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Abstract

In this paper, we describe the development of symbolic representations anno-
tated on human-robot dialogue data to make dimensions of meaning accessible
to autonomous systems participating in collaborative, natural language dialogue,
and to enable common ground with human partners. A particular challenge for
establishing common ground arises in remote dialogue (occurring in disaster relief
or search-and-rescue tasks), where a human and robot are engaged in a joint
navigation and exploration task of an unfamiliar environment, but where the
robot cannot immediately share high quality visual information due to limited
communication constraints. Engaging in a dialogue provides an effective way to
communicate, while on-demand or lower-quality visual information can be sup-
plemented for establishing common ground. Within this paradigm, we capture
propositional semantics and the illocutionary force of a single utterance within the
dialogue through our Dialogue-AMR annotation, an augmentation of Abstract
Meaning Representation. We then capture patterns in how different utterances
within and across speaker floors relate to one another in our development of a
multi-floor Dialogue Structure annotation schema. Finally, we begin to annotate
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and analyze the ways in which the visual modalities provide contextual informa-
tion to the dialogue for overcoming disparities in the collaborators’ understanding
of the environment. We conclude by discussing the use-cases, architectures, and
systems we have implemented from our annotations that enable physical robots
to autonomously engage with humans in bi-directional dialogue and navigation.

Keywords: Situated Dialogue, Semantics, Multi-floor Dialogue, Multi-Modal Dialogue

1 Introduction

What computational language resources are needed for robots to act as partners to
humans in disaster relief and search-and-rescue tasks? There exist multiple scenar-
ios where they can act as scouts exploring an area while their human partners gain
an understanding of the situation on the ground and also remain safely at a remote
location. Far from being the stuff of science fiction, robots are already being lever-
aged effectively in disaster response and robot rescue (Nagatani et al., 2013; Murphy,
2014; Habibian et al., 2021; Edlinger et al., 2022; Kanazawa et al., 2023). However,
the current state of the art largely relies upon human tele-operation of the robot using
a handheld controller (i.e. no autonomy) (e.g., Kang et al. (2003); Ryu et al. (2004);
Yamauchi (2004); Chiou et al. (2022)).1 Less frequently, some approaches have lever-
aged an initial static tasking of the robot (e.g., providing the robot with a specific
point in a pre-mapped area to which it should navigate) followed by autonomous path
planning and navigation to move to that point (e.g., Williams et al. (2012); Arvidson
et al. (2010); Camilli et al. (2010)). These current approaches place the training and
cognitive burden of robot operation on the human partner and do not facilitate the
flexible, real-time re-tasking needed in the dangerous and dynamic environments of
disaster relief (Chitikena et al., 2023).

Large language models (LLMs) have increasingly been leveraged for natural lan-
guage interaction with robots. Current approaches tend to involve the use of an LLM
to effectively “translate” from natural language into an executable action of the robot
(e.g., Brohan et al. (2023)). The major weaknesses of such approaches are first, that
LLMs do not provide optimal or even feasible plans,2 which traditional AI planners
are able to do, and second, LLMs are prone to factual inaccuracies and hallucinations.
Although very recent research has sought to overcome these weaknesses (described in
related work), LLM architectures have not consistently demonstrated the ability to
surmount these issues at the scale and to the degree required for disaster relief.

Furthermore, these approaches focus on one human tasking one robot with well-
defined capabilities. There is a relatively unexplored opportunity for heterogeneous
human-robot teams that would better address the needs of the disaster relief domain,

1A meta-analysis of multi-agent systems for search and rescue applications points out that of 40 docu-
mented cases of robot-assisted disaster response, only two involved a degree of autonomous navigation in
marine robots (Drew, 2021).

2Recent extensive evaluations of LLMs in generating executable plans (sans robots) found only an
average success rate of 12 percent across domains by even the best model (GPT-4) (Valmeekam et al.,
2023). However, other research has shown more promise when leveraging re-prompting for plan correction
(Silver et al., 2024; Chen et al., 2024).
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which requires team members to be physically distributed, often under dangerous
conditions (Drew, 2021; Queralta et al., 2020). Under the current state of the art,
the technical challenge of instructing heterogeneous teams of robots requires an addi-
tional human operator to tele-operate or provide an individualized task plan for each
robot, relying on the human understanding of its capabilities measured against the
risks and hazards of the environment. Additionally, such approaches preclude flexible
combinations of capabilities of different robots that may not be obvious to operators
or available in individual tasking.

To enable flexible tasking of one or more robots with a low cognitive burden on
operators,3 we propose two-way natural language dialogue with robots as the most
near-term, efficient way of communicating with robots that does not add to the exist-
ing cognitive load on the operator. However, our research goal requires both that we
determine how people would naturally talk to robots (we make no assumptions that
this is the same as talking with other people, as prior work has revealed differences
(Mavridis, 2015)), and that we devise methods for robots to understand and produce
such language. Thus, the focus of this research is the collection and annotation of multi-
modal streams of human-robot dialogue to make explicit the patterns of how humans
interact with robots and leverage different modalities of information, so as both to
establish common ground for cooperation and to overcome miscommunications and
dynamic changes in the environment (or simply the operator’s understanding of the
environment) that necessitate re-planning. The dialogue annotated here is multi-floor
dialogue involving multiple conversational participants who share the same high-level
dialogue purpose, but there is a unique participant structure and turn-taking expec-
tations within an individual conversational floor. Our novel annotation schema over
multi-floor dialogue facilitates the development of dialogue systems in disaster-relief
and other tasks requiring distributed decision-making and action across heterogeneous
teams of people and robots.

To act as a conversational and cooperative partner in complex, physically-situated
tasks like disaster relief, robots must have access to several dimensions of meaning:
propositional meaning within an utterance or instruction, the conversational intent of
an utterance with respect to those that come before and after, and the interpretation
of the utterance with respect to the physical environment. We postulate that a robot
or, more generally, an agent must have access to each of these dimensions of mean-
ing in order to establish and maintain common ground—shared mutual knowledge
and assumptions (Clark and Marshall, 1981) of what has been said and understood
between conversational partners (Clark and Wilkes-Gibbs, 1986; Clark and Schaefer,
1989). Common ground can be more challenging to establish and maintain when there
are differences in what can be perceived (e.g., when a robot operates at a distance in a
bandwidth-limited context without streaming video), as would arise when communi-
cations infrastructure are downed in a disaster, unavailable in a remote environment,
or disrupted in a contested military environment.

3The objective is to limit the number and mix of robots and tasks that the operators in an unknown
environment need to keep track of in their short-term, working memory.
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Consider Excerpt 1 from the Situated Corpus of Understanding Transactions
(SCOUT), which consists of human-robot dialogues between a human Commander
(CMD) and a Wizard-of-Oz robot (Lukin et al., 2024).

CMD1 “robot turn forty five degrees to the left”
CMD2 “and take a photo”
Robot3 “executing...”
Robot4 “sent”

(Excerpt 1)

(a) Photo seen by Commander when issu-
ing instruction in Excerpt 1, CMD1

(b) Photo seen by Commander after
receiving the photo in Excerpt 1, Robot4

Fig. 1: Images taken during Excerpt 1, from SCOUT corpus

Over the course of an exploratory search exercise with limited bandwidth com-
munication, the human Commander gives verbal instructions such as CMD1−2 to a
remotely located robot that responded through text messages in Robot3−4. The robot
cannot stream its video feed, but it can send photos upon request, as well as a low-
resolution 2-dimensional map and position data from LIDAR (Light Detection and
Ranging sensor). In Excerpt 1, the Commander views the most recent snapshot sent
from the robot, Figure 1a—which had been taken as a result of the Commander’s
prior request for a photo—and uses it as a window of shared common ground to issue
instruction CMD1. The robot successfully interprets and executes CMD1 and takes
and sends a new photo from the new location per CMD2, resulting in Figure 1b.

However, ambiguity can arise as a result of misunderstanding, multiple referents,
or a loss of visual common ground. Consider a different dialogue in Excerpt 2 and
the photos sent (Figure 2). In this case, the robot has moved since the photo in
Figure 2a was taken, so a need arises to reestablish common ground, which can be
accomplished with a dialogue interaction. In order to interpret and act upon the
initial instruction CMD5, a robot must be able to interpret the propositional content
of the instruction—what does continue signify in this context (a movement event),
and what are the parameters or roles of that event? However, note that an awareness
of the conversational intent of the utterance is also required—here, the utterance
is a command (the action is given in imperative form, continue, as opposed to the
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CMD5 “robot continue down the hallway directly in front of you underneath the
overhead light”

Robot6 “I don’t see an overhead light in my current position. Would you like me to
send a photo?”

CMD7 “robot send a photo”
Robot8 “sent”
CMD9 “robot continue moving forward to the right of the red bucket”

(Excerpt 2)

(a) Photo seen by Commander when issu-
ing instruction in Excerpt 2, CMD5

(b) Photo seen by Commander when issu-
ing instruction in Excerpt 2, CMD9

Fig. 2: Images taken during Excerpt 2, from SCOUT corpus

conjugated continues) that ideally should be responded to with an execution of the
command, or feedback as to whether and when it will be done, or why it can’t be done
and how to achieve the high-level intent.

This awareness of the conversational intent of each utterance is equally important
in understanding the follow-up observation, I don’t see an overhead light in my current
position and the subsequent offer, Would you like me to send a photo?. When taken
together, these responses make clear why the robot is not able to respond to the initial
command by executing it, as desired. The robot attempts to repair the problem and
re-establish common ground with a picture of what it sees with its camera from its
current position.

Finally, one can see that beyond conversational intent, there is the requirement for
symbol grounding—defining the meaning of natural language concepts (symbols) in
terms of meaningful input to the robot, as opposed to defining those symbols as other
words or symbols (Harnad, 1990). Given the modalities available to the robot, we are
specifically interested in reference resolution (picking out the referent of a referring
expression) and visual grounding (picking out which part of an image would be a
hallway based on visual and LIDAR sensory input). A single instruction can draw upon
symbol grounding generally (e.g., what arrangement of sensory inputs correspond to
the spatial relation left), reference resolution (e.g., which door is being referred to in
the environment), and visual grounding (e.g., which area of an image corresponds to
The door on the left in the last image you sent). Thus, for simplicity, we will refer to
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all of these as “grounding.”4 Both the interpretation and execution of the instruction
CMD5 are precluded without the ability to successfully ground the words hallway and
overhead light. Furthermore, the robot must ground the expression continue to one of
its own executable behaviors, here forward locomotion.

We note also that a human-robot dialogue system that is unable to dynamically
track conversational intent across turns in a two-way dialogue would not be able to
overcome the loss of common ground that has apparently taken place at the utter-
ance of CMD5—the overhead light is not visible to both parties. Recognizing this
loss requires inference over the environment and an attempt to (symbol) ground the
instruction before the robot attempts to execute the instruction; the alternative would
be a situation in which the grounding and planning fail, but there is no recourse to
dialogue to overcome the problem. For this reason, multi-modal two-way dialogue is
needed to pinpoint the problematic portion of CMD5 and provide the interlocuter
with the resources needed to re-establish common ground, which is achieved through
the updated photo in Figure 2b, and the repaired instruction in CMD9.

To engage in such purposeful, two-way dialogue, a robot has to be able to under-
stand and reason about several aspects of utterance meaning and its relation to the
context in which it was uttered. First, it must represent the illocutionary force of an
utterance (is it an action to be performed, or information to be integrated, or some-
thing else to be responded to) and the content (what exactly is to be done), and
how these relate to other possible meanings. There must also be an understanding of
how each utterance relates to others by the same and other speakers—is it about the
same thing as previous messages? Is it feedback about how a previous message was
understood, or confirmation that actions have been executed, or clarification? Rela-
tions help build common ground or make clear that it is not present. Finally, in order
to act appropriately, there must be a correspondence of meaning across modalities,
so that one can draw correspondences between verbal descriptions and visual depic-
tion of objects and the space they are in. Images and maps are often necessary to
fully understand what would otherwise be abstract instructions sufficiently to execute
them as intended. For example, does an expression like the door on the left refer to
a uniquely identifiable door, or ambiguously to multiple candidates on the left, or is
there no appropriate door in that position?

In order to make each of these dimensions of meaning accessible and enable com-
mon ground, we annotate our SCOUT corpus with four types of linguistic annotation
and two types of visual annotation as depicted in Figure 3. To assess each inter-
locutor’s intent and meaning within a single utterance, we annotate SCOUT with
both (1) Abstract Meaning Representation (AMR) (Banarescu et al., 2013) and (2)
Dialogue-AMR (Bonial et al., 2019). To reveal patterns of the Dialogue Structure
(Traum et al., 2018) across utterances in multi-floor dialogue, we annotate (3) Trans-
actional Units (TUs) (Carletta et al., 1996) and (4) the Relations between utterances

4Note that we discuss two related, but distinct processes of grounding. The process of establishing com-
mon ground is arriving at shared mutual knowledge and assumptions between interlocutors. The processes
described above, including symbol grounding, visual grounding, and reference resolution, occur within an
individual, trying to reconcile perceptual stimuli with each other and with cognitive representations and
actions. These two types of grounding often co-occur, as the internal processes may be necessary to under-
stand and engage in dialogue to build common ground, and dialogue contributions present symbolic inputs
that must be reconciled with visual inputs and concepts.
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Fig. 3: Annotated corpora and paper roadmap

within a TU; together, these Dialogue Structure annotations pave the way for robot
engagement in multi-party cooperative tasks, where the parties may be heterogeneous
teams of humans and robots. To model the way in which interlocutors leverage differ-
ent modalities, specifically visual information (images, LIDAR), in situated dialogue,
we interleave into the dialogue transcripts, the photos of the environment requested
by Commanders and the strategy or motivation for requesting that image. Finally,
we annotate LIDAR maps—a persistent and shared resource between the human and
robot–and construct an Exploration Map of the environment which serves to inventory
the status of which objects of interest have been scanned as located on the map. For
annotations of both utterance meaning and dialogue structure we consider both prior
well-developed ontologies and annotation schemas as well as the special requirements
of our domain, as revealed by language usage in the corpus. Our annotations are thus
a combination of existing schemas (e.g., AMR, Transactions), extensions to include
additional relevant phenomena (Dialogue-AMR), and new schemas influenced by prior
work (dialogue relations, which leverage some aspects of both the ISO schemas for
Dialogue acts and discourse relations).

In the section to follow, we describe the human-robot domain of search and naviga-
tion (Section 2). The subsequent sections of this article then describe the development
of our annotation schemas on the collected multi-modal data streams:

• Standard-AMR and Dialogue-AMR Annotations (Section 3): an utterance-level
representation of what the speaker is trying to do with the utterance in the
conversational context; distills the content of that utterance into robot behaviors
and their parameters.

• Dialogue Structure Annotations (Section 4): a dialogue-level representation of
which utterances are related to one another (TUs) and how (Relations) within
multi-floor dialogue.

• Visual Context Annotations (Section 5): photo request strategy annotation of
image requests and annotated Exploration Maps from LIDAR.
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In each annotation section, we close by revisiting Excerpt 2 to illustrate concretely the
application of each annotation schema to the example, and thereby provide insights
into the strengths and shortcomings of each standalone annotation. Although each
annotation schema has been independently documented (these papers will be refer-
enced throughout each annotation section), this paper constitutes the first unified
description of all levels of annotation, which provides an opportunity for postulat-
ing the ways in which the annotations are complementary, as well as considering
new insights into where gaps remain in facilitating a contextualized interpretation
of language in two-way dialogue and allow cross-modal association of information in
maintaining common ground. We discuss how these annotations have, independently
or in a combined fashion, been put to use, and how we envision enabling the interpre-
tation of language that accesses the different dimensions of common ground, meaning,
and architectural components of a dialogue system and robot sensors dynamically
(Section 6). The paper ends with an overview of related work, our conclusions, and
brief notes on future work.

2 Problem Space: Human-Robot Dialogue for
Search & Navigation

Robots are being increasingly used in disaster relief and robot rescue as robotics tech-
nology improves (Habibian et al., 2021; Edlinger et al., 2022; Kanazawa et al., 2023);
however, there remain many challenges for supporting natural language communica-
tion between a human and their remotely located robot teammate. The first challenge
is one of practicality: reliable internet connectivity may not be available to stream
high-fidelity video from a robot’s sensors due to the nature of the incident (e.g., search
and rescue in heavily forested areas, or in cities with broken power lines following a
storm or wildfire). In the absence of video, alternative paradigms for sharing visual
common ground are necessary in order for the human and robot to communicate in
near real-time, such as sharing lower-quality mapping data that shows obstacles with
no fidelity of objects, or sending lower-quality photos when the human teammate
requests to see an update of how the situation around the robot has changed.

Beyond these technical challenges, it remains unknown as to how a human would
want to best utilize a robot teammate in these scenarios to elicit and establish common
ground. With no existing human-robot or human-human dialogue corpora in these
disaster domains, we cannot design a robot with the most appropriate communication
strategies because they are unknown. To this end, we used a Wizard-of-Oz (Woz)
experimental paradigm in this problem space to serve multiple purposes: 1) a process
by which to collect data from human participants in scenarios involving dialogue and
remote instruction-giving, 2) a basis for refining the robot’s responses to the human,
and 3) a corpus of training data for automating components of the robot to achieve our
goal of autonomous communication in a search and reconnaissance scenario. Despite
the limitations inherent in the scenario itself, e.g., no streaming of video, we interpret
the language of the human as meaningful as they adapt to overcome these limitations
and complete the task.
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Here we describe the search and navigation task in the SCOUT dataset (the Situ-
ated Corpus On Understanding Transactions) (Lukin et al., 2024), which was designed
to meet these problem space criteria above, and the features of the human-robot dia-
logue and interaction that are key to our annotation of aspects contributing to common
ground. In SCOUT, a human operator, or Commander, instructs what they believe to
be an autonomous robot in a remote location through a series of search and navigation
tasks including counting and finding doorways, shovels, and shoes in an abandoned
house and detecting evidence that the location has been recently occupied. The Com-
mander speaks to the robot in natural language while sitting at a workstation with
three sources of information: a chat stream of text replies from the robot; a 2D, birds-
eye view map of the environment from the robot’s onboard LIDAR (LIght Detection
and Ranging) laser scanner; and an image taken at the Commander’s request from
a static, front-facing RGB camera on the robot. The Commander is not given any
instructions about how to speak with the robot (other than how to use the push-to-talk
microphone provided).

The robot used is a Clearpath Jackal Unmanned Ground Vehicle. Its capabilities
are limited to driving forward or backward, and rotating to the left or right. The robot
does not have arms or manipulators, and cannot hear or emit sound. The Commander
is shown a picture of the robot, and can discover its capabilities by trying out different
instructions and observing the robot. In cases where the robot is asked to do something
it cannot, it responds to the Commander as such.

Behind the scenes, experimenters control the robot’s dialogue processing and robot
navigation capabilities to differing extents, depending upon the experimental phase.
This methodology was inspired by the success of research using a Data-driven Wizard-
of-Oz methodology to observe how humans would chat with what they believed to
be an autonomous virtual avatar (DeVault et al., 2014). In the same way, Comman-
ders in SCOUT spoke to a robot they believed to be autonomous, when it was in
fact controlled by multiple Wizards. The Dialogue Manager (DM) wizard stood in for
the understanding and dialogue management components of our system by interpret-
ing the Commander’s instructions, selecting responses, and passing the Commander’s
intent along to another wizard, namely the Robot Navigator (RN) wizard, who stood
in for the planning and motor execution components of our system by joysticking
the robot to complete the instruction. The DM-Wizard interacts directly with the
Commander, while the RN-Wizard only interacts with the DM-Wizard (never the
Commander). This mimics the nature of what a final, all-automated version of the sys-
tem would look like, in which an automated dialogue management component would
communicate with the human user and pass parsed instructions to the physical motion
component, while the physical motion component would not speak directly with the
user. The DM-Wizard had access to the last image the Commander requested, a live
video stream from the robot’s camera, and the same 2D LIDAR map the Commander
could see. The RN-Wizard had access to the live video stream and a 3D version of the
LIDAR map. For a depiction of this setup, see Figure 4.

Efforts to build SCOUT involved three experiments which utilized this multi-WoZ
setup. In the fourth and final experiment of our project developing SCOUT, the
DM-Wizard was replaced with an automated dialogue manager. Each Commander (a
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Fig. 4: The Commander issues verbal instructions to the robot, whose capabilities are
performed by two wizards standing in for the respective, separate abilities of dialogue
management and robot navigation. Original figure from Lukin et al. (2024).

participant in one of our experiments) completed three trials: one considered train-
ing and two involving larger main environments, in which the objectives and target
objects of interest varied.

Table 1 shows Excerpt 2 again, this time transcribed in a multi-floor depiction
between all actual (Commander (CMD), DM-Wizard (DM), RN-Wizard (RN)) inter-
locutors. The dialogue from the “Robot” is in actuality the DM speaking to the
Commander, and takes place on the left conversational floor between the Comman-
der and DM. On the right conversational floor, the DM speaks to the RN to translate
instructions “behind the scenes” (in utterance #4, the command is to the RN to take
a photo, and in utterance #5, the RN gives the DM an acknowledgement). The Com-
mander and RN never speak directly to or hear each other; instead, the DM acts as an
intermediary passing communication between the Commander and the RN. Again, we
emphasize that this multi-floor setup is not merely an artifact of the data collection—
it mimics how the physical motion component of an autonomous system would not
“speak” directly to a human user but rather would receive its parsed instructions from
a separate module that handled user interface (here, natural language) interactions.
Each separate module is represented by a separate wizard, communicating on separate
floors as would occur in a fully automated system.

Timestamps are provided in Table 1 reflecting the time passed in seconds from
utterance #1. There is a significant passage of 45s between the Commander’s initial
instruction and the DM’s response (#2), reflecting the DM’s challenge in attempting
to understand and provide an adequate response to the ambiguous instruction. The
remainder of the dialogue proceeds more quickly, taking only several seconds between
utterances as they are passed and responded to across the conversational floors.
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Table 1: Multi-Floor Dialogue of Excerpt 2 depicting the conversational floors and
“behind the scenes” Wizard dialogue.

Left Floor Right Floor

# Time (s) CMD DM→CMD DM→RN RN

1 0 robot continue down
the hallway directly
in front of you under-
neath the overhead
light

2 45.75 I don’t see an over-
head light in my cur-
rent position. Would
you like me to send a
photo?

3 47.17 robot send a photo

4 52.65 photo

5 53.47 image sent

6 54.31 robot continue mov-
ing forward to the
right of the red
bucket

The task of the Commander is challenging on many levels. The dialogues in SCOUT
are approximately 20-minutes long and on average contain 320 utterances, allowing
for an extensive dialogue history that becomes a cognitive burden for the Commander
to remember what they have seen, done, and asked for. Because Commanders were
not given instructions on how to speak to the robot, their instructions are rich in
vocabulary and structure as they first evolved and decided on a strategy for convey-
ing instructions effectively with an extremely unfamiliar conversational partner, and
second evolved and decided on a strategy for how one might go about navigating the
robot through the unfamiliar environment to attempt to address their search tasks.

The dialogues are situated, with the multi-modal information streams available
in the SCOUT transcripts with the images requested by the Commander throughout
the dialogue. The Commander could only view the last image they requested, which
simultaneously gave them a window into the environment at any point in time, while
limiting their current field of view. The images were the only way certain items could
be found and counted to fulfill the experimental task. This choice was purposeful and
meant to induce greater reliance on the dialogue system for accomplishing the search
tasks in the constrained bandwidth conditions.

The SCOUT corpus contains 89,056 utterances and 310,095 words from 278 dia-
logues averaging 320 utterances. The dialogues in SCOUT are aligned with the
multi-modal data streams available during the experiments: 5,785 images and a sub-
set of 30 maps. Additional statistics relating to the corpus statistics can be found in
Lukin et al. (2024).
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3 Dialogue-AMR Annotations

Here, we describe a schema that employs and enriches Abstract Meaning Represen-
tation (AMR) (Banarescu et al., 2013) to support Natural Language Understanding
(NLU) in human-robot dialogue systems (see Figure 5). We hypothesize that a seman-
tic representation of participant instructions is needed in the process of mapping
natural language instructions to an autonomous system’s set of executable behav-
iors and to the real-world objects mentioned in those behaviors (a process we shall
refer to as “grounding”), we developed, “Dialogue-AMR,” an augmentation of AMR
specifically for human-robot dialogue.

Fig. 5: Verbal instructions are parsed into Standard-AMR using automated parsers,
then converted into Dialogue-AMR, and if executable, mapped to a robot behavior.

AMR, which we will refer to as “Standard-AMR” to clarify the distinction from
Dialogue-AMR, is a formalism for sentence semantics that abstracts away many syn-
tactic idiosyncrasies and represents sentences with rooted, directed, acyclic graphs
(Figure 6a shows the PENMAN notation of a Standard-AMR graph). Although
Standard-AMR provides a suitable level of abstraction for representing the content of
sentences, it lacks several aspects of meaning crucial to our domain. Dialogue-AMR
adds to Standard-AMR information on the speaker’s intent, or “illocutionary force,”
as well as tense and aspect information. Additionally, Dialogue-AMR translates a vari-
ety of different expressions for the same underlying behaviors (e.g., go, move, drive),
to a single, uniform predicate (e.g., go-02 in Figure 6b). Thus, it allows the system to
distill the action primitives and their parameters from unconstrained natural language
and enables the subsequent grounding of this information in the robot’s capabilities
and environment.

3.1 Annotation Description

To develop augmentation of Standard-AMR that addresses the requirements in
human-robot dialogue, we iteratively refine an inventory of speech acts (Section 3.1.1)
and introduce tense and aspect representations not included in Standard-AMR
(Section 3.1.2). These additional elements of meaning are brought together in our
annotation schema for Dialogue-AMR, in which the propositional content is also nor-
malized by replacing a variety of lexical items in the input language (e.g., turn, pivot,
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(a) (d / drive-01 :mode imperative

:ARG0 (y / you)

:destination (d2 / door))

(b) (c / command-SA

:ARG0 (c2 / commander)

:ARG2 (r / robot)

:ARG1 (g / go-02 :completable +

:ARG0 r

:ARG3 (h / here)

:ARG4 (d/ door)

:time (a2 / after

:op1 (n / now))))

Fig. 6: The utterance Drive to the door represented in (a) Standard-AMR form and
(b) Dialogue-AMR form.

rotate) with an assigned semantic relation (e.g., turn-01) that in turn maps to a
single robot concept (e.g., rotation) corresponding to one of the robot’s executable
behaviors (Section 3.1.3).

3.1.1 Speech Act Inventory

Speech acts are introduced as the root of Dialogue-AMR representations, such as
Command-SA in Figure 6b, where the suffix -SA is an abbreviation for “Speech Act.”
Adding information on the speech act captures the illocutionary force, or what the
speaker is trying to do in the conversational context with their individual utterance.
For example, a request for information and a request for action serve distinct dialogue
functions. Similarly, a promise regarding a future action and an assertion about a past
action update the conversational context in very different ways.

While extensive and reliable annotation schemas for dialogue acts already exist
(e.g., Bunt et al. (2012)), these are not always in perfect alignment with our data.
There are many distinctions in prior schemas that are not seen in our data, while
other important distinctions regarding relationships between utterances, perception
and action are not elaborated. To simplify some of these issues, we adopted the fol-
lowing approach. First, following Damsl guidelines Allen and Core (1997); Core and
Allen (1997), we distinguish between forward-looking function from backward-looking
function. Forward looking function concerns how the current utterance constrains
the future beliefs and actions, and is expressed as the speech acts in Dialogue-AMR
described in this section. In contrast, backward-looking function concerns relations to
prior utterances, (e.g. feedback and various types of responses), and is discussed in
section 4. Second, each of these schemas are developed with reference to distinctions
from the literature but with a focus on issues that arise in the data.

The Dialogue-AMR inventory of speech acts incorporates much of the higher-level
categorization and labeling of speech acts outlined by Searle (1969), including the basic
categories of Assertions (termed “representatives” by Searle), Commissives, Directives,
and Expressives. Additionally, based on Bunt et al. (2012), we introduce an early
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Fig. 7: Dialogue-AMR Speech Act Taxonomy

distinction in classifying our speech acts between Information Transfer Functions and
Action-Discussion Functions (see Figure 7).

In terms of dialogue function, these higher-level categories allow us to monitor the
status of distinct dialogue contexts. For Information Transfer types, we can monitor
the quantity and quality of general-purpose information exchanged in the dialogue that
is relevant to the larger task at hand. For example, Robot, do you speak any foreign
languages? may not directly impact a current task, but it introduces information into
the dialogue that may be useful at a later point. For Action-Discussion types, we can
assess the status of individual tasks as the dialogue progresses. For example, (Moving
to the wall) and (I moved to the wall) convey two points on a timeline related to current
task completion. For Expressive types, we can model the changing relationship between
interlocutors—for example, how utterances of gratitude, acceptance or rejection, and
admission of mistakes impact the level of trust between the two interlocutors.

Beyond these higher-level categories, we iteratively refined the speech act categories
needed for our domain based upon rounds of surveying and annotating our data. These
iterations began with the annotation of “dialogue moves” over participant instructions
only (Marge et al., 2017) and evolved with varying numbers and types of speech acts
(Bonial et al., 2019) to the inventory set forth here.

Table A2 lists the relation integrated into the Dialogue-AMR to represent the
speech acts. We propose a new set of speech act relations, which were not included in
Standard-AMR, denoted by the ending -SA in lieu of the numbered endings currently
included in Standard-AMR relations. Although we originally explored adopting
existing AMR relations that best fit with each speech act (e.g., Question-01,

Command-02) (Bonial et al., 2019), we subsequently opted to introduce new relations
so that the Dialogue-AMR is clear in what portion represents propositional content
and what portion represents the illocutionary force.5 Additionally, we found that
existing AMR relations were inconsistent in the argument structure representing the
speaker, addressee, and content of the speech act. For example, while Command-02

represents the addressee or impelled agent as Arg1 and the impelled action as Arg2,
we found Assert-02 instead represents the addressee as Arg2 and the content of
the assertion as Arg1. Our roles in our speech acts maintain the following consistent
argument structure (as seen in Figure 6b):

5The corpus release includes a mapping allowing for conversion of SA relations into existing Standard-
AMR numbered relations.
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Arg0: Speaker

Arg1: Content

Arg2: Addressee

The roles of Arg0 and Arg2 correspond consistently to Speaker and Addressee, respec-
tively; the semantics of the Arg1 shifts depending upon the particular speech act. For
example, the Arg1-content of Command-SA is an action, whereas the Arg1-content

of Regret-SA is the stimulus of the mental state, or the thing regretted.

3.1.2 Tense and Aspect in Dialogue-AMR

There are patterned interactions between tense and aspect and illocutionary force that
are critical for conveying the robot’s current status in our domain. These include the
distinctions between: a promise to carry out an instruction in the future, a declarative
statement that the instruction is being carried out currently, and an acknowledgment
that it was carried out in the past. Standard-AMR lacks information that specifies
when an action occurs relative to speech time, and whether or not this action is
completed (if a past event), or is able to be completed (if a future event). For example,
Standard-AMR represents the common feedback utterances (I will move forward 10
feet), (I am moving. . . ), and (I moved. . . ) with one identical graph (see Figure 8).

(m / move-01

:ARG0 (i / i)

:direction (f / forward)

:extent (d / distance-quantity

:quant 10

:unit (f2 / foot)))

Fig. 8: Because Standard-AMR lacks tense and aspect representation, the phrases I
will move / I am moving / I moved... forward 10 feet are represented identically, as
shown here.

We incorporate tense and aspect information into Dialogue-AMR by adopting
the annotation schema of Donatelli et al. (2018), who propose a four-way division
of temporal annotation and four multi-valued categories for aspectual annotation
that fit seamlessly into existing AMR annotation practice. We reduced Donatelli et
al.’s proposed temporal categories to three,6 in order to capture temporal relations
before, during, and after the speech time. In addition to the aspectual categories they
proposed, we added the category :completable +/- to signal whether or not a hypo-
thetical event has an end-goal that is executable for the robot (see Donatelli et al.
(2019) for a sketch of this aspectual category). Our annotation categories for tense
and aspect can be seen in Figure 9.7

6Eliminating the up-to temporal relationship.
7The :habitual aspectual category is absent from the current annotated data. However, we maintain it

as a possible category in anticipation of future work and the potential to refer to habitual robot actions.
We acknowledge that certain pairings of aspectual features happen frequently and may seem redundant
(e.g., complete - and ongoing +). For clarity and completeness, we mark all telic events (those with a clear
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temporal annotation

:time

1. (b / before

:op1 (n / now))

2. (n / now)

3. (a / after

:op1 (n / now))

aspectual annotation

:stable +/-

:ongoing +/-

:complete +/-

:habitual +/-

:completable +/-

Fig. 9: Three categories for temporal annotation and five categories for aspectual
annotation are used to augment existing AMR for collaborative dialogue.

Notably, this annotation schema is able to capture the distinctions missing in
Figure 8. Updated AMRs for utterances that communicate information about a
movement event relative to the future, present, and past are shown in Figure 10.

1. (m / move-01 :completable +

:ARG0 (i / i)

:direction (f / forward)

:extent (d / distance-quantity

:quant 10

:unit (f2 / foot))

:time (a / after

:op1 (n / now)))

2. (m / move-01 :ongoing + :complete -

:ARG0 (i / i)

:direction (f / forward)

:extent (d / distance-quantity

:quant 10

:unit (f2 / foot))

:time (n / now))

3. (m / move-01 :ongoing - :complete +

:ARG0 (i / i)

:direction (f / forward)

:extent (d / distance-quantity

:quant 10

:unit (f2 / foot))

:time (b / before

:op1 (n / now)))

Fig. 10: Updated AMRs for (1) I will move..., (2) I am moving..., and (3) I moved....
Compare with Figure 8 for added tense and aspect information.

ending point) as complete +/- as distinct from states, which are marked as :stable +/-, and habitual events
(:habitual +/-), which may also interact with :ongoing +/-. For full details, see Bonial et al. (2023).
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Using the schema presented in Figure 9, our Dialogue-AMRs allow for locating
an event in time and expressing information related to the boundedness of the event
(i.e. whether or not the event is a future event with a clear beginning and endpoint, a
present event in progress towards an end goal, or a past event that has been completed
from start to finish).

3.1.3 Full Annotation Schema in Dialogue-AMR

Our meaning representation is intended to bridge the gap from totally unconstrained
natural language input to the appropriate action specification in the robot’s limited
repertoire, including clarification actions. In order to understand an input utterance
such that it is actionable, the robot must recognize both the illocutionary force and
the propositional content of the utterance. We integrate both these levels of meaning
into a single Dialogue-AMR representation. The Dialogue-AMRs can be thought of
as templates or skeletal AMRs in which the top anchor node is a specific relation
corresponding to an illocutionary force (e.g., assert-SA) and its arguments hold the
propositional content of the utterance, where the latter consists of a relation (e.g.,
turn-01, go-02) corresponding to an action specification from the robot’s repertoire
of behaviors (e.g., Rotation, Movement). The relation’s arguments are filled in the
template based on the specifics of the utterance (see Figure 11).

In our pipeline (refer back to Figure 5), we leverage both automatically gener-
ated Standard-AMR as well as the Dialogue-AMR to tame the variation found in
unconstrained natural language and map this to the robot’s constrained repetoire of
behaviors. While the Standard-AMR abstracts away from some idiosyncratic syntactic
variation, it largely maintains the lexical items from the input language. The Dialogue-
AMR, in contrast, maps several lexical items to one robot concept corresponding to
an action specification. This concept is realized in the Dialogue-AMR using a partic-
ular AMR roleset that is part of what we term the robot’s lexicon. Table 2 illustrates
an example of the translation from input language to the robot concept of rotation.

Table 2: Unconstrained input language is compared with
its somewhat generalized form in Standard-AMR, and
its consistent representation with a single relation in
Dialogue-AMR, corresponding to the concept rotation
within the robot’s repertoire of behaviors.

Input AMR
Dialogue-

AMR

Turn left 90 degrees.
}

turn-01

 turn-01

Make a left turn.
Rotate left. rotate-01

90 degrees left. :angle-quantity...

Pivot 90 left. pivot-01
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(a) (m / move-01 :mode imperative

:ARG0 (y / you)

:ARG1 y

:ARG2 (w / wall))

(b) (c / command-SA

:ARG0-\textit{speaker}

:ARG2-\textit{addressee}

:ARG1 (g / go-02 :completable +

:ARG0-\textit{goer}

:ARG1-\textit{extent}

:ARG3-\textit{start point }

:ARG4-\textit{end point}

\textit{:path}

\textit{:direction}

:time (a / after

:op1 (n / now))))

(c) (c / command-SA

:ARG0 (c2 / commander)

:ARG2 (r / robot)

:ARG1 (g / go-02 :completable +

:ARG0 r

:ARG3 (h / here)

:ARG4 (w / wall)

:time (a2 / after

:op1 (n / now))))

Fig. 11: The utterance Move to the wall represented in (a) Standard-AMR form, (b)
Dialogue-AMR template form, and (c) as a filled-in Dialogue-AMR.

Although we had originally hypothesized that we could use a fixed set of templates
to cover all allowable combinations between particular speech acts and particular
actions (Bonial et al., 2019), we have since found that our schema is more flexible and
robust to expanding our domain when we eschew that approach in favor of a limited
set of speech acts, which combine with an easily expandable lexicon of robot behaviors.
This facilitates coverage of all possible combinations of speech act and robot concepts,
as opposed to limiting ourselves to templates corresponding only to what we have
seen thus far. Although not exhaustive as to what could be seen in the language of
our domain, a table detailing which robot concepts readily combine with which speech
acts is given in the Appendix in Table A2.

3.2 Dialogue-AMR Corpus Summary

A total of 569 utterances from SCOUT have been annotated with both Standard-AMR
and Dialogue-AMR. Interannotator agreement (IAA) was measured at several points
during the development of Dialogue-AMR. Over a representative sample of the 290
utterances of the SCOUT data, IAA was at 86.6% (Bonial et al., 2023), as measured
by the Smatch metric for comparisong AMR graph similarity (Cai and Knight, 2013).
This agreement exceeds reported Standard-AMR IAA (Bonial et al., 2018). We note
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that other existing AMR corpora that have been released are largely from written
text, including Wall Street Journal and Xinhua news sources, as well as web discus-
sion forum data.8 There is a small amount (about 200 instances) of broadcast news
conversation corpora but none centered around natural dialogue. Thus, our work is
one of the first efforts to use AMR to annotate dialogue. There are additional releases
of Dialogue-AMR as well, including annotation of the Minecraft Dialogue Corpus
(Narayan-Chen et al., 2019), which was also created in service of developing interac-
tive agents, thereby providing a rich resource addition and source of comparison for
SCOUT (Bonial et al., 2021).

3.3 Dialogue-AMR Annotation Summary

In Table 3, we revisit Excerpt 2 where Dialogue-AMR provides an explicit represen-
tation of the content of the utterances. The first instruction, for example, is broken
down into a primary action (go-02) and its parameter (the path for motion the hall-
way directly in front of you underneath the overhead light). Note that this instruction
contains a very complex prepositional phrase. There is some ambiguity as to whether
the speaker intended for that whole expression to be a path description, or potentially
a destination underneath the overhead light. Thus, although the Dialogue-AMR pro-
vides the basic behavior primitives for the robot and the parameters to be grounded
in the robot’s environment, this example illustrates the ways in which the language of
situated dialogue need always be interpreted dynamically with respect to the robot’s
current environment. When one views the left, initial photo in Figure 2, which the
commander participant was viewing when the instruction was issued, one can see that
the position under the overhead light appears to be the end of the hallway, thereby
motivating an interpretation of this expression as a destination point. See Section 6.2
for a discussion of how these annotations have been used to implement language
understanding and grounding in autonomous systems.

Of course the primary source of miscommunication in this excerpt is the fact that
hallway...underneath the overhead light cannot be grounded at all given the robot’s
current position, as the overhead light is no longer in view. A system requires the
ability to model information from the prior context to overcome such a mismatch in
the two interlocutors’ shared understanding of the environment and regain common
ground. The Dialogue Structure annotations we describe in the next Section begin to
address this gap. We further address how references from the visual modality would
be injected into the communication effectively in Section 5 and will also return to
this discussion in Section 6.2 in the context of grounding for autonomous systems. In
the next section, we widen the aperture of the interaction, moving from a focus on
meaning and illocutionary force within a single utterance to a focus on cross-utterance
relations and structure.

8https://catalog.ldc.upenn.edu/LDC2017T10
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# Utterance Dialogue-AMR

1 CMD: robot continue down
the hallway directly in front
of you underneath the over-
head light

(c / command-00

:ARG0 (c3 / commander)

:ARG1 (g / go-01 :completable -

:ARG0 r

:path (h / hallway

:ARG1-of (f / front-03

:ARG2 r)

:location (u / underneath

:op1 (l / light

:mod (o / overhead))))

:time (a / after

:op1 (n2 / now)))

:ARG2 (r / robot))

2 DM→CMD: I don’t see an
overhead light in my current
position. Would you like me
to send a photo?

(a / assert-00

:ARG0 (r / robot-dm)

:ARG1 (s / see-01 :polarity - :stable -

:ARG0 r

:ARG1 (l / light

:mod (o / overhead))

:time (n / now))

:ARG2 (c / commander))

(o / offer-00

:ARG0 (r / robot-dm)

:ARG1 (s / send-image-99 :completable +

:ARG0 r

:ARG1 (i2 / in-front-of

:op1 r)

:ARG2 c

:time (a / after

:op1 (n / now)))

:ARG2 (c / commander))

3 CMD: robot send a photo
(c / command-00

:ARG0 (c2 / commander-dm)

:ARG1 (s / send-image-99 :completable +

:ARG0 r

:ARG1 (i2 / in-front-of

:op1 r)

:ARG2 c2

:time (a3 / after

:op1 (n2 / now)))

:ARG2 (r / robot-rn))

4 DM→RN: photo
(c / command-00

:ARG0 (c2 / commander-dm)

:ARG1 (s / send-image-99 :completable +

:ARG0 r

:ARG1 (i2 / in-front-of

:op1 r)

:ARG2 c2

:time (a3 / after

:op1 (n2 / now)))

:ARG2 (r / robot-rn))

Table 3: Excerpt 2 shown with Dialogue-AMR Annotations
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4 Dialogue Structure Annotations

Here, we present our annotation scheme for meso-level dialogue structure, the span
of which is larger than a single speaker-turn, but smaller than a complete dialogue
activity (Traum and Nakatani, 1999), that is specifically designed for multi-floor dia-
logue. These Dialogue Structure annotations are used to make explicit the patterns of
dialogue—how subsequent utterances address previous utterances or establish a new
intention. The annotations are used for both theoretical analysis as well as training
data for a dialogue system, the latter of which is discussed in Section 6.1.

The scheme includes both transaction units (TUs) and relations. A TU is a cluster
of utterances which may be from multiple interlocutors and span multiple conver-
sational floors that together contribute to the realization (or attempted realization)
of a single intent. Relations describe the relationships between individual utterances
within the TU. The scheme focuses on clustering utterances from multiple speak-
ers and floors into minimal units of expression and completion of intent, as well as
relationships between individual utterances within the TU. While there are standard
annotation schemas for both dialogue acts (ISO 24617-2, (Bunt et al., 2012, 2020))
and discourse relations (ISO 24617-8, (Prasad and Bunt, 2015)), these schemas do not
fully address the issues of dialogue structure. Of particular interest to us, and not pre-
viously addressed in other schemas, are cases in which TUs and relations span across
multiple conversational floors.

Stepping back from the SCOUT corpus in particular, we note that dialogues can
be characterized by distinct information states (Traum and Larsson, 2003). These
include sets of participants, participant roles (e.g., active, ratified participant vs. over-
hearer), turn-taking or floor-holding, expectation of how many participants will make
substantial contributions at a time (Edelsky, 1981), and other factors. Often distinct
dialogues with different information states are going on at the same time. There are
a number of ways in which such dialogues can be related to each other, including:

• having the same purpose but distinct participants (e.g., teams competing in a
trivia contest to come up with the answer first).

• being co-located such that participants in one can observe and possibly comment
on the other, such as groups of people sitting at different tables at a restaurant.

• having one or more (but not all) participants in common, where such participants
are multi-communicating (Reinsch et al., 2008) (e.g., someone in a meeting is
texting with one or more people outside the meeting).

In the multi-communicating case, the multiple dialogues that a multi-communicator
is part of might involve completely separate topics or be more closely related, such
that satisfaction of the goals of one depends on actions in the other. For example, a
question arising in a meeting might be conveyed and answered over the text channel.
In discussing SCOUT, we use the term multi-floor dialogue to refer to cases in which
the high-level dialogue purposes are the same, and some content is shared, but other
aspects of the information state, such as the participant structure and turn-taking
expectations, are distinct. Situations of distributed decision-making and action are
quite common (e.g., in a restaurant where some people take the customer’s order
and others make the food; or in military units, where orders are relayed through the
chain of command). In some cases, where all parties can hear all communication, we
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can view this as multi-party dialogue within a single floor, but in other cases not
all the communications are available to all participants—this is a case of multi-floor
dialogue. We are particularly interested in capturing the latter case.

4.1 Development and Refinement of Annotation Guidelines

Like the development of the speech act extensions to Dialogue-AMR, described in
Section 3, the development of the dialogue structure annotation schema was itera-
tive in that annotation was conducted subsequent to each SCOUT data collection
experiment, which resulted in revisiting and updating annotation procedures to bet-
ter handle novel dialogue phenomena observed in each experiment. The original 1.0
guidelines are described at a high level in Traum et al. (2018). These were devel-
oped on the first 60 dialogues collected in SCOUT in a process of single annotation
and validation of each annotated file, where patterns of annotation errors and gaps
in annotation coverage were discussed in biweekly meetings. Once finalized, detailed
annotation guidelines were then documented in Bonial et al. (2019). These guidelines
were applied to the annotation of the remainder of SCOUT dialogues. Again, all anno-
tation files were checked in a process of validation after annotation and disagreements
and challenges were discussed in annotation team meetings and one week-long anno-
tation “boot camp.” Subsequently, the annotation guidelines were revised again to the
current state, described next.

4.2 Annotation Procedure Overview

We annotate two aspects of Dialogue Structure at the meso-level. First, we look at
intentional structure (Grosz and Sidner, 1986), consisting of units of dialogue utter-
ances that all have a role in explicating and addressing an initiating participant’s
intention. Second, we look at the relations between different utterances within this
unit, which reveal how the information state of participants in the dialogue is updated
as the unit progresses. Each of these annotation levels are described in turn below.

4.2.1 Transactional Units

We call the main unit of intentional structure a transaction unit, following Sinclair
and Coulthard (1975) and Carletta et al. (1996). A transaction unit (TU) contains
an initial message by one speaker and all subsequent messages by the same and other
speakers across all floors to complete the intention. For example, a transaction may
consist of an instruction initiated by one participant in one floor that is relayed by a
multi-communicator to another floor, and then performed by yet another participant of
the second floor, in addition to various sorts of feedback between pairs of participants.

The TU represents the lowest level of dialogue in which intentions are fulfilled
across speakers. In particularly complex negotiations or problem-solving, intentional
structure can be recursive, such that the purpose of one segment partially contributes
to the purpose of a higher-level segment (Grosz and Sidner, 1986). Other types of
dialogues have a flatter structure, including transactions that contribute to an overall
dialogue purpose, but with few, if any, levels in between.
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Consider the simple multi-floor dialogue structure from SCOUT with a single TU
exemplified in Table 4. Recall that there are: three participants (Commander (CMD),
the dialogue manager wizard (DM), and the robot navigator wizard (RN)), and four
distinct message streams separated into two floors (for Commander and DM, called
“left”, and for DM and RN, called “right”) over which the DM multi-communicates
and translates information from one floor to the other. This TU begins with the
Commander’s instruction tomove forward three feet. After an acknowledgement by the
DM to the Commander, the DM translates the Commander’s instruction to the “right”
floor for the RN to execute. Finally after the RN’s completion of the instruction, their
completion acknowledgement done is translated by the DM from the RN to the “left”
floor; additional details on the antecedent (“Ant”) and relation (“Rel”) annotation
columns will be given in the Section 4.2.2.

Table 4: Dialogue structure annotations for a single, simple TU. The ack- prefix
indicates a type of acknowledgement (under Rel column of Annotations).

Left Floor Right Floor Annotations

# CMD DM→CMD DM→RN RN TU Ant Rel

1 move
forward
three
feet

1

2 ok 1 1 ack-wilco

3 move for-
ward 3 feet

1 1 translation-
r-direct

4 moving. . . 1 3 ack-doing

5 done 1 3 ack-done

6 done 1 4 translation-l

This dialogue exhibits a nearly unchanged form of translation of the Commander’s
instruction—differing only by the DM’s normalization of the number three—yet this
passing of information across the conversational floors through the TU forms the
critical backbone for more complex communication observed in the corpus, and in fact
is modeled after the way a fully automated system would work. Dialogue management
and robot motion are separate modules, here represented by separate human wizards
(experimenters).

Table 5 provides an example of a more complex TU with intervening clarifications.
The Commander’s initial direction to the robot for where to face (#1) is not precise
enough for the DM to pass along to the RN. The DM describes what the robot can
see—more than one doorway—and so is indirectly requesting a clarification of the
Commander (#3).9 The Commander responds by clarifying which doorway in a repair

9ID #3 cuts off unexpectedly: I see a doorway ahead of me on the right and a doorway. This is a
mistake in the response sent by the DM-wizard during the early stages of collecting the SCOUT corpus,
where the DM-Wizard was free-typing responses in real-time to the Commander. Later stages of data
collection automated the DM-wizard responses with an interface that sped up DM responses and reduced
errors (Bonial et al., 2017).
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Table 5: Dialogue structure annotations for a single, complex TU.

Left Floor Right Floor Annotations

# CMD DM→CMD DM→RN RN TU Ant Rel

1 face the doorway on
your right in front
of you

1

2 and take a picture 1 1 continue

3 I see a doorway
ahead of me on the
right and a doorway

1 1 req-clar

4 the one closest to
you

1 clar-repair

5 move to face the
hallway opening to
the right

1 4* translation-r-
contextual

6 image 1 2 translation-r-
direct

7 executing... 1 4* ack-doing

8 done 1 6* ack-done

9 sent 1 8 translation-l

turn to the DM (#4). With this extra information, the DM passes along a reformulated
navigation instruction for the robot to the RN (#5).

Each utterance-level message is assigned to at most one TU, and the TU is defined
by the set of constituent utterances. At most points in a dialogue, there is only one
active TU. However there are occasions where there are multiple active TUs, with
a new one started before the previous one has been completed. Table 6 shows an
example of interleaved TUs between utterance IDs #5 and #9. The RN’s done in #7
refers to the completion of #1–2 (go into the room in front of you / and face south)
which was translated in #3–4 (move into room in front of you / face south). Although
the Commander had already issued a new instruction in #6 (take a picture) it was
not translated to the RN until after the RN reported completion of the movement
instructions, thereby still belonging to TU 1. The image request began a new TU and
was translated in #9 ( image), and #10 from the RN (sent) refers to the completion
of the photo request.

4.2.2 Relations & Antecedents

We model the internal structure of TUs as relations between pairs of utterances within
the unit. Each relation is annotated by coding a relation-type and an antecedent for
each utterance starting after the first utterance in a transaction. Thus, each transac-
tion unit can be viewed as a tree structure, with the first utterance as root (having no
relation-type or antecedent annotations). While relations often exist between an utter-
ance and multiple previous utterances, to simplify the annotation, we code only the
most direct, recent such relation. This practice is common for many annotation efforts
(e.g., the “code-high” principle from Condon and Cech (1992)). In the future, we plan
to use inference rules to derive “indirect relations” from what has been annotated.

Relations are organized into a taxonomy of types, representing how each utter-
ance relates to its antecedent. This covers some of the same phenomena addressed
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Table 6: Dialogue structure annotations for two interleaved TUs.

Left Floor Right Floor Annotations

# CMD DM→CMD DM→RN RN TU Ant Rel

1 go into the room
in front of you

1

2 and face south 1 1 continue
3 move into room in

front of you
1 1 translation-

r-direct
4 face south 1 2 translation-

r-direct
5 executing... 1 2* ack-doing
6 take a picture 2
7 done 1 4* ack-done
8 done 1 7 translation-l
9 image 2 6 translation-

r-direct
10 sent 2 9 ack-done
11 image sent 2 10 translation-l

by taxonomies of discourse relations (e.g., Prasad and Bunt (2015)), as well as back-
ward looking dialogue acts Allen and Core (1997) and several dimensions of the ISO
standard for dialogue act annotation Bunt et al. (2012, 2020). However it also covers
relations across multiple floors and status updates, which are not well represented in
prior schemes. The highest-level distinction of the taxonomy relates to speaker and
floor structure. expansions are relations between utterances of the same speaker and
within the same conversational floor. responses are relations between utterances by
different speakers within the same floor. translations are relations between utter-
ances in different conversational floors. Within each of these broad relation types,
there is at least one but often two levels of relation subtypes.

Expansions correspond to the same subject matter as discourse relations, however
we only consider a few relation types to distinguish new, replaced, and redundant
information and turn management rather than the fine internal structure of argu-
ments. Most of the relations from the ISO discourse relations scheme are coded here as
“continue”. Future work may involve adding additional relation subtypes to capture
argumentation structure.

translations have two main subtypes to characterize how the information is
being translated. Translation of information from the left floor to the right floor occurs
when the DM passes the Commander’s instructions to the RN. It appears in the
DM→RN stream and is called a translation-right. Information from the right floor
to the left floor occurs when the DM passes the RN’s responses to the Commander. It
appears in the DM→CMD stream and is called a translation-left (see Tables 4, 5,
and 6). There are also categories where only a part of the intention is translated or
when the speaker relays or talks about issues in the other floor rather than translating
the same intention.

In order to support features of situated dialogue, the translation-right rela-
tions were assigned subtypes to indicate if the response was appropriate only given
a particular situated, physical setting (Bonial et al., 2021). An example of this is
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in Go to the door ahead, where the instruction being translated directly references
the physical environment the robot saw at the moment the instruction was issued.
The door specified in the translation of such instructions will change depending upon
the robot’s current physical environment, and in this case would be a translation-
right-situated relation. Specifically labeling these instructions paves the way for
mapping to robot plans that are valid in the current environment.

response corresponds roughly to the backward looking acts of Allen and Core
(1997) and several dimensions of the ISO scheme. All of these relations provide
some sort of feedback (Allwood et al., 1992), as to how the responder has per-
ceived, understood, and reacted to the antecedent. The feedback can be positive or
negative at multiple levels. While some of these relations correspond to higher-level
backward-looking acts, like accept and offer, or answer a question, others refer to the
grounding process (Traum, 1994) and conveying the planning and execution status of
an instruction.

The finer granularity of acknowledgment response types enables modeling rel-
atively nuanced feedback as to the robot’s confidence in the understanding of the
instruction. For example, ack-doing and ack-done, indicate that an instruction is
being or has been carried out while will-comply expresses full confidence that the
robot has understood and will execute the instruction. The unsure and try sub-
types, in contrast, portray an acknowledgment of what was understood and a lack of
confidence, inviting repair from the Commander if needed. See Table 7 for a full list
of relations.

While relation annotations specify the relations between one utterance and another
previous utterance, the antecedent annotation marks up precisely which past utterance
an annotation target is related to in the manner specified by the relation. For example,
in Table 5, #3 (I see a doorway ahead of me on the right and a doorway) is a request
for a clarification of #1 (face the doorway on your right in front of you), as specified
in the “Ant” (antecedent) and “Rel” (relation) columns.

For multiple commands in succession by the same speaker and part of the same
group, each line has the preceding line as its antecedent. For an utterance that is
directly related to a whole sequence of utterances from the same speaker, we use the
last line of that sequence along with an asterisk. Again in Table 5, the translation in
#5 (move to face the hallway opening to the right) is of the entire complex instruction
and clarification sequence from #1–#4 (face the doorway on your right in front of you
/ and take a picture / I see a doorway ahead of me on the right and a doorway / the
one closest to you); this is specified through the use of the 4* antecedent label, and
the connection between #1 (face the doorway on your right in front of you) and #2
(and take a picture) is specified through the continue relation between them and the
subsequent clarifications.
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Table 7: Annotation Relations

General Relation Type Relation Relation Subtype

Expansion

Continue
Correction
Link-next
Summarization

Translation

Translation-left

Translation-right direct, contextual, landmark,
situated, history, default

Partial translation Translation-X partial

Quotation
Comment

Response

Processing

Acknowledge underspecified, understand,
unsure, try, will comply, will
do prep, doing, doing prep,
done, can’t

Partial acknowledgment partial

Clarification request, repair, repeat, done
status

Request repeat, done status

Question-Response answer, non-answer response

Offer accept
Offer reject
Reciprocal response
Third-turn feedback
Other response

4.3 Dialogue Structure Corpus Summary

All 89,056 utterances in SCOUT have been annotated for dialogue structure. As the
annotation guidelines were updated in several iterations, we measured IAA at two
major points in the annotation development: after the development of the first set of
guidelines described in Traum et al. (2018) (i.e., the unmodified 2018 schema), and
after the most major revamping of the guidelines to better handle situated dialogue
described in Bonial et al. (2021) (i.e., the modified 2021 schema). We compute IAA on
the three markables in the annotation schema: antecedents, relations, and transaction
units (TUs). Three expert coders annotated a subset of 3 dialogues (a total of 896
utterances) using the modified (2021) schema. Results appear in Table 8, which also
shows the reported IAA from the unmodified (2018) schema. Note that in the unmod-
ified schema, two rounds of IAA were conducted, the first round on 3 dialogues of 482
utterances using 5 coders, and the second round on a single dialogue of 314 utterances
using 6 coders. We compare this range of IAA from the four trials of the unmodified
schema, to the range of IAA for the three trials annotated with the new schema.
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Table 8: IAA of the original, unmodified schema of Traum et al. (2018) and our
modified schema.

Markable Type
Agreement (Krippendorff’s α) Distance

MetricUnmodified Schema Modified Schema

Antecedents 0.72–0.82 0.79–0.94 Nominal (Krippendorff, 1980)
Relation Types 0.77–0.89 0.83–0.93 Nominal (Krippendorff, 1980)
Transaction Units 0.48–0.93 0.65–0.85 MASI (Passonneau, 2006)

Our modified schema yields comparable or higher IAA than the original schema
for antecedents (maximum 0.94) and relation types (maximum 0.93). Our TU IAA
(maximum 0.85) is higher than the range of TU IAA reported for the first round
of annotations with the unmodified schema (0.48–0.70), but the final round of TU
annotation from in the unmodified schema achieves the highest agreement rate of
0.93. Note that our modified schema adapts the same coding for antecedents and TUs.
Thus, although one might expect that adding annotation categories would lead to
lower IAA, the addition of our new subtype relations did not produce significantly
lower agreement scores, demonstrating that the new annotation categories are clearly
identifiable.

4.4 Dialogue Structure Annotation Summary

To support dialogue system development in complex, situated tasks, there needs to
be a strong cohesion between the dialogue and the surrounding physical environment.
Specifically, instructions sometimes can only be interpreted sensibly when interpreted
with respect to the physical surroundings. For example, an utterance that is, on its
face, a question—“Can you move forward 2 feet?”—when interpreted with respect to
the current physical environment may be a question of ability (i.e., is there room to
move forward that far?) or may be a politely worded command. Excerpt 2 is shown
again in Table 9, now with details on each conversational floor and the Dialogue
Structure annotations. Note that the DM is unable to translate the initial instruction
due to the misunderstanding, to which the DM offers to send a photo, and the
Commander accepts. The newly formed instruction is translated within the same TU,
and a new intent to move to the red bucket begins a new TU. Refer to Table A1 to
see the Dialogue Structure annotations alongside the Dialogue-AMR annotations for
this excerpt; the two annotation schemas are complementary in providing both within
utterance meaning and intention, as well as the relation that each utterance bears to
another. See Section 6.1 for a discussion of how these annotations have been used to
implement a dialogue management system.

28



Table 9: Excerpt 2 shown with conversational floors and Dialogue Structure TU,
Antecedent and Relation annotations

Left Floor Right Floor Annotations

# CMD DM→CMD DM→RN RN TU Ant Rel

1 robot continue
down the hall-
way directly
in front of you
underneath the
overhead light

1

2 I don’t see an
overhead light
in my cur-
rent position.
Would you like
me to send a
photo?

1 1 offer

3 robot send a
photo

1 2 offer-accept

4 photo 1 3 translation-
r-direct

5 image
sent

1 4 ack-done

6 robot continue
moving forward
to the right of
the red bucket

2

5 Visual Context Annotations

Here, we describe ongoing annotation efforts to characterize the relationships in
SCOUT between the language and the visual affordances: images and LIDAR. The
DM had access to the same visual information as the Commander in addition to a real-
time view into the environment, all of which were necessary for the DM to determine
the intent of the Commander’s utterance and how to respond based on the current
environment and the robot’s position within that space.

5.1 Annotation Description

We describe two annotation tasks that form building blocks for understanding the
visual context and reasoning required for the Commander and the DM to complete
their collaborative task. First, we treat and analyze the sent images as static, shared
snapshots into the robot’s environment. Second, we treat the LIDAR map as an evolv-
ing and persistent shared common ground. As these efforts are the most recent in our
body of work, we describe the motivation and results of our annotations, followed by
planned work to expand annotation.
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5.1.1 Photo Requesting Strategies

The images provide the Commander with a semi-persistent snapshot into the
environment—the environment itself does not move, but as soon as the robot changes
position, it will no longer be oriented in the same direction as when it took its most
recent snapshot. The images also provide the DM with the Commander’s knowledge
about the space. The Commander only knows what they see through the images,
which can help the DM to establish and correct common ground. We begin our anal-
ysis by identifying how these snapshots were obtained in annotating dialogues for
photo requesting strategies. We focused on requests that were Commander-initiated
in order to establish a baseline for normative Commander behavior in the absence of
miscommunication.

The Commander’s utterances were analyzed by one annotator who read through
the dialogue and, for each image taken, traced backward in the dialogue to discover
the moment the request was initiated and by whom. The following categories were
identified as Commander-initiated requests:

Front strategies requested that a single, forward-facing photo be taken, typically
after the robot completed an activity, for instance:

• “move forward five feet then take a photo”
• “robot proceed through the doorway right in front of you and take a photo”
• “go to the wall behind you. face north. and then take a picture”
Cardinal strategies requested that four photos in the cardinal directions be taken,

for instance:
• “take pictures in north south east and west directions”
• “move forward to the middle of the room and take pictures in north east south
and west direction”

Degrees of rotation strategies requested that a sequence of photos in a circle,
semi-circle, or quarter-circle be taken, for instance:

• “pivot three hundred and sixty degrees to the right taking a picture every forty
five degrees”

• “pivot one hundred and eighty degrees to the right taking a picture every forty
five degrees”

• “rotate ninety pivot ninety degrees right taking a picture every forty five degrees”
A Repetition strategy was observed in which the Commander asked the robot

to fulfill their desired picture taking strategy after their every subsequent command
without them having to explicitly state it. While each subsequent fulfillment of the
request was performed by the robot without explicit instruction from the Commander,
the original request was still Commander-initiated, for instance:

• “move forward into the room and take pictures after each movement”
• “take pictures in all four directions after each movement”
These agreements lasted until the trial ended or could be terminated by the

Commander at any time, e.g., “do not take pictures after new movements”.

30



5.1.2 LIDAR Exploration Maps

While the images provide snapshots into the robot’s current environment, the LIDAR
maps provide a real-time view of large obstacles and the robot’s position and orienta-
tion in its explored floor plan. The location of the robot is overlaid on the LIDAR map
with its orientation as well, so the Commander can see at all times where the robot is
and which way it is facing. However, in the same way that the images are only avail-
able upon request, the LIDAR map too only expands as the Commander directs the
robot through the environment. This is a persistent and shared resource between the
Commander and DM, so the DM knows at every moment what the Commander sees
on their LIDAR map, and takes this into consideration when determining the success
and execution of instructions issued.

To build up to this real-time robot interpretation of the LIDAR maps for inter-
preting instructions, we begin by constructing a single Environment Map per dialogue,
rather than an evolving instruction-by-instruction map. By first understanding the
environment at a single moment in time, we pave the way for interpreting the
environment at each time-step.

A LIDAR map was extracted from the last frame of the Commander’s screen as
captured by the screen recording of their workstation (e.g., Figure 12a). From this,
an annotated Exploration Map was drawn and marked up to denote all items in
their known location in the environment that the Commander was tasked to search
for: doorways, shovels, and shoes. The Exploration Map differentiates between items
which were scanned by the LIDAR over the course of the dialogue (marked on the
exploration map with solid red lines), and those that were not (marked in dashed blue
(see Fig. 12b for the legend). The resulting Exploration Map corresponding with the
LIDAR in Figure 12a is shown in Figure 12c.

(a) LIDAR map at the end
of a dialogue. Dark gray are
areas unscanned by the LIDAR.
Robot icon in center of map.

(b) Legend (c) Corresponding top-down floor
plan of Fig 12a annotated with
which items were scanned by the
LIDAR.

Fig. 12: LIDAR map, legend, and Exploration Map with items scanned or not scanned
by the LIDAR
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Annotators were given the LIDAR map and an Exploration Map template with
all the markers for doorways, shoes, and shovels already in place and indicated as
‘scanned’ by default. The annotator then changed the markers on the map to the
unscanned scheme if the target on the LIDAR was not scanned. This determination
was based on if the LIDAR shows light gray or dark gray, where dark gray denoted
areas not scanned. Annotations were conducted by one annotator, and verified by a
second. In cases of uncertainty, the screen recording of the Commander’s full trial was
reviewed to obtain a more comprehensive overview of the path that the robot took.

A text list of the items in the Explorations Maps was created to allow for computa-
tional processing with a unique identifier assigned to each target starting in the upper
left-hand corner and moving clock-wise, and denoted as scanned or not scanned:

door1 not-scanned

door2 scanned

...

shoe1 not-scanned

shoe2 not-scanned

...

shov1 scanned

shov2 scanned

...

5.2 Visual Context Corpus Summary

Photo-requesting strategies and LIDAR Exploration Map annotation has been com-
pleted on 30 dialogues in SCOUT with plans to automate the annotation and
verification process until all 287 dialogues are completed.

5.3 Visual Context Annotation Summary

Recall from Section 2 that the Commander is tasked with instructing the robot through
a series of search and navigation tasks. These tasks include finding and counting door-
ways (which can be found more readily from the LIDAR map), cones, shovels, or
shoes (which can all only be found through an image). We find that the Commander’s
photo-requesting strategies can be used to analyze success in these search tasks. Com-
manders who relied on the ‘Degrees of rotation’ strategy achieved very high scores on
these tasks (Lukin et al., 2023). Furthermore, two Commanders who began their first
main trial with a ‘Front’ strategy later experimented with a ‘Cardinal’ strategy, and
used it in their entire second main trial, suggesting they deemed the latter to be more
effective. With this strategy, these Commanders were able to obtain more snapshots,
presumably becoming more informed about the environment which may have lead to
higher success, or at the very least, higher satisfaction with the chosen photo strategy.
The Exploration Maps have been used to compute measures of success showing that
increased exploration yielded higher task success scores (Lukin et al., 2023).

Returning to the dialogue and images from Excerpt 2, we observe that the mis-
communication occurs due to the Commander’s misunderstanding about where the
robot is and what it sees in the environment. The overhead light that they saw in the
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last photo requested was not consistent with the robot’s current position. Here, it was
the DM who noticed the discrepancy between the robot’s view and intention of the
instruction, and so initiated a repair strategy. Only the DM could do so by being able
to understand the Commander’s intent and how it (the robot) should respond. In this
case, the Commander’s photo-requesting strategies may have been insufficient in con-
tinually providing them with common ground, but the strategies did provide the DM
enough information to recognize the discrepancy and mitigate it.

See Section 6.3 for a discussion of how we envision using these visual context anno-
tations of images and maps in dialogue management, and further challenges involved
in sharing visual contextual information.

6 Discussion: Annotation and Systems

In developing our annotation schemas and labeling the SCOUT dataset, we are moving
towards understanding how humans would naturally speak to robots in the remote,
collaborative paradigm, and how robots should respond in turn. We outline one aspi-
rational framework for a dialogue system to run onboard a robot in Figure 13. The
framework touches upon necessary components and capabilities, including language
understanding of the human speech and interpreting their intent; dialogue manage-
ment to decide how to respond appropriately, whether it be moving in a physical space,
providing a status update, or clarifying an unclear instruction; and grounding to map
the language terms to entities and information about the physical world identified by
robot’s sensors in physical world, requiring a robot to reason over multiple sources of
uncertainty: language, speech, vision, occupancy, knowledge. A framework such as this
would enable robust dialogue with robots. In the remainder of this section, we discuss
our progress towards implementing such a framework harnessing our annotations. We
show evidence of successful integrations, and identify ongoing needs and use-cases of
the annotations.

Fig. 13: System architecture, supporting bi-directional, grounded communication
between a Commander and multiple remotely located robots.
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6.1 Dialogue Management for Autonomous Robot Navigation
Systems

The dialogue structure TU and relation annotations were leveraged as training data for
developing three iterations of dialogue management systems detailed in the paragraphs
to follow. All systems leveraged the dialogue structure data organized into instruction-
response pairs, where instructions were previously-seen Commander instructions, and
responses were either messages sent back to the Commander in the DM→CMD stream,
such as feedback or clarification questions, or messages sent on to the robot in the
DM→RN stream for further processing and execution. The training data instruction-
response pairs were used to learn the weights of association such that a ranked list
of potential matches was returned and the most similar instruction-response pair was
selected (Leuski and Traum, 2011). The resulting dialogue managers were adapted
from the Virtual Human Toolkit (Hartholt et al., 2013), refined to support a robot
platform (Marge et al., 2016). The dialogue management systems have two basic ele-
ments: first, a classifier that interprets the language with respect to the basic intent,
and second, a dialogue policy manager that dictates what the system should do next.

Intent classification, for the first element, is treated in this work as a retrieval prob-
lem, such that given the transcribed speech from the recognizer, the system can infer
the intent by retrieving the closest known intent, given a relevance model translation
learned from the dialogue structure instruction training data. In this way the classifier
can react to previously unseen but similar expressions that convey the same intent.
For example, if the Commander provides the instruction Okay, Husky, check the path
in front of you, the system retrieves Scout the path in front.

Dialogue management policies, for the second element, are defined based upon
the matches obtained from the intent classifier, with two basic categories of response
policies. The first is for actionable messages, where the robot is able to execute the
instruction. For actionable commands, the basic policy is two-fold, both to respond
to the Commander with feedback, demonstrating successful receipt of the instruction,
and to send a simple text message of the instruction on to the robot software stack.
In the above example, the system would provide feedback like executing and pass
the text instruction along to the parsing component operating within the software
stack for processing and eventual execution. The second policy is for non-actionable
messages, which requires clarification through further dialogue. The basic policy for
non-actionable messages is to prompt the Commander for clarification, such that any
inability to infer the intent of the instruction can be resolved promptly through dia-
logue. Sub-policies for non-actionable messages leverage the dialogue structure features
in the annotated corpus training data to define a dialogue management policy. For
example, there is a sub-policy defining how to respond to incomplete instructions lack-
ing a clear end state. To illustrate this policy, a command from the Commander such
as Keep moving forward, would generate a query for clarification (e.g., Robot:Where
should I move forward to? ; yielding a response from the Commander: To the door on
the left). What is then passed along for execution is a complete instruction (e.g., Move
forward to the door on the left).
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Our first dialogue system prototype, ScoutBot, was created to determine if the
data collected in SCOUT could be used to train a dialogue system to support col-
laborative navigation in a similar domain (Lukin et al., 2018). ScoutBot was the first
human-robot dialogue system trained entirely from data collected using the data-
driven Wizard-of-Oz methodology. ScoutBot implemented a shallow pass through the
Figure 13 framework, and permitted users to issue verbal navigation instructions to a
virtual Clearpath Robotics Jackal in an indoor environment with a custom ROS wrap-
per for robot navigation of metric instructions (e.g., Drive forward 10 feet; rotate left
45 degrees; take a photo). ScoutBot used Google ASR to support speech recognition.
Of note, ScoutBot lacked grounding, a world model, and speech synthesis; language
generation was retrieval based.

Our second prototype, MultiBot, extended ScoutBot capabilities to support
dialogue interaction with multiple robotic platforms, and in a different task
domain (Marge et al., 2019). By combining dialogue with robotic behaviors (Tactical
Behavior Specifications (Boularias et al., 2015; Holder, 2017)), MultiBot could inter-
pret goal-based instructions (e.g., Robot, scout Route Bravo ahead) to a heterogeneous,
aerial-ground team of robots based on each robot’s capabilities in a search task. As
a successor to ScoutBot, MultiBot demonstrated the generalizability of the technical
contributions to now enabling dialogue processing between one human and a team of
mobile robots. MultiBot additionally integrated speech synthesis, yet also still did not
support grounding or world modeling. A new dataset of instruction-response pairs was
curated to support the new domain.

Finally, the dialogue management prototype developed in ScoutBot and Multi-
Bot was later integrated into our robot front-end application called JUDI, the Joint
Understanding and Dialogue Interface (Marge et al., 2023), which features integration
with offline speech recognition provided by the Kaldi open-source speech recognition
toolkit (Povey et al., 2011). In contrast to many of today’s conversational systems,
JUDI does not require a cloud connection for ASR functionality, making it suitable for
use in search and rescue and disaster-relief operations where internet connectivity is
unreliable or unavailable. JUDI is agnostic to robot specification, and can be adapted
to different suites of navigation and perception algorithms compatible with multiple
robot platforms.

As noted, these systems lack the grounding and world model components outlined
in Figure 13, and yet they are able to support simple human instructions for metric
movement given a wide vocabulary of instruction-giving from the human collaborator.
The treatment of language understanding as a retrieval problem is applicable for
many of the instructions, but lacks the ability to match the order of instructions. For
example, Go to the barrel then take a picture might match on Take a picture then go
to the barrel. We seek to address these limitations with the system described in the
next section.

6.2 Language Understanding and Grounding for Autonomous
Robot Navigation Systems

In order to allow for more flexible language understanding and interpretation beyond
retrieval methods, we turn to Standard-AMR and Dialogue-AMR to ground the
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meaning of the instructions, rather than just the words of the instructions. This
facilitates grounding and a world model (refer back to Figure 13).

Our grounding research is currently ongoing and being conducted in stages. We seek
to compare the performance of the same grounding approach with different linguistic
parses—first a simple, constituent CYK parser (Younger, 1967), then Standard-AMR,
and finally Dialogue-AMR. To date, we have implemented a system for natural lan-
guage control of a Clearpath Robotic Husky (Clearpath Robotics, 2023) using JUDI
(introduced in Section 6.1) for speech recognition and dialogue management. The
architecture leverages a custom ROS wrapper around a Standard-AMR parser that
parses the output of the JUDI intent classification and then passes the parse along to
the planning and execution components of the autonomy stack for robot navigation.
Our experimentation thus far demonstrates that AMR-based grounding of natural lan-
guage instructions allows our system to successfully ground and execute instructions
with a range of linguistic phenomena, including light verb constructions, coreference,
and spatial relations. Although these phenomena are arguably complex for grounding
and have proven to be challenging for existing state-of-the-art systems, they are com-
monplace in natural language. See Bonial et al. (2023) for details of the grounding
research, including the strategy for evaluation, which is ongoing.

We are continuing to update our architecture so that the language understanding
and dialogue management components work more synergistically with the grounding
and planning components. Ideally, the language would be interpreted with an aware-
ness of the environment in mind, prior to attempting to plan a path for executing the
instruction and running into a failure. This requires cross-communication between the
dialogue system and the robot’s sensors, e.g., cameras or LIDAR, that can collect and
draw upon knowledge of the surrounding environment to support more human-like
conversational repairs in cases of ambiguities and miscommunications. For example, if
the system encounters the well-formed instruction, Move to the barrel on the right, it
should be able to assess from its sensors the situations when there is no barrel on the
right. If instead, it can determine there is a barrel on the robot’s left, that information
from the grounding component can support generation via AMR, of a targeted clari-
fication question, such as I don’t see a barrel on the right; do you mean the one on the
left? This requires a level of intercommunication of the components that we currently
have not achieved, and, as far as we are aware, has not been developed elsewhere.

6.3 Shared Modalities and Participant-Specific Knowledge

We envision a computational framework where shared affordances—the static photo,
dynamic LIDAR map, and current dialogue turn (center of Figure 14)—can be pro-
cessed together by the robot using multi-modal annotations to help it establish
common ground in real time with its teammate. While this work is ongoing, we are
moving towards bringing the visual information seen by the human and recorded by
the robot into the processes in Figure 13. The exact location in the architecture for this
is beyond the scope of this discussion; instead, we present vignettes with challenges in
which the shared modalities may provide signals for establishing and re-establishing
common ground.
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Fig. 14: Shared modalities for establishing common ground, along with additional
information available or known to each participant during collaboration

While the modalities themselves are shared, the human might not be making the
same assessments of the environment as the robot. Therefore it is not enough to share
the information with both the human and the robot and assume perfect knowledge
and understanding between them. As in the case of Excerpt 2, the Commander didn’t
recognize at first the discrepancy between the image shown to the them and the current
LIDAR scan. In other cases, the human may overlook something in the image due to
dark lighting in the environment, or may not recognize or recall if they had previously
been to a location on the LIDAR map.

To this end, we have been analyzing the DM-initiated photo requests and the
circumstances in the dialogue which prompted the DM to ask for additional visual
information. These circumstances with repair utterances, as revealed from the dialogue
structure annotations, will be compared against the non-repair instances from the
Commander-initiated requests as controls, to identify the point at which the common
ground is lost. We hypothesize there are several instances which may lead to this, that
can be learned from the annotations. Extracting and annotating moment-by-moment
LIDAR maps from our collection of dialogue ROS bag files may reveal other signals
for the robot to use to determine when the Commander may be in danger of losing
common ground, such as when they have not requested a photo after the robot moved
a significant enough distance away from the location of the prior persistent image.
Identifying when this visual common ground is lost may enable the robot to leverage
the dialogue history from its ongoing recording of the dialogue structure to anticipate
potential repair circumstances and offer strategies to avoid them, or it may lead the
robot to detect that the content of the current image does not adequately match the
Commander’s instruction, and preemptively provide a new snapshot.

Another challenge of establishing common ground is that fact that the human
and robot each have their own additional knowledge or assumptions that may make
coordination difficult. In the SCOUT experiments, the robot, for instance, was able
to see live video, but it could not broadcast this signal due to the experimental design
constraints on network bandwidth. Its LIDAR sensor was more complex than our
currently constructed 2D Exploration Map conveys; it could sense depth of objects
and obstacles around its environment (refer to Figure 14). When such information
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is not available for the human, the robot may make assumptions based on its stored
knowledge that conflict with the human’s knowledge. For instance, the 3D LIDAR
may detect an object low to the ground that would be not rendered on the 2D map
or that would be just out of view of the robot’s camera perspective. Awareness of this
discrepancy of information, however, can lead to initiations of repair on the robot’s
part. Similarly, the human, while conducting their task, may formulate an evolving
view of the environment as they observe and explore. This may not be conveyed out
loud to the robot, and so the robot may attempt to resolve a misstep of common
ground or be uncertain about the human’s higher level intents in their approach. For
example, an object the Commander determines to be of interest from a static photo
may be localized on the dynamic 2D map, and used in the future to resolve references
and assist when grounding single utterances as annotated with Standard-AMR and
Dialogue-AMR. These potential strategies should ultimately be incorporated into the
computational approach.

7 Related Work

This research is at the intersection of NLP–including semantic parsing and dialogue
systems–and robotics. We limit our direct comparison here to similarly interdisci-
plinary work; see Tellex et al. (2020) for a full review of research in robotics and
language. Outside of the work on the grounding approach that we directly augment for
AMR (Howard et al., 2021), field robotics has largely focused on robots that receive
an initial, static tasking and then operate autonomously (e.g., Williams et al. (2012);
Arvidson et al. (2010); Camilli et al. (2010); Chiou et al. (2022)), or on robots that
are tele-operated (e.g., Kang et al. (2003); Ryu et al. (2004); Yamauchi (2004)). In
contrast, there is relatively little work like ours, seeking to develop robots that are
able to be tasked dynamically and interactively via natural language.

There are, however, a few notable exceptions. Walter et al. (2015) describe the
development of a voice-controlled fork lift. In contrast to our own research, how-
ever, the natural language instructions are more constrained to particular hard-coded
commands mentioning a more limited range of objects that are classified in the
robot’s world model. Additionally, Heikkilä et al. (2012) develop a mobile manipu-
lator designed for space operations that is capable of accepting spoken commands.
This work was similarly focused on a set of domain-specific tasks, but does allow
for general spoken commands including following and stopping. It does not, however,
allow for bi-directional dialogue with the user. Unlike both of the previously men-
tioned voice-controlled robots, it is important to note that our architecture aims to
support bi-directional communication between the robot and the Commander, so that
ambiguities that might arise in changing environments can be resolved.

There is also relevant research leveraging LLMs map or translate between uncon-
strained natural language and the controlled planning languages of agents more
broadly. Song et al. (2022) utilize GPT for deciding upon the appropriate high-level
plan given natural language instructions, and then use a more traditional low-level
planning component to execute specific motor movements to grounded points in the
environment. The high-level and low-level models are also able to communicate, such

38



that the high-level model can be queried for new and updated plans if conflicts arise
in the low-level planning model. The plans are multi-step and involve common kitchen
interactions and manipulations, including using a knife to slice an apple and heating a
potato in the microwave (Shridhar et al., 2020). Driess et al. (2023) develop their own
multi-modal “embodied” language model, called PaLM-E, which accepts both sensor
data, such as image data, and natural language text. The model outputs text data
that can be interpreted as robot policies. In general, we see potential for leveraging
language models in the future both for providing some a priori, zero-shot knowledge
of objects that the robot might encounter in its environment, which can be used to
inform the interpretation of natural language instructions, as well as for providing a
likely mapping between unconstrained natural language and the constrained set of
robot behaviors.

While there has been a veritable explosion of research leveraging LLMs in robotics,
we have not seen broad adoption of LLMs in field robotics, where multiple robots
engage with humans in physically situated, complex tasks that are dynamic and poten-
tially dangerous. In such high stakes applications, two major weaknesses of LLMs
remain problematic: factual inaccuracies and what is often termed “hallucination”
of irrelevant information, as well as infeasible and sub-optimal planning. Ren et al.
(2023) provide a path to remedy the first hallucination issue by enabling robots to
engage in dialogue and ask for help with the use of a framework for measuring and
aligning the uncertainty of LLM-based planners. The limitation of this work is that it
assumes fully grounded, known environments and objects, and task feasibility of the
plans output by the LLM. Neither assumption is valid in disaster relief domains.

Rana et al. (2023) and others have attempted to remedy infeasible and sub-optimal
planning by including a traditional planning step. The authors develop SayPlan, which
leverages a LLM along with traditional planner in order to enable natural language
instruction input to a manipulator arm robot in household and office tasks. The
research relies upon a pre-populated 3D scene graph. Innovations include using the
LLM to search over and condense the scene graph to only the relevant portion of the
graph for the plan (called “semantic search”), which keeps the input to the in context
learning window small. Additionally, the research leverages iterative replanning (called
“causal planning”) to ensure executable plans, leveraging chain of thought prompting
and testing each plan against the condensed scene graph. While the authors obtain
promising results, the challenges of the system include: negation (e.g., find the office
with no/without cabinets), counting (e.g., which office has more than one t-shirt),
and spatial reasoning (e.g., find the office closest to the entrance). We note that our
grounding approach readily handles spatial reasoning and is equipped to deal with
negation, given the consistent and explicit representation of negation in AMR.

Finally, explainability is critical for adoption of robotic systems in high-stakes tasks
such as disaster relief; thus, further research enabling transparency and explainability
of systems leveraging LLMs is needed. Neuro-symbolic approaches (e.g., Dipta et al.
(2022)) are promising for providing greater transparency. For example, Zhang et al.
(2022) develop DANLI, which symbolically represents subgoals as predicates on objects
in the robot’s world model.
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There is a growing body of research leveraging AMR for NLU in human-agent
interaction. The present research is part of a broader ongoing research effort lever-
aging a two-step NLU pipeline that first parses natural language into AMR, which
abstracts away from some surface variation, but then in a second step converts
the Standard-AMR into Dialogue-AMR. While the present research systems lever-
age Standard-AMR as the input to the grounding component, we will shift to using
Dialogue-AMR as the input parse, as we expect that the further normalization will
allow us to achieve comparable results with even less training data. Furthermore,
Dialogue-AMR leverages spatial rolesets from Spatial-AMR (Bonn et al., 2020), which
provides detailed relations for spatial relations for expressions such as in front of,
which currently does not have a detailed representation with a relational concept in
Standard-AMR.

Other research to augment AMR for interaction includes work to further develop
multi-modal, gestural AMR (Brutti et al., 2022) as well as efforts to further develop
aspect and modality in AMR to support NLU (Donatelli et al., 2020). Finally, there
is research in leveraging AMR parses of image captions in order to develop scene
graphs, which can help agents to summarize and process visual scenes (e.g., Choi et al.
(2022) and Choi et al. (2022).) Together, all of these threads of research demonstrate
ways in which AMR can serve as a unified representation for making sense of multiple
modalities of information.

An ongoing research question that we have touched upon is how to incorporate
the multi-modal information into the computational pipeline. Before that decision can
even be addressed, the overlap and contribution of each modality must be established
within the experimental context. Using individual objects within a laboratory setting,
e.g., an apple on a plate, Kebe et al. (2021) record RGB images and depth point
clouds of physical objects, then crowdsource textual and spoken descriptions about
the objects. In this way, the physical object apple has four different representations
each from a unique modality. This work has shown that when one input stream is
degraded or unavailable, algorithms using the other modalities can still identify the
target object. Our in-situ problem space may complicate the collection of ‘clean’ data
pertaining to each object, although such ‘clean’ representations may be beneficial for
approximating a best guess, for example, if the Commander called an object a shredder,
but the image, even though it might be dark, and LIDAR signified it was a suitcase.
Another approach called ConceptFusion combines in-situ multi-modal data from RGB
images and LIDAR to construct a 3D map, which is then queried at specific locations
within the map for textual, audio, and click information, e.g., a chair is described as
‘A comfy place to sit and watch tv’ (Jatavallabhula et al., 2023). While the goal of this
work is to jointly process all the modalities, there are key differences from our problem
space. First, our robot already has all the visual information about the environment.
As described in Section 6.3, the live video and 3D LIDAR cannot be shared with the
human as it would violate the low-bandwidth constraint, so even if the robot had this
3D map, the human couldn’t directly interact with it. A second difference is that our
Commanders build up an understanding of the space over time as they explore, rather
than all at once.
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8 Conclusions & Future Work

This research brings together several layers of annotation on a multi-modal corpus
of human-robot dialogue in order to support effective task-based dialogue in mixed
human-robot teams. Each layer of annotation supports establishing and maintaining
common ground between human and robot interlocutors, which is critical for commu-
nicating effectively about the physical environment, given that the human has limited
understanding of that environment.

Several broad challenges remain. The first is an architectural challenge—current
architectural solutions do not support the level of cross-modal, bi-directional commu-
nication that is needed to overcome miscommunications about the environment and
reason over natural language instructions before, during, and after grounding, plan-
ning, and execution of a task. Related to this architectural challenge is the challenge
of how a human can effectively interface with one or more robots in a remote envi-
ronment. Our research into image request strategies and annotation of LIDAR maps
has begun to reveal the potential of this visual information for conveying the robot’s
model of the environment, which is critical for establishing and maintaining common
ground. Humans and robots experience the world in different ways, so how can we
find ways of visualizing and modeling the robot’s environment in a way that is under-
standable to people? We continue to work towards a system that dynamically and
continuously allows for cross-modal, bi-directional communication among the compo-
nents of that system, as well as an interface that effectively conveys the system status,
including disparate sensor types, and environment to the operator.
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Appendix A

Table A1 shows Excerpt 2 as annotated with Dialogue-AMR and Dialogue Structure
(TU, antecedent, relations) annotations. Table A2 shows the robot concepts with
associated Dialogue-AMR relations, compatible speech act types, and examples.
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Table A1: Excerpt 2 shown with Dialogue-AMR and Dialogue Structure Annotations

# Utterance TU Ant Rel Dialogue-AMR

1 CMD: robot continue down
the hallway directly in front of
you underneath the overhead
light

1
(c / command-00

:ARG0 (c3 / commander)

:ARG1 (g / go-01 :completable -

:ARG0 r

:path (h / hallway

:ARG1-of (f / front-03

:ARG2 r)

:location (u / underneath

:op1 (l / light

:mod (o / overhead))))

:time (a / after

:op1 (n2 / now)))

:ARG2 (r / robot))

2 DM→CMD: I don’t see an
overhead light in my current
position. Would you like me to
send a photo?

1 1 offer
(a / assert-00

:ARG0 (r / robot-dm)

:ARG1 (s / see-01 :polarity - :stable -

:ARG0 r

:ARG1 (l / light

:mod (o / overhead))

:time (n / now))

:ARG2 (c / commander))

(o / offer-00

:ARG0 (r / robot-dm)

:ARG1 (s / send-image-99 :completable +

:ARG0 r

:ARG1 (i2 / in-front-of

:op1 r)

:ARG2 c

:time (a / after

:op1 (n / now)))

:ARG2 (c / commander))

3 CMD: robot send a photo 1 2 offer-
accept

(c / command-00

:ARG0 (c2 / commander-dm)

:ARG1 (s / send-image-99 :completable +

:ARG0 r

:ARG1 (i2 / in-front-of

:op1 r)

:ARG2 c2

:time (a3 / after

:op1 (n2 / now)))

:ARG2 (r / robot-rn))

4 DM→RN: photo 1 3 translation-
r-direct

(c / command-00

:ARG0 (c2 / commander-dm)

:ARG1 (s / send-image-99 :completable +

:ARG0 r

:ARG1 (i2 / in-front-of

:op1 r)

:ARG2 c2

:time (a3 / after

:op1 (n2 / now)))

:ARG2 (r / robot-rn))
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Table A2: Robot concepts with associated Dialogue-AMR relations, compatible
speech act types, and examples. Within the annotated corpus release, the speech act
labels shown in this table are marked with the ending “-SA” (e.g., Question-SA,
Assertion-SA, etc.).

Robot Concepts
Dialogue-AMR
Relations

Compatible
Speech Acts

Examples

Ability Able-01
Question,
Assertion

Are you able to move that orange cone in front of you?;
I’m not able to manipulate objects.

Scene See-01
Question,
Assertion

Do you see foreign writing?;
I see two yellow helmets to my left.

Environment Sense-01
Question,
Assertion

What is the current temperature?;
My LIDAR map is showing no space behind the TV.

Readiness Ready-02
Question,
Assertion

Are you ready?;
I’m ready.

Familiarity Familiarize-01
Assertion,
Open-Option

I think you are more familiar with shoes than I am;
If you describe an object, you can help me learn what it is.

Equipment Equip-01
Question,
Assertion

What kind of sensors do you have?;
I have no arms, only wheels!

Memory Remember-01
Question,
Assertion

How did we get here from last time?;
Yes (we’ve been here before).

Processing Process-01 Assertion
Processing...;
Hmm...

Task Task-01
Assertion,
Command

We’re looking for doorways;
End task.

Send-Image
Send-image-XX
(domain-specific)

Assertion,
Offer,
Command,
Open-Option,
Promise

Image sent;
Would you like me to take a picture?
Take a picture;
I can send a picture;
I will send a picture.

Movement Go-02

Assertion,
Offer,
Command,
Open-Option,
Promise

I moved forward one foot
I will move forward one foot, ok?
Back up three feet;
You can tell me to move a certain distance or to move to an object;
I will move forward one foot.

Rotation Turn-01

Assertion,
Command,
Open-Option,
Promise

Turning...
Turn to face West;
You can tell me to turn a number of degrees or to face something;
I will turn 90 degrees.

Repeat Repeat-01
Offer,
Command,
Request

Would you like me to repeat the last action?;
Do the following four times...
Can you repeat that?

Cancel Cancel-01 Command Cancel command; Stop; Nevermind

Do Do-02
Question,
Assertion

Did I successfully do what you asked?
Executing; Done

Clarify Clarify-10
Assertion,
Request

Brown, not round;
How much is a little bit?

Stop (motion) Stop-01 Command Stop there; Stop!

Help Help-01
Command,
Request,
Open-Option

Help!
I need your help to find shoes;
You can ask for help at any time.

Locate Locate-02
Assertion,
Command

(I’ve located) 3;
Find doorways; ...and locate shoes

Calibrate Calibrate-01
Assertion,
Command

Calibrating...; Calibration complete
Calibrate

Instruct Instruct-01 Request What should we do next?; Then what?

Wait Wait-01
Command,
Request

Wait!
Please wait.

Permission Permit-01 Request Robot, can I call you Fido?

Understanding Understand-01
Question,
Assertion

Did I misunderstand?;
Ok, I think I got it.
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