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Improvements on Permutation Reconstruction

from Minors

Yiming Ma, Wenjie Zhong and Xiande Zhang

Abstract

We study the reconstruction problem of permutation sequences from their k-minors, which are subsequences

of length k with entries renumbered by 1, 2, . . . , k preserving order. We prove that the minimum number k such

that any permutation of length n can be reconstructed from the multiset of its k-minors is between exp (Ω(
√
lnn))

and O(
√
n lnn). These results imply better bounds of a well-studied parameter Nd, which is the smallest number

such that any permutation of length n ≥ Nd can be reconstructed by its (n − d)-minors. The new bounds are

d + exp(Ω(
√
ln d)) < Nd < d + O(

√
d ln d) asymptotically, and the previous bounds were d + log

2
d < Nd <

d2/4 + 2d+ 4.

1. INTRODUCTION

Reconstructing a combinatorial object from a limited amount of sub-information is a fundamental

problem in computer science. Based on different combinatorial objects, different reconstruction problems

have been widely studied due to their applications in bioinformatics [1], [2], information theory [3], and

DNA based data storage [4]–[6].

Permutation reconstruction is a variant of the well-known graph reconstruction problem, which arose

from the unsolved conjecture of Ulam [7]: any simple graph with at least three vertices can be determined

up to isomorphism by the multiset of all its reduced subgraphs with one vertex deleted. For permutation

reconstruction, one considers reconstructing a permutation from its k-minors, that is, subsequences of

length k with entries renumbered by 1, 2, . . . , k preserving order. The multiset of all its k-minors is called

its k-deck. In 2006, Smith [8] introduced the notation Nd, which is the smallest number such that any

permutation of length n ≥ Nd can be reconstructed by its (n−d)-deck. Raykova [9] showed the existence

of Nd and gave the bounds d+ log2 d < Nd < d2/4 + 2d+ 4.

In this paper, we introduce another notation s(n) for given n, that is the smallest integer k such that

any permutation of length n can be reconstructed from its k-deck, or equivalently, any two permutations

of length n have different k-decks. We give lower and upper bounds of s(n) for large n,

30.811×log
1/2
3

(n+1) ≤ s(n) ≤ 2⌈
√

(n− 2) ln(n− 3)⌉+ 2,

which imply much better bounds of Nd,

d+ exp(Ω(
√
ln d)) < Nd < d+O(

√
d ln d)

for large d. We also provide a feasible algorithm which assists to determine the exact values of s(n) for

n ≤ 10.
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A. Related work

The problem of reconstructing a sequence from the multiset (i.e., the k-deck) of all its subsequences

of length k, was introduced by Kalashnik [10] in an information-theoretic study about deletion channels.

The main task is to determine the minimum number k such that one can reconstruct any binary sequence

of length n from its k-deck. The best known bounds of the minimum k are exp (Ω
√
lnn) [11] and O(

√
n)

[12]. This deck problem has been extended to matrices [13] and general higher dimensions [14], for which

the minimum number k such that one can reconstruct any binary d-dimensional hypermatrix of order n

from its k-deck, the multiset of its sub-hypermatrices of order k, is O(n
d

d+1 ).
The problem of partition reconstruction is to ask for which n and k one can uniquely determine any

partition of n from its set of k-minors [15], [16]. Here, a k-minor of a partition λ of a positive integer

n > k is a partition of n − k whose Young diagram fits inside that of λ. Monks [17] showed that

partitions of n ≥ k2 +2k are uniquely determined by their sets of k-minors, which is best possible. Cain

and Lehtonen [18] completely characterized the standard Young tableaux that can be reconstructed from

their sets or multisets of 1-minors.

For permutation reconstruction, Gouveia and Lehtonen [19] showed that every permutation of length

n ≥ 5 is reconstructible from any ⌈n/2⌉ + 2 of its (n − 1)-minors. Reconstruction of permutations

from other types of minors is also well studied. Monks [20] showed that any permutation of [n] can

be reconstructed from its set of cycle minors if and only if n ≥ 6. Lehtonen [21] showed that every

permutation of a finite set with at least five elements is reconstructible from its identification minors.

De Biasi [22] proved that the problem of reconstructing a permutation given the absolute differences of

consecutive entries is NP-complete.

B. Organization

The paper is organized as follows. In Section 2, we give necessary definitions and notations, then give

a lower bound of s(n). In Section 3, we analyze the relationship between the reconstructibility and some

specific functions, and give an upper bound of s(n). In Section 4, we study bounds and exact values of

s(n) for small n by giving an efficient algorithm, and deduce much better bounds of Nd than that in [9]

from our bounds of s(n).

2. NOTATIONS

For positive integers n and n1 < n2, let [n] := {1, 2, . . . , n} and [n1, n2] := {n1, n1 + 1, . . . , n2}. For

two sequences x and y, let x | y be the concatenation of them.

Let Sn be the set of all permutations on [n]. For a permutation x ∈ Sn, a k-minor of x is a subsequence

of x with length k whose entries are renumbered by 1, 2, . . . , k preserving order. For example, deleting

the first entry of x = 25134 ∈ S5, we get a subsequence 5134 of length four. Then renumber the entries

by {1, 2, 3, 4} preserving order, we have a 4-minor 4123 of x. The k-deck of x, denoted by Dk(x), is

the multiset of all k-minors of x. If a permutation x ∈ Sn can be uniquely determined by Dk(x), we say

x is k-reconstructible. Moreover, if Dk(x) = Dk(y) for two different permutations x,y in Sn, we say x

and y are k-equivalent, and write x
k∼ y.

Example 2.1. For x = 13524 ∈ S5, D4(x) = {2413, 1423, 1324, 1243, 1342}. It can be verified by

computer that different permutations in S5 have different 4-decks, so x is 4-reconstructible. However, one

can check that 13524
3∼ 14253, that is, x is not 3-reconstructible.

It is easy to see that for any two x,y ∈ Sn, Dl(x) = Dl(y) implies that Dk(x) = Dk(y) for any k ≤ l.

That is, x
l∼ y implies that x

k∼ y for any k ≤ l. So if x is k-reconstructible, then x is l-reconstructible

for any k < l ≤ n. By this fact, it is interesting to consider the following problem.

Q: Given n, determine the least integer k ≤ n such that any x ∈ Sn is k-reconstructible. Denote this

number by s(n).
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By Example 2.1, s(5) = 4. The parameter s(n) is an increasing function of n by the following result.

Proposition 2.1. For any positive integer n, we have s(n) ≤ s(n+ 1).

Proof. It is clear that s(1) = 1, s(2) = 2. So s(n) ≤ s(n + 1) holds for n = 1. Assume that n ≥ 2.

Since all permutations in Sn have the same 1-deck, we have s(n) ≥ 2. Let k = s(n) − 1 ≥ 1. By the

definition of s(n), there exist two distinct permutations x,y ∈ Sn such that Dk(x) = Dk(y), and hence

Dk−1(x) = Dk−1(y). Then for two distinct permutations x | (n+ 1),y | (n + 1) ∈ Sn+1, we have

Dk(x | (n+ 1)) =Dk(x) ⊎ {w | k : w ∈ Dk−1(x)}
=Dk(y) ⊎ {w | k : w ∈ Dk−1(y)} = Dk(y | (n+ 1)).

That is, x | (n + 1) and y | (n + 1) have the same k-deck, which implies that s(n+ 1) ≥ k + 1 = s(n).
This completes the proof.

In order to provide a lower bound of s(n), we establish a mapping between binary sequences and

permutations, then adopt the result in [12] for sequence reconstructions. For a sequence p ∈ {0, 1}n, let

D′
k(p) be its k-deck, i.e., the multiset of all its subsequences of length k. Let s′(n) denote the smallest

integer k such that any sequence in {0, 1}n can be reconstructed from its k-deck, or equivalently, any two

binary sequences of length n have different k-decks.

Theorem 2.1. For any positive integer n, s(n) ≥ s′(n).

Proof. Let k = s′(n) − 1. Then there exist two sequences p,q ∈ {0, 1}n satisfying D′
k(p) = D′

k(q). It

suffices to construct two distinct permutations x,y ∈ Sn such that Dk(x) = Dk(y), then by the definition

of s(n), we have s(n) > k = s′(n)− 1, i.e., s(n) ≥ s′(n).
Define a mapping Ψ from {0, 1}n to Sn as follows. Suppose p ∈ {0, 1}n has m ones. Then Ψ maps

p to a permutation x ∈ Sn by changing the m ones in p into [m] with increasing order and preserving

index positions, and changing the (n−m) zeros in p into [m+1, n] with increasing order and preserving

index positions. For example, if p = 0010011, then x = 4516723. It is easy to see that, every k positions

in [n] gives a k-subsequence w of p and a k-minor z ∈ Sk of x with z = Ψ(w).
Let y = Ψ(q). Then D′

k(p) = D′
k(q) implies that Dk(x) = Dk(y). So we have s(n) ≥ s′(n).

Known values of s′(n) for small n from [11], [12] are listed below. Comparing with Table II in Section 4,

we known that s(n) > s′(n) in general.

n 1 2 3 4 5 6 7 8 9 10 11
s′(n) 1 2 2 3 3 3 4 4 4 4 4

n 12 13 14 15 16 17 18 19 20 21 22
s′(n) 5 5 5 5 [5, 8] [5, 8] [5, 8] [5, 8] [5, 8] [5, 8] [5, 8]

TABLE I: Values of s′(n) for small n. [·, ·] means lower and upper bounds.

In [12], the authors considered a dual parameter of s′(n): Given k, let S(k) denote the least integer

n > k such that there exist distinct binary sequences p,q ∈ {0, 1}n with the same k-deck. By [12],

S(k) ≤ 1.2Γ(log3 k)× 33/2 log
2
3 k−1/2 log3 k

for k ≥ 5. By assist of Mathematica, we obtain the following result for s(n).

Theorem 2.2. s(n) ≥ 30.811×log
1/2
3

(n+1), n ≥ 16.

Proof. Let f(k) = ⌊1.2Γ(log3 k)33/2 log
2
3 k−1/2 log3 k⌋ for k ≥ 5, which is the upper bound of S(k). Then

f(k) is a non-decreasing function, and f(5) = 16. Now for any integer n, let k be the integer satisfying
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f(k) ≤ n < f(k + 1). By definition, there exist distinct sequences p,q ∈ {0, 1}n with the same k-deck.

This means s′(n) ≥ k + 1.

Let k = 30.811×log
1/2
3

(n+1), we have f(k) ≤ n which can be verified by Mathematica. By Theorem 2.1,

we obtain the lower bound

s(n) ≥ s′(n) ≥ 30.811×log
1/2
3

(n+1).

3. AN UPPER BOUND OF s(n)

In this section, we provide an upper bound of s(n), where the idea is from [23] working on reconstruction

of sequences.

For a permutation z = z1 . . . zk ∈ Sk, define its indicator function of (i, j)-order as:

zij =

{
1, zi < zj

0, zi > zj
1 ≤ i < j ≤ k.

Given a permutation x = x1 . . . xn ∈ Sn and its k-deck Dk(x), let Sij(x) be the total sum of (i, j)-orders

of all minors in Dk(x). That is, Sij(x) =
∑

z∈Dk(x)
zij , 1 ≤ i < j ≤ k. The next lemma relates the value

of Sij(x) to the orders of x.

Lemma 3.1. For any 1 ≤ i < j ≤ k,

Sij(x) =
∑

1≤i′<j′≤n

(
i′ − 1

i− 1

)(
j′ − i′ − 1

j − i− 1

)(
n− j′

k − j

)

xi′j′.

Proof. For any z ∈ Dk(x), suppose that zi, zj are originally xi′ , xj′ for some i′ and j′, respectively. Write

x = . . .
︸︷︷︸

i′−1

xi′ . . .
︸︷︷︸

j′−i′−1

xj′ . . .
︸︷︷︸

n−j′

.

Then the number of such z ∈ Dk(x) with zi, zj originally from xi′ , xj′ is
(
i′ − 1

i− 1

)(
j′ − i′ − 1

j − i− 1

)(
n− j′

k − j

)

.

Then Sij(x) can be obtained by summing up them multiplied by xi′j′ .

Suppose two permutations x = x1 . . . xn,y = y1 . . . yn in Sn satisfy x
k∼ y. Then Dk(x) = Dk(y) and

thus Sij(x) = Sij(y) for 1 ≤ i < j ≤ k. Define δij := xij − yij ∈ {0,±1} for 1 ≤ i < j ≤ n. We have

the following equalities by Lemma 3.1,

∑

1≤i′<j′≤n

(
i′ − 1

i− 1

)(
j′ − i′ − 1

j − i− 1

)(
n− j′

k − j

)

δi′j′ = 0, 1 ≤ i < j ≤ k. (3.1)

Consider bivariate polynomials fij(x, y) =
(
x−1
i−1

)(
y−x−1
j−i−1

)(
n−y
k−j

)
, 1 ≤ i < j ≤ k. Note that deg fij = k−2

and fij(x, y) = 0 for 0 ≤ x < i, or y − x < j − i, or n− k + j < y ≤ n.

Lemma 3.2. For fixed integers n ≥ k ≥ 1, the set {fij}1≤i<j≤k is a basis for the space of bivariate

polynomials of degree at most k − 2.

Proof. Consider ϕ(x, y) =
∑

1≤i<j≤k µijfij(x, y) =
∑

1≤i<j≤k µij

(
x−1
i−1

)(
y−x−1
j−i−1

)(
n−y
k−j

)
. It suffices to show

that ϕ(x, y) is not identically zero whenever the coefficients µij are not all zero. Assume µi0j0 is the first

nonzero coefficient in lexicographical order, that is, whenever i < i0 or i = i0 and j < j0, µij = 0. Then
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ϕ(i0, j0) = µi0j0

(
n−j0
k−j0

)
, since

(
i0−1
i−1

)
= 0 for i > i0 and

(
j0−i0−1
j−i0−1

)
= 0 for i = i0 and j > j0. Hence

ϕ(i0, j0) 6= 0, that is, ϕ(x, y) is not identically zero.

Combining Lemma 3.2 and Eq. (3.1), we obtain the following necessary condition for x
k∼ y.

Corollary 3.1. If x
k∼ y in Sn, then for any bivariate polynomial ϕ(x, y) of degree at most k − 2,

∑

1≤x<y≤n

δxyϕ(x, y) = 0.

For easy application, we obtain the following sufficient condition for the reconstructibility by changing

bivariate polynomials in Corollary 3.1 to univariate polynomials.

Theorem 3.1. If there exists a polynomial φ(x) satisfying deg φ ≤ k−2 and φ(−1) > (n−2)
∑n−3

x=0 |φ(x)|,
then any permutation x ∈ Sn is k-reconstructible.

Proof. Assume on the contrary that there exist x 6= y ∈ Sn with x
k∼ y. For 1 ≤ i ≤ n− 1, define

δi =
∑

i<j≤n

δij =
∑

i<j≤n

(xij − yij) =
∑

i<j≤n

xij −
∑

i<j≤n

yij .

Let m be the first integer in [n − 1] satisfying xm 6= ym. Note that
∑

i<j≤n xij is the number of j > i
satisfying xj > xi. So we have

∑

i<j≤n xij =
∑

i<j≤n yij for all i ∈ [m − 1], and
∑

m<j≤n xmj 6=
∑

m<j≤n ymj . Thus δi = 0 for i ∈ [m− 1] and δm 6= 0. Without loss of generality, assume xm < ym, then

δm ≥ 1.

For i ∈ [m + 1, n − 1], |δi| ≤ max{
∑

i<j≤n xij ,
∑

i<j≤n yij} ≤ n − i ≤ n − 2. Define a bivariate

polynomial ϕ(x, y) = φ(x−m− 1). Then degϕ = deg φ ≤ k − 2 and

∑

1≤x<y≤n

δxyϕ(x, y) =

n−1∑

x=1

φ(x−m− 1)

n∑

y=x+1

δxy =

n−1∑

x=1

φ(x−m− 1)δx

= δmφ(−1) +
n−1∑

x=m+1

φ(x−m− 1)δx ≥ φ(−1)− (n− 2)
n−3∑

x=0

|φ(x)| > 0.

However, by Corollary 3.1,
∑

1≤x<y≤n δxyϕ(x, y) = 0, which is a contradiction.

It remains to construct a polynomial φ(x) satisfying the conditions in Theorem 3.1. The construction

is based on [11, Section 3].

Take φ(x) = p2k(x), pk(x) =
∑k

i=0
Ti(−1)

di
Ti(x) from [11, Theorem 3.2], where Ti is the special case of

the Hahn polynomials [24], [25],

Ti(x) =

i∑

j=0

(−1)j

(
i
j

)(
i+j
j

)

(
n
j

)

(
x

j

)

,

and

di =
n+ i+ 1

2i+ 1

(
n+i
n

)

(
n
i

) .

Then pk is of degree k, and deg φ = 2k. For fixed i, j ∈ [k], Ti and Tj are orthogonal on [0, n], i.e.,

n∑

x=0

Ti(x) · Tj(x) = δi,jdi. (3.2)
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Define ∆(φ) := (n + 1)
∑n

x=0 |φ(x)| − φ(−1) and Fk :=
∑k

i=0 T
2
i (−1)/di. By Eq. (3.2), we have

∆(φ) = (n + 1)

n∑

x=0

p2k(x)− p2k(−1)

= (n + 1)
n∑

x=0

(
k∑

i=0

Ti(−1)

di
Ti(x)

)2

−
(

k∑

i=0

T 2
i (−1)

di

)2

= (n + 1)
k∑

i=0

T 2
i (−1)

di
−
(

k∑

i=0

T 2
i (−1)

di

)2

= (n + 1− Fk)Fk.

(3.3)

Hence when Fk > n+ 1, we have ∆(φ) < 0.

Based on the above discussions, we provide an upper bound of s(n) as below.

Theorem 3.2. s(n) ≤ 2⌈
√

(n− 2) ln(n− 3)⌉+ 2 when n ≥ 7.

Proof. It is equivalent to show that s(n+3) ≤ 2⌈
√

(n + 1) lnn⌉+2 when n ≥ 4. Let k = ⌈
√

(n+ 1) lnn⌉.

By Theorem 3.1, it suffices to show the existence of a polynomial φ of degree 2k satisfying φ(−1) >
(n+ 1)

∑n
x=0 |φ(x)|. Let φ(x) = p2k(x), which is of degree 2k. By Eq. (3.3), we only need to prove that

Fk > n+ 1.

By the conclusion of [11, Section 3.2.1], we have

Fk > e(k+1)k/(n+1) − 1 + 1/(n+ 1).

Since k ≥
√

(n+ 1) lnn, we have

e(k+1)k/(n+1) − 1 + 1/(n+ 1) > elnn+
√

lnn/(n+1) − 1

= ne
√

lnn/(n+1) − 1

> n(1 +
√

lnn/(n+ 1))− 1 > n+ 1.

Here, the last inequality is true when n ≥ 4. Hence Fk > n + 1.

4. SOME SPECIFIC VALUES FOR SMALL n

In this section, we consider exact values of s(n) for small n by assistant of computers.

For each x ∈ Sn, let Sj(x) be the total number of minors in Dk(x) with the j-th coordinate being 1,

j ∈ [k]. For each t ∈ [n − k + 1], let it(x) ∈ [n − t + 1] be the location that t lies in x after deleting

1, 2, . . . , t− 1. For example, when x = 13524 and k = 2, i1(x) = 1, i2(x) = 3, i3(x) = 1 and i4(x) = 2.

The following lemma relates Sj(x) to values of it(x). We write it instead of it(x) if there is no confusion.

Lemma 4.1. For each x ∈ Sn and j ∈ [k], we have

Sj(x) =

n−k+1∑

t=1

(
it − 1

j − 1

)(
n− it − (t− 1)

k − j

)

. (4.1)

Proof. It is easy to see that only symbols 1, 2, . . . , n−k+1 in x may result in a symbol 1 in some minor

in Dk(x), since larger numbers cannot be changed to 1.

For each t ∈ [n−k+1], the value it(x) indicates that after deleting all symbols from [t−1] in x, there

are exactly it − 1 symbols appear before the symbol t. Keeping the symbol t, the symbol t becomes 1 in
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the minor. To make this 1 in the j-th position in some minor, we need to delete (it − j) more symbols

before t, see

· · ·
︸︷︷︸

it−1

t · · ·
︸︷︷︸

n−it−(t−1)

.

So the number of minors of length k with the j-th position being 1 is
(
it−1
it−j

)(
n−it−(t−1)

n−k−(it−j)−(t−1)

)
=

(
it−1
j−1

)(
n−it−(t−1)

k−j

)
. Summing over t ∈ [n− k + 1], we get the conclusion.

Denote i(x) := (i1, i2, . . . , in−k+1) ∈ [n]× [n− 1]× · · · × [k], and call it the characteristic vector of x.

By Lemma 4.1, the value Sj(x) only depends on the characteristic vector of x. Different permutations

may have the same characteristic vector. Define the real location of t in x = x1x2 . . . xn as ζt, that is,

xζt = t. Call the vector ζ(x) := (ζ1, ζ2, . . . , ζn−k+1) the location vector of x. Clearly, the characteristic

vector and the location vector can be deduced from each other recursively. See the following lemma.

Lemma 4.2. For each t ∈ [n− k + 1], we have it = ζt −
∑

j<t 1{ζt>ζj} and ζt = it +
∑

j<t 1{it≥ζj}.

Proof. The former equalities are obvious. We only prove the latter ones. It is easy to see that ζ1 = i1. For

ζ2, if i2 < ζ1, deleting 1 does not affect the position of 2, so ζ2 = i2; if i2 ≥ ζ1, deleting 1 will result in one

step forward on 2, thus ζ2 = i2 + 1. Continuing with this argument, we give ζt = it +
∑

j<t 1{it≥ζj}.

In all the above arguments, we consider the position of symbol 1 in the minors. Symmetrically, we

can consider the position of symbol k in minors. Define S̄j(x) the number of minors in Dk(x) with the

j-th coordinate being k. For each t ∈ [k, n], let īt(x) ∈ [t] be the location that t lies in x after deleting

n, n− 1, . . . , t+ 1. By the similar proof as for Lemma 4.1, we have the following result.

Corollary 4.1. For each x ∈ Sn and j ∈ [k], we have

S̄j(x) =
n∑

t=k

(
īt − 1

j − 1

)(
t− īt
k − j

)

. (4.2)

As in Lemma 4.2, īt, t ∈ [k, n] can also determine ζt, t ∈ [k, n]. In fact, ζn = īn, and

ζt = īt +
∑

j>t

1{̄it≥ζj} (4.3)

for t ∈ [k, n − 1]. Call ī(x) = (̄in, īn−1, . . . , īk) the reverse characteristic vector and ζ̄(x) :=
(ζn, ζn−1, . . . , ζk) the reverse location vector. Consequently, for two permutations x 6= y, if i(x) = ī(y),
then ζ(x) = ζ̄(y).

Now we are ready to apply the above arguments to design an exhaustive algorithm: input n and k, and

output a pair (x,y) ∈ Sn × Sn which meets the conditions Sj(x) = Sj(y) and S̄j(x) = S̄j(y) for all

j ∈ [k]. By the fact that x
k∼ y implies Sj(x) = Sj(y) and S̄j(x) = S̄j(y) for j ∈ [k], if the algorithm

returns nothing, it means that any two permutations in Sn are not equivalent, that is, s(n) ≤ k. In fact,

our algorithm tries to output a set of permutations in Sn that are possible to satisfy the above conditions.

Algorithm 1:

Step 1. For each vector i = (i1, i2, . . . , in−k+1) ∈ [n]× [n−1]× . . .× [k], we compute the corresponding

Sj value for each j ∈ [k] by Lemma 4.1. These values of Sj are stored as a row in a matrix Sl×k with

row index i, where l = n!
(k−1)!

. The row i of S corresponds to a set of permutations in Sn with the same

characteristic vector i and thus the same Sj values.

Step 2. By pairwise comparing all rows in S, we collect all pairs (i, i′) of rows such that S(i, j) = S(i′, j)
for each j ∈ [k]. We store all such pairs (i, i′) as a row in an array P with two columns. Note that (i′, i)
is also recorded in P.
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Step 3. Considering ī = (̄in, īn−1, . . . , īk) ∈ [n]× [n− 1]× . . .× [k] and values S̄j , we can get exactly

the same matrices S and P. This means that each row i of S can be viewed as the Sj values of some

permutations x with i(x) = i, and can also be viewed as the S̄j values of some other permutations x′

with ī(x′) = i.

For each entry i in the first column of P, by considering it as a characteristic vector (i1, i2, . . . , in−k+1),
we compute a location vector ζ(x) = (ζ1, ζ2, . . . , ζn−k+1) by Lemma 4.2 for some x with i(x) = i; by

considering it as a reverse characteristic vector (̄in, īn−1, . . . , īk), we compute a reverse location vector

ζ̄(x′) = (ζn, ζn−1, . . . , ζk) by Eq. (4.3) for some x′ with ī(x′) = i.

Step 4. Suppose that (x,y) ∈ Sn × Sn satisfies Sj(x) = Sj(y) and S̄j(x) = S̄j(y) for all j ∈ [k].
Then there exist two different rows i and ī, such that i(x) = i and ī(x) = ī. Then the location vector

ζ(x) = (ζ1, ζ2, . . . , ζn−k+1) computed by i(x) = i and the reverse location vector ζ̄(x) = (ζn, ζn−1, . . . , ζk)
computed by ī(x) = ī should match each other to form one permutation.

By definition of P, we could simply pairwise check entries in the first column of P, and output all

possible candidates x. Otherwise, stop and return “No solution!”.

Remark 4.1. If Algorithm 1 returns a set of permutations, we need to continue to pairwise check whether

they are equivalent. However, Algorithm 1 is quite useful when it returns no solution, which implies s(n) ≤
k. In this case, it is very efficient since the data is based on all different vectors i ∈ [n]× [n−1]× . . .× [k]
instead of all different permutations x ∈ Sn, and the algorithm runs just by computing and comparing a

few characteristic values, which greatly reduces the computation space and computation time.

Lemma 4.3. For (n, k) ∈ {(9, 5), (10, 5)}, Algorithm 1 returns “No solution!”. So s(9) ≤ 5 and s(10) ≤ 5.

A. A table for s(n)

Now we determine or bound values of s(n) for small n. We first introduce a related notation studied in

[8], [9]. Given d, let Nd be the smallest integer such that for any n ≥ Nd, we can reconstruct permutations

of length n from their (n− d)-deck. That is, for all n ≥ Nd, Dn−d(x) 6= Dn−d(y) for different x,y ∈ Sn.

Smith [8] proved that N1 = 5, N2 = 6 and N3 ≤ 13. Raykova [9] showed that the existence of Nd for all

d, and further proved that N3 = 7 and N4 ≥ 9, then gave upper and lower bounds by

d+ log2 d < Nd < d2/4 + 2d+ 4.

By definition, if Nd ≤ n, that is, for any two different x,y ∈ Sn, Dn−d(x) 6= Dn−d(y), then s(n) ≤ n−d.

So by N1 = 5, N2 = 6 and N3 = 7 < 8, we have s(5) ≤ 4, s(6) ≤ 4, s(7) ≤ 4 and s(8) ≤ 5. By

Nd < d2/4 + 2d + 4, s(d2/4 + 2d + 4) ≤ d2/4 + d + 4 for every d. But this is much weaker than our

upper bound s(n) = O(
√
n lnn) in Theorem 3.2.

If Nd = n + 1, that is, there exist two different x,y ∈ Sn such that Dn−d(x) = Dn−d(y), then

s(n) > n − d, that is, s(Nd − 1) > Nd − 1 − d. So by N2 = 6 = 5 + 1 and N3 = 7 = 6 + 1, we have

s(5) > 3, s(6) > 3.

Combining the above results, we have s(5) = s(6) = 4. By 1247356
3∼ 1263475 and 68573142

4∼
75862413, we have s(7) = 4 and s(8) = 5. By Proposition 2.1, s(n) ≥ s(8) = 5 when n ≥ 9. Combining

Lemma 4.3, we have s(9) = s(10) = 5. For 11 ≤ n ≤ 14, since n ≥ N3, s(n) ≤ n−3; by Proposition 2.1,

s(n) ≥ s(10) = 5. For 15 ≤ n ≤ 19, since N4 ≤ 42/4 + 2× 4 + 4− 1 = 15 ≤ n, we have s(n) ≤ n− 4.

For n ≥ 20, since N5 < 52/4 + 2 × 5 + 4 = 20.25, which means n ≥ N5, we have s(n) ≤ n − 5. The

lower bound of s(n), 16 ≤ n ≤ 22 can be obtained from Theorem 2.2.

Finally we list the best bounds of s(n) for n ≤ 22 in Table II, where the first unknown value is s(11).
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n 1 2 3 4 5 6 7 8 9 10 11
s(n) 1 2 3 4 4 4 4 5 5 5 [5, 8]

n 12 13 14 15 16 17 18 19 20 21 22
s(n) [5, 9] [5, 10] [5, 11] [5, 11] [6, 12] [6, 13] [6, 14] [6, 15] [6, 15] [6, 16] [6, 17]

TABLE II: Bounds of s(n) for small n.

B. Improvements on Nd

Based on our bounds of s(n), we are able to improve bounds of Nd asymptotically.

If s(n) > k, that is, there exist two different x,y ∈ Sn such that Dk(x) = Dk(y), then Nn−k > n.

Then by Theorem 2.2, that is, s(n) = exp(Ω(
√
lnn)), we have

Nd > d+ exp(Ω(
√
ln d)), (4.4)

when d is large, which is much stronger than Nd > d+ log2 d in [9].

For the upper bound, we improve as follows.

Theorem 4.1. Nd ≤ d+ 3
√
d ln d when d is large enough.

Proof. Let n0 = d + 3
√
d ln d − 2. First, we claim that (n0 − d − 2)2 > 4n0 ln(n0 − 1) when d is large

enough. This is true because (n0 − d − 2)2 = 9d ln d(1 − o(1)) and 4n0 ln(n0 − 1) = 4d ln d(1 + o(1))
when d goes to infinity.

For each fixed d satisfying (n0−d−2)2 > 4n0 ln(n0−1), we next claim that (n−d−2)2 > 4n ln(n−1)
for any n ≥ n0. This is true since the left hand side grows much faster than the right hand side.

Finally, we show that for each n ≥ n0+2 = d+3
√
d ln d, any permutation in Sn is (n−d)-reconstructible,

i.e., s(n) ≤ n− d. In fact, by Theorem 3.2, we have

s(n) ≤ 2⌈
√

(n− 2) ln(n− 3)⌉+ 2 < 2
√

(n− 2) ln(n− 3) + 4 < (n− 2)− d− 2 + 4 = n− d.

This completes the proof.

Note that Theorem 4.1 greatly improves the upper bound Nd < d2/4+ 2d+4 from [9] asymptotically.

Combining Eq. (4.4) and Theorem 4.1, we have for large d,

d+ exp(Ω(
√
ln d)) < Nd < d+O(

√
d ln d).

5. CONCLUSION

By applying results for sequence reconstruction, we prove that the least integer k such that any permuta-

tion in Sn is k-reconstructible is between exp (Ω(
√
lnn)) and O(

√
n lnn). As a consequence, we improve

the bounds significantly for the well-studied parameter Nd, the smallest integer such that any permutation in

Sn with n ≥ Nd is (n−d)-reconstructible. The new bounds are d+exp(Ω(
√
ln d)) < Nd < d+O(

√
d ln d)

asymptotically, and the previous best bounds were d+ log2 d < Nd < d2/4 + 2d+ 4 in [9].
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