case 1 (I ⊂ {0}) from the proof of [17, Theorem 7.1] will arise during the

induction in our setting. �

Tree representations of cone decomposition. In the definition of the cone decomposi-

tion of a minimal submanifold near a cone, Definition E.7, there is a natural hierarchy among

the strong-cone regions and smooth regions based on their respective scales due to the volume

monotonicity. Therefore, we can use a tree structure to represent the cone decomposition.

Definition E.10 (Tree representation of a local cone decomposition). Given a (Λ, β,S, NR)-

cone decomposition of V xB(x,R) as in Definition E.7 with parameters:

• Integers NS, NC satisfying NS +NC ≤ NR;

• Points {xa}a , {xb}b ⊂ B(x,R);

• Radii {Ra, ρa : Ra ≥ 2ρa}a , {Rb}b;
• Indices {sb}b;
• Cones {Ca}a ⊂ CN,n(Λ),

where a = 1, · · · , NC and b = 1, · · · , NS. The corresponding tree representation of the

cone decomposition is a rooted tree (in the sense of [16, Section B.5]) uniquely defined by the

following requirements:

(i) there are two types of nodes: every node of type I is labeled with (Ca, xa, Ra, ρa), while

every node of type II with (Ssb, xb, Rb);

(ii) the root is labeled with either (Ca, xa = x,Ra = R, ρa) or (Ssb, xb = x,Rb = R);
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(iii) for any type I node (Ca, xa, Ra, ρa), either ρa = 0, θCa
(0) > 1 and it is a leaf; or ρα > 0

and it has a unique child of either

• type I (Ca′ , xa′ = xa, Ra′ = ρa, ρa′), or

• type II (Ssb′
, xb′ = xa, Rb′ = ρa);

(iv) for any type II node (Ssb, xb, Rb) where Ssb = (S,C, {Cα̂,B(yα̂, rα̂)}α̂∈Ib), it has card(Ib)

child nodes such that for each α̂, there exists Rb,α̂ and xb,α̂ such that

|xb,α̂ − (xb +Rb · yα̂)| ≤ βRbrα̂,
1

2
≤ Rb,α̂

Rbrα̂
≤ 1 + β ,

so that the corresponding child node is either

• of type I (Ca′ = Cα̂, xa′ = xb,α̂, Ra′ = Rb,α̂, ρa′), or

• of type II (Ssb′
, xb′ = xb,α̂, Rb′ = Rb,α̂).

The coarse tree representation of the cone decomposition is obtained by relabeling the

rooted tree above, i.e., replacing the type I node (Ca, xa, Ra, ρa) by (θCa
(0)), and the type II

node (Ssb, xb, Rb) by Ssb.

Definition E.11. For γ ∈ (0, 1/100), two (Λ, β,S, NR)-tree representations of local cone de-

compositions with parameters

• (NS, NC , {xa} , {xb} , {Ra} , {ρa} , {Rb} , {Ca} {sb}),

• (N ′
S, N

′
C , {x′a} , {x′b} , {R′

a} , {ρ′a} , {R′
b} , {C′

a} , {s′b}),

are said to be γ-close if N ′
S = NS, N ′

C = NC , they have the same coarse tree representations,

and in addition:

(i) if the corresponding two nodes are both of type I, then

• distH(Ca ∩ ∂B1,Ca′ ∩ ∂B1) ≤ γ,

• If ρa > 0, then

– |ρa − ρa′ | ≤ γmin(ρa, ρa′);

– |xa − xa′ | ≤ γmin(ρa, ρa′);

– |Ra − Ra′ | ≤ γmin(ρa, ρa′);

otherwise, if ρa = 0, then

– ρa′ = 0;

– |xa − xa′ | ≤ γmin(Ra, Ra′);

– |Ra − Ra′ | ≤ γmin(Ra, Ra′);

(ii) if the corresponding two nodes are both of type II, then

• |xb − xb′ | ≤ γmin(Rb, R
′
b) minα̂∈Ib(rα̂),

• |Rb −Rb′ | ≤ γmin(Rb, R
′
b) minα̂∈Ib(rα̂).

In order to deal with minimal submanifolds in a closed Riemannian manifold directly, we

also introduce a large-scale cone decomposition for an MSI in a closed Riemannian manifold

M of dimension N .

Definition E.12 (Large-scale cone decomposition). Given Λ, γ, β ∈ R+, σ ∈ (0, 1/3), and

NR ∈ N, let

• g0, g be two C3 metrics on M ;

• Σ0, Σ be two MSI in (M, g0) and (M, g) respectively;

• S = {Ss}s be a finite collection of (Λ, σ, γ)-smooth models.

A large-scale (Λ, β, g0,Σ0,S, NR)-cone decomposition of Σ consists of:
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• a collection of radii {rα̂}α̂ corresponding to the singular set Sing(Σ0) = {pα̂}α̂, such

that the metric balls {Bg(pα̂, rα̂)}α̂ are pairwise disjoint;

• a (Λ, β,S, NR)-cone decomposition for each |Σ|xBg(pα̂, rα̂);

• a C2 normal section u : Σ0\
⋃

pα̂∈Sing(Σ0)
Bg(pα̂, rα̂/2) → Σ⊥

0 so that for r0 = minα̂ {rα̂} >
0,

r−1
0 |u| + |∇u| + r0|∇2u| ≤ β ,

and |Σ|xBg(pα̂, rα̂) coincides with graphΣ0
(u) \Bg(pα̂, rα̂) (understood as varifold with

multiplicity one);

Similarly, we can define the corresponding tree representation and the γ-closeness.

Definition E.13 (Tree representation of large-scale cone decomposition). Given a large-scale

(Λ, β, g0,Σ0,S, N)-cone decomposition of an MSI Σ in (M, g) with parameters:

• Sing(Σ0) = {pα̂}α̂;

• radii {rα̂}α̂;

• (Λ, β,S, N)-cone decompositions for each |Σ|xBg(pα̂, rα̂);

The corresponding tree representation of the large-scale cone decomposition is a rooted tree

uniquely defined by:

(1) the root node is a labeled by a tuple (Σ0, g0, {pα̂} , {rα̂});

(2) the root node has # Sing(Σ0) children, indexed by α̂. The corresponding subtree rooted

at the α̂-child is the tree representation of the (Λ, β,S, N)-cone decomposition for each

|Σ|xBg(pα̂, rα̂).

Similarly, the coarse tree representation will be the same directed rooted tree with the

subtrees above replaced by their corresponding coarse trees.

Definition E.14. For γ ∈ (0, 1/100), two (Λ, β, g0,Σ0,S, N)-tree representations are said to

be γ-close if

• their root nodes have the same label;

• their subtrees corresponding to the α̂-child are γ-close for each α̂.

Theorem E.15. In a closed smooth manifold M of dimension N , for any given (g,Σ) ∈
Mk,α

n (M), β ∈ (0, 1/100), and I,Λ ∈ N with

# Sing(Σ) ≤ I, rΣ,g ≥ Λ−1ρΣ,g ,

there exist δ(g,Σ, β,Λ, I) > 0 satisfying the following property.

Defined a δ-“neighborhood” of (g,Σ) as

Mk,α
n (g,Σ; Λ, I, β) :=

{
(g′,Σ′) ∈ Mk,α

n (M) : ‖g′‖Ck,α ≤ Λ, rΣ′,g′ ≥ Λ−1ρΣ′,g′,

# Sing(Σ′) ≤ I, ‖g − g′‖Ck + F(|Σ|g, |Σ′|g′) ≤ δ(g,Σ, β,Λ, I)
}

(i) there exist a finite collection of (Λ, σ, β)-smooth models S and an integer NR, so that any

(g′,Σ′) ∈ Mk,α
n (g,Σ; Λ, I, β) admits a large-scale (Λ, β, g,Σ,S, NR)-cone decomposition;

(ii) there exists a countable collection {(gv,Σv)}v∈N ⊂ Mk,α
n (g,Σ; Λ, I, β) with fixed large-

scale (Λ, β, g,Σ,S, NR)-cone decompositions with the following property: every (g′,Σ′) ∈
Mk,α

n (g,Σ; Λ, I, β) admits a large-scale (Λ, β, g,Σ,S, NR)-cone decomposition whose tree

representation is β-close to that of some (gv,Σv).
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Proof. The proof is essentially the same as that of [27, Theorem 9.6]. �

To proceed, define

Mk,α
n (M ; Λ, I) :=

{
(g,Σ) ∈ Mk,α

n (M) : ‖g‖Ck,α ≤ Λ, rΣ,g ≥ Λ−1ρΣ, # Sing(Σ) ≤ I
}
.

For any β > 0, it follows from the corresponding compactness statement that there exists a

sequence of {(gi,Σi)}i of Mk,α
n (M ; Λ, I) such that

Mk,α
n (M ; Λ, I) =

∞⋃

i=1

Mk,α
n (gi,Σi; Λ, I, β) .

With reference to the second point of Theorem E.15, for each v, we can define an “interme-

diate canonical neighborhood” by

Lk,α
0 (gv,Σv; Λ, I, β)

consisting of every pair (g′,Σ′) ∈ Mk,α
n (g,Σ; Λ, I, β) that admits a large-scale (Λ, β, g,Σ,S, NR)-

cone decomposition whose tree representation is β-close to that of (gv,Σv).

Therefore, we have

Mk,α
n (M) =

∞⋃

I=0

∞⋃

Λ=1

Mk,α
n (M ; Λ, I)

=
∞⋃

I=0

∞⋃

Λ=1

∞⋃

i=1

Mk,α
n (gi,Σi; Λ, I, β)

=

∞⋃

I=0

∞⋃

Λ=1

∞⋃

i=1

∞⋃

v=1

Lk,α
0 (gi,v,Σi,v; Λ, I, β) .

After relabeling the subscripts of the various parameters in play (each varying in a countable

set), we obtain

(91) Mk,α
n (M) =

∞⋃

i=1

Lk,α
0 (gi,Σi; Λi, Ii, β) .

Second decomposition. Following the arguments in [27, Subsection 9.2], we can prove

that an intermediate canonical neighborhood Lk,α
0 (g,Σ; Λ, I, β) is sequentially compact, and

thus, we have the following result.

Proposition E.16 (Finite covering of Lk,α
0 ). For any g,Σ,Λ, I, β as in (91) (with subscripts

omitted) and for any positive function κ : Mk,α
n (M) × R+ → R+ (not necessarily continuous),

there exists a finite set of pairs {(gv,Σv)}v ⊂ Lk,α
0 (g,Σ; Λ, I, β) such that

Lk,α
0 (g,Σ; Λ, I, β) ⊂

V⋃

v=1

Lk,α(gv,Σv; Λ, κv) ,

where κv = κ(gv,Σv; Λ).
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Proof of Theorem 4.23. By (91) and the previous covering proposition, Proposition E.16,

we have

Mk,α(M) =

∞⋃

i=1

Lk,α
0 (gi,Σi; Λi, Ii, β)

=
∞⋃

i=1

Vi⋃

v=1

Lk,α(gi,v,Σi,v; Λi, κi,v) ,

where κi,v = κ(gi,v,Σi,v; Λi).

Hence, Theorem 4.23 follows from relabeling the indices {i, v}.
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[18] N. Edelen and G. Székelyhidi, A Liouville-type theorem for cylindrical cones, Comm. Pure Appl. Math. 77

(2024), no. 8, 3557–3580.

[19] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153,

Springer-Verlag New York, Inc., New York, 1969.

[20] H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520.

[21] R. Hardt and L. Simon, Area minimizing hypersurfaces with isolated singularities, J. Reine Angew. Math.

362 (1985), 102–129.

[22] W.-Y. Hsiang, Minimal cones and the spherical Bernstein problem. I, Ann. of Math. (2) 118 (1983), no. 1,

61–73.

[23] M. Karpukhin, Index of minimal spheres and isoperimetric eigenvalue inequalities, Invent. Math. 223

(2021), no. 1, 335–377.

[24] R. Kusner and P. Wang, On the index of minimal 2-tori in the 4-sphere, J. Reine Angew. Math. 806

(2024), 9–22.

[25] Y. Li, Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with

generic metrics, J. Differential Geom. 124 (2023), no. 2, 381–395.

[26] Y. Li and Z. Wang, Generic regularity of minimal hypersurfaces in dimension 8, arXiv preprint, available

at 2012.05401.

[27] , Minimal hypersurfaces for generic metrics in dimension 8, arXiv preprint, available at

2205.01047.

[28] Z. Liu, Homologically area-minimizing surfaces with non-smoothable singularities, arXiv preprint, available

at 2206.08315.

[29] R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Scuola

Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 3, 409–447.

[30] F. C. Marques and A. Neves, Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179 (2014),

no. 2, 683–782.

[31] J. Marx-Kuo, L. Sarnataro, and D. Stryker, Index, intersections, and multiplicity of min-max geodesics,

arXiv preprint, available at 2410.02580.

[32] R. B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics, vol. 4, A K

Peters, Ltd., Wellesley, MA, 1993.

[33] J. D. Moore, Bumpy metrics and closed parametrized minimal surfaces in Riemannian manifolds, Trans.

Amer. Math. Soc. 358 (2006), no. 12, 5193–5256.

[34] , Self-intersections of closed parametrized minimal surfaces in generic Riemannian manifolds, Ann.

Global Anal. Geom. 60 (2021), no. 1, 157–165.

[35] T. Pacini, Desingularizing isolated conical singularities: Uniform estimates via weighted sobolev spaces,

Comm. Anal. Geom. 21 (2013), no. 1, 105–170.

[36] J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes,

vol. 27, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981.

[37] B. Sharp, Compactness of minimal hypersurfaces with bounded index, J. Differential Geom. 106 (2017),

no. 2, 317–339.

[38] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems,

Ann. of Math. (2) 118 (1983), no. 3, 525–571.

[39] , Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis,

Australian National University, Canberra, 1983.

[40] , Isolated singularities of extrema of geometric variational problems, Harmonic mappings and min-

imal immersions (Montecatini, 1984), 1985, pp. 206–277.

[41] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105.

2306.13191
2012.05401
2205.01047
2206.08315
2410.02580


70 ALESSANDRO CARLOTTO, YANGYANG LI, ZHIHAN WANG

[42] N. Smale, Generic regularity of homologically area minimizing hypersurfaces in eight-dimensional mani-

folds, Comm. Anal. Geom. 1 (1993), no. 2, 217–228.

[43] Z. Wang, Deformations of singular minimal hypersurfaces I, isolated singularities., arXiv preprint, available

at 2011.00548.

[44] , Mean convex smoothing of mean convex cones, Geom. Funct. Anal. 34 (2024), no. 1, 263–301.

[45] B. White, Generic transversality of minimal submanifolds and generic regularity of two-dimensional area-

minimizing integral currents, arXiv preprint, available at 1901.05148.

[46] , Generic regularity of unoriented two-dimensional area minimizing surfaces, Ann. of Math. (2) 121

(1985), no. 3, 595–603.

[47] , The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J. 40

(1991), no. 1, 161–200.

[48] , Currents and flat chains associated to varifolds, with an application to mean curvature flow, Duke

Math. J. 148 (2009), no. 1, 41–62.

[49] , On the bumpy metrics theorem for minimal submanifolds, Amer. J. Math, 139 (2017), no. 4,

1149–1155.

[50] S. T. Yau, Problem section, Seminar on Differential Geometry, 1982, pp. 669–706.

Alessandro Carlotto:
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