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Abstract

Learning a reward model (RM) from human preferences has been an important component in
aligning large language models (LLMs). The canonical setup of learning RMs from pairwise prefer-
ence data is rooted in the classic Bradley-Terry (BT) model that accepts binary feedback, i.e., the
label being either Response 1 is better than Response 2, or the opposite. Such a setup inevitably
discards potentially useful samples (such as “tied” between the two responses) and loses more fine-
grained information (such as “slightly better”). In this paper, we propose a framework for learning
RMs under ordinal feedback which generalizes the case of binary preference feedback to any arbitrary
granularity. Specifically, we first identify a marginal unbiasedness condition, which generalizes the
assumption of the BT model in the existing binary feedback setting. The condition validates itself
via the sociological concept of the wisdom of the crowd. Under the condition, we develop a natural
probability model for pairwise preference data under ordinal feedback and analyze its properties. We
prove the statistical benefits of ordinal feedback in terms of reducing the Rademacher complexity
compared to the case of binary feedback. The proposed learning objective and the theory also extend
to hinge loss and direct policy optimization (DPO). In particular, the theoretical analysis may be
of independent interest when applying to a seemingly unrelated problem of knowledge distillation to
interpret the bias-variance trade-off therein. The framework also sheds light on writing guidance for
human annotators. Our numerical experiments validate that fine-grained feedback leads to better
reward learning for both in-distribution and out-of-distribution settings. Further experiments show
that incorporating a certain proportion of samples with tied preference boosts RM learning.

1 Introduction

Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ziegler et al., 2019;
Askell et al., 2021; Ouyang et al., 2022) is vital to aligning large language models (LLMs) with human
preferences. The RLHF involves either explicitly training a reward model (RM) from human preferences
data (Ouyang et al., 2022) or implicitly using the LLM itself as one (Rafailov et al., 2024). However,
there is an inconsistency between current ways of collecting human preference data and the training
of reward models. For example, the Llama team collects fine-grained human feedback: they not only
collect the preferred response but also 4 levels named “significantly better”, “better”, “slightly better”, and
“marginally better” (Llama Team, 2024), while the post-training of Llama 3 treats “significantly better”
and “better” as the same and discard all the others. Such a process wastes the potentially useful samples
that cost the human annotators additional time and also it may loss the useful information hidden in
the preference level.

*Equal contribution. Corresponding to Shang Liu (s.liu21@imperial.ac.uk) and Yu Pan (yupan@hkust-gz.edu.cn). The
authors thank Hengzhi He and Zhongze Cai for providing helpful discussions and improvements to the manuscript.
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In this paper, we study the problem of reward modeling under ordinal feedback. Specifically, we
relate the annotator’s preference feedback with the probability that one response is better than the
other on a population level. We introduce a marginal unbiasedness assumption as the only assumption
that validates the probability setup of the ordinal feedback system. The assumption is rooted in the
sociological concept of the wisdom of the crowd. Under the assumption, we analyze the properties of the
probability model of ordinal feedback. We propose a learning objective for reward modeling with ordinal
feedback, and the objective function naturally generalizes the case of binary feedback. Theoretically, we
establish the advantage of ordinal feedback, which draws an interesting connection with the literature
on soft labeling and knowledge distillation.

Our paper is organized as follows:

(a) In Section 2, we model the general ordinal feedback by relating the feedback with the probability
that a certain response is better than the other on a population level. The binary feedback (Z =

{0, 1}) is extended to the general ordinal feedback (Z = {zj}mj=1 for 0 ≤ z1 < · · · < zm ≤ 1),
providing a way to transform the qualitative label into quantitative ones.

(b) In Section 3, we build up the probability model of ordinal feedback. We first set the oracle
probability as the standard preference model and present the only assumption (Assumption 3.1)
that the annotators in the marginal sense are giving an unbiased estimation of that oracle. Such
an assumption (which we call “wisdom of the crowd”) is only a generalization of the binary case
that regards the feedback as a Bernoulli random variable. In this light, we suggest revising the
annotation guideline by providing a direct quantitative description of the qualitative opinions.
Furthermore, under the assumption, we prove the existence and the uniqueness (up to convex
combinations) of the ordinal feedback.

(c) In Section 4, we prove the statistical benefits of the ordinal feedback. More specifically, the
Rademacher complexity is reduced if the loss function satisfies the affinity condition (which is
fulfilled by the common cross-entropy loss). Such a conclusion also holds for direct policy opti-
mization (DPO). The result is proved via a special coupling argument that we call hierarchical
expectation, which also provides a new bias-variance trade-off in knowledge distillation and soft
labeling.

(d) In Section 5, we conduct two numerical experiments. The first experiment sets up four different
ordinal feedback systems (oracle, 5-level, 3-level, and binary) and validates the theoretical findings
that fine-grained ordinal feedback benefits RM training by achieving higher accuracies in both
in-distribution (ID) and out-of-distribution (OOD) settings. The second experiment mixes the
training data with a proportion of tied and untied samples. With the same number of training
samples, we find out that a certain level of tied samples boosts RM learning.

2 Problem Setup

Consider the task of reward modeling based on the pairwise preference data. Each data sample consists
of a tuple

(x, y1, y2, z)

where x ∈ X denotes a prompt, y1, y2 ∈ Y are two candidate responses to the prompt x, and Z is a
random variable (taking values in Z) that denotes the feedback (generated by either human annotators
or advanced AI models) indicating the preference between y1 and y2. The feedback Z can be viewed as
a proxy of the probability that y1 is better than y2 for the prompt x, denoted by P(y1 ≻ y2|x).

2



The task of reward modeling thus refers to the learning of a reward function rθ(x, y) : X × Y → R
with parameter θ ∈ Θ from an annotated dataset

DZ := {(xi, yi,1, yi,2, Zi)}ni=1.

The prevalent way to relate the reward model with the preference probability is via the Bradley-Terry
model (Bradley and Terry, 1952)

P(y1 ≻ y2|x) ≈
exp

(
rθ(x, y1)

)
exp

(
rθ(x, y1)

)
+ exp

(
rθ(x, y2)

)
where we approximate the probability with the softmax reward values on the right-hand side.

Binary feedback: In the canonical setup (Bai et al. (2022); Ouyang et al. (2022) among others),
the feedback Z takes binary values, i.e., Z = {0, 1}. Here one assumes Zi is a Bernoulli random variable
such that

P(Zi = 1) = 1− P(Zi = 0) = P (yi,1 ≻ yi,2|xi) . (1)

This assumption has been the backbone of the training of many mainstream reward models.
Ordinal feedback: In this paper, we consider the setting of ordinal feedback which gives a richer

feedback structure than the binary feedback above and is defined as follows.

Definition 2.1 (Ordinal Feedback). Suppose the feedback Z takes values in Z := {z1, . . . , zm} where
0 ≤ z1 < · · · < zm ≤ 1, we call Z an ordinal feedback and Z the ordinal feedback set.

The binary feedback is a special case of the ordinal feedback by letting m = 2, z1 = 0, and z2 = 1.

The motivation for us to introduce this ordinal feedback definition is to capture the richer annotation
feedback options in practice where the annotator is allowed to choose from

Ztext = {better than, same as, worse than}

Ztext = {better than, slightly better, slightly worse, worse than}

to describe the preference between responses y1 and y2. We defer to the next section the questions of
how to match Ztext with Z and how to determine the values of z1, ..., zm in Z.

Suppose for now, we have the dataset D where Zi’s take values in Z. We propose to learn the reward
model by minimizing the following objective function

min
θ

n∑
i=1

−Zi · log (σ (rθ(xi, yi,1)− rθ(xi, yi,2)))− (1− Zi) · log (σ (rθ(xi, yi,2)− rθ(xi, yi,1))) , (2)

where σ(·) is the sigmoid function such that σ(x) = exp(x)/(1 + exp(x)).
When the feedback is binary Zi ∈ {0, 1}, the above objective function reduces to exactly how people

learn the reward models under the Bradley-Terry assumption. When the feedback is soft and takes value
in [0, 1], we will demonstrate how such a loss function characterizes the ordinal feedback options of Ztext.

Intuitively, this objective function better utilizes the annotated data and avoids the shortcomings of
two alternative heuristics: (i) Discarding all the samples annotated as “same as” for that these samples
do not integrate with the binary feedback Bradley-Terry model; → this causes loss of samples. (ii)
Combining “better than” and “slightly better” as better (and the same for worse); → this causes loss of
information.

This shift from binary to ordinal as above, though natural, raises three questions:
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- Probability: The binary feedback is rooted in the Assumption (1). What is the underlying proba-
bility model to connect Z and Ztext with the probability P (y1 ≻ y2|xi)?

- Annotation: How does the thinking process of human annotators relate to the probability model
of ordinal feedback from a social choice perspective?

- Learning: How does this ordinal feedback setup affect the learning of the reward model from a
machine-learning perspective?

In Section 3, we address the first two questions, and in Section 4, we address the last question. In
Section 5, we present numerical experiments. For the main paper, we study the reward modeling under
the cross-entropy loss as the objective function above, and in Appendix A, we discuss how the ordinal
feedback setup can be addressed under hinge loss.

3 Probability Model of Ordinal Feedback

We first define the oracle feedback model as

zoracle(x, y1, y2) := P (y1 ≻ y2|x) .

This is the preference model that one aims to learn, regardless of whether assuming the Bradley-Terry
model or whatever other preference/reward model. Here we should think the probability space being the
whole population that use the language, and a human annotator as a random draw from the population.

Assumption 3.1 (Ordinal feedback probability model – wisdom of the crowd). We assume the ordinal
feedback Z defined in Definition 2.1 satisfies

E[Z|(x, y1, y2)] = zoracle(x, y1, y2) for any (x, y1, y2) ∈ X × Y2.

The assumption is the only one we make for the ordinal feedback model. As we will see, this one
assumption alone is sufficient to define the probability model of the ordinal feedback setting and validate
the learning of the reward model. To interpret the assumption, we emphasize that it is not stricter than
the existing assumption people impose for the binary feedback model. Specifically, under the binary
feedback model where Z takes values in Z = {0, 1}, Assumption 3.1 is equivalent to the Assumption (1).

To see another example, consider the set Z = {0, 0.5, 1} where the labels 0 and 1 denote “better”
and “worse” respectively, and the label 0.5 denotes “same as”. The assumption then requires that with Z

taking values in this new Z with an additional 0.5 option, its expectation matches the oracle value zoracle

on the sample. Under the general ordinal feedback setting, human annotators label their preferences on
different scales, i.e.,

Z = {0, 1}, {0, 0.5, 1}, or {0, 0.25, 0.5, 0.75, 1}.

The assumption says that the change of scales does not introduce bias that twists the oracle preference
on the population level.

Sociological interpretation: We name the assumption by “wisdom of the crowd”; the concept was
first coined by the article Vox Populi (Galton, 1907) for a social experiment under the title “the voice
of the people”. The social experiment is about a weight-judging competition conducted in England for
random people to guess the weight of an ox. The average of all 787 guesses was 1,197 pounds, while the
actual weight was 1,198 pounds, as shown in Figure 1. Each individual’s guess can be far off the target yet
the population average tends to be very accurate. For the context of preference annotation, Assumption
3.1 and the current practice of human annotation exercise the wisdom of the crowd in two folds: First,
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each individual annotator has no access to the population preference zoracle, but their annotation can
be viewed as an unbiased random realization of zoracle. Second, such unbiasedness does not change if a
difference annotation scale Z (feedback set) is used.

Figure 1: Wisdom of the crowd. Left: Each individual guess can be far off the target for an ox-weight-guessing
social experiment, but the average tends to be very accurate. Each human annotator has not access to the
population oracle preference model zoracle, but their annotation constitutes an unbiased realization of zoracle.

3.1 Implications on annotation guidance

In practice, annotators label in the set Ztext (e.g. {better, same as, worse}), and this results in a gap
towards the set Z = {z1, ..., zm} used in the learning of the reward model (2). For the binary or 3-level
feedback setting, the following conversion is natural and reflects the thinking process of the annotator:

Ztext = {better than, worse than} ⇔ Z = {0, 1},

Ztext = {better than, same as, worse than} ⇔ Z = {0, 0.5, 1}.

For a more fine-grained 5-level feedback setting, it is less clear whether one can convert as follows,

Ztext = {better than, slightly better, same, slightly worse, worse than} ⇔ Z = {0, 0.25, 0.5, 0.75, 1}.

In this light, our ordinal feedback model and Assumption 3.1 provide the following insights in guiding
the annotations. Rather than to provide vague wording of “better than” or “sightly better”, one can write
the following in the guidance to the human annotators:

Annotation guideline: The label “slightly better” represents that 75% of the population think re-
sponse y1 is better than response y2. The label “slightly worse” represents that 25% of the population
think response y1 is better than response y2.

Such an additional guidance endows the labels in Ztext a numerical meaning. The corresponding
numerical values can be directly used in the learning objective (2).
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3.2 Universal existence of feedback probability model

In this subsection, we detour from the discussions of reward modeling and show the universal existence
of probability models that satisfy Assumption 3.1, which ensures the assumption is well-defined. The
following theorem states that for any ordinal feedback set Z and any oracle model zoracle, there exists a
probability model satisfying Assumption 3.1.

Theorem 3.2. For any ordinal feedback set Z = {z1, . . . , zm} and any oracle model zoracle(x, y1, y2), one
can construct an ordinal feedback Z as a random variable that satisfies Assumption 3.1 in the following
way. Specifically, if zoracle ∈ [zj , zk] for some j, k ∈ [m], then one can set the marginal probability
measure µj,k(z) := P(Z = z|(x, y1, y2)) to be

µj,k(z) =


(zk − zoracle)

/
(zk − zj), if z = zj ,

(zoracle − zj)
/
(zk − zj), if z = zk,

0, otherwise.

The ordinal feedback Z fulfills Assumption 3.1.
On the other hand, any ordinal feedback satisfying Assumption 3.1 must be a convex combination

of such constructions. More specifically, for any ordinal feedback Z with marginal probability mea-
sure µ(z) := P(Z = z|(x, y1, y2)) satisfying Assumption 3.1, there must exist non-negative real numbers∑

j,k αj,k = 1 such that
µ =

∑
j,k

αj,k µj,k,

where the summation is made for all (j, k) pairs such that zoracle ∈ [zj , zk].

The theorem not only verifies the existence of a probability distribution that satisfies Assumption
3.1, but also provides a full characterization of all the distributions that satisfy the assumption. It says
that all such distributions should be (convex combinations of) some two-point distributions, where the
weights are assigned to interpolate the linear systemµj,k(zj) · zj + µj,k(zk) · zk = zoracle,

µj,k(zj) + µj,k(zk) = 1.

For example, consider a reward model with ties where Z = {0, 0.5, 1}. If the oracle feedback is, say, 0.8,
then we can construct a feedback Z with probability masses µ(0.5) = 0.4 and µ(1) = 0.6 such that the
unbiased assumption is fulfilled. In this way, if we are (in an ideal world) given an oracle model zoracle,
we can generate different unbiased ordinal feedback problem models accordingly.

4 Statistical Benefits of Ordinal Feedback

Intuitively, the more fine-grained ordinal feedback offers more information and should bring more benefits
to the learning of a reward model. In this section, we provide a theoretical explanation that pinpoints the
benefits, which are not restrictive to the traditional RLHF but also applicable to DPO. The theory not
only captures the benefits of the ordinal feedback model but also provides insights into the technique of
soft labeling in knowledge distillation (Ba and Caruana, 2014; Hinton, 2015; Müller et al., 2019; Phuong
and Lampert, 2019; Yuan et al., 2020; Zhou et al., 2021), which can be of independent interests. In short,
the theoretical result says that any feedback model satisfying Assumption 3.1 brings statistical benefits
compared to the canonical binary feedback model.
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Before we proceed, we introduce the following definition for the loss function.

Definition 4.1 (Feedback Affinity). We say a loss function ℓ(Z, z) is affine to the feedback random
variable Z if it is affine to Z for any z ∈ [0, 1]. In other words,

EZ

[
ℓ(Z, z)

]
= ℓ

(
E[Z], z) for any z ∈ [0, 1]. (3)

Such an affinity condition is not a restrictive one. The two commonly used loss functions, the cross-
entropy loss and (a generalized version of) the hinge loss, both satisfy the feedback affinity. We defer
the detailed definitions of the loss functions and the proof of the following proposition to Appendix B.2.

Proposition 4.2. The cross-entropy loss and the hinge loss satisfy the feedback affinity in Definition
4.1.

The following proposition says that two ordinal feedback systems lead to the same population loss if
both of them satisfy Assumption 3.1 and the underlying loss function satisfies feedback affinity.

Proposition 4.3. For any two ordinal feedback Z and Z ′ both satisfying Assumption 3.1, if the loss
function ℓ satisfies the affinity condition (3), then for any hypothesis class H, we have

Ex,y,Z

[
ℓ
(
Z, h(x, y1, y2)

)]
= Ex,y,Z′

[
ℓ
(
Z ′, h(x, y1, y2)

)]
, ∀h ∈ H.

The function h can be viewed as the reward model function that maps the prompt-responses sam-
ple (x, y1, y2) into a preference prediction. The proposition implies that any feedback structure under
Assumption 3.1 leads to the same population loss, and thus justifies the assumption from a learning
perspective.

4.1 Finite-sample benefits

While the population loss establishes an equivalence between different feedback systems in an asymptotic
sense, we illustrate the finite-sample benefits of a more fine-grained ordinal feedback system in the
following. We first introduce the concepts of coupling and hierarchical expectation.

Definition 4.4 (Coupling). For any two random variables ξ and ξ′, if there exist two random variables
ζ and ζ ′ over one probability space such that ζ has the same distribution as ξ and ζ ′ the same as ξ′, we
call them a coupling of ξ and ξ′.

Definition 4.5 (Hierarchical Expectation). For any two ordinal feedback systems Z and Z ′ taking values
in Z and Z ′ over the same probability space (Ω,F ,P), if there exists a combination of random variables
(W,W ′) over a probability space (Ω0,F0,P0) such that

(a) (W,W ′) forms a coupling between Z and Z ′;

(b) W = E[W ′|W ] holds almost surely.

Then we say that Z is a hierarchical expectation of Z ′.

The concept of hierarchical expectation defines the relative granularity of the feedback system. In
general, if Z is a hierarchical expectation of Z ′, then we say Z is more fine-grained than Z ′ since Z

allows annotators to give more subtle responses. Such an intuition is further exemplified in the following
proposition, the proof of which also echoes the universal existence result in Theorem 3.2.
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Proposition 4.6 (Existence of Hierarchical Expectation). For any two ordinal feedback systems Z and
Z ′ taking values in Z and Z ′ over the same probability space (Ω,F ,P), suppose the marginal distribution
of Z is of measure µ =

∑
zi∈Z αiδzi and that of Z ′ is µ′ =

∑
z′
i∈Z′ α′

iδz′
i
, where δ(·) is the Dirac delta

distribution. If there exist real numbers βj,k ∈ [0, 1] such that

(a) zj is a convex combination of z′k’s with coefficients βj,k’s. That is,∑
k,z′

k∈Z′ βj,k = 1 and
∑

k,z′
k∈Z′ βj,kz

′
k = zj for any zj ∈ Z;

(b)
∑

j,zj∈Z βj,kαj = α′
k for any z′k ∈ Z ′;

Then Z must be a hierarchical expectation of Z ′. On the other hand, if Z is a hierarchical expectation
of Z ′ according to coupling (W,W ′) on (Ω0,F0,P0), then there must exist real numbers βj,k ∈ [0, 1]

satisfying the above requirements by setting βj,k = P0(W
′ = z′k|W = zj).

The following corollary gives some concrete examples (perhaps the most popular ones).

Corollary 4.7. Suppose Z and Z ′ are two ordinal feedback sets satisfying Assumption 3.1. Then Z is
always a hierarchical expectation of Z ′ if any one of the following two condition holds:

(a) Z is the oracle model such that Z = zoracle;

(b) Z ′ is the binary feedback such that Z ′ = {0, 1}.

With these above definitions, we are ready to characterize the finite sample properties of different
ordinal feedback systems through the lens of Rademacher complexity.

Definition 4.8 (Rademacher Complexity). Let DZ = {(xi, yi,1, yi,2, Zi)}ni=1 be a dataset with Z taking
values in Z. Consider a hypothesis class H of real-valued functions over X × Y2 and a loss function ℓ.
Then, the empirical Rademacher complexity is defined as

RadDZ (ℓ ◦ H) :=
1

n
Eε

[
sup
h∈H

n∑
i=1

εiℓ
(
Zi, h(xi, yi,1, yi,2)

)]
,

where εi’s are independent random variables all taking values in {+1,−1} with equal chances. By
assuming that (xi, yi,1, yi,2, Zi)’s are i.i.d. and taking expectations over the entire distribution P, we
have the Rademacher complexity as

RadZ,n(ℓ ◦ H) := EDZ∼Pn

[
RadDZ (ℓ ◦ H)

]
.

The following theorem says that a more fine-grained feedback system leads to a smaller Rademacher
complexity for any hypothesis class H, where setting H = {rθ|θ ∈ Θ} yields the results in RM learning.
We include how the Rademacher complexity consequently affects the generalization bound to Appendix
B.9 for completeness.

Theorem 4.9. Suppose the loss function ℓ satisfies the affinity to feedback condition (3) and H is a
hypothesis class of real-valued functions over X × Y2. For any two ordinal feedback systems Z and Z ′

taking values in Z and Z ′ such that Z is a hierarchical expectation of Z ′, we have

RadZ,n(ℓ ◦ H) ≤ RadZ′,n(ℓ ◦ H).

As a consequence, the following corollary states that any feedback system that satisfies Assumption
3.1 can be viewed as somewhere in the middle of the binary feedback system and the ideal oracle
feedback system zoracle. It is impossible to access the population preference model zoracle through human
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annotators in practice, but any ordinal feedback system provides more fine-grained information and leads
us towards zoracle.

Corollary 4.10 (Ordinal feedback always better than binary). Suppose Z is an ordinal feedback taking
values in Z and Z ′ is a binary feedback in Z ′ = {0, 1} over the same probability space. If they both satisfy
Assumption 3.1 and the loss function ℓ satisfies condition (3), then

RadZoracle,n(ℓ ◦ H) ≤ RadZ,n(ℓ ◦ H) ≤ RadZ′,n(ℓ ◦ H).

4.2 Generalizations to DPO

Our results naturally extend to the direct policy optimization (DPO) (Rafailov et al., 2024) case. We
first give a quick introduction to the DPO training objective. Suppose the ground-truth reward function
for any prompt-response pair (x, y) is r∗(x, y). Then under the reinforcement learning objective of
maximizing the reward (with a Kullback-Leibler divergence regularization of strength β from the original
policy πref), the optimal policy under the ground truth reward function r∗ should be

π∗(y|x) ∝ πref(y|x) · exp
(
1

β
r∗(x, y)

)
.

Under the Bradley-Terry model, we have

P(y1 ≻ y2|x) = σ

(
β log

π∗(y1|x)
πref(y1|x)

− β log
π∗(y2|x)
πref(y2|x)

)
,

where the σ(·) is the sigmoid function σ(x) = exp(x)/(1 + exp(x)). Then the DPO training objective is
to minimize the cross-entropy loss under the binary feedback setting

min
θ

n∑
i=1

− Zi · log
(
σ

(
β log

πθ(yi,1|xi)

πref(yi,1|xi)
− β log

πθ(yi,2|xi)

πref(yi,2|xi)

))
− (1− Zi) · log

(
σ

(
β log

πθ(yi,2|xi)

πref(yi,2|xi)
− β log

πθ(yi,1|xi)

πref(yi,1|xi)

))
. (4)

By considering a richer feedback than the binary case Z = {0, 1}, we can use (4) to train the LLM
πθ directly under the ordinal feedback. The affinity condition (3) is fulfilled since the loss is still the
cross-entropy loss. Thus, applying Theorem 4.9 for Π = {πθ, θ ∈ Θ} yields a similar result. We present
here without repeating the proof.

Corollary 4.11. Consider the corresponding loss function ℓ in the training objective (4) and a policy
class Π = {πθ, θ ∈ Θ}. For any two ordinal feedback systems Z and Z ′ taking values in Z and Z ′ such
that Z is a hierarchical expectation of Z ′, we have

RadZ,n(ℓ ◦Π) ≤ RadZ′,n(ℓ ◦Π).

4.3 Implications on soft labeling

As noted earlier, the results developed above also have implications on the technique of soft labeling,
which we elaborate on in this subsection. Specifically, we show how the analysis can be applied to the
context soft labeling and induces a novel bias-variance trade-off for knowledge distillation.

For general k-nary classification problems, the standard feedback (labeling of the target variable) is a
k-dimensional one-hot vector. However, these all-zero-but-one labels make the model overfit easily from
a training perspective. Knowledge distillation (Hinton, 2015) is a well-known technique first developed
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in computer vision to regularize the model from fitting the noises. The original data is used to train
a teacher model of which the predictions are named soft labels. Then a student model is trained to
mimic the predictions of the teacher model, that is, minimizing the training loss against the soft labels
generated by the teacher model rather than the original ones. Such a distillation regularizes the student
model from overfitting and overconfidence.

Existing theoretical works (Phuong and Lampert, 2019; Zhou et al., 2021) are developed to understand
the benefits of knowledge distillation and soft labeling. Our theoretical perspective in the preceding
subsection provides a new perspective on that problem. In a word, the trained teacher model could be
viewed as one (possibly biased) oracle feedback, and learning from the oracle eases the overfitting via
reducing the labeling variance (and hence a smaller Rademacher complexity). More concretely, consider
the following four learning paradigms:

(a) Oracle/ideal: learn from oracle labeled samples (denoted as (x, yoracle)’s in this subsection). The
oracle yoracle is the conditional expectation of the label y.

(b) Original: learn from the original samples (denoted as (x, y)’s in this subsection), where we regard
y as a randomly sampled label according to y ∼ yoracle.

(c) Knowledge distillation: learn from the teacher model T ’s output (denoted as (x, ȳT )’s in this
subsection). The labels ȳT ’s are random vectors of which the randomness comes from the teacher
model T .

(d) Sampling from teacher: learn from the teacher model, but not directly from ȳT ; instead, we use a
sampled label yT ∼ ȳT . This introduces more randomness in the labeling process.

What is the “bias-variance” tradeoff in the learning paradigm (c)? First, yoracle shares the same
conditional expectation with y, and so do ȳT and yT , where their population cross-entropy losses are the
same due to the affinity condition (3). The “bias” comes from ȳT as an imperfect estimation of yoracle,
leading to different population losses, while training according to (c) or (d) introduces an additional loss
in the original population loss. That is the “bias” term

Bias := ET

[
Ex,y′

[
ℓ(y′, h∗

T (x))
]
− Ex,y′

[
ℓ(y′, h∗(x))

]]
≥ 0,

where we set y′ to be i.i.d. as y to prevent the dependence of T on y, and

h∗
T := argmin

h∈H
Ex,ȳT

[
ℓ(ȳT , h(x))

]
, h∗ := argmin

h∈H
Ex,y

[
ℓ(y, h(x))

]
,

are the corresponding hypotheses minimizing the population losses.
As for the variance, we can directly see from the construction that ȳT (or yoracle) is a hierarchical ex-

pectation of yT (or y), thus learning paradigm (c) (or (a)) has a lower Rademacher complexity compared
to that of (d) (or (b)):

RadyT (ℓ ◦ H)− RadȳT (ℓ ◦ H) ≥ 0 for any T , Rady(ℓ ◦ H)− Radyoracle(ℓ ◦ H) ≥ 0,

where the subscript of the Rademacher complexity denotes the source distribution of the label. However,
such an argument does not directly compare the Rademacher complexity of the original learning paradigm
(Rady) with that of the knowledge distillation (RadȳT ). To explicitly show that the “variance” is reduced,
we make the following assumption that the marginal output of the teacher model is unbiased:
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Assumption 4.12 (Soft-labeling version of Assumption 3.1). We assume that the teacher model is
marginally unbiased. That is,

ET [ȳT |x] = yoracle(x).

Here T is the teacher model trained from original labels y’s. The randomness of T comes from the
randomness of y’s and the training procedure (e.g. random seeds).

In general, the learned teacher model outputs ȳT ’s are biased estimations of yoracle’s, and the biases
are towards the original labels y’s (in the extreme case where T interpolates all the labels, we have
ȳT = y). We note that the assumption only requires an unbiasedness in a marginal sense, that those
biases cancel out each other in the marginal sense. We have the following with the assumption (as an
analogy of Assumption 3.1).

Theorem 4.13. Under Assumption 4.12 and the cross-entropy loss, we have

Reduced variance := Rady(ℓ ◦ H)− RadȳT (ℓ ◦ H) ≥ 0.

In this light, the notion of hierarchical expectation and the reduced Rademacher complexity in The-
orem 4.13 render a new bias-variance tradeoff for the knowledge distillation methods. Compared to that
of Zhou et al. (2021), our approach theoretically shows the variance is always reduced by introducing
the soft labels, while Zhou et al. (2021) makes the reduction an assumption and verifies it empirically.

5 Numerical Experiments

We perform numerical experiments to answer two questions: (i) How do different granularities of the
feedback model affect the learning of the reward model? (ii) Does the inclusion of these ordinal feedback
data with the objective (2) benefit the learning of the reward model?

5.1 Experiment Settings

Datasets. In the following numerical experiments, we leverage the Skywork-Reward-Preference-80K-
v0.2 dataset (Liu et al., 2024a) as our base training dataset. We perform multiple runs and report the
average performance (along with the confidence intervals); for each run, we randomly sample a 1024-sized
subset as the hold-out evaluation dataset. In addition, we use the RewardBench dataset (Lambert et al.,
2024) for the out-of-distribution evaluation task to comprehensively assess the performance of different
trained models. More details can be found in Appendix C.1.

Base Models. Our base models for the following experiments are llama-3.2-1b-instruct (Dubey
et al., 2024) and gemma-2-2b-it (Team et al., 2024). Both models are trained under full-parameter
fine-tuning. For the training parameters and other details, we refer to Appendix C.2.

Ordinal Feedback. The original Skywork-Reward-Preference-80K-v0.2 dataset only contains a
binary feedback for each prompt x and a response pair y1 and y2. To generate feedback labels with
different levels of granularities, we adopt a well-trained reward model, Skywork-Reward-Gemma-2-27B-
v0.2 (Liu et al., 2024a), as the oracle scoring model roracle : X ×Y → R in this case. We chose this model
because (1) it was exclusively trained on the to-be-labeled base training dataset hence there is hardly a
risk of out-of-distribution mislabeling; (2) the model ranks first on the RewardBench online leaderboard
up to the time of this paper, making its output oracle scores more reliable. Accordingly, the induced oracle
model being zoracle(x, y1, y2) = σ((roracle(x, y1)− roracle(x, y2))/T ) where T is a temperature parameter
and σ(·) denotes the sigmoid function.

We consider the following four types of feedback systems:
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• Oracle: zoracle is directly used as the feedback label and Zoracle ⊂ [0, 1].

• Binary: the label is sampled by Zbinary ∼ Bernoulli(zoracle) and Z2 = {0, 1}.

• 3-level: the label is sampled as the process in Theorem 3.2 considering only the smallest interval
containing zoracle and Z3 = {0, 0.5, 1}.

• 5-level: the label is sampled as the process in Theorem 3.2 considering only the smallest interval
containing zoracle and Z5 = {0, 0.2, 0.5, 0.8, 1}.

We provide a label histogram in Appendix C.1. We adopt the objective function (2) to train the
reward model.

5.2 Fine-grained feedback leads to better reward learning

As discussed earlier, a more fine-grained feedback system should intuitively and theoretically lead to
better reward learning. For the four feedback models listed above, they should have the following orders
in terms of performance:

Oracle ≥ 5-level ≥ 3-level ≥ Binary

where ≥ represents an advantage in model performance.
Here we perform numerical experiments to verify such intuitions and for each combination of the

reward model and feedback system, we conduct 5 independent training runs and report the average
results. For the setting of learning with oracle feedback, we set

Zi = P (yi,1 ≻ yi,2|xi) = zoracle(xi, yi,1, yi,2)

in the learning objective (2). For more fine-grained ordinal feedback, we sample the feedback according
to Section 5.1.

Table 1 and Figure 2 summarize the experiment results which are aligned with the findings in the
previous sections. Three take-away messages are: First, a more fine-grained feedback structure leads to
better reward learning for both in-distribution (ID) and out-of-distribution (OOD) performance. Second,
though we do not have access to the oracle model in practice, the 5-level feedback system provides a
good proxy for that. Third, the learning objective (2), as a generalization of the canonical cross-entropy
loss for binary feedback, is an effective one to handle the ordinal feedback data.

Model Feedback Oracle CE Loss ID Accuracy OOD Accuracy

Mean Std Mean Std Mean Std

Llama

Oracle 0.5711 0.0020 0.9382 0.0037 0.8193 0.0016
5-level 0.5714 0.0019 0.9372 0.0040 0.8100 0.0013
3-level 0.5715 0.0021 0.9359 0.0044 0.8016 0.0034
Binary 0.5736 0.0024 0.9329 0.0044 0.7667 0.0012

Gemma

Oracle 0.5698 0.0018 0.9401 0.0031 0.8697 0.0072
5-level 0.5704 0.0016 0.9371 0.0082 0.8584 0.0107
3-level 0.5704 0.0018 0.9381 0.0083 0.8580 0.0016
Binary 0.5709 0.0021 0.9368 0.0074 0.8237 0.0101

Table 1: Model convergence statistics under different feedback models. ID stands for in-distribution. OOD
stands for out-of-distribution. The ID and OOD datasets are in Section 5.1. The oracle CE loss is computed by
adopting zoracle as Zi regardless of the feedback type.
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(a) In-distribution (ID) accuracy/llama models (b) In-distribution (ID) accuracy/gemma models

(c) Oracle CE loss/llama models (d) Oracle CE loss/gemma models

Figure 2: The evaluation dynamics of llama and gemma models for different ordinal feedback labels.

5.3 Ordinal feedback v.s. binary feedback

Now we restrict our attention to the 3-level feedback setting and investigate the effect of the proportion
of the tied data (samples with labels of y1 “same as” y2). Specifically, we limit the training samples to
32,768 and consider 5 different proportions of the tied data:

• 0%-tied: All the data samples are binary-labeled.

• 25%, 50%, 75% of the data samples are tied.

• 100%-tied: All the data samples are tied.

More details of how the tied data samples are generated are deferred to C.1.
Table 2 and Figure 3 summarize the experiment results. We make the following observations. First,

the 100%-tied setting fails in that it results in a significantly worse performance than the other settings.
This is natural as it leads to a reward collapse, as also observed in other semi-supervised learning
algorithms; to see this, if we are given only the tied data, one way to learn the reward model is to have
all the rewards equal to a constant. Second, mixing a proportion of the tied data and using the learning
objective function (2) leads to a better performance than the case of 0%-tied data. One subtle point
here is that, in practice if we do not employ the learning objective (2) and simply drop the tied samples,
this will result in a smaller sample size for learning the reward model, and an even worse performance
than the 0%-tied setting here. Third, if we look into the training dynamics of Figure 3, we can see that
the curves with tied data samples are smoother than the ones with 0%-tied samples. This means the
inclusion of the tied samples also leads to a smoother loss landscape.
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Recent works (Chen et al., 2024; Liu et al., 2024b) have noticed the importance of incorporating tied
samples and employed the Rao-Kupper model (Rao and Kupper, 1967), or the Bradley-Terry model with
Ties (BTT) abbreviated by Liu et al. (2024b), for preference modeling and to explore the benefits of
leveraging ties. The BTT model represents preference probabilities as follows:

P(y1 ≻ y2 | x) ≈
exp

(
rθ(x, y1)

)
exp

(
rθ(x, y1)

)
+ λ exp

(
rθ(x, y2)

) ,
P(y1 ∼ y2 | x) ≈

(λ2 − 1) exp
(
rθ(x, y1)

)
exp

(
rθ(x, y2)

)(
exp

(
rθ(x, y1)

)
+ λ exp

(
rθ(x, y2)

)) (
λ exp

(
rθ(x, y1)

)
+ exp

(
rθ(x, y2)

)) ,
where y1 ∼ y2 denotes a tie between y1 and y2 and λ ≥ 1 is a threshold hyperparameter that controls the
likelihood of assigning ties. Notably, when λ = 1, the BTT model reduces to the canonical BT model.

While the BTT model appears promising for accommodating ties, it is not well-suited for preference
learning. First, the BTT model introduces an additional hyperparameter λ that needs to be tuned,
while involving such a more complicated model is unnecessary in reward model learning. The BTT
model exactly outputs a term to predict the tied probability, which is useful when predicting football
games where the ties have real-world implications. However, the ultimate goal of the RM training is
to provide a reference feedback function for the following RLHF step to align the LLM with human
preferences: the learned RM need not exactly predict the probability of a tie but only capture the overall
trending of human preferences. The complicated BTT model is unnecessary for RM learning. Second,
the BTT model is only designed for the 3-level feedback case, which is not enough for the richer feedback
system that has already been adopted by those LLM companies. Generalizing the BTT model to the
5-level case is much more sophisticated. There should be other 2 hyperparameters like λ to build the
5-level model. Tuning those 3 hyperparameters together may be very difficult and time-consuming. As
a comparison, our ordinal feedback generalizes naturally to all levels without introducing any additional
hyperparameters. Our work is even not limited to the BT model and can be naturally applied to other
probability models of preferences.

Model Tied Ratio Oracle CE Loss ID Accuracy OOD Accuracy

Mean Std Mean Std Mean Std

Llama

0% 1.0421 0.0363 0.9224 0.0080 0.7661 0.0182
25% 0.3327 0.0051 0.9341 0.0173 0.7672 0.0093
50% 0.4187 0.0043 0.9336 0.0014 0.7545 0.0082
75% 0.5339 0.0052 0.9268 0.0180 0.7749 0.0008
100% 0.6931 0.0017 0.3428 0.0677 0.4424 0.0393

Gemma

0% 6.4762 0.3392 0.9355 0.0041 0.8319 0.0080
25% 0.6031 0.0019 0.9467 0.0117 0.8487 0.0100
50% 0.5775 0.0001 0.9526 0.0075 0.8277 0.0006
75% 0.6122 0.0006 0.9521 0.0069 0.8236 0.0084
100% 0.6931 0.0001 0.4814 0.0055 0.4928 0.0158

Table 2: Model convergence statistics under different tied data ratios. The evaluation dataset remains
fixed across all ratio settings and is directly sampled from the original dataset, ensuring its distribution
closely matches that of the whole dataset.
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(a) ID accuracy/llama models (b) ID accuracy/gemma models

(c) Oracle CE loss/llama models (d) Oracle CE loss/gemma models

Figure 3: The evaluation dynamics of llama and gemma models for different tied data ratios. The 100%-
tied case is not plotted as it would detract from the clarity and readability of the plot due to its failure.

6 Related Works

Reinforcement learning from human feedback (RLHF) originates from the idea of preference-based rein-
forcement learning (Cheng et al., 2011; Akrour et al., 2011). The term RLHF is proposed by the large
language model (LLM) community and has been a mainstream framework for aligning LLMs with human
preferences (Askell et al., 2021; Ouyang et al., 2022). For a more detailed survey of the history of RLHF,
we refer to Kaufmann et al. (2023). While many people have incorporated the supervised fine-tuning
(SFT) stage as a part of the RLHF pipeline (Ziegler et al., 2019; Ouyang et al., 2022; Ji et al., 2023),
our discussion would focus on the reward modeling and policy optimization via reinforcement learning
(RL) which take a supervised fine-tuned model as the starting point.

Although proven effective for aligning LLMs with human preferences, the canonical RLHF suffers
in several aspects, including complicated implementation, difficult hyperparameter tuning, low sampling
efficiency (Choshen et al., 2019) and computational overhead (Yuan et al., 2024), which promotes the
studies to optimize with the relative preferences without depending on RL. One major alternative to
the RLHF is the direct policy optimization (DPO) proposed by Rafailov et al. (2024), which directly
trains the language model to increase the probability of the preferred response and decrease the other.
Wang et al. (2023) discuss the influence of f -divergence as the constraint term in PPO and proposes
f -DPO. Azar et al. (2024) consider a general learning objective under pair-wise preferences, i.e., ΨPO,
points out the potential overfitting issue in RLHF and PPO, and further mitigates the problem with
a specific instance of ΨPO, i.e., IPO. Zeng et al. (2024b) investigate the optimization at a finer level
and employs forward KL divergence constraints for each token to improve the alignment. There are also
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some methods (Xu et al., 2024; Ethayarajh et al., 2024) that try to skip the SFT stage to lower the
costs and mitigate the issues while directly imitating the reference data. Liu et al. (2023) use statistical
rejection sampling to address the mismatch between the training data and optimal policy data, hence
enhancing the preference data collection. Amini et al. (2024) propose DPO with an offset (ODPO)
that takes the preference strength into consideration, which forces the language model to separate the
probabilities of two responses in the training dataset by an offset. Compared to our work, the authors
do not theoretically prove the benefits of considering the reference strength, and their proposal requires
tuning the offset.

Parallel to previously mentioned efforts to overcome the dependence on RL, researchers also directly
optimize the policy under different loss functions with different types of preference data. We list some
efforts non-exhaustively here, including RAFT (Dong et al., 2023a), SLiC (Zhao et al., 2023), LiPO
(Liu et al., 2024c), RRHF (Yuan et al., 2024), and PRO (Song et al., 2024). For pairwise comparison
data, Zhao et al. (2023) propose a hinge type loss to encourage the LLM to output the chosen sequence
more likely than the rejected one. For those list data that compare many different responses, Dong
et al. (2023a) select the best response and fine-tunes the LLM on those best-of-K data. Yuan et al.
(2024) adopt the ranking loss in the same spirit of increasing the preferred sequence’s likelihood and
summing up all the pairwise comparisons. Song et al. (2024) replace the pairwise comparison with the
preferred one against the remaining responses and recursively iterate from the most preferred one to
the second-least preferred. All those ranking-based methods are purely based on the relative positions
without considering the preference strength, and forcing a rank among nearly tied responses introduces
additional noise. To mitigate this issue, Liu et al. (2024c) apply the LambdaLoss (Burges et al., 2006) to
build a LiPO-λ objective that takes the preference strength into the weights of the ranking loss. However,
the proposed method has two drawbacks. First, the loss is heuristically defined and lacks theoretical
guarantees. Second, the requirement of labeling each response with a quantitative reward is not easy for
human annotators: on the contrary, the initial motivation behind the RLHF method is to train a reward
model by pure comparison data to avoid asking human annotators to quantify a reward precisely. In
contrast, our ordinal feedback only requires the human annotators to calibrate the qualitative comparison
with a quantity.

With the rapid development of optimization frameworks, some scholars notice the issue of diverse
preferences in reward modeling, not only in the field of LLM (Dong et al., 2023b). Zeng et al. (2024a)
propose a multi-objective reward learning method (MORE) to calibrate the reward models with the
shared preferences and enhance alignment performance. Chakraborty et al. (2024) introduce a MaxMin
alignment objective to learn a mixture of diverse preference mixtures and greatly improve the overall
performance. Wang et al. (2024a) employ the multi-objective reward modeling and models the preferences
of users, implementing a better objective control. Wang et al. (2024b) enhance the interpretability and
performance of reward models by combining multi-objective reward modeling and mixture-of-experts
techniques. Different from these works, our method considers a more practical scenario without requiring
multiple labels for preference pairs and constructs the probability model for the single objective preference
learning.

Two recent works (Chen et al., 2024; Liu et al., 2024b) incorporate the tied samples into the learning
of the reward model by considering some generalized versions (Rao and Kupper, 1967; Davidson, 1970)
of the Bradley-Terry model (Bradley and Terry, 1952). By introducing a more complicated model, they
enable the reward model to predict three probabilities: better, worse, and tied. The authors directly use
the cross-entropy loss for the trinary classification for the RM learning. As a comparison, our ordinal
feedback is more general and not limited to the Bradley-Terry model and the 3-level feedback. We also
avoid introducing additional hyperparameters and keep the original training paradigm.
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7 Conclusion

In this paper, we propose reward modeling with ordinal feedback as a generalization of the binary
feedback. Such a framework fully uses the potentially useful samples and the fine-grained information
discarded by the binary feedback practice. We generalize the assumption of the BT model to the
general marginal unbiasedness assumption, which we name by a sociological concept “wisdom of the
crowd”. Under that assumption, we build a natural probability model for ordinal feedback. We also
show that the Rademacher complexity is reduced by adopting ordinal feedback. The results also cover
other loss functions (for example, the hinge loss) and other paradigms (for example, DPO). Numerical
results validate the theoretical findings. Further experiments imply that mixing some tied preference
samples benefits RM learning, which may be worth future exploration. Our results suggest that the
annotation guideline should encourage the quantitative description (for example, 70%) of the qualitative
option (for example, “slightly better”). Our theoretical analysis based on hierarchical expectation may
be of independent interest to the field of knowledge distillation, providing a novel bias-variance trade-off
perspective.
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A Reward Modeling with Ordinal Feedback under Hinge Loss

In the main paper, we focus on reward modeling with ordinal feedback under the cross-entropy loss. Here
we extend the analysis to the case of hinge loss. Recall that the learning objective (2) in the main paper
can be interpreted as an induction of the cross-entropy loss based on the Bradley-Terry model. Given the
probabilistic model of ordinal feedback, the learning objective can naturally be extended to incorporate
other types of loss functions. Among these, hinge loss (Schölkopf et al., 2004) is one of the most widely
used, particularly in classification tasks, alongside cross-entropy loss. Hinge loss is commonly associated
with Support Vector Machines (SVM) and is characterized by its core principle of enforcing a margin
between distinct classes. Building on this observation, we define the learning objective under hinge loss
as follows:

min
θ

n∑
i=1

Zi · [max (0, C − (rθ(xi, yi,1)− rθ(xi, yi,2)))]+(1−Zi) · [max (0, C − (rθ(xi, yi,2)− rθ(xi, yi,1)))] ,

(5)
where C is the margin hyperparameter that controls the separation between preference classes. When
the feedback is binary, i.e., Zi ∈ {0, 1}, the above objective simplifies to the hinge loss commonly used
in reward modeling (Liu et al., 2024a). In our experiments, the margin parameter is tuned with grid
search, where the search space is {0.5, 1, 2, 4}, and we select C = 2.

To further validate the conclusions presented in Section 5, we conduct analogous experiments under
the learning objective (5). The feedback in the oracle feedback setting is still kept as

Zi = P (yi,1 ≻ yi,2|xi) = zoracle(xi, yi,1, yi,2)

just as the cross-entropy setting. The feedback in the 5-level/3-level/binary settings is sampled as the
process in Theorem 3.2 by considering only the smallest interval [zj , zj+1] ∋ zoracle. We then replicate the
experimental setup from Section 5.2, employing llama-3.2-1b-instruct as our base model. The experiment
results are reported in Figure 4 and Table 3.

Experiments illustrate the same three conclusions in Section 5.2: (i) more fine-grained feedback
structures result in better learning for both ID and OOD performance; (ii) the fine-grained feedback
(e.g. 5-level) may be a good proxy for the oracle; (iii) the generalized hinge loss handle the feedback
richer than binary well.

Apart from the observations analogous to Section 5.2, we observe that the hinge objective performs
weaker than the cross-entropy objective. We attribute this outcome to two key factors. First, the margin
hyperparameter C significantly impacts the model’s convergence speed and overall performance, which
we only tune with a coarse grid due to computational constraints. Second, the inherent nature of the
hinge objective means that only a specific subset of data points influences the final decision boundary.
In contrast, the cross-entropy objective leverages the entire dataset during optimization. Given the
complexity of language modeling and the intricacies of semantic space, we hypothesize that preference
data embeddings are distributed in a noisy and overlapping manner such that the decision boundary
may not be effectively established under the hinge objective.
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(a) ID accuracy (b) Oracle GH loss

Figure 4: The evaluation dynamics of llama models for different ordinal feedback labels under generalized
hinge loss.

Model Feedback Oracle CE Loss ID Accuracy OOD Accuracy

Mean Std Mean Std Mean Std

Llama

Oracle 0.6030 0.004 0.9359 0.0036 0.7798 0.0076
5-level 0.6046 0.0003 0.9345 0.0076 0.7660 0.0068
3-level 0.6037 0.0003 0.9326 0.0068 0.7617 0.0163
Binary 0.6072 0.0005 0.9322 0.0020 0.7580 0.0040

Table 3: Model convergence statistics for llama under generalized hinge loss.

B Proofs and Theoretical Discussions

B.1 Proof of Theorem 3.2

Proof. We first prove that the constructed ordinal feedback Z ∼ µj,k satisfies Assumption 3.1, where

µj,k(z) =


(zk − zoracle)

/
(zk − zj), if z = zj ,

(zoracle − zj)
/
(zk − zj), if z = zk,

0, otherwise.

If zoracle = zi for any zi ∈ Z, then the constructed measure is the Dirac measure for zoracle, which
automatically fulfills the requirement.

We consider the cases where zoracle ∈ (zj , zk) for some zj , zk ∈ Z. Then the expectation of Z w.r.t.
µj,k is

EZ∼µj,k
[Z] = µj,k(zj) · zj + µj,k(zk) · zk

= (zjzk − zoraclezj + zoraclezk − zjzk)
/
(zk − zj)

= zoracle.

For the second part of Theorem 3.2, we prove the conclusion case by case. Suppose we have an ordinal
feedback Z : Ω→ Z satisfying Assumption 3.1. If zoracle ∈ Z, for example, zoracle = zi0 , then

µj,i0 = µi0,k = δzi0 ,

implying we can set those coefficients αj,i0 ’s and αi0,k’s to be arbitrary non-negative real numbers such
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that
∑

j αj,i0 +
∑

k αi0,k = µ(zi0) without affecting the measure on the other points.
Therefore, we can (without loss of generality) assume zoracle /∈ Z. Assume z1 < · · · < zm1

< zoracle <

zm1+1 < · · · < zm.
Case (i): when there is only one point on each side of zoracle, that is, m1 = 1 and m1 + 1 = m.

Then by Assumption 3.1, we have

µ(z1) · z1 + µ(zm) · zm = zoracle.

Combining it with the constraint such that

µ(z1) + µ(zm) = 1,

we have
µ(z1) = (zm − zoracle)

/
(zm − z1), µ(zm) = (zoracle − z1)

/
(zm − z1),

which is exactly the same as µ1,m.

Case (ii): when there is only one point larger than zoracle, that is, m1 + 1 = m.
Then we will prove that there exist non-negative real numbers αj,m such that

µ =
∑
j

αj,m µj,m.

In fact, we can construct (for any j ̸= m)

αj,m :=
µ(zj)

µj,m(zj)
.

Then each αj,m is non-negative. Furthermore, by Assumption 3.1,

∑
j ̸=m

αj,mµj,m(zm) =
∑
j ̸=m

µ(zj)

µj,m(zj)
· µj,m(zm)

=

∑
j ̸=m µ(zj) · zoracle −

∑
j ̸=m µ(zj) · zj

zm − zoracle

=
(1− µ(zm)) · zoracle − (zoracle − µ(zm) · zm)

zm − zoracle

= µ(zm),

indicating that µ =
∑

j ̸=m αj,mµj,m.
By the property of probability measures, we can easily see that∑

j ̸=m

αj,m = 1.

Case (iii): when there is only one point smaller than zoracle, that is, m1 = 1. This case can be proved
similarly to Case (ii).

Case (iv): general cases where there are (possibly) multiple points on each side of zoracle. We prove it
by induction. Suppose there are a elements in Z smaller than zoracle and b elements larger than zoracle.
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Denote the case by (a, b). Suppose that the conclusion has been proved for all the cases (a, b) if a < m1

or b < m−m1. Now we prove it for the case (m1,m−m1). We first define the corresponding index (if
there are multiple elements in a tie, select arbitrarily)

i1 := argmin
i
|zi − zoracle| · µ(zi). (6)

Without loss of generality, we assume zi1 < zoracle. Then we have m1 > 1 due to Assumption 3.1. We
now construct a coefficient αi1,m1+1 such that

αi1,m1+1 :=
µ(zi1)

µi1,m1+1(zi1)
.

By the definition (6), we have

µ(zm1+1) ≥ αi1,m1+1 · µi1,m1+1(zm1+1).

Hence we can construct a new measure

µ′(zi) =


0, if i = i1;(
µ(zm1+1)− αi1,m1+1 · µi1,m1+1(zm1+1)

)/
(1− αi1,m1+1), if i = m1 + 1;

µ(zi)
/
(1− αi1,m1+1), otherwise.

This measure can be easily verified as a probability measure with m1 − 1 elements smaller than zoracle.
By induction hypothesis, we can construct non-negative real numbers αj,k’s summing up to 1 such that

µ′ =
∑
j,k

α′
j,k · µj,k.

Then we have

µ = αi1,m1+1 · µi1,m1+1 +
∑
j,k

α′
j,k

1− αi1,m1+1
· µj,k,

of which the coefficients are non-negative and summing up to 1.

B.2 Proof of Proposition 4.2

Proof. Cross-entropy loss:
The cross-entropy loss is

ℓce(Z, z) = − [Z log(z) + (1− Z) log(1− z)] ,

where z ∈ [0, 1], which is the probability under the BT model. The cross-entropy loss is affine to Z:

EZ

[
ℓce(Z, z)

]
= −

∑
j,zj∈Z

P(Z = zj) · [zj · log(z) + (1− zj) · log(1− z)]

= −

( ∑
j,zj∈Z

P(Z = zj) · zj
)
· log(z) +

(
1−

( ∑
j,zj∈Z

P(Z = zj) · zj
))
· log(1− z)


= −

[
E[Z] · log(z) +

(
1− E[Z]

)
· log(1− z)

]
= ℓce

(
E[Z], z

)
.
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Hinge loss:
The hinge loss sets the loss to be

ℓhinge(Z, z) = 1{Z = 1} ·max
(
C − z, 0

)
+ 1{Z = 0} ·max

(
C + z, 0

)
,

where z ∈ R, which is the difference of the reward functions rθ(x, y1)− rθ(x, y2). We can generalize the
hinge loss as

ℓhinge(Z, z) := Z ·max
(
C − z, 0

)
+ (1− Z) ·max

(
C + z, 0

)
The (generalized) hinge loss is affine to Z by a similar argument to the cross-entropy loss:

EZ

[
ℓhinge(Z, z)

]
=

∑
j,zj∈Z

P(Z = zj) ·
[
zj ·max

(
C + z, 0

)
+ (1− zj) ·max

(
C − z, 0

)]
=

( ∑
j,zj∈Z

P(Z = zj) · zj
)
·max

(
C + z, 0

)
+

(
1−

( ∑
j,zj∈Z

P(Z = zj) · zj
))
·max

(
C − z, 0

)
= E[Z] ·max

(
C + z, 0

)
+
(
1− E[Z]

)
·max

(
C − z, 0

)
= ℓhinge

(
E[Z], z

)
.

B.3 Proof of Proposition 4.3

Proof. We can prove a stronger conclusion such that for any (x, y1, y2) ∈ X × Y2,

EZ

[
ℓ
(
Z, h(x, y1, y2)

)∣∣∣(x, y1, y2)] = EZ′

[
ℓ
(
Z ′, h(x, y1, y2)

)∣∣∣(x, y1, y2)].
Since both Z and Z ′ satisfy Assumption 3.1, we have for any (x, y1, y2) ∈ X × Y2,

E[Z|(x, y1, y2)] = zoracle(x, y1, y2) = E[Z ′|(x, y1, y2)].

Then by the affinity condition (3), we have for any h ∈ H,

EZ

[
ℓ
(
Z, h(x, y1, y2)

)∣∣∣(x, y1, y2)]
= ℓ

(
E[Z|(x, y1, y2)], h(x, y1, y2)

)
= ℓ

(
zoracle(x, y1, y2), h(x, y1, y2)

)
.

The same arguments also lead to that

EZ′

[
ℓ
(
Z ′, h(x, y1, y2)

)∣∣∣(x, y1, y2)] = ℓ
(
zoracle(x, y1, y2), h(x, y1, y2)

)
,

which concludes the proof.

B.4 Proof of Proposition 4.6

Proof. We construct (W,W ′) as follows: we set W to be identically distributed as Z, and

P0(W
′ = z′k|W = zj) := βj,k.
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Then by property (a) of βj,k’s, we have

E[W ′|W = zj ] = zj ,

indicating
W = E[W ′|W ].

By property (b) of βj,k’s, we have that the constructed W ′ has a marginal distribution identical to Z ′.
Hence, (W,W ′) is a coupling satisfying the hierarchical expectation requirements.

On the other hand, if we have a coupling (W,W ′) satisfying the hierarchical expectation condition,
we can easily verify that the conditional probabilities satisfy the requirements in Proposition 4.6.

B.5 Proof of Corollary 4.7

Proof. For case (a) such that Z = zoracle =: z1 almost surely, we have µ = δzoracle . By Assumption 3.1,
the probability measure µ′ of Z ′ satisfies∑

k,z′
k∈Z′

µ′(z′k) z
′
k = zoracle

almost surely. Setting β1,k := µ′(z′k) fulfills the properties in Proposition 4.6.

For case (b) such that Z ′ = {z′1 := 0, z′2 := 1}, we can construct βj,k’s as

βj,1 = 1− zj , βj,2 = zj ,

for any zj ∈ Z. Then one can easily verify that the construction satisfies the requirement (a) in Propo-
sition 4.6. For part (b), by Assumption 3.1, we have∑

j,zj∈Z
αjzj = zoracle,

and
α′
2 = zoracle.

Combining the above two equalities, we have∑
j,zj∈Z

αjβj,2 = α′
2.

On the other hand, ∑
j,zj∈Z

αj(1− zj) = 1− zoracle,

and
α′
1 = 1− zoracle,

which implies that ∑
j,zj∈Z

αjβj,1 = α′
1.
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B.6 Proof of Theorem 4.9

Lemma B.1. Any affine function is also convex.

Lemma B.2. The pointwise supremum of a family of convex functions is still convex. In other words,
for any family of convex functions fs(·) where s ∈ S, we have sups∈S fs(·) still being convex.

We provide those two lemmas without proof since the proof can be found in any convex analysis
textbook. A corollary is the following.

Lemma B.3. If the loss function satisfies the affinity condition (3), then for any hypothesis class H,
the following function

sup
h∈H

n∑
i=1

εiℓ
(
·, h(xi, yi,1, yi,2)

)
is convex for any realization of εi taking values in {+1,−1}.

Proof of Lemma B.3. The argument breaks up into three pieces: first, any linear combination of affine
functions is still affine (which is straightforward), hence

n∑
i=1

εiℓ
(
·, h(xi, yi,1, yi,2)

)
is affine as long as condition (3) holds.

Second, any affine function is also convex (Lemma B.1), therefore,

n∑
i=1

εiℓ
(
·, h(xi, yi,1, yi,2)

)
is also convex for any h ∈ H.

Third, the supreme of any class of convex functions is still convex (Lemma B.2), which means taking
the supreme over the hypothesis class H suffices.

Proof of Theorem 4.9. We denote the hierarchical expectation coupling of Z and Z ′ by (W,W ′). By
direct inspection, we have

RadZ′,n(ℓ ◦ H) =
1

n
Ex,y,Z′,ε

[
sup
h∈H

n∑
i=1

εiℓ
(
Z ′
i, h(xi, yi,1, yi,2)

)]

=
1

n
Ex,y,W,W ′,ε

[
sup
h∈H

n∑
i=1

εiℓ
(
W ′

i , h(xi, yi,1, yi,2)
)]

=
1

n
Ex,y,ε

[
EW,W ′

[
sup
h∈H

n∑
i=1

εiℓ
(
W ′

i , h(xi, yi,1, yi,2)
)]]

=
1

n
Ex,y,ε

[
EW

[
EW ′

[
sup
h∈H

n∑
i=1

εiℓ
(
W ′

i , h(xi, yi,1, yi,2)
)∣∣∣∣∣W

]]]

≥ 1

n
Ex,y,ε

[
EW

[
sup
h∈H

n∑
i=1

εiℓ
(
EW ′ [W ′

i |W ] , h(xi, yi,1, yi,2)
)]]

=
1

n
Ex,y,ε

[
EW

[
sup
h∈H

n∑
i=1

εiℓ
(
W,h(xi, yi,1, yi,2)

)]]

=
1

n
Ex,y,ε

[
EZ

[
sup
h∈H

n∑
i=1

εiℓ
(
Z, h(xi, yi,1, yi,2)

)]]
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=
1

n
Ex,y,Z,ε

[
sup
h∈H

n∑
i=1

εiℓ
(
Z, h(xi, yi,1, yi,2)

)]
= RadZ,n(ℓ ◦ H),

where the first equality is by definition, the second equality is because the coupling’s marginal distribution
on W ′ is equal to that of Z ′, the third equality is due to the exchangeability of the order of integration (by
Fubini’s Theorem), the fourth equality is because of the tower property of the conditional expectation,
the first inequality is the result of Lemma B.3 and Jensen’s inequality, the fifth equality is owing to the
definition of the hierarchical expectation (Definition 4.5), the sixth is on account of the property of the
coupling again, the seventh thanks to Fubini’s Theorem again, and the last equality is the definition of
Rademacher complexity again.

B.7 Proof of Corollary 4.10

Proof. A straightforward conclusion of Theorem 4.9 and Corollary 4.7.

B.8 Proof of Theorem 4.13

Proof. Denote the one-hot vector at dimension j as ej . The following arguments are made for any x ∈ X ,
and we omit the dependence on x for notation simplicity.

We only need to show that ȳT is a hierarchical expectation of y and the theorem is the result of
Theorem 4.9. We construct the coupling (w,w′) as follows:

w := ȳT ,

and
P(w′ = ej |w) := wj ,

where wj denotes the j-th entry of w. We now verify that (w,w′) is a coupling of (ȳT , y). The fact that
w and ȳT have the same distribution is easy. For w′ and y, we have

P(w′ = ej) = E[P(w′ = ej |w)]

= E[wj ]

= E[ȳT ,j ]

= yoracle,j

= P(y = ej),

where ȳT ,j (or yoracle,j) denotes the j-th entry of ȳT (or yoracle), and the dependence on x has been
omitted. Here, the first equality is the tower property of the conditional expectation, the second due to
the definition of w′, the third because of the construction of w, the fourth on account of Assumption
4.12, and the last is the definition of yoracle.

Hence (w,w′) is a coupling of (ȳT , y).
We combine that conclusion with the fact that

E[w′|w] = w,

leading to the conclusion that ȳT is a hierarchical expectation of y.
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B.9 Generalization Bound under Rademacher Complexity

The following proposition is a well-known generalization bound. We present it here only for the com-
pleteness of our argument as the proof can be found in any statistical learning lecture notes.

Proposition B.4 (Generalization Bound). Suppose we have DZ as a dataset consisting of n i.i.d.
samples. For any hypothesis class H, we have with probability at least 1 − δ that for every function
h ∈ H,

E
[
ℓ
(
Zi, h(xi, yi,1, yi,2)

)]
≤ ÊDZ

[
ℓ
(
Zi, h(xi, yi,1, yi,2)

)]
+ 2RadZ,n(ℓ ◦ H) +

√
log(1/δ)

n
.

C Implementation Details

C.1 Dataset Details

Skywork-Reward-Preference-80K-v0.2. The Skywork-Reward-Preference-80K-v0.2 (SRP) dataset
is a curated subset of publicly available preference data, spanning a wide range of knowledge domains.
Reward models trained on this dataset have achieved top performance in the Reward Bench benchmark.
The released version contains 77,016 samples, with approximately 5,000 overlapping samples removed
compared to v0.1. In our experiments, we used Skywork-Reward-Gemma-2-27B-v0.2 to annotate data
pairs with oracle scores.

Rationale For Scaling. Instead of directly using the sigmoid values of the oracle model’s score
differences, we introduce a scaling parameter T because the raw output scores of the oracle model are
highly concentrated, as shown in Figure 6a. However, it is generally understood that people often
hold diverse opinions on preference samples, meaning real-world preference distributions should not be
heavily concentrated near a probability of 1. To investigate, we consider two commonly used preference
datasets with fine-grained preference scores, UltraFeedback (Cui et al., 2023) and HelpSteer2 (Wang et al.,
2024c). A visualization of their preference ratings is provided in Figure 5, where many samples show
no strong preference but only weak agreement. Based on these observations, we carefully adjusted the
scaling parameter T and chose T = 20

3 , ensuring it produces a peak within the slight agreement interval
(approximately 0.6-0.7), as shown in Figure 6b. This choice is further justified in the explanation of the
tied sample experiments discussed later.

Tied Samples. As presented in Section 5.1, we refer to preference pairs with a label z = 0.5

under the 3-level feedback system Z3 = {0, 0.5, 1} as tied data or tied samples. We use the term “tied”
because the labels z are generated based on the oracle label zoracle using an interpolation paradigm, as
described in Theorem 3.2. These labels represent preference samples where people perceive (almost)
equal advantages. The detailed sampling process is summarized in Algorithm 1. And it can be easily
extended to any ordinal feedback system.

Intuitively, the closer the oracle label of a preference pair is to 0.5, the more likely it is to be assigned
a label of 0.5. An important observation is that the sampled label distribution is dominated by zoracle. To
ensure sufficient binary and tied data for the tied ratio experiments, we aim for the binary and tied data
to each constitute half of the dataset. After tuning, we found that selecting T = 20

3 not only simulates
a real-world preference data distribution but also satisfies the tied ratio experiment requirements. This
further justifies the choice of T .
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(a) Preference strength distribution in UltraFeedback (b) Preference strength distribution in HelpSteer2

Figure 5: Distributions of preference strengths in the two datasets. For the UltraFeedback dataset, we
compare the chosen and rejected scores pairwisely and use their differences as preference strengths. For
the HelpSteer2 dataset, its latest version provides a preference strength label and we directly adopt it.

(a) Distribution of raw oracle scores (b) Distribution of scaled oracle scores

Figure 6: Distribution of oracle labels before and after scaling with T = 20
3 . Note that the oracle score

is always recorded for the chosen response relative to the rejected response, hence all oracle scores are
no less than 0.5.

Algorithm 1 3-level Sampling Algorithm

Input: zoracle ∈ [0, 1] ▷ Oracle label
Output: z ∈ Z3 = {0, 0.5, 1} ▷ Sampled label
1: if zoracle < 0.5 then
2: Sample y ∼ Bernoulli

(
zoracle
0.5

)
3: z ← 0.5 · y
4: else if zoracle > 0.5 then
5: Sample y ∼ Bernoulli

(
zoracle−0.5

0.5

)
6: z ← 0.5 · y + 0.5

7: else
8: z ← 0.5

9: end if
10: return z
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RewardBench Evaluation. The RewardBench evaluation dataset combines multiple datasets
across four categories: Chat, Chat Hard, Safety, and Reasoning. The scoring follows a standard re-
ward modeling paradigm, where success is defined as the chosen response having a higher score than the
rejected response for a given prompt. The evaluation score is computed as a weighted average across all
prompts in the selected subset.

C.2 Training Details

We choose some key training hyperparameters based on grid search. The performance is assessed by
in-distribution evaluation (CE) loss under oracle label settings. The grid search space is shown in Table
4.

Table 4: Hyperparameter Search Space

Hyperparameter Search Range/Values

Learning Rate [1e-5, 5e-6, 2e-5]
Batch Size [64, 128]
Warm-up Ratio [0.03, 0.05, 0.10]

The two base models share most of the training parameters, as given in Table 5. The different
parameters are listed in Table 6.

Table 5: Shared Hyperparameters

Hyperparameter Value

Batch Size 128
Optimizer paged_adamw_32bit
Weight Decay 1e-3
Epochs 2
Scheduler Linear Warm-up + Cosine Decay

Table 6: Model-specified Hyperparameters

Hyperparameter Llama-3.2-1b Gemma-2-2b

Learning Rate 1e-5 5e-6
Warm-up Ratio 0.1 0.05
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