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We introduce a novel protocol, which enables Heisenberg-limited quantum-enhanced sensing us-
ing the dynamics of any interacting many-body Hamiltonian. Our approach—dubbed butterfly
metrology—utilizes a single application of forward and reverse time evolution to produce a co-
herent superposition of a “scrambled” and “unscrambled” quantum state. In this way, we create
metrologically-useful long-range entanglement from generic local quantum interactions. The sensi-
tivity of butterfly metrology is given by a sum of local out-of-time-order correlators (OTOCs)—the
prototypical diagnostic of quantum information scrambling. Our approach broadens the landscape
of platforms capable of performing quantum-enhanced metrology; as an example, we provide de-
tailed blueprints and numerical studies demonstrating a route to scalable quantum-enhanced sensing
in ensembles of solid-state spin defects.

Quantum-enhanced metrology leverages entanglement
in a many-body system to improve the fundamental pre-
cision of sensing [1–4]. The realization of this enhance-
ment with large numbers of interacting particles repre-
sents an ongoing objective, with a wide range of potential
applications including atomic time-keeping [5–7], gravi-
tational wave sensing [8–10], biological imaging [11–14],
and the search for new fundamental physics [15–18].

From a theoretical perspective, the requirements for a
many-body state to exhibit “metrologically-useful” en-
tanglement are well understood [4, 19–23]. However,
from an experimental perspective, two overarching chal-
lenges limit the range of experimental platforms that
can realize this advantage: state preparation and sig-
nal readout. For the latter, the key tension is that any
direct measurement on a metrologically useful state will
also be highly susceptible to noise in the read-out pro-
cess [24, 25]. To address this challenge, seminal recent
results have introduced sensing protocols that rely on
time-reversed dynamics [21, 26–28]. Crucially, these pro-
tocols exhibit significantly improved robustness to read-
out noise and have been experimentally realized in the
context of both spin squeezed [29] and GHZ states [30].

For the former challenge, one of the most natural
strategies to prepare a metrologically useful state is sim-
ply to perform Hamiltonian time evolution from an ini-
tial product state; however, the class of Hamiltonians for
which this succeeds is extremely limited [4]. Indeed, the
only known examples consist of large-S spin models [31–
36], symmetry breaking evolution from a pure state [37],
and commuting central spin models [26]. This precisely
encodes the challenge that while most quantum states
are highly entangled, only a vanishingly small subset can
be utilized to perform enhanced sensing [38].

In this Letter, we introduce a novel sensing protocol,

State preparation Signal Readout

FIG. 1. (a) Schematic quantum circuit depicting our but-
terfly metrology protocol with local controls. The “butterfly
state” is prepared via forward and reverse time evolution un-
der a many-body Hamiltonian, U = e−iHt, interleaved with
a local rotation, (1 + iV )/

√
2. The external signal, e−iϕSz ,

is detected by evolving forward once more and measuring the
local observable V . (b) In effect, the protocol performs in-
terferometry between two quantum trajectories. In the first
(top), the forward and reverse evolution cancel, yielding the
polarized state |0⟩. In the second (bottom), the perturbation
iV disrupts this cancellation, yielding the “scrambled” state,
iV (t) |0⟩. The two states acquire macroscopically different
phases under the signal whenever U is scrambling.

dubbed “butterfly metrology”. Crucially, our protocol
enables the preparation of metrologically-useful entan-
gled states (from an initial product state) using com-
pletely generic many-body Hamiltonians; in fact, our ap-
proach works for essentially any Hamiltonian, so long as
it is not localized [39]. The key insight underlying our ap-
proach is to use time reversal not only to detect, but also
to prepare the metrological state (Fig. 1). By doing so,
our protocol generates a GHZ-like state from the dynam-

ar
X

iv
:2

41
1.

12
79

4v
1 

 [
qu

an
t-

ph
] 

 1
9 

N
ov

 2
02

4



2

ics of almost any Hamiltonian. This state is a coherent
superposition of a fully polarized state and a scrambled
state [Fig. 1(b)]. The latter has zero polarization on aver-
age, enabling our protocol to achieve sensitivities within
a factor of two of the fundamental Heisenberg limit.

Our main results are threefold. First, we establish
a precise connection between butterfly metrology and
quantum information scrambling [40]. In particular, we
demonstrate that our protocol’s sensitivity is exactly
given by a sum of local out-of-time-order correlation func-
tions (OTOCs)—the standard probe of scrambling dy-
namics [41–43]. For fully scrambling dynamics, we imme-
diately obtain a measurement sensitivity, η, that exhibits
a Heisenberg scaling (i.e. η ≈ 2/N), with the number of
particles. Second, we introduce a variant of our proto-
col that utilizes only global control and readout, signifi-
cantly reducing the experimental requirements. Finally,
we highlight the broad applicability of our approach by
providing detailed blueprints and numerical simulations
for a variety of experimental platforms [44]. A particu-
larly clear advantage over existing protocols is shown in
the case of solid-state spin defects [45–47].

General strategy—Consider an ensemble of N spin-1/2
particles attempting to sense a weak external signal. We
imagine that the sensors are coupled to the signal, ϕ, via
the collective spin operator Sz = 1

2

∑
i σ

z
i , where σ

z
i is a

local Pauli operator acting on spin i. A generic sensing
protocol has three steps: (i) prepare a state, |ψ⟩, on the
N spins, (ii) accumulate the signal, e−iϕSz , and (iii) read-
out an observable M on the resulting state. The goal of
any quantum sensing protocol is to optimize the sensi-
tivity, η = ∆Mϕ/∂ϕ⟨M⟩ϕ, of the measured expectation
value, ⟨M⟩ϕ, to the signal ϕ, where ∆M is the standard
deviation of M .

The optimal sensitivity, over all possible observables,
is lower-bounded by a property of the state |ψ⟩, namely,
the so-called quantum Fisher information (QFI) [48]. For
pure states, the QFI, F , is simply given by twice the
variance of the operator that couples to the signal, in
our case, Sz. This immediately yields a lower bound:
η ≥ 1/

√
F ≡ 1/(2∆Sz).

To provide a bit of intuition, let us consider how η be-
haves in a few specific cases. For a product state, the
standard deviation, ∆Sz, is at most

√
N , implying a sen-

sitivity scaling as, η ∼ 1/
√
N , commonly known as the

standard quantum limit (SQL). Most quantum states,
despite being highly entangled, do not surpass this scal-
ing. Indeed, a Haar-random state possesses, on average,
the same QFI as an unentangled state [44]. On the other

hand, the paradigmatic GHZ state, (|0⟩⊗N + |1⟩⊗N )/
√
2,

exhibits maximal correlations in the z-basis, and thus a
standard deviation ∆Sz = N/2 [49]; this yields a sensi-
tivity, η = 1/N , known as the Heisenberg limit [50].

Our approach begins by introducing a new class of
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FIG. 2. (a) Schematic of the polarization distribution, P (Sz),
of the GHZ state (left) and the butterfly state (right). The
former features two maximally separated peaks at Sz =
±N/2; this leads to an optimal sensitivity, η−1 = N . The lat-
ter features a narrow peak at N/2 and a broader peak at zero;
this leads to a sensitivity, η−1 ≈ N/2. (b) Numerical plot of
the local expectation value, ⟨V ⟩ϕ, as a function of the signal
strength, ϕ, when U is Haar-random (solid lines) and when
U corresponds to evolution under a generic spin chain Hamil-
tonian for long times (dots) [44]. The expectation value un-
dergoes damped oscillations with frequency ≈ N/2. (c) The
metrological gain, 1/(Nη2), of butterfly metrology with local
controls for a generic spin chain Hamiltonian as a function
of system size (dots). The Heisenberg limit (red), standard
quantum limit (black), and Haar-random predictions for local
(solid blue) and global (dashed blue) butterfly metrology are
shown for comparison.

metrological state, which we call the ‘butterfly state’:

|ψB⟩ =
|0⟩+ iV (t) |0⟩√

2
. (1)

Here, |0⟩ ≡ |0⟩⊗N is the fully polarized state, and
V (t) = U†V U is a local Pauli operator (e.g. V = σx0 )
evolved under a unitary, U . We envision U = e−iHt to
be generated by time evolution via a generic, many-body
Hamiltonian, H. For sufficiently late times, U is “fully
scrambling” and resembles a Haar-random unitary. As
depicted in Fig. 1(a), |ψB⟩ can be prepared by applying a
local rotation (1+ iV )/

√
2 (i.e. a π/2-pulse), sandwiched

between forward and backward time evolution.
Physically, the butterfly state is a superposition be-

tween two quantum trajectories generated by the two
terms, 1 and iV , of the local rotation [Fig. 1(a)]. In the
first, the forward and backward evolution perfectly can-
cel, returning the system to the polarized state. In the
second, the local operator iV disrupts this cancellation.
When U is fully scrambling, this disruption will propa-
gate to every spin in the system, and the second trajec-
tory will resemble a Haar-random state, with an average
polarization of zero. Thus, much like the GHZ state, the
butterfly state |ψB⟩ is a superposition of two states with a
macroscopic difference, ≈ N/2, in polarization [Fig. 2(a)].
This yields a standard deviation, ∆Sz ≈ N/4, and thus
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an optimal sensitivity of η ≈ 2/N , a mere factor of two
from the Heisenberg limit.

Measurement protocol—Having defined the butterfly
state and its optimal sensitivity, we now devise an explicit
protocol for measuring the external signal, ϕ. The sim-
plest conceptual approach is to directly extract ϕ from
a measurement on the perturbed state. However, this
will require probing highly non-local coherences between
the two trajectories in |ψ⟩B . This is even more difficult in
our setting, compared to that of the GHZ state, since the
second trajectory in |ψ⟩B is a highly-entangled scrambled
state.

To this end, we propose an alternative approach where
we perform a final step of time evolution under U after
the signal has been acquired [Fig. 1(a)], and then con-
clude by measuring the local operator M ≡ V [51]. This
produces an expectation value,

⟨V ⟩ϕ =
1

2
⟨0|V (t) |0⟩ − 1

2
⟨0|V (t)eiϕSzV (t)e−iϕSzV (t) |0⟩

+ Im
[
eiϕN/2 ⟨0|V (t)e−iϕSzV (t) |0⟩

]
. (2)

For a small signal ϕ, the first and second terms cancel,
giving ⟨V ⟩ϕ ≈ ϕ(N/2 − ⟨0|V (t)SzV (t) |0⟩), and thus a
sensitivity,

η−1
ϕ=0 = N/2− ⟨0|V (t)SzV (t) |0⟩ , (3)

which is precisely equal to the difference in polarization
between the two trajectories in |ψB⟩. When the unitary
is fully scrambling, the state V (t) |0⟩, has a mean po-
larization of zero, and our measurement protocol gives
ηϕ=0 ≈ 2/N ; this saturates the optimal sensitivity al-
lowed by the butterfly state’s QFI.

Sensitivity from operator growth—Thus far, we have
focused on late times where the unitary U is fully scram-
bling. To characterize the sensitivity at earlier times, we
leverage a precise connection between the sensitivity and
information scrambling. In particular, using σzi |0⟩ = 1,
one can re-write

η−1
ϕ=0 =

1

2

∑

i

(1− ⟨0|σzi V (t)σzi V (t) |0⟩) , (4)

where the expectation values correspond to local out-of-
time-order correlation functions (OTOCs) [41–43].

These OTOCs quantify whether the time-evolved per-
turbation, V (t), commutes with each spin operator σzi .
As a function of time, each OTOC begins at unity and
decays to zero as V (t) grows to have support on spin
i [52–54]. Thus, the sum in Eq. (4) counts the num-
ber of spins, S, within the support of V (t). Intuitively,
the operator V (t) scrambles each spin within its sup-
port, effectively randomizing its polarization. This leads
to a polarization difference ∼S/2 between the scrambled
state, V (t) |0⟩, and the fully polarized state, |0⟩, yielding
a sensitivity η ≈ 2/S.

To this end, in order to evaluate the sensitivity of but-
terfly metrology at earlier times, one simply needs to
understand the dynamics of operator growth under the
Hamiltonian, H. For Hamiltonians with local interac-
tions, the operator support typically grows ballistically
in time, S ≈ (vBt)

d, where d is the spatial dimension and
vB is known as the butterfly velocity. This growth con-
tinues until the so-called scrambling time, ts ≈ v−1

B N1/d,
after which the unitary is fully scrambling and the op-
erator has support on the entire system, S ≈ N . This
leads to a sensitivity:

η ≈
{
2/(vBt)

d, t ≲ ts

2/N, t ≳ ts,
(5)

which continuously improves as a function of time and
saturates to its optimal value at ts [Fig. 2(d)].
A few remarks are in order. First, for Hamiltoni-

ans with long-range interactions, operators may exhibit
faster-than-ballistic growth [55]. For instance, under
all-to-all-interactions, operators typically grow exponen-
tially in time, S ∼ eλt, where λ is the Lyapunov expo-
nent [56, 57]. This leads to a more rapid improvement
in the sensitivity and an earlier saturation to its optimal
value.
Second, let us analyze the dynamic range of butter-

fly metrology, i.e. its behavior at larger values of ϕ. As
per Eq. (2), this naturally requires us to consider the
polarization distribution, P (Sz), of the scrambled tra-
jectory [Fig. 2(a)]. For a Haar-random state, this po-
larization distribution is a Gaussian with mean zero and
width ∼

√
N . When the signal is small compared to this

width, ϕ≪ 1/
√
N , one can approximate eiϕSzV (t) |0⟩ ≈

V (t) |0⟩, leading to a sinusoidal expectation value ⟨V ⟩ϕ ≈
sin(ϕN/2) [Fig. 2(b)], and a Heisenerg-scaling sensitivity.
For larger signal strengths, ϕ ≳ 1/

√
N , this approxima-

tion breaks down and we find that the magnitude of the
oscillations, and thus, the sensitivity, gradually decays to
zero [Fig. 2(b)].
Finally, the presence of conservation laws in the Hamil-

tonian will cause the sensitivity to deviate slightly from
our estimates above. In particular, since time evolution
cannot change the expectation value of any conserved
quantity, the scrambled butterfly trajectory will gener-
ally not approach a Haar-random state. Instead, it will
resemble a random state drawn from the Gibbs ensemble
determined by the values of each conserved quantity in
the initial state |0⟩. At late times, this still leads to a
Heisenberg-scaling sensitivity, but with a pre-factor de-
termined by the polarization density, m, of the Gibbs
state, η−1 ≈ N(1−m)/2.
Butterfly metrology with global controls—Our discus-

sions above have focused on the use of local controls
within the butterfly metrology protocol: a local rotation
to prepare the state, |ψB⟩, and a local measurement to
extract the signal, ϕ. We now demonstrate a variant of
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State preparation Signal Readout

FIG. 3. Schematic of butterfly metrology with global controls.
The metrological state is prepared using a global rotation,
eiϵSx , under the spin operator Sx = 1

2

∑
i σ

x
i , and the signal

is readout via the global expectation value, ⟨Sx⟩.

our protocol that utilizes purely global controls (Fig. 3);
this is particularly important from an experimental per-
spective and allows butterfly metrology to be deployed
in platforms without single-site addressing [27, 58].

In particular, instead of applying a local π/2-pulse to
prepare the butterfly state (Fig. 1), one applies the global
rotation eiϵSx , with Sx = 1

2

∑
i σ

x
i . Similarly, in order to

readout this signal, one measures the total polarization
along the x-direction, ⟨Sx⟩.

To build some intuition for the sensitivity of our global
butterfly metrology protocol, let us consider two limits.
First, consider the “trivial” limit where t = 0 and U = 1.
By setting ϵ = π/4, one immediately recognizes that our
protocol reduces to N parallel copies of Ramsey spec-
troscopy, and thus exhibits an SQL-scaling sensitivity,
η ∼ 1/

√
N .

Second, consider the late-time limit where U is fully
scrambling. Much as before, we decompose the global
rotation into an identity and non-identity component,
eiϵSx ≡ a1 + iṼ , where a = cosN (ϵ) and Ṽ is traceless.
This leads to the “global” butterfly state,

|ψ̃B⟩ = a |0⟩+ iṼ (t) |0⟩ . (6)

In order to maximize the sensitivity of our global proto-
col, we set ϵ ∼ 1/

√
N so that the butterfly state, |ψ̃B⟩, is

an approximately equal superposition of its two trajec-
tories. More specifically, we find that the optimal value
occurs at ϵ = 1/

√
2N , which yields a Heisenberg-scaling

sensitivity, η =
√
2e/N ≈ 2.3/N [44]. We note that this

is nearly identical to the late-time sensitivity obtained in
our local protocol [Eq. (5)].

As one evolves from time t = 0 to the scrambling time
t = ts, the sensitivity smoothly interpolates between the
two limits above. This interpolation can again be under-
stood in the language of operator growth; indeed, at in-
termediate times, the sensitivity is given by η ∼ 1/

√
NS,

where S is the number of spins in the support of a time-
evolved local operator [44].

Experimental proposals—Perhaps the most unique fea-
ture of butterfly metrology is its universality—the proto-
col utilizes evolution under a generic many-body Hamil-
tonian and thus, can naturally be realized in a wide
variety of experimental platforms (Table I). Here, we
focus on the setting of solid-state spin ensembles [59],
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FIG. 4. Numerical simulations for the sensing protocol un-
der the dynamics of two experimental platforms. (a) The
sensitivity of our protocol with local controls for a hybrid
spin system, consisting of a single NV center surrounded by
a cluster of P1 centers. The simulations are performed via
exact diagonalization with N ∈ [14, 20] total spins. After
an initial growth period, the sensitivity saturates at η = 2/N
(dashed line), consistent with our expectation for fully scram-
bled dynamics. The inset displays the sensitivity for large-
scale systems, N ∼ 104 − 105, simulated via a stochastic
growth model [44]. (b) The metrological gain, 1/(Nη2), and
sensitivity (inset) of our protocol with global controls imple-
mented for a dense ensemble of NV centers. The total number
of spins is N ∈ [14, 20] spins. For both systems, the density
of spin defects is 100 ppm, corresponding to an average sep-
aration of ∼ 4 nm.

where achieving quantum-enhanced sensitivities remains
an outstanding challenge [26, 60, 61]. A key part of this
challenge stems from the nature of the dipolar interac-
tion intrinsic to such systems. Indeed, for disordered
spin ensembles, the dipolar Hamiltonian, while strongly-
interacting, is far from the conventional all-to-all-coupled
models (e.g. one-axis twisting) typically used to generate
metrologically-useful entanglement [27, 29].

To this end, we propose and analyze two implemen-
tations of butterfly metrology using dense ensembles of
nitrogen-vacancy (NV) color centers in diamond [59, 62].
NV centers behave as sensitive magnetometers and have
been used to detect a variety of external signals, ranging
from neuronal action potentials to superconducting vor-
tices [63, 64]. Each NV exhibits a spin, S = 1, electronic
ground state [Fig. 4(b)], which can be optically polarized
and read out at room temperature. In the absence of an
external magnetic field, the NV’s spin sublevels are sep-
arated by ∆ = 2.87 GHz, corresponding to the zero-field
splitting [59].

In addition to NV centers, the diamond sample also
contains a relatively high concentration of optically-dark,
spin-1/2 P1 centers (substitutional nitrogen impurities).
Indeed, each NV center is typically surrounded by a large
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Experimental platform Control Time-reversal method

Hybrid NV-P1 system [66] Local Hamiltonian eng.

NV-center ensemble [69] Global Hamiltonian eng.

Dipolar Rydberg atoms [71] Both State encoding

Atoms in optical cavity [72] Global Laser detuning

Superconducting qubits [73] Both π-pulse

Trapped ions [74, 75] Both Laser phase

TABLE I. Butterfly metrology with either local or global con-
trols can be realized in a wide array of experimental platforms.
Detailed blueprints and discussions are provided in the sup-
plemental materials [44].

bath of P1 spins [Fig. 4(a)] [65, 66]. Conventionally, such
P1s are viewed as a source of decoherence and dynami-
cal decoupling is employed to suppress their interactions
with NVs [67].

For our first implementation, we describe a realiza-
tion of butterfly metrology (with local controls) in a hy-
brid NV-P1 system, where the NV center provides the
local control and the P1 centers comprise the remaining
spins [Fig. 4(a)]. We envision an experimental scenario
where the P1 centers are polarized either by working at
cryogenic temperatures or via Hartmann-Hahn hyperpo-
larization [68]. For external magnetic fields, B, away from
level anti-crossing, the NV center is off-resonant from the
P1s, enabling the application of selective local rotations
via microwave fields. This off-resonance also affects the
many-body interactions in the system: the P1s interact
with one another via the full magnetic dipolar interac-
tion, and with the NV, via the Ising term of this in-
teraction [44]. Crucially, both of these interactions can
be time reversed using a simple generalization of the so-
called WAHUHA pulse sequence [44].

For our second implementation, we consider a scenario
where the NV-P1 interactions have been dynamically de-
coupled, leaving only interactions between NV centers
themselves [69, 70]. This scenario is naturally suited to
the global-variant of butterfly metrology [Fig. 3]. In par-
ticular, we envision applying a global rotation on the
entire ensemble of NV centers using a microwave pulse.
As before, time-reversed dynamics can be achieved via
Hamiltonian engineering techniques [44].

To explore the dynamics of the sensitivity in both im-
plementations, we perform an extensive set of numeri-
cal simulations using both Krylov subspace methods (for
smaller system sizes) and a stochastic model for oper-
ator growth (for larger system sizes) [55, 76, 77]. For
our hybrid NV-P1 approach [Fig. 4(a)], the sensitivity
improves rapidly in time and saturates at η ≈ 2/N , con-
sistent with our previous analysis. The sensitivity dy-
namics of our global NV-based approach [Fig. 4(b)] are
somewhat similar. In this case, we plot the metrologi-
cal gain, G = η−2/N , which saturates at G ≈ (0.43)2N
and quantifies the enhancement compared to the stan-

dard quantum limit [78]. Interestingly, for larger system
sizes (up to ∼ 106 spins), we find that both the sensitiv-
ity (local variant) and metrological gain (global variant)
exhibit a sustained period of super-polynomial growth.
This arises from the Levy flight growth of operators in
3D with 1/r3 interactions [55].

Much like other time-reversal-based sensing proto-
cols [26, 27], butterfly metrology maintain a Heisenberg-
limited sensitivity in the presence of both read-out and
initialization errors. Our protocol is particularly ro-
bust against coherent errors that can be time reversed;
for example, slow variations in the Hamiltonian pa-
rameters [74]. The effect of incoherent errors can be
understood using our framework of operator growth,
namely, they suppress the sensitivity by a factor ∼
e−4γ

∫ t
0
dt′S(t′) [79], where γ is the local noise rate and

S(t) is the operator support [44, 80].

Our work opens the door to a number of intriguing fu-
ture directions. First, since it is only limited by the oper-
ator light-cone, butterfly metrology represents the fastest
way to generate metrologically-useful entanglement in
any given interaction geometry [44]. For example, com-
pared to recent work leveraging continuous symmetry
breaking in two-dimensional dipoles [37, 71], butterfly
metrology offers a quadratic speed-up to achieve the same
enhanced sensitivity. Second, we note that achieving any
sensitivity scaling beyond the standard quantum limit
guarantees multi-partite entanglement [81]. Thus, from
the perspective of entanglement verification [82], butter-
fly metrology provides a generic strategy for witnessing
the entanglement generated by many-body quench dy-
namics. Finally, although we have focused on analog
Hamiltonian dynamics, we note that butterfly metrol-
ogy can also be realized using digital quantum circuits.
In this setting, our protocol’s robustness to coherent er-
rors could be particularly advantageous for mitigating
the effects of low-frequency noise and imperfect gate cal-
ibration [74, 83].
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[82] O. Gühne and G. Tóth, Entanglement detection, Physics
Reports 474, 1 (2009).

[83] S. Krinner, S. Lazar, A. Remm, C. K. Andersen,
N. Lacroix, G. J. Norris, C. Hellings, M. Gabureac,
C. Eichler, and A. Wallraff, Benchmarking coherent er-
rors in controlled-phase gates due to spectator qubits,
Physical Review Applied 14, 024042 (2020).

[84] Z. Li, S. Colombo, C. Shu, G. Velez, S. Pilatowsky-
Cameo, R. Schmied, S. Choi, M. Lukin, E. Pedrozo-
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I. COMPARISON TO EXISTING TIME-REVERSED SENSING PROTOCOLS

Many of the most prominent protocols for quantum-enhanced sensing involve the use of time-reversed
dynamics, through variants of the so-called echo protocol [1–4] (depicted in Fig. S1). These protocols all
feature a crucial difference from our proposed butterfly metrology protocol, in that they utilize only a single
step each of forward and reverse time evolution. Namely, the metrological state is prepared via forward
evolution from a product state, U |0⟩, and reverse evolution is applied solely to assist readout. As a result,
such protocols can only achieve a quantum enhancement for extremely specific classes of unitary dynamics,
i.e. those that generate a large quantum Fisher information (QFI) when applied to a product state. In
contrast, butterfly metrology utilizes a combination of forward and reverse time evolution to prepare a
metrologically-useful state; as we show in our work, this enables a Heisenberg-scaling quantum enhancement
for completely generic interacting dynamics.

∗ These authors contributed equally to this work.
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FIG. S1. Schematic depiction of existing time-reversal-based protocols for quantum-enhanced sensing [1–4]. Forward
time evolution is used to prepare the metrological state, and reverse evolution is applied solely during readout.

To illustrate this distinction, let us recall a few classes of unitaries U for which the standard echo protocol
has previously been applied. First, take U to be a Clifford circuit that prepares a GHZ state, i.e. U |0⟩ =
(|0⟩⊗N + |1⟩⊗N )/

√
2. The full sensing scheme consists of applying U to generate a GHZ state, accumulating

a phase under the external signal, and then applying the inverse preparation circuit to refocus the acquired
phase to a single-body observable. This last step is not strictly necessary—one could instead readout the
signal via global parity measurements of the GHZ state; however, readout via a local observable provides a
practical advantage as it leads to much greater robustness to readout noisea[3]. Second, take U = e−iHt to be
time evolution under a large-spin Hamiltonian, e.g. the one-axis twisting model, H = S2

z with Sz =
1
2

∑
i σ

z
i .

Such Hamiltonians are governed by effectively semi-classical dynamics owing to the large-spin degree of
freedom. These dynamics can be used to generate metrological spin-squeezed states from solely forward
time evolution [1, 4]. Much like for the GHZ state, the effect of the signal can in principle be detected
directly, via measurements on the squeezed state; however, in practice, applying the inverse preparation,
U† = eiHt, to “un-squeeze” the state substantially improves the robustness to readout noise [1, 5]. Additional
examples of unitary dynamics proposed for the echo protocol include time evolution under certain integrable
Hamiltonians [6] or Hamiltonians that feature a continuous-symmetry-breaking phase [7].

Crucially, however, the echo protocol shown in Fig. S1 does not lead to any metrological enhancement for
generic interacting quantum dynamics, outside of these few, highly specific cases. To illustrate this limitation
in a simple example, consider when U is taken to be a Haar-random unitary. This serves as a standard model
for the late-time dynamics of generic interacting quantum systems. In this case, the state prepared under
forward evolution, U |0⟩ is a Haar-random state. A Haar-random state has an average Fisher information

Eψ [F ] = 2Eψ

[
⟨ψ|S2

z |ψ⟩ − ⟨ψ|Sz |ψ⟩2
]

=
1

2N
tr
(
S2
z

)
− 1

2N (2N + 1)

(
tr(Sz)

2
+ tr

(
S2
z

))

=
N

4
+O

(
N

2N

)
,

(1)

which implies a sensitivity that is bounded by the standard quantum limit. Intuitively, this follows because
a random state, with high probability, has no long-range correlations in the z-basis.

As discussed in the main text and shown in detail below, our protocol circumvents this restriction, enabling
Heisenberg-scaling sensitivities for any generic interactings Hamiltonian dynamics. This greater versatility
opens the door to achieving a metrological enhancement in a much wider variety of experimental platforms
(e.g. the spin systems discussed in Sections III B and III C). Furthermore, even in systems that can achieve
a metrological enhancement using existing echo protocols, our approach can offer several advantages with
respect to the preparation time, and robustness to coherent errors, as discussed further in Sections III E and
III F.

a Interestingly, sensing with a GHZ state can be understood as a special case of our protocol. Consider a protocol which
prepares the GHZ state by applying a π/2-pulse to the first qubit, (1+ iσx

0 )/
√
2, followed by a CNOT “ladder” denoted U .

To detect the accumulated phase from an external signal, the inverse ladder U† is applied and the first qubit is measured.
The final state (up to normalization) is U†eiϕSzU(1+ iσi

0) |0⟩. Because |0⟩ is an eigenstate of the CNOT gates, we can insert
an additional copy of U† at the beginning of the circuit without changing the final outcome: U†eiϕSzU(1+ iσi

0)U
† |0⟩. This

is precisely of the form of our protocol, upon swapping U ↔ U†.
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II. DETAILED ANALYSIS OF THE SENSITIVITY

Here, we provide further details on our calculations of the sensitivity of both the local and global variants
of butterfly metrology.

A. Butterfly metrology with local control

We begin with the local protocol. As discussed in the main text, the signal of the local protocol takes the
following form,

⟨V ⟩ϕ =
1

2
⟨0|V (t) |0⟩ − 1

2
⟨0|V (t)eiϕSzV (t)e−iϕSzV (t) |0⟩

+ Im
[
eiϕN/2 ⟨0|V (t)e−iϕSzV (t) |0⟩

]
.

(2)

where V is a Pauli operator and V (t) = U†V U . At late times, we approximate the evolution e−iHt by a
Haar-random unitary U . For such a unitary, the first two terms in the signal vanish in expectation, leaving
only the final term non-zero. To analyze this term, we decomposed the perturbed state in the computational
basis as V (t) |0⟩ = ∑

s∈{0,1}N cs |s⟩, and define the polarization distribution P (Sz) =
∑

|s|=2Sz
|cs|2, where

|s| =∑i(−1)si and Sz = −N/2,−N/2 + 1, . . . , N/2− 1, N/2. We observe that the signal is determined by
the characteristic function of the distribution,

⟨V ⟩ϕ = Im
[
eiϕN/2

N/2∑

Sz=−N/2
e−iϕSzP (Sz)

]
(3)

= Im
[
eiϕN/2Φ(ϕ)

]
(4)

where Φ(ϕ) =
∑N/2
Sz=−N/2 e

−iϕSzP (Sz). Since U is a Haar-random unitary, we can approximate the perturbed

state as a Haar-random state. This leads to a binomial polarization distribution, P (Sz) = 1
2N

(
N

N/2−Sz

)
.

Plugging this distribution into Eq. (3) allows us to compute the expected signal as a function of ϕ, as shown
in Fig. 2(b) of the main text.

To analyze the sensitivity for small values of ϕ, we Taylor expand Eq. (3) to leading order. The sensitivity
is determined by the first moment of P (Sz),

η−1
ϕ=0 = N/2−

∑

Sz

SzP (Sz). (5)

The polarization distribution for a Haar-random unitary has mean zero and thus leads to ηϕ=0 = 2/N , a
factor of 2 above the strict Heisenberg limit.

For larger ϕ, two effects that cause the sensitivity to deviate from this maximal value. The first effect
is not particularly important, and arises simply because our signal, ⟨V ⟩ϕ, is oscillatory as a function of ϕ.
This causes the sensitivity to similarly oscillate between zero and its maximal value. If desired, this effect
can easily be mitigated by measuring the opposite quadrature of the oscillation (i.e. measuring the real part
of the characteristic function, Re

[
eiϕN/2Φ(ϕ)

]
, in addition to the imaginary part); we provide an explicit

protocol to do so in Section VI. The optimal sensitivity is obtained by taking a linear combination of the real
and imaginary parts, C(ϕ, θ) = cos(θ)Re

[
eiϕN/2Φ(ϕ)

]
+ sin(θ)Im

[
eiϕN/2Φ(ϕ)

]
, and maximizing |∂ϕC(ϕ, θ)|

with respect to θ. This yields an optimal sensitivity η−1
ϕ = | − iN/2Φ(ϕ) + Φ′(ϕ)|.

The second effect of a larger ϕ is more fundamental, and arises due to the finite width of the polarization
distribution, P (Sz), about its mean value [see e.g. Fig. 2(a) of the main text]. Intuitively, this non-zero
width causes the magnitude of the expectation value, ⟨0|V (t)e−iϕSzV (t) |0⟩, to decrease below unity, since
the state, V (t) |0⟩, is no longer a perfect eigenstate of e−iϕSz . This damps the sensitivity by a factor of,
roughly,

∣∣⟨0|V (t)e−iϕSzV (t) |0⟩
∣∣ ≈ 1− 1

2
ϕ2
(
⟨0|V (t)S2

zV (t) |0⟩ − ⟨0|V (t)SzV (t) |0⟩2
)

(6)
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¯
N
/η

FIG. S2. The sensitivity of butterfly metrology with global controls as a function of the re-scaled preparation
angle, ϵ̄ =

√
Nϵ/2, for the measurement operator Sx (blue), and the measurement operator sin(ϵSx) (orange). We

observe excellent agreement between the analytic prediction for Haar-random evolution (solid line) and the late-time
dynamics of an interacting Hamiltonian on N = 18 spins (points). In this plot, the spin Hamiltonian consists of
all-to-all two-body interactions with random magnitudes, H =

∑
i<j

∑
µ,ν J

µν
ij σi

µσ
j
ν , where µ, ν ∈ {X,Y, Z} and Jµν

ij

are Gaussian random numbers with mean zero and standard deviation J/
√
N . The evolution time is tJ = 10. Similar

results are obtained for generic Hamiltonians, including translation-invariant Hamiltonians in 1D and 2D, although
the agreement between such Hamiltonians and the Haar-random prediction is not as precise as above at the accessible
system sizes.

where on the RHS we Taylor expand to second order in ϕ. The damping is controlled by ϕ2 multiplied by the
variance of the polarization distribution. In a Haar-random state, the polarization distribution has variance
∼ N , which leads the sensitivity to decay from its maximal value for ϕ ≳ 1/

√
N . In Fig. 2 of the main

text, we corroborate this prediction by plotting the exact sensitivity with respect to ϕ for a Haar-random
unitary. As expected, we observe that the range for high sensitivity is ϕ ≲ 1/

√
N . In the limit N ≫ 1, we

can compute the full functional form of the sensitivity by approximating the polarization distribution as a

Gaussian, P (Sz) ≈ e−2S2
z/N , which yields a sensitivity η−1

ϕ ≈ (N/2)e−ϕ
2N/8.

B. Butterfly metrology with global control

We now turn to the global variant of butterfly metrology. The signal takes the form

⟨Sx⟩ϕ =a2 ⟨0|Sx(t) |0⟩ − ⟨0| Ṽ (t)eiϕSzSx(t)e
−iϕSzV (t) |0⟩

+ 2aIm
[
eiϕ

N
2 ⟨0|Sx(t)e−iϕSz Ṽ (t) |0⟩

]
,

(7)

where we decompose the global rotation as eiϵSx ≡ a1 + iṼ , where a = cosN (ϵ) and Ṽ is traceless, as
described in the main text. We note two key differences between the signal, Eq. (7), of the global protocol,
and the signal, Eq. (2), of the local protocol. First, the global protocol contains the free parameter, a, which
is set by our choice of the rotation angle, ϵ. Second, the third term in the signal of the global protocol
involves a matrix element between two distinct quantum states, Ṽ (t) |0⟩ and Sx(t) |0⟩.

Let us first address the behavior of the global protocol for late time, i.e. Haar-random evolution, and
then turn to earlier times. Similar to the local protocol, when U is Haar-random only the third term in
the signal is non-vanishing. Moreover, within the third term, only the component of Ṽ (t) |0⟩ that overlaps
with Sx(t) |0⟩ contributes to the matrix element. In particular, if we decompose the global rotation as
eiϵSx = a1 + i2a tan(ϵ/2)Sx + Sx,⊥, where tr(SxSx,⊥) = 0, then the Haar average retains only the term
proportional to Sx. Thus, the signal simplifies to

⟨Sx⟩ϕ = 4a2 tan(ϵ/2) · Im
[
e−iϕ

N
2 ⟨0|Sx(t)eiϕSzSx(t) |0⟩

]
. (8)

We note that, crucially, the state Sx(t) |0⟩ has normalization ⟨0|Sx(t)Sx(t) |0⟩ = N/4.
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Experimental platform Form of interaction Geometry Control Initial state Mechanism for time reversal
Dipolar Rydberg atoms Dipolar XY 1D or 2D Either Random Rydberg-state encoding
Hybrid spin system Dipolar Ising/XXZ 3D with disorder Local Polarized Hamiltonian engineering
Ensemble of NV centers Dipolar XXZ 3D with disorder Global Polarized Hamiltonian engineering
Atoms in optical cavity Long-range XY Variable Global Polarized Sign of laser detuning
Superconducting quits Local XY 2D Either Random Conjugation by pi-pulses
Trapped ions Digital gates Variable Either Either Phase of laser excitation

TABLE I. A more detailed overview of our proposed implementations of butterfly metrology in variety of experi-
mental platforms. The range of interaction forms and system geometries demonstrates the versatility of butterfly
metrology. For certain platforms, we observe that it is helpful to randomize the initial state in a fixed product basis,
to avoid undesirable effects associated with the fact that the polarized state has very low energy under the system’s
Hamiltonian.

Signal in hand, we now turn to the sensitivity, η−1
ϕ=0 ≡ (∂ϕ⟨S⟩ϕ/∆Sϕ)ϕ=0, of the global protocol. For

convenience, we work in the limit N ≫ 1, such that a = cosN (ϵ/2) ≈ exp(−ϵ̄2/2), where ϵ ≡ 2ϵ̄/
√
N and ϵ̄

is an order-one constant. For small values of ϕ, we have ∂ϕ⟨Sx⟩ϕ=0 ≈ a2ϵ̄N3/2/2. Meanwhile, the standard

deviation of the global measurement is ∆Sϕ=0 =
√
N/2. This yields η−1

ϕ=0 ≈ ϵ̄e−ϵ̄
2

N , with an optimal value

η−1 = (1/
√
2e)N ≈ 0.43N achieved at ϵ̄ = 1/

√
2. In Fig. 4(b) of the main text, we compare this prediction

to the sensitivities obtained in exact numerical simulations of a spin model with N = 18 spins and observe
excellent agreement.

We remark that, interestingly, measuring the global spin operator, Sx, is in some cases not the optimal
measurement for the global protocol. In particular, for Haar-random evolution, and a very small improvement
in sensitivity may be achieved by instead computing the expectation value of the operator, M = Ṽ + Ṽ † =
2 sin(ϵSx). Deriving the sensitivity with respect to a measurement ofM is straightforward but tedious, so we

simply quote the result: η−1
ϕ=0 = (a/

√
2)(1−a4)1/2N , which yields an optimal sensitivity η−1 = (1/33/4)N ≈

0.44N . Although this offers a minute advantage over the original protocol, it may be more challenging to
realize experimentally since it involves measuring higher powers of Sx.

To understand the sensitivity of the global protocol at earlier times, we leverage the connection between
butterfly metrology and operator growth introduced in detail in the main text. To begin our analysis, we
note that the global rotation eiϵSx flips each spin in the system with probability sin2(ϵ/2) ∼ ϵ2. Thus, the

perturbation Ṽ consists of ∼ϵ2N local spin operators at time zero, separated in space by a typical distance
∼ 1/ϵ2 (working in 1D for simplicity). As we time evolve, each local operator grows to have support on a

larger region of S spins. For a given time, the sensitivity is optimized when we set ϵ ∼ 1/
√
S, just small

enough so that the operators remain separated after time evolution. In this regime, the global protocol
factorizes, to good approximation, into N/S parallel protocols on S spins each. Now, suppose that we set
the evolution time (or conversely, set ϵ) so that each local operator time evolves to have support on a region
of size S ∼ 1/ϵ. In this case, the typical behavior of the global protocol resembles that of ∼N/S copies
of the local rotation protocol performed in parallel. Each “local” protocol is evolved to the scrambling
time on S spins, and thus has a Heisenberg-scaling sensitivity η−1 ∼S. These add in quadrature to give a
total sensitivity η−1 ∼

√
NS. As we increase time, the size S smoothly increases from 1 to N , yielding a

sensitivity that smoothly improves from the SQL to the Heisenberg limit. The precise functional form of this
interpolation will depend on the growth of the operator support S under the specific Hamiltonian dynamics
of interest; we refer to the main text for further discussion.

III. EXPERIMENTAL PROPOSALS

In this section, we present additional details on the two experimental platforms highlighted in the main
text, along with four additional platforms that are amenable to implementing our protocol. A brief overview
of these systems and our proposed implementations is provided in Table I.

Before discussing the systems individually, we note that a few features are in common in all of the proposals.
First, we choose the initial state of the protocol to be be quantized along the X direction. This is motivated
by the fact that all of the systems (except the trapped ion quantum computer) feature native interactions
that conserve total polarization in the Z basis. Specifically, we either consider a fully polarized state, or we



6

average over random initial states in the X basis. The latter approach allows us to circumvent low-energy
effects associated with a polarized state; this is most relevant for the two systems with entirely ferromagnetic
interactions, i.e. the dipolar Rydberg atoms and the superconducting qubits. Moreover, in all cases, we select
a “butterfly” operator that lies the transverse plane (i.e. V = σx or S = Sx). This generally leads to faster
scrambling compared to an operator that overlaps with the conserved quantity Sz [8].

A. Dipolar Rydberg atoms

One particularly suitable platform for realizing our protocol—with either local or global controls—is a
quantum simulator based on a 1D or 2D array of atoms trapped in optical tweezers [9, 10]. For each atom,
an effective spin-1/2 degree of freedom is encoded in a pair of Rydberg states, which is governed by a
long-range XY interaction:

H = −J
∑

i<j

a3

r3ij
(σixσ

j
x + σiyσ

j
y) (9)

where J ≈ 1 MHZ is the dipolar interaction strength, a ∼ 10 µm is the lattice spacing, and rij is the distance
between atoms. Crucially, the sign of J is controlled by the specific Rydberg state encoding; for example,
J > 0 occurs for the encoding |0⟩ =

∣∣60S1/2,m = 1/2
〉
and |1⟩ =

∣∣60P3/2,m = −1/2
〉
[9, 11]. Switching

between two encodings (via a microwave pulse) allows one to realize time-reversed dynamics. Furthermore,
one can implement global rotations via microwave pulses and single-site rotations by applying a focused laser
beams, which generates a local Stark shift. Such control is necessary to prepare a random initial state, as
well as to apply the local rotation ei

π
4 V (for the local control protocol).

In Fig. S4(a), we present simulated results for the protocol with local controls with a 2D array of atoms.

The initial state is randomized over product states in the X basis, and the butterfly operator is V = σ
N/2
x

(located in the center of the array). At early times, we observe a rapid improvement in sensitivity, which
for a large system we would expect to follow a quadratic trend, i.e. 1/η ∼ t2. At later times, the sensitivity
abruptly saturates at η ≈ 2/N , consistent with our prediction from Haar-random evolution and indicating
that the system has fully scrambled.

In practice, the improvement in sensitivity over time would compete with the suppression due to accumu-
lation of errors (see Section V for details). A leading source of decoherence in the system is the lifetime of
the Rydberg state, which is typically T1 ∼ 100 µm [12]. Based on an interaction strength of J ∼ 1 MHz [9],
we estimate this would enable a high-fidelity preparation of a fully scrambled state for N ∼ 25 in 1D and
N ∼ 100 in 2D, corresponding to a metrological gain of 8 and 14 dB, respectively.

Interestingly, a recent work proposed also proposed the use of 2D Rydberg arrays for generating spin
squeezed states [7]. This approach enables an enhanced sensitivity N−7/10 after an evolution time t ∼ N2/5

With the same 2D array of atoms, we observe that our protocol could obtain a comparable sensitivity
at a time t ∼ N1/5, i.e. representing a quadratic speedup. Moreover, the scaling difference between the
two protocols is dependent on the dimensionality; whereas the scaling in our protocol improves for higher
dimensions, spin-squeezing occurs with the same functional form for all dimensions [7]. For example, in
1D, the sensitivity for the two protocols would exhibit the same scaling in time, and, in 3D, our protocol
would feature a cubic speedup. This highlights the fact that scrambling occurs at a near-maximal rate under
many-body dynamics.

B. Hybrid spin system in diamond

As discussed in the main text, our protocol with local controls can naturally be realized in a bulk diamond
sample containing two species of electronic spin defects: a relatively high concentration of spin-1/2 nitrogen
substitutional defects (P1 centers), and a low density of spin-1 nitrogen-vacancy (NV) centers [13].

When the two species are off-resonant, the intrinsic magnetic dipole interaction between a single NV center
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FIG. S3. A pulse sequence for engineering the hybrid spin Hamiltonian H [Eq. (10)] into H̃+ [Eq. (14)]. The sequence
consists of two frame rotations with equal duration, τ . In the first, a π/2 pulse applied along the X direction brings
Pz into Py and Py into −Pz. In the second, a π/2 pulse applied along the Y direction brings Pz into Px and Px into
−Pz. By rotating in the opposite direction (i.e. switching π/2 into −π/2 and vice versa), the pulse sequence instead

generates H̃−.

and the surrounding P1 centers gives rise to an effective Hamiltonian [13]

H = HNV−P1 +HP1−P1 (10)

HNV−P1 = J0
∑

i

1

rij
(1− 3nzij)szp

i
z (11)

HP1−P1 = −J0
2

∑

i<j

1

rij
(1− 3nzij)

(
pixp

j
x + piyp

j
y − 2pizp

j
z

)
. (12)

Here, J0 ≈ 52 MHz-nm3 is the magnetic dipole interaction; s⃗, p⃗i are local spin-1/2 operators acting on the
NV center (within the |m = 0⟩ and |m = −1⟩ subspace) and individual P1 centers, respectively; rij is the
distance between two defects; and nzij = ẑ · r̂ij .

The sign of HNV−P1 can easily be reversed by conjugating the evolution via a π-pulse on the NV center,
leading to the effective Hamiltonian

H− = −HNV−P1 +HP1−P1. (13)

To reverse the sign of HP1−P1, we can apply global pulses to the P1 centers following the pulse sequence
shown in Fig. S3. From average Hamiltonian theory, the engineered Hamiltonian in the toggling frame is

H̃± = ±H̃NV−P1 −
1

2
HP1−P1 (14)

H̃NV−P1 =
J0
2

∑

i

1

rij
(1− 3nzij)sz(p

i
x + piy), (15)

where the sign in front of H̃NV−P1 is determined by direction of the pulses (Fig. S3). Putting these pieces

together, we can realize forward and reverse evolution under H̃+:

U = e−itH̃
+

(16)

U† = e−i2t[
1
2 H̃

−+ 1
4 (H+H−)] = eitH̃

+

. (17)

The full protocol is thus implemented as follows:

1. Initialize in a fully polarized state in the Z direction. This is achieved for the NV centers via optical
polarization and for the P1 centers via cyrogenic conditions.

2. Rotate the state to the X direction by applying a microwave pulse resonant with (a) the two levels of
the P1 center, and (b) the |ms = 0⟩ ↔ |ms = −1⟩ transition of the NV center.

3. Evolve under the engineered Hamiltonian H̃+ by applying the pulse sequence described above.
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FIG. S4. Numerical simulations of our protocol with four proposed experimental platforms: (a) Rydberg dipolar
atoms in two-dimensions, i.e. Eq. (9) with rij = 1 for nearest neighors; (b) atoms in an optical cativity, i.e. Eq. (22-
23), with (left) s = − 1

2
and (right) s = 1

2
; (c) superconducting qubits with analog interactions, Eq. (24); (d) trapped

ions under a non-local, random unitary circuit. In (a),(c), and (d), the protocol with local controls is performed and
the initial state is a random product state in the X basis (averaged over ∼ 10 realizations). In (b), we implement

the protocol with global controls and a fully polarized state initial state, |0⟩ = |+⟩⊗N . The circuit geometry for the
trapped ion simulations is shown in (d). Each layer consists of N/2 two-qubit gates (red), acting on random pairs of
qubits, and a random single-qubit rotation on each of the qubits (blue).

4. Apply a local rotation to the NV and evolve backwards under −H̃+. The steps up to this point produce
the butterfly state.

5. Apply the global sensing signal e−iϕSz , where Sz = sz +
∑
i p
i
z.

6. Evolve forward again under H̃+, and measure the polarization of the NV center using optical excitation.

We emphasize that the protocol succeeds despite the presence of strong positional disorder in the spin
system: Any position configurations would lead to many-body interactions which produce scrambling be-
havior and thus an enhancement in sensitivity b. Moreover, as discussed in the main text, the scrambling
occurs very fast—i.e. at super-polynomial rate—due to the long-range interactions in three dimensions. For
comparison, a previous scheme has been proposed for entanglement-enhanced sensing with the NV-P1 hybrid
system, in which the sensitivity improves linearly in time, i.e. 1/η ∼ t [6].

A particularly attractive feature of electronic spins in diamond is their extremely long intrinsic lifetimes,
e.g. T1 ∼ seconds at low temperatures [14]. In most settings, the coherence times are instead determined
by interactions with other spin defects (both electronic or nuclear spins). Fortunately, in our protocol, these
interactions can be dynamically decoupled by interspersing the pulse sequences described above with global
pi-pulses. As a result, we expect our protocol to be primarily limited by technical constraints, e.g. the ability
to implement pulse sequences with high fidelity and at a pulse rate that is faster than the intrinsic interaction
strengths. Recent work has led to significant improvements in the robustness of Hamiltonian engineering
techniques, which can be leveraged to overcome some of these constraints [15].

b In an ensemble of NV centers, each with their own P1 environment, the total sensitivity ηϕ=0 is given by the average sensitivity
over the positional configurations contained in the ensemble.
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C. Ensemble of NV centers in diamond

A second system of spin defects which can realize our protocol with global control is an ensemble of
strongly interacting NV centers [16]. The main benefit of this implementation, compared with a hybrid
NV-P1 system, is that NV centers can be optically polarized at room temperature, thereby circumventing
the need for cryogenic temperatures.

As in the previous section, time reversal of the NV interactions can be realized by applying pulse engineer-
ing techniques. We first consider the effective interaction between NV centers within the two-level subspace
{|0⟩ , |−1⟩} [16]:

H0 = J0
∑

i<j

1

rij
(1− 3nzij)

(
sixs

j
x + siys

j
y − sizs

j
z

)
, (18)

where s⃗i are spin-1/2 operators acting in the two-level subspace. Unfortunately, this Hamiltonian cannot be
time reversed using a sequence of frame rotations. This results from the observation that the matrix repre-
sentation of the individual Hamiltonian terms—i.e. hµν where Hij =

∑
µν hµνs

i
µs
j
ν and µ, ν ∈ {X,Y, Z}—has

non-zero trace
∑
µ hµµ, and global operations preserve the trace [15].

Nevertheless, the NV center contains another potential two-level subspace composed of the ms = ±1
sublevels, wherein the effective interaction is

H±1 = −4J0
∑

i<j

1

rij
(1− 3nzij)s

i
zs
j
z. (19)

Because the trace of H±1 has the opposite sign as H0, one can combine the two subspaces to engineer an
average Hamiltonian that is traceless. In particular, alternating between the two subspaces, with duration
τ in the first subspace and duration τ/4 in the second subspace, yields the effective Hamiltonian:

H̃ =
4

5

(
H0 +

1

4
H±1

)
(20)

=
4J0
5

∑

i<j

1

rij
(1− 3nzij)(s

i
xs
j
x + siys

j
y − 2sizs

j
z). (21)

This Hamiltonian is simply proportional to the dipolar interaction among P1 centers, i.e. HP1−P1 in Eq. 12.
Thus, the same pulse sequence that enabled the time reversal of the P1 interaction, shown in Fig. S3, can
be applied to the average NV interactions to transform H̃ into − 1

2H̃.
The complete sensing protocol utilizing NV ensembles is outlined as follows:

1. Optically polarize the NV centers into the |0⟩ state.
2. Rotate the state via a pi/2 pulse in the subspace {|0⟩ , |−1⟩}.

3. Evolve under the average Hamiltonian H̃ by alternating between the {|0⟩ , |−1⟩} subspace and
{|−1⟩ , |1⟩} subspace.

4. Apply a small global rotation to the NV centers, eiϵSx , where the angle ϵ is optimized as function of
the evolution time.

5. Evolve backwards under −H̃ by (a) alternating between the two subspaces and (b) applying the pulse
sequence shown in Fig. S3 within each subspace.

6. Apply the global sensing signal e−iϕSz , where Sz =
∑
i s
i
z.

7. Evolve forward again under H̃, and measure the total polarization of the NV centers via optical
excitation.

To our knowledge, implementing time reversal by applying pulse engineering sequences to multiple sub-
spaces has not been previously proposed. Successfully demonstrating this technique, which we refer to as
“subspace engineering”, and comparing it to more standard pulse sequences involving a single subspace,
represents an exciting experimental prospect.
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D. Atoms in an optical cavity

One of the most successful platforms for demonstrating entanglement-enhanced sensing consists of atoms
coupled in an optical cavity [4, 5, 17]. Conventionally, this enhancement is achieved by evolving under collec-
tive large-spin interactions (e.g. the one-axis twisting Hamiltonian) to generate a squeezed state. However,
this approach does not succeed for more general types of dynamics, arising in e.g. a multi-mode cavity [18]
or via programmable interactions [19].

We consider the latter setting with a system of spin-1/2 atoms. The programmable spin-exchange inter-
actions are described by an effective Hamiltonian [19]:

H =
∑

i<j

J(rij)
(
σixσ

j
x + σiyσ

j
y

)
, (22)

where the sign and magnitude J(rij) are controllable by laser drives. Motivated by Ref. [20], we select the
interaction strength to be of the form

J(rij) =

{
(−1)n|i− j|s if |i− j| = 2n, n ∈ Z
0 otherwise

(23)

where the parameter s interpolates between a quasi-one-dimensional geometry (s < 0) and a tree-like ge-
ometry (s > 0). Note that we include a mix of ferromagnetic and anti-ferromagnetic couplings. This is

anticipation of initializing to protocol with a fully polarized initial state, |0⟩ = |+⟩⊗N ; the anti-ferromagnetic
interactions serve to raise the temperature this state.

Although local control is theoretically possible in this setup [21], it is most natural to realize our protocol
with global controls. Numerical simulations for the sensitivity as a function of evolution time are depicted
in Fig. S4. For s < 0, we observe that the sensitivity quickly reaches a saturation value that improves with
system size ∼ N , indicating a Heisenberg-like enhancement. Intriguingly, in the case of s > 0, we find a qual-
itatively different behavior: the sensitivity exhibits large fluctuations and does not improve systematically
with system size. This suggests that the tree-like geometry does not lead to fully scrambling behavior. Un-
derstanding the subtle interplay between many-body dynamics and improved sensitivity for such non-trivial
geometries would be an interesting future direction.

E. Superconducting qubits with analog interactions

Tremendous progress has been made in developing quantum processors based on 2D arrays of supercon-
ducting transmon qubits [22–24]. While such processors are often controlled with digital gates, we consider an
implementation of our protocol which utilizes the intrinsic (analog) interactions between tunable-frequency
qubits. In particular, when the qubits are brought on resonance, their interaction is described by a local XY
model [24, 25],

H = J
∑

⟨i,j⟩

(
σixσ

j
x + σiyσ

j
y

)
, (24)

where the coupling strength |J | is typically 10−100 MHz [26]. As demonstrated in Ref. [24], when the lattice
of qubits is bipartite, the sign of interaction can be quite easily reversed by conjugating the evolution with
π-pulses, i.e. −H =

(∏
i∈S σ

i
x

)
H
(∏

i∈S σ
i
x

)
, where S is one part of the bipartite lattice. This reversibility,

in addition to local rotations generated by microwave pulses, enables the realization of our protocol with
local control.

In Fig. S4, we show numerical results for our protocol in a 2D array of up to 20 qubits. While the
functional form of the early-time growth cannot be discerned, at larger sizes one expects the nearest-neighbor
interactions to lead to ballistic growth of the form ∼ (Jt)2. Based on an estimate of this growth rate, a
qubit lifetime of T1 ∼ 20µs [27], and a coupling strength J ∼ 50 MHz [26], we predict that a fully scrambled
state can be prepared with ∼ 400 qubits, leading to a metrological gain of 20 dB. This would significantly
surpass the current record for metrological gain of 11.8 dB, recently demonstrated via atoms in an optical
cavity [5].
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For comparison, a more conventional approach for obtaining a metrological gain in a digital quantum
processor would be to prepare a GHZ state (the current record is a GHZ state with 60 qubits and a fidelity
of 0.59) [3, 28]. It is natural to consider which of these strategies would lead to a larger metrological gain on
realistic devices. On the one hand, the theoretical sensitivity for a GHZ state at equivalent sizes is a factor
of two better than our protocol. Additionally, sensing based on a GHZ state requires two layers of entangling
gates (i.e. the state preparation circuit and its inverse, assuming that robustness to noise is desired), whereas
our protocol requires three steps of many-body evolution. On the other hand, our protocol is much more
robust against control errors, since it does not require precisely calibrated two-qubit gates; indeed, such
errors often represent a significant fraction of the total error [29]. Moreover, the total evolution time for
implementing our protocol may be shorter, since the analog interactions are “always on”, thereby reducing
the effect of decoherence [25]. Testing these advantages in practice would be of tremendous interest and may
provide a useful tool for benchmarking large-scale quantum processors.

F. Trapped-ion quantum computer

Lastly, we consider an implementation of protocol on a trapped-ion quantum computer [30, 31]. Unlike the
previous proposals which rely on analog evolution, we utilize discrete quantum gates to generate the many-
body unitary U . Specifically, we construct circuits with interspersed layers of two-qubit and single-qubit
gates. For the two-qubit gates, we choose N/2 pairs of qubits at random and apply the native Molmer-

Sorensen interaction, ei
π
4 σ

x
i σ

x
j , to each pair. This arrangement takes advantage of the all-to-all connectivity

of trapped ions. For the single-qubit gates, we apply eiαiσ
i
zei

π
4 σ

i
yeiβiσ

i
z , where αi, βi ∈ [0, 2π] are chosen

from a uniform distribution. In Fig. S4(d), we plot numerical results for the sensitivity as function of circuit
depth using the sensing protocol with local controls. Much like our previous results with analog evolution, we
observe an initial rise in sensitivity, followed by saturation at η ≈ 2/N . Owing to the all-to-all connectivity,
the circuit depth to reach saturation scales favorably with system size; indeed, one expects it to occur in
∼ logN layers at large system sizes.

As discussed in the main text, an important feature of our protocol is its robustness against coherent
errors, which are considered to be a dominant error source in trapped-ion systems. Physically, such errors
arise from low-frequency fluctuations in the laser drive amplitudes, causing imperfections in the rotation
angles, i.e. θij → θ′ij . These errors will limit the ability to prepare finely-tuned metrological states, including
a GHZ state. However, in our protocol, if these errors can be time reversed they have essentially no impact
on the achievable sensitivity—they would simply adjust the many-body unitary, U → U ′, and, at late times,
this would still result in a fully scrambled state. Thus, at large system sizes and / or high coherent error
rates, we expect our protocol to provide a larger metrological gain compared to sensing based on a GHZ
state.

IV. DETAILS ON STOCHASTIC MODEL USED FOR LARGE-SCALE NUMERICAL STUDIES

In this section, we introduce a stochastic model for operator growth dynamics which allows us to predict
the large-scale behavior of our protocol for the two proposed systems of spin defects. The model is inspired by
previous work on quantum information scrambling, where it has been argued that growth of operators under
long-range Hamiltonian dynamics can be qualitatively captured at long timescales by stochastic transitions
[32–34]. For our purposes, we model these transitions using Haar-random gates and determine the probability
of each gate based on the strength of the spin interactions.

In more detail, consider a Hamiltonian composed of two-body interactions, H =
∑
ijµ h

µ
ij , where hµij

indicates a particular two-body operator acting on qubits i and j. Our model consists of mapping the analog
evolution U = e−iHt to a circuit composed of D time steps, Ũ = UD · · ·U2U1. In each time step, we apply
a set of two-qubit, Haar-random gates, where the probability of a gate occuring between qubits i and j is
Pij = δt

∑
µ |h

µ
ij |2. We set δt ≪ 1/Jtyp, where Jtyp is the typical interaction strength, such that there is a

low density of gates per time step.
A key feature of Haar-random gates is that, for measuring certain quantities, the average over Haar-

random gates is equivalent to the average over random Clifford gates [35]. The average sensitivity of our
protocol (with either global or local control) represents such a quantity; this results from the fact that the
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sensitivity contains three copies of U and U†, and Clifford unitaries form a 3-design for qubits [36–38]. Thus,
the average sensitivity of the stochastic model can be computed efficiently using Clifford numerics.

We apply the stochastic model to predict the sensitivity of our protocol for either local or global control.
For the local protocol, we compute the sensitivity ηϕ=0 by measuring the average polarization density P (Sz)

of Ũ†V Ũ |0⟩ [see Eq. (5)]. This is easily accomplished by evolving V in the Heisenberg picture with Clifford
gates, and then counting the number of σx and σy operators within the Pauli string V (t).

Computing the sensitivity for the global protocol is somewhat more involved. We begin by expressing the
mean outcome as

⟨Sx⟩ϕ = ⟨0|U†eiϵSxUeiϕSzU†SxUe
−iϕSzU†e−iϵSxU |0⟩ , (25)

where S⃗ = 1
2

∑
i σ⃗

i are global spin-1/2 operators. To proceed, we expand the operator Sx in a Pauli basis:

⟨Sx⟩ϕ =
1

2

∑

a,b∈{0,1}N

N∑

i=1

cac
∗
b ⟨0|U†PaUe

iϕSzU†σixUe
−iϕSzU†PbU |0⟩ , (26)

where Pa =
∏
i∈a σ

i
x contains σix on all sites for which a is non-zero, ca = (i sin(ϵ/2))|a|(cos(ϵ/2))N−|a|, and

|a| = ∑
i ai is the Hamming weight of a. For a Clifford unitary U , the state U†PbU |0⟩ is an eigenstate of

Sz. This allows us to pull the factors of e±iϕSz outside the expectation value, giving

⟨Sx⟩ϕ =
1

2

∑

a,b∈{0,1}N

N∑

i=1

cac
∗
be
iϕab ⟨0|U†Paσ

i
xPbU |0⟩ , (27)

where ϕab = ϕ(Sz{U†PaU}−Sz{U†PbU}) and Sz{P} = # of σx,σy in P . With high probability, the matrix
element ⟨0|U†PaσixPbU |0⟩ is non-zero if and only if Paσ

i
xPb = 1. With this simplification, we have

⟨Sx⟩ϕ ≈ 1

2

∑

a∈{0,1}N

N∑

i=1

|ca|2 (i tan(ϵ/2))|bi|−|a|eiϕabi , (28)

where bi differs from a only on the ith bit. We note that |ca|2 is the probability of sampling |a| from a
binomial process with N draws of probability sin2(ϵ/2), and thus we can approximate the above expression
using Monte Carlo sampling.

In summary, the full procedure for estimating ⟨Sx⟩ϕ is as follows:

1. Sample a from a binomial distribution and i from a uniform distribution. The bitstring bi is immediately
given by flipping a on the ith bit.

2. Compute ϕab = ϕ(Sz{U†PaU} − Sz{U†PbU}) by time evolving Xa and Xb under a Clifford circuit.

3. Average the quantity (i tan ϵ)|bi|−|a|eiϕabi over many samples.

We estimate the sensitivity via η−1
ϕ=0 ≡ (∂ϕ⟨Sx⟩ϕ/∆Sx,ϕ)ϕ=0 ≈ ⟨Sx⟩ϕ/

√
N , where ϕ ≪ 1, and for circuits

with Haar-random gates, on average, ⟨Sx⟩ϕ=0 and (∆Sx)ϕ=0 =
√
N/2.

To benchmark the stochastic model, we calculate the sensitivities for up to N = 20 spins for (i) the
local protocol based the interactions of the hybrid spin system, and (ii) the global protocol based on the
interactions of an ensemble of NV centers. In Fig. S5, we compare these results to the the sensitivities
obtained from simulations with exact dynamics. The two methods yield good qualitative agreement for
both the local and global protocols. Moreover, by matching the growth rate at early times, we can estimate
the conversion factor between discrete time steps in the stochastic model and evolution time for the exact
dynamics. Utilizing this conversion factor, we simulate the behavior of much larger spin systems, as shown
in the insets of Fig. 4 of the main text. We expect the results of the stochastic model to provide a good
approximation for the exact behavior of the experimental system, in a regime that would be intractable to
simulate with the exact dynamics.
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FIG. S5. Comparison between the stochastic model (solid lines) and exact dynamics (dashed) for the two proposed
spin models at small sizes. (a) The sensitivity of the local protocol applied to the hybrid spin system with single NV
center surrounded by a cluster of P1 centers. The density of spin defects is 100 ppm dynamics, and their interactions
are governed by H̃+ in Eq. 14. (b) The metrological gain of the global protocol applied to an ensemble of NV centers.

The density of the NV centers is 100 ppm, and their dynamics are governed by H̃ in Eq. 20. The results for the
stochastic model are plotted as a function of the number of discrete time steps, and the results for the exact dynamics
are plotted with respect to continuous time evolution. By comparing the results, we estimate the conversion factor
between discrete steps and continuous evolution time. The results for the stochastic model are averaged over ∼ 104

realizations (including different positional configurations and Clifford circuits), and the results for the exact dynamics
are averaged over ∼ 10 positional configurations.

V. DETAILED ANALYSIS OF THE EFFECTS OF NOISE AND DECOHERENCE

We now provide a detailed accounting of the effect of experimental errors on our sensing protocols. We
begin with a brief discussion of readout and initialization errors, which as mentioned in the main text,
decrease the sensitivity by only a constant factor. We then turn to incoherent errors during time evolution,
and, borrowing from the results of Ref. [39], derive the suppression factor indicated in the main text.

Readout errors have a particularly small effect on our protocol. For the local control protocol, a local
readout error rate γr suppresses the expectation value of V by a constant factor, ⟨V ⟩ϕ → (1 − γr)⟨V ⟩ϕ. A
similar suppression occurs for the global protocol, ⟨Sx⟩ϕ → (1 − γr)⟨Sx⟩ϕ, since Sx is a sum of single-body

operators. In both cases, the sensitivity is suppressed by the same factor, η−1
ϕ → (1− γr)η

−1
ϕ .

To address initialization errors, consider performing the protocol with an initial density matrix ρ instead
of |0⟩⟨0|. We denote the mean polarization of ρ as tr(ρSz) = (1 − γi)N/2, where γi quantifies the local

initialization error rate. We also suppose that the polarization distribution of ρ has width ≲
√
N , which is

appropriate for local initialization errors. After butterfly state preparation, the density matrix becomes
(
1+ iV (t)√

2

)
ρ

(
1− iV (t)√

2

)
=

1

2
(ρ+ V (t)ρV (t) + i [V (t)ρ− ρV (t)]) , (29)

where V (t) = U†V U . The first and second terms correspond to the two trajectories of the butterfly state,

and the third term to the coherence between them. As in the error-free case, for small angles ϕ ≲ 1/
√
N the

rotation e−ϕSz simply applies an overall phase to each trajectory of the butterfly state. Working in the late
time regime where eiϕSzV (t)ρ ≈ V (t)ρ, this leads to the density matrix

eiϕSz

(
1+ iV (t)√

2

)
ρ

(
1− iV (t)√

2

)
e−iϕSz ≈ 1

2

(
ρ+ V (t)ρV (t) + i

[
e−iϕ(1−γi)N/2V (t)ρ− eiϕ(1−γi)N/2ρV (t)

])
.

(30)
As in the error-free case, only the third term (in square brackets) will contribute to the final expectation
value of V . Applying the final unitary and taking the expectation value gives

⟨V ⟩ϕ ≈ sin

(
ϕ
(1− γi)N

2

)
. (31)
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FIG. S6. Illustration of the effect of errors on our sensing protocol. Errors within the light-cone of V (red dashed
areas) suppress the coherence between the two trajectories of the butterfly state. Errors within the light-cone of
a local polarization operator σz

i (blue dashed areas, shown for a representative polarization operator) suppress the
polarization of the first trajectory of the butterfly state. The sensitivity of the protocol is affected by both types of
errors, and is thus suppressed proportional to the local error rate γ multiplied by the space-time volume of the four
light-cones. Note that initialization and readout errors can be included in this diagram as well; since they only act
at times when the light-cones have size one, they have only an O(1) effect on the sensitivity.

Taking the derivative with respect to ϕ, we see that the sensitivity is decreased by only a constant factor
relative to the error-free case, η−1

ϕ → (1− γi)η
−1
ϕ .

We now turn to incoherent errors during time evolution. As mentioned in the main text, incoherent errors
have two effects on the protocol: they suppress the mean polarization in the first trajectory of the butterfly
state, and they suppress the coherence between the two butterfly trajectories. Both effects suppress the
sensitivity, the first by suppressing the first derivative of ⟨V ⟩ϕ with respect to ϕ (similar to initialization
errors), and the second by suppressing the overall magnitude of ⟨V ⟩ϕ (similar to readout errors). However,
unlike initialization and readout errors, errors during time evolution occur when the state is highly-entangled
and thus have a stronger effect (Fig. S6).

To explore this in more detail, let us replace the unitary evolution ρ → UρU† by evolution under a
noisy quantum channel, ρ → Eγ{ρ}. For analog evolution, the quantum channel might be generated by
a Lindbladian, Eγ = eLγt, where Lγ includes both Hamiltonian evolution and local noise operators with
strength γ. For digital evolution, the quantum channel might correspond to a sequence of unitary gates
interspersed with local noise channels of strength γ. In any case, we will assume that the quantum channel
corresponding to U† is the conjugate of the channel corresponding to U , defined via tr

(
M · Eγ{ρ}

)
=

tr
(
E†
γ{M} · ρ

)
c. This reduces to standard time reversal when the evolution is unitary.

Let us now analyze the sensitivity of the protocol at ϕ = 0. We have

∂ϕ⟨V ⟩ϕ = Im

[
tr

(
Sz · E†

γ{V } · E†
γ

{
1+ iV√

2
Eγ {|0⟩⟨0|}

1− iV√
2

})]
, (32)

where we apply (the conjugate of) the final time evolution to the measurement operator V instead of the
quantum state. As in the error-free case, we can drop terms that contain an odd number of V . Moreover,
terms where a single V operator appears in between Sz and the initial state |0⟩⟨0| can also be dropped if
the system is fully scrambled after application of Eγ . These correspond to the polarization of the second
trajectory of the butterfly state or, in other language, to OTOCs that have decayed to zero. Dropping these
terms gives

∂ϕ⟨V ⟩ϕ ≈ tr
(
Sz · E†

γ{V } · E†
γ {V · Eγ {|0⟩⟨0|}}

)
. (33)

Now, note that the initial state |0⟩⟨0| can be decomposed as a sum of stabilizers as

|0⟩⟨0| = 1

2N

∑

s∈{0,1}N

N⊗

i=1

(σzi )
si . (34)

To good approximation, only the single-body stabilizers σzi contribute to the expectation value, since they
can “contract” with the same stabilizer in Sz. Keeping only these stabilizers, we have

∂ϕ⟨V ⟩ϕ ≈ 1

2

N∑

i=1

1

2N
tr
(
σzi · E†

γ{V } · E†
γ {V · Eγ {σzi }}

)
, (35)

c On a technical level, this requires assuming that the noise is unital. We expect non-unitality of the noise channel to contribute
at sub-leading order in γ; see the supplemental material of Ref. [39] for a full discussion.
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which is our final approximation. The approximation resembles a “doubled” version of the Loschmidt echo,
which depends on both the fidelities of a local operator σzi at time zero and a local operator V at time t.

To understand how this approximation depends on the local noise rate γ, we invoke the results of Ref. [39].
There, it was argued that for ergodic many-body quantum dynamics, the decay of the Loschmidt echo,

Nγ(M) =
1

2N
tr
(
M · E†

γ{ Eγ{M} }
)
, (36)

is controlled by the effective space-time volume of the time-evolved operator M ,

Nγ(M) ≈ exp (−2γVol [M(0 → t)]) . (37)

Here, the space-time volume is defined as the integral over time of the size of the operator M ,

Vol [M(0 → t)] =

∫ t

0

dt′S(t′), (38)

where the size is given by the (average) number of qubits that M acts upon,

S(t′) =
∑

P

|cP (t′)|2SP , (39)

where M(t′) =
∑
P cP (t

′) is the Pauli decomposition of M at time t′ and SP = (# of σx, σy, σz in P ) is the
weight of the Pauli operator P . In principle, one should compute this volume for time evolution under the
noisy quantum channel [39]. However, to estimate the leading order dependence in γ we can substitute the
volume under unitary evolution. In short-range interacting systems, the space-time volume is proportional
to the volume of the operators’ light-cone, and Eq. (37) simply states that only errors within the light-cone
contribute to the decay of the Loschmidt echo.

We can straightforwardly apply this approximation to the sensitivity in Eq. (40). The first quantum
channel (applied to σzi ) contributes a factor γVol[σzi (0 → t)] to the exponent. The final quantum channel
(applied to V ) contributes a factor γVol[V (0 → t)]. The only subtlety is the middle quantum channel
(applied to V · Eγ{σzi }). This contributes a factor proportional to the space-time volume of the product of
σzi and V , where the former is local at the end of the evolution and the latter at the beginning. In a slight
abuse of notation, we denote this quantity as Vol[σzi (t→ 0)∪V (0 → t)]. Putting it all together, we estimate

∂ϕ⟨V ⟩ϕ ≈ 1

2

N∑

i=1

exp
(
−γ
(
Vol
[
σzi (0 → t)

]
+Vol

[
V (0 → t)

]
+Vol

[
σzi (t→ 0) ∪ V (0 → t)

]))
. (40)

The relevant light-cones are depicted visually in Fig. S6. Note that the volume of the product will (typically)
be upper bounded by the sum of the individual volumes. This gives a lower bound on the sensitivity,

∂ϕ⟨V ⟩ϕ ≳
(
1

2

N∑

i=1

exp
(
−2γVol

[
σzi (0 → t)

])
)

· exp
(
−2γVol

[
V (0 → t)

])

=
N

2
· Nγ(σzi ) · Nγ(V )

(41)

The first term is given by N/2 multiplied by the average Loschmidt echo of σzi . This corresponds to the loss
in polarization of the first butterfly trajectory. The second term is given by the Loschmidt echo of V , and
corresponds to the loss of coherence between the first and second trajectories of the butterfly state.

Let us consider this final expression for a system with local interactions in d dimensions. We assume local
operators spread ballistically with a butterfly velocity vB , resulting in an operator size S(t) ≈ (vBt)

d and
a volume Vol[V (0 → t)] ≈ Vol[σzi (0 → t)] ≈ 1

(d+1)vB
(vBt)

d+1. To reach a fully scrambled state, we take

t ≈ N1/d/vB . This leads to an overall sensitivity,

∂ϕ⟨V ⟩ϕ ≳ N

2
exp

(
− 4

d+ 1

γ

vB
N

d+1
d

)
. (42)

We utilize this expression to estimate the sensitivity under decoherence for the dipolar Rydberg atoms and
superconducting qubits.
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FIG. S7. Two protocols for measuring the real part of Φ(ϕ). (a) The first protocol is identical to the original protocol

with local controls [Fig. 1(a) of the main text], except we replace the local rotation, ei
p
i
4V ∼ 1 + iV , with a local

projection, |0⟩⟨0| ∼ 1 + Z. (b) The second protocol, which we dub a “double echo”, involves applying the butterfly
state preparation circuit and its inverse. The final state is measured in the computational basis, and either the return
probability to the initial state or the average polarization is computed. This approach may be applied with either
local or global controls to prepare the butterfly state.

VI. EXPERIMENTAL PROTOCOL TO MEASURE THE OPPOSITE QUADRATURE

As discussed in the previous section, the protocols shown in the main text (i.e. Fig. 1 and 3) are directly
related to the imaginary part of the characteristic function Φ(ϕ) of the polarization distribution P (Sz). This
implies that they achieve a high sensitivity only at certain values of ϕ, including, most notably, ϕ = 0. In
order to maintain a high sensitivity over a continous range of ϕ, it is necessary to measure the opposite
quadrature—i.e. the real part of the characteristic function.

There are two straightforward modifications of our protocol that achieve this goal, depicted in Fig. S7.
The first approach, which applies only to the protocol with local controls, is to replace the local rotation by
a projection, e.g. (1 + V )/2 for a Pauli operator V . The measurement outcome then becomes

⟨V ⟩ϕ =
1

2
⟨0|V (t) |0⟩ − 1

2
⟨0|V (t)eiϕSzV (t)e−iϕSzV (t) |0⟩

+Re
[
eiϕ

N
2 ⟨0|V (t)e−iϕSzV (t) |0⟩

]

=Re
[
eiϕ

N
2 Φ(ϕ)

]
,

(43)

where Φ(ϕ) is defined below Eq. (3), and, in the second line, we assume that the first two terms have vanishing
expectation valuesd. While conceptually simple, measuring the real part of Φ(ϕ) in this way requires the
ability to reset an individual qubit during the execution of the protocol. Alternatively, one can delay the
projection to the end of the protocol by swapping in an ancilla qubit in the state |0⟩ (taking V = σz), and
post-selecting on the final state of the ancilla qubit.

Our second approach, analogous to a standard Loschmidt echo, is to perform the full inverse of the state
preparation procedure, as shown in Fig. S7. This approach can be applied with either local or global controls,
but, for specificity, let us focus on the variant with local controls. The conceptually simplest quantity to
analyze is the return probability, P0, given by

P0 =
1

4

∣∣⟨0| (1− iV (t))e−iϕSz (1+ iV (t)) |0⟩
∣∣2

=
1

4

∣∣∣e−iϕN
2 + ⟨0|V (t)eiϕSzV (t) |0⟩

∣∣∣
2

=
1

4

(
1 + |Φ(ϕ)|2 + 2Re

[
e−iϕ

N
2 Φ(ϕ)

])
. (44)

d The first two terms may also be directly cancelled by projecting onto the opposite state, i.e. using (1− V )/2, and measuring
−V . Averaging this outcome with Eq. (44) leaves only the final term, Re

[
eiϕNΦ(ϕ)

]
.
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The real part of Φ(ϕ) can easily be inferred by combining this quantity with the outcome from Eq. (3). This
approach directly generalizes to the case of global controls by replacing the local rotation with a global one,
e.g. eiϵSx . In either case, an additional many-body unitary (i.e. 2 copies of U and U†) is required compared
to the previous protocols.

We note that, although measuring the return probability is straightforward to analyze, it is highly sensitive
to readout errors. In practice, therefore, it is better to measure either the average polarization or polarization
distribution of the final state, both of which display qualitatively similar behavior to the return probability.
In particular, if the external signal applies a relative phase between the two components of the butterfly state,
|0⟩ and V (t) |0⟩, then the polarization distribution of the final state features two peaks—a fully polarized
state and a random state centered about zero polarization—with a relative height that oscillates as function
of ϕ. Readout noise broadens the two peaks, but they remain extensively separated.
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