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TopoCode: Topologically Informed Error Detection and Correction
in Communication Systems
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Abstract—Traditional error detection and correction codes
focus on bit-level fidelity, which is insufficient for emerging tech-
nologies like eXtended Reality (XR) and holographic communica-
tions requiring high-data-rate, low-latency systems. Bit-level met-
rics cannot comprehensively evaluate Quality-of-Service (QoS) in
these scenarios. This letter proposes TopoCode which leverages
Topological Data Analysis (TDA) and persistent homology to
encode topological information for message-level error detection
and correction. It introduces minimal redundancy while enabling
effective data reconstruction, especially in low Signal-to-Noise
Ratio (SNR) conditions. TopoCode offers a promising approach
to meet the demands of next-generation communication systems
prioritizing semantic accuracy and message-level integrity.

Index Terms—Error correction, error detection, persistence
homology, topological data analysis.

I. INTRODUCTION

Channel coding for error detection and correction is essen-
tial in data communication to ensure reliability and achieve
high effective data rates. Various codes, such as linear block
codes, cyclic redundancy codes, and convolutional codes, have
been extensively developed and applied [1]. These codes
primarily address binary source data and enable high-fidelity
decoding even in the presence of channel distortion and noise.
While accurate binary decoding is desirable, it is important to
note that not all bits are equally significant, and certain errors
may have minimal impact post-decoding. For instance, in
eXtended Reality (XR) and Holographic-Type Communication
(HTC) [2], [3], point cloud data with large sizes is common.
Communication errors may result in slight shifts in point
locations; however, if the overall geometry remains unaffected,
the errors are often imperceptible. Similarly, in 360-degree
videos, errors at the boundary of a user’s Field-of-View that
do not alter the image’s geometry are negligible.

Semantic communication encodes source data by leveraging
domain knowledge and its semantic meaning [4]. Joint source
and channel coding in semantic communication utilizes deep
learning models to extract and encode semantic information ef-
fectively. At the receiver side, this highly compressed semantic
information is decoded using similar models. While semantic
communication efficiently encodes source data, it relies heav-
ily on specialized deep learning models. Training a unified
model for arbitrary data transmission remains a significant
challenge. Moreover, deep learning requires extensive training
data, which is not always available, and the trained models
often lack generalization. Thus, there is a need for a novel
approach that avoids training, applies to any data modality,
and focuses on detecting and correcting critical errors without
addressing all errors indiscriminately.
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In this letter, we propose TopoCode, a novel approach
leveraging Topological Data Analysis (TDA) [5], [6], particu-
larly persistent homology and persistence diagrams, to extract
and represent data’s topological information. This information
focuses on the shape and geometry of the data, capturing
high-level relations and features. Similar to semantic meaning,
meaningful data often exhibits underlying manifold structures
that can be extracted through TDA. In TopoCode, the en-
coded persistence diagram is concatenated with the source
data and transmitted through the communication channel. At
the receiver, the decoded data is used to generate a new
persistence diagram, which is compared with the received
one. This allows for error detection in the topological space,
evaluation of error significance, and correction of topological
errors through optimization. The advantages of TopoCode are
as follows. First, TopoCode introduces minimal redundancy to
the source data while effectively detecting errors and assessing
their significance using topological information. Second, it
can correct topological errors and recover the source data,
particularly in low Signal-to-Noise Ratio (SNR) scenarios.
Third, TopoCode utilizes established computational topology
tools, eliminating the need for training or pre-collected data.
This enables its application across various data modalities,
including video, point cloud, image, and time-series data,
which has broad generalizability.

II. TOPOLOGICAL DATA ANALYSIS

Topological Data Analysis (TDA) is used to study the
topological features across various data modalities. It identifies
different homology groups, such as the 0th group (H0), repre-
senting connected components, the 1st group (H1), represent-
ing holes or loops, and the 2nd group (H2), representing voids.
TDA measures the size of each homology group, providing
insights into the overall shape and structure of the data. How-
ever, size alone cannot capture the evolution of these homology
groups or their relative relationships. To address this limitation,
persistent homology is employed to track the evolution of each
component in a homology group through Birth-Death (BD)
pairs, capturing richer topological information. For example,
a point cloud circle and its corresponding persistence diagram
are shown on the left of Fig. 1. In the H0 homology group, BD
pairs are born at 0 and die at various values because each point
starts as an individual connected component. The birth and
death values represent the radii of disks centered at the points.
As these disks grow, when two disks touch, one component
dies, while the other persists. In the H1 homology group, a BD
pair (0.66, 1.76) represents the circular structure. The circle is
formed when the radii of the disks reach approximately 0.66,
and as the radii increase to 1.76, the circular structure closes.
This process is called the Vietoris-Rips Filtration, where the
radius serves as the filtration value [5], [6].
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Fig. 1. Comparison of point clouds and persistence diagrams for circle
variants. (upper: point clouds; lower: persistence diagrams.). From left to right:
circle, noisy circle, and 3/4 circle.

In the middle and on the right-hand side of Fig. 1, we
show two circular point clouds which are distorted mildly and
severely, respectively. This can be reflected in the persistence
diagram. First, for the middle point cloud, the H1 homology
group BD pair shifts more towards the diagonal which locates
at (1.06,1.72). Since death must be after birth, all BD pairs
are above the diagonal. However, if a BD pair is close to
the diagonal, it means the BD pair quickly dies after its birth
which represents insignificant topological feature. Thus, the
circular structure is weaker compared with the one in the left
figure. Second, for the right point cloud, the H1 homology
group is almost on the diagonal which locates at (1.69,1.77).
This shows that the circular structure is not strong which can
be neglected, which indicates a significant difference from the
one in the left figure.

For more complex figures, the size of homology group
becomes large and unknown. Since persistent homology cap-
tures the intrinsic topological information in the data, the size
of the homology group depends on the data which is not a
constant. When the number of BD pairs becomes large, it
is challenging to evaluate the change of persistence diagram.
In persistent homology, there are well-defined non-Euclidean
distances. Consider that the source data is X and the distorted
data is X̂ . Then, we perform filtration using a function
ffil(·) (such as Vietoris-Rips Complex) and obtain persistence
diagram Dgm(ffil(·)). The difference between X and X̂ can
be evaluated using their persistence diagrams [7],

dw,p(Dgm(ffil(X)), Dgm(ffil(X̂))) = ∑
x∈Dgm(ffil(X))∪∆

∥x− η(x)∥p∞

1/p

(1)

where ∆ is the diagonal of the persistence diagram,
∥(a, b)∥∞ = max{|a|, |b|} and η(x) is a bijection func-
tion which maps the BD pairs in Dgm(ffil(X)) to those
in Dgm(ffil(X̂)), i.e., η : Dgm(ffil(X)) ∪ ∆ →
Dgm(ffil(X̂))∪∆. Since the two diagrams may have differ-
ent number of BD pairs, some of the BD paris that cannot be
matched are mapped to the diagonal ∆. The above distance
measurement is called p-Wasserstein distance. When p → ∞,
it becomes the Bottleneck distance [5].

Fig. 2. Wassertein distance between
the examples in Fig. 1 with different
p values.

⋯
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Fig. 3. Illustration of the proposed
TopoCode data packet structure.

An example of the p-Wasserstein distance between the point
clouds in Fig. 1 is shown in Fig. 2. The p-Wasserstein distance
includes the summation of the H0 and H1 distances. The noisy
circle and the 3/4 circle is compared with the original circle.
As we can see, the noisy circle has a smaller p-Wasserstein
distance when p is from 1 to 5. When p is infinity, the distances
are not distinguishable. In this paper, without specific notation,
we use p = 2, which is a widely used parameter. Note that,
the Wasserstein distance between two identical diagrams is 0.
Thus, the distance can be used to evaluate the received data’s
topological fidelity.

III. ERROR DETECTION AND CORRECTION

In this section, we introduce the TopoCode structure and the
algorithms for error detection and correction using persistence
diagrams.

A. TopoCode Structure
An illustration of the TopoCode data packet structure is

shown in Fig. 3. The source data, which can be images,
time series data, and point clouds, are uncoded. The packet
meta data can contain information about the source data
length. The TopoCode is concatenated with the source data
and it is organized by the order of homology groups. Each
homology group contains its length and the homology group
data. Although only H0 and H1 are shown, the homology
group number can be larger depending on the application, e.g.,
3D point cloud data may use H2.

The homology group data, e.g., H0 and H1 data, can
have many different formats. First, the persistence diagram
can be directly encoded using the coordinates of BD pairs.
The encoded homology group data is a series of BD pairs.
However, the number of BD pairs is unknown which results
in variable code length. To address this issue, there are
various other fixed-length topological features that can be
derived from persistence diagrams, such as the persistence
landscape, persistence image, quantized persistence diagram,
and amplitude-based features [6]. Although they can generate
fixed-length code, we lose complete information of the original
persistence diagram and topological distance metrics such as
Wasserstein distance cannot be used. Since this is the first
paper uses topological information for error detection and
correction, we use the original persistence diagram. Other
fixed-length or quantized topological features will be studied
in future works.

Each data modality can be processed by specific filtration
approaches due to its unique format. For example, Cubical
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Fig. 4. Illustration of topological power and confidence region.

Complex is more efficient for images due to their grid struc-
tures, and Alpha Complex and Vietoris-Rips Complex are
suitable for Point Clouds since the points are distributed in
3D space without any specific format. Due to the limited
space, this letter only considers gray images and uses Cubical
Complex to obtain the persistence diagrams [8].

B. Error Detection
In persistent homology, the stability of persistence diagram

for grayscale functions is ensured in the following way [9]:

dw,p(Dgm(ffil(X)), Dgm(ffil(X̂))) ≤ Cfil∥X − X̂∥p
(2)

where Cfil is a coefficient which depends on the filtration
types and the data values. The above inequality shows that
Cfil times the difference of two gray images is no smaller than
their p-Wasserstein distance. If two images are similar, the p-
Wasserstein distance must be small. As a result, the topological
errors in the received data can be detected using persistence
diagrams.

Equation (2) provides the distance between X and X̂ . If we
change X̂ to noises, Eq. (2) shows the topological information
in X , i.e., the distance to noises in the topological space. As
we have discussed, the noises in persistence diagrams mainly
appear around the diagonal, which can be considered as the
noise floor. As shown in Fig. 4, a persistence diagram contains
three BD pairs with distance to diagonal being d1, d2, and d3.
If we increase the noise floor from p0 to p1, the BD pair 3
is considered as noises which is not important and can be
removed. Then, we obtain an updated denoised persistence
diagram with BD pairs 1 and 2. We can further increase the
noise floor to p2 and only keep significant BD pairs. In order
to select the p1 and p2, we use the total persistence in this
letter, which is the summation of all the finite distances of
BD pairs to the diagonal

Th
t =

∑
i∈Dgmh(ffil(X))

di, for h ∈ {0, 1, · · · }, (3)

where Dgmh(ffil(X)) represents the h-th homology group
in the persistence diagram. In this case, we consider the
homology groups individually. Each homology group h has its
own total persistence Th

t . The total persistence can represent
the strength of the topological feature. For instance, Gaussian
noises have nearly 0 total persistence.

For error detection, we compare the received data’s persis-
tence diagram with TopoCode. However, noises can corrupt
the transmitted data and the Wasserstein distance in Eq. (2) can
be large. In order to reduce the impact of noises, we remove

the insignificant BD pairs which can be introduced by noises
by choosing a threshold percentage α ∈ [0, 1] and set new
noise floor ph = αTh

t . All BD pairs below ph are removed
and we only compare the significant BD pairs. If removing
insignificant BD pairs and the distance between the updated
persistence diagram is small to the original one, the significant
topological feature still remains in the received data. The errors
can be accepted without requesting for retransmission. The
selection of α depends on how much error can be tolerated.
We can gradually increase α to evaluate the similarity at
different persistence levels. The 1 − α can be considered as
the overall significance level. The larger α, the smaller overall
significance.

Finally, we can obtain the Wasserstein distance at different
significance level which represents the detected error signifi-
cance. For example, if the Wasserstein distance decreases as
α increase, that means most of the errors are insignificant
and the major topological feature of the data remains. On
the contrary, if the Wasserstein distance does not change as
α increase, that means the error is significant which may
require retransmission. Note that, the TopoCode error detection
evaluate the data at the message topology level. The received
data can have insignificant bit-level errors but TopoCode
cannot detect those.

C. Error Correction

Given the received data and the TopoCode, we can detect
their mismatch using the error detection. In addition, we can
correct the received data with topological errors using the
received TopoCode. The idea is to minimize the p-Wasserstein
distance and obtain the recovered source data X̃ , i.e.,

X̃ = arg min
X̂∈D

H∑
h

dw,p,h(Dgmh(ffil(X)), Dgmh(ffil(X̂))),

(4)

where H is number of homology groups used, D is the set
where the source data X is defined. This will ensure that X̃
and X have similar persistence diagrams.

In order to solve Eq. (4), we can use gradient decent. It
is essential to ensure that the filtration and the p-Wasserstein
distance computation are differentiable. The optimization of
persistent homology functions has been studied in [10], [11].
The persistence diagram is formed by BD pairs which are
generated by simplicial complexes. The simplicial complex is
generated based on distance functions which are differentiable.
It is also proved in [10] that the p-Wasserstein distance
function is Lipschitz and definable in any o-minimal structure.
As a result, we can solve Eq. 4 using the following steps.
First, X̂ and X are normalized by dividing their maximum
values before obtaining the persistence diagram. Second, given
the target persistence diagram Dgm(ffil(X)), we define the
optimization loss function as

L =γ

H∑
h=0

dw,p,h(Dgmh(ffil(X)), Dgmh(ffil(X̂)))+∑
i

min(|X̂[i]|, |1− X̂[i]|), (5)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 5. Example of error detection using TopoCode. The PSNR and SSIM of
Image-0 is 24.7 dB and 0.837, respectively. The PSNR and SSIM of Image-1
is 24.7 dB and 0.919, respectively.

where γ is a weight to balance the trade-off between p-
Wasserstein distance loss and the regularization loss, H is the
number of homology groups, the second term is used to reduce
noises and X̂[i] represents the ith item in X̂ . Note that, the
selections of γ and the type of regularization function have
impact on the error correction result. We can minimize L and
obtain X̃ which is the recovered version of X . This process
does not require pre-training.

IV. SIMULATIONS AND DISCUSSION

In this section, we evaluate the performance of TopoCode
in error detection and error correction in gray image com-
munication. We use the MNIST and Omniglot datasets. The
error correction performance is compared with LDPC and
Convolutional codes. The code is implemented using Gudhi
library [8].

A. Error Detection
First, in Fig. 5 we show an example using line noises. The

Gaussian noise with 1 dB SNR is added to two randomly
selected rows or columns. The image data is modulated using
BPSK. The received images have the same peak signal-to-
noise ratio (PSNR), i.e., 24.7 dB and the structural similarity
index measure (SSIM) are 0.837 and 0.919, respectively. As
a result, we may consider the noises are similar. However, the
noises appear at different locations in the images. In Image-1,
a strong noisy column appears on the boundary which does not
generate significant impact on the understanding of the image.
On the contrary, in Image-0 the noisy columns and rows are
close to the digit “1”. This can be reflected in the TopoCode
error detection results. In Fig. 5, the Wasserstein distance
is compared and we vary the threshold of total persistence
(α) from 0% to 45% with an interval of 15%. As we can
see, although the distance of Image-0 drops, it remains a
large value. The distance of Image-1 drops to 0 when the
threshold is 45%. This shows that if we remove most of the
noises, the recovered image is the same as the source image
in topological space. Therefore, although we receive data with
errors, TopoCode can evaluate the significance of the error.

In Fig. 6, we simulate the transmission of 200 MNIST
images with two types of noises. In Gaussian noises, 25%
of pixels are randomly selected and noises with SNR of 3
dB is added to these pixels. In line noises, 25% of rows or
columns are selected and Gaussian noises with SNR of 3 dB
is added to these pixels. As we can see in the figure, the
PSNR and SSIM are similar for the two types of noise which
cannot show more information about importance of the errors.

Fig. 6. Impact of α on error detection using TopoCode with SNR=3dB.

Fig. 7. Example of recovered image using TopoCode, LDPC, and Convolu-
tional Code with SNR=3 dB.

For received images with TopoCode, we set α as 0%, 15%,
30%, and 45%. Although the noisy images are different from
the source images in topological space, after we filter out the
insignificant noises, about 20% of the images have nearly the
same topology as the source images. There are about 10%
images whose topology cannot be recovered even we increase
the threshold to 45%, we don’t see significant drop of the
Wasserstein distance which means the data topology has been
significantly altered by noises.

B. Error Correction
First, we show an example of error correction using MNIST

dataset. We compare TopoCode with existing error correction
codes including LDPC and Convolutional code. The code
rates of LDPC and Convolutional codes are 0.7 and 2/3,
respectively. For LDPC and Convolutional codes, the image
is converted to binary data, encoded, modulated using BPSK
and added with Gaussian noises and the SNR is 3dB. Then,
the received data is demodulated, decoded and converted back
to decimal numbers. For TopoCode, the persistence diagram is
obtained using the image and concatenated with the binarized
image. Then, the image is modulated using BPSK and added
with Gaussian noises with the same SNR. The received data
is demodulated and converted back to decimal numbers. Then,
the error correction solution in the previous section is used to
recover the image.

In Fig. 7, we show five recovered images. The uncoded
image is the one without any coding and the TopoCode is
concatenated with uncoded image. The TopoCode image is
the recovered one after applying the error correction. As we
can see, we can remove the majority of noises and recover the
topology of the data by optimizing the persistence diagram.
However, since the Cubical Complex that is used to generate
persistence diagrams cannot effectively process pixels on the
boundary [8], there are remaining noises. In the TopoCode
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Fig. 8. Error correction performance comparison using MNIST (upper) and Omniglot (lower) datasets.

without Boundary image, we removed the boundary pixels
and the impact of noises further reduces. The decoded images
using LDPC and Convolutional Code are also shown which
contain significant noises. This example visually shows that
TopoCode is robust in maintaining data topology in presence
of noises, while existing bit-level coding schemes cannot
effectively capture data topology or correcting errors based
on the content.

To further validate the proposed solution, we simulate the
transmission of 200 images in MNIST and Omniglot datasets
and evaluate the recovered images’ PSNR, SSIM, Wasserstein
distance, and the code length. The three approaches use the
same data and thus the packet length is the length of data and
channel coding. In Fig. 8 we show the results of TopoCode,
TopoCode without boundary, LDPC, and Convolutional code.
As we can see from the figure, the TopoCode achieves higher
PSNR and SSIM performance in the low-SNR regime. As the
SNR increases, the LDPC and Convolutional Code perform
well. TopoCode always shows small Wasserstein distance and
short code length. The error correction gain of TopoCode at
high SNR regime is not as good as that at low SNR regime.
TopoCode can only recover data’s topological information,
while non-topological information cannot be captured which
limits the performance of TopoCode. In the high SNR regime,
the LDPC and Convolutional Code can easily recover the data
topological information, which is not distorted severely, as
well as other features by correcting limited amount of errors,
while TopoCode may neglect these errors.

Although the MNIST and Omniglot datasets contain simple
topological information and the persistence diagrams are small
which leads to short code length, there are various algorithms
to reduce the size of TopoCode, such as Persistence Land-
scape, quantification of persistence diagram, and Persistence
Image [6].

V. CONCLUSION

In this letter, we propose TopoCode which utilizes data
topology to detect and correct errors in received data within

communication systems. Error detection is achieved through
total persistence, enabling the identification of significant er-
rors while filtering out insignificant ones. For error correction,
TopoCode employs persistence function optimization to re-
store the original data topology using the persistence diagram.
Simulation results demonstrate that TopoCode offers unique
advantages in error detection and correction at the message
level.
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