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ON THE ABSCISSAE OF WEIL REPRESENTATION ZETA
FUNCTIONS FOR PROCYCLIC GROUPS

STEFFEN KIONKE

ABSTRACT. A famous conjecture of Chowla on the least primes in arithmetic
progressions implies that the abscissa of convergence of the Weil representa-
tion zeta function for a procyclic group G only depends on the set S of primes
dividing the order of G and that it agrees with the abscissa of the Dedekind
zeta function of Z[p~! | p € S]. Here we show that these consequences hold un-
conditionally for random procyclic groups in a suitable model. As a corollary,
every real number 1 < 8 < 2 is the Weil abscissa of some procyclic group.

1. INTRODUCTION

Dirichlet generating functions are a well-established tool in enumerative algebra,
especially in asymptotic group theory; see for instance [5 [13]. In particular, gener-
ating functions enumerating complex irreducible representations of infinite groups
received considerable attention; see [Il [9 [I1] and references therein. In [4] a gen-
erating function enumerating absolutely irreducible representations of a (profinite)
group G over all finite fields was defined that is reminiscent of the Hasse-Weil zeta
function of an algebraic variety V' cf. [I4]. This Weil representation zeta function
¢ (s) of a profinite group G converges absolutely for Re(s) sufficiently large, if
G has “uniformly bounded exponential representation growth” (UBERG); see [4]
Cor. 2.3] and [10] for more on UBERG groups. The abscissa of convergence a(G)
of ¢/ (s) — called Weil abscissa here — is an intricate invariant. In [4, Thm. C] the
Weil abscissa of free pronilpotent and free prosoluable groups was determined.

Let G be a finitely generated profinite abelian group. Then G has UBERG and

— since absolutely irreducible representations of G are one-dimensional — the Weil
representation zeta function is

0o —sj
@ (5) = exp (3 3 [ Hom(@,F5) [P~ )
peEP j=1
where P denotes the set of primes. The Weil abscissa is known for some abelian
groups, e.g. a(Z") = r + 1 and a(Zy) = 1 for every prime p [4, Thm. C]. The
investigation of the Weil abscissa for G = Z;, in [4] showed that the Weil abscissa
can be related to questions about primes in arithmetic progressions.

For every non-empty set S of primes, define the procyclic groups Hg = Hpe s Ly

and Gs = [[,c5Cp (here C is cyclic of order p). Here we investigate the Weil
abscissa of Hg and Gg inspired by the following conjecture.

Conjecture A. For every set S of primes a(Gs) = a(Hg) = ap(S) + 1.

Here ap(S) denotes the abscissa of convergence of the partial Riemann zeta
function (s(s) = [[,es(1 —p~%)7L. We note that (s agrees with the Dedekind zeta

function of the ring Zg = Z[% |p &S]
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Conjecture [A] is prompted by number theoretic considerations. With a bit of
elementary number theory one can show (see Lemma [2.1] below)

%mey+U§ag%)§aG&)§aDwy+L

where L is a Linnik constant, i.e., a constant L such that the least prime p = b
mod m satisfies p < m® for all m,b with (m,b) = 1. Linnik showed that such a
constant exists. Currently L = 5 is the best known value [I5]. Chowla conjectured
that L = 1 4 ¢ is a Linnik constant for every € > 0; see [2]. Hence Chowla’s
conjecture implies Conjecture [Al However, currently Chowla’s conjecture seems to
be out of reach and (as Chowla noticed) even the generalized Riemann hypothesis
only gives L = 2 + ¢ for every € > 0.

Conjecture [A] has interesting consequences. It implies that the Weil abscissa of
a procyclic group G only depends by the set S of primes dividing the order of G.
Another consequence is:

Conjecture B. FEvery real number 1 < g < 2 is the abscissa of convergence of a
procyclic group.

The purpose of this paper is to prove Conjecture [Al almost surely for randomly
chosen sets S of primes. This will enable us to deduce the validity of Conjecture [Bl

Let 6 € (0,1) be given. We say that a set S of prime numbers is random w.r.t.
the 6-model, if the events p € S and p’ € S are independent for p # p’ and occur
with probability
1-6 1
P S)=—

(p€S) p—
Theorem 1.1. Let S be a random set of primes w.r.t. the 6-model. Then almost
surely

a(Gg) =a(Hg) =ap(S)+1=2-4.

The key step in the proof of Theorem [[LTlis to bound the variance of a family of
random variables using the Bombieri-Vinogradov theorem.

Corollary 1.2. Conjecture[B is true.

The random model used here can be perturbed slightly without changing the
result. It should be noted that Gs and Hg are the minimal and maximal procyclic
groups with S the set of primes dividing the order. This shows that for every
“random” procyclic group G such that the primes dividing the order of G are
distributed in the d-model, the Weil abscissa satisfies a(G) = 2 — ¢ almost surely.

to understand in detail for which sets S the Weil abscissae of Gg and Hg are
maximal (or minimal), i.e. take the value 1 or 2. In other words, how “small” can a
set S with a(Gg) = 2 be? Modifying the proof of a result of Mirsky [12], we derive
the following theorem.

Theorem 1.3. Let S be a thick set of primes. Then a(Gg) = a(Hg) = 2.

Here a set S is primes is thin, if ap(S) < 1. The complement of a thin set is
called thick.

We note that Corollary[[.2]is a mere existence result and we are not aware of an
explicit example.

Problem. Give an explicit description of a procyclic group G with 1 < a(G) < 2.
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2. PRELIMINARIES

Let S C P be a set of prime numbers. Throughout S’ = P\ S denotes the
complement of S in the set of all prime numbers. A natural number is an S-
number (resp. S’-number), if all of its prime factors lie in S (resp. in S"). We write
(S) to denote the set of all S-numbers. For n € N, we denote the largest S-number
dividing n by ng. In particular, we have n = ngng,. We write rad(n) to denote
the radical of n and we put rads(n) := rad(n)s. The Dedekind zeta function of the
ring Zg = Z[S'~"] is the partial Riemann zeta function

Gs(s)= > m*=JJa-p "

me(S) peS

Recall that the abscissa of convergence of (g is ap(S); clearly ap(S) < 1.

Lemma 2.1. Let Hg = Z; =11
Weil abscissae satisfy

ves Lp and let Gs =T],cq Cp. If S # 0, then the

%(O&D(S> +1) <a(Gs) <a(Hs) <ap(S)+1

where L denotes a Linnik constant.

Proof. As Gg is a quotient of Hg the inequality a(Gs) < a(Hg) is clear (cf. [4]
Lemma 4.1]).

Consider the upper bound first. We observe that | Hom(Hg,F,i)| = (p” — 1)s.
Let A denote the von Mangoldt function. We define A'(n) = lé\éz) for n > 2 and
we put A’(1) = 0. We observe that A’(n) <1 for all n. For all real s > ap(S) +1

we have

log (Yo (s) =Y (n—1)g Nmn™ <> (n—1)sn~*

n>2 n>2
< Z mg m~° = Z k(ke)—*
m>1 ke(S),ee(S")

= (s(s = 1)Csr(s)-

Since S # 0, we have ap(S) > 0 and hence s > ap(S’) + 1 > 1; in particular, the
series converges.

For the lower bound we observe that |Hom(Gg,F,;)| = rads(p’ — 1). Define
pa2(m) =1 if m is square-free and pz(m) = 0 otherwise. The Dirichlet series

> mamm = [+ = 252

mENg peES CS (28)

has the same absicssa of convergence as (g. Since L is a Linnik constant, there
is some C' > 0 such that for all m € (S), we can find a prime number p(m) with
p(m) = 1 mod m and p(m) < Cm¥. Every prime p equals p(m) for at most d(p—1)
different numbers m, where d denotes the divisor function. Let € > 0 be given. The
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well-known divisor bound asserts that d(p—1) = O.(p°) and this allows to conclude

log(¢H,)(s) = > rads(p— 1)p~*

> Y pz(m)rads(p(m) — 1)d(p(m))~"p(m)~*
me(S)

> Y pa(m)mp(m) =
mée(S)

o S a0,
me(S)
This Dirichlet series diverges for L(s 4+ €) < ap(Zs/) + 1. Since € is arbitrary this

implies the assertion. ([
3. A VARIATION OF A RESULT OF MIRSKY

Mirsky [12] proved that the set of prime numbers p such that p — 1 is k-free has
a positive natural density Hp (1 — W). Here we need a slight variation of his
result.

Definition 3.1. Let f: P — Ny be a function. We say that a natural number n is
f-bounded, if

vp(n) < f(n)
for all primes p. Here v,(n) = max {j € No | p’|n}.

If f is the constant function with value k — 1, then f-bounded numbers are
exactly the k-free numbers.

Definition 3.2. Recall that a set S is primes is thin, if ap(S) < 1. A set of primes
is thick, if its complement is thin. A function f: P — Ny is thick, if its support is
thick; i.e., f71(0) is thin.

Following closely along the lines of Mirsky’s approach, one obtains:

Theorem 3.3. Let f: P — Ny be thick and let A > 0 be arbitrary. Let Us(x)
denote the set of primes p < x such that p — 1 is f-bounded. Then

Uy ()] = 1;[ (1 B m) Li(z) + O<logj(x))

as x tends to infinity.

The thickness of f implies that Ay =[], (1 - m) converges. For f(2) >0

the limit is nonzero. Since Mirsky omitted the proof of his theorem in [12], we
decided to include a proof.

Proof. Let p be a prime, we write p) := pf®) and extend this multiplicatively
to all natural numbers, i.e. for n = [[;_; p{* we have n(¥) = []_, pf(pi)ei. For

convenience we write n(f)*1 :=n . n) and we write a |; n if a1 | n.
The Mobius function p gives rise to

iy (n) = Z 1(a) = {1 if a is f-bounded .

0 otherwise
alfn

This gives

|Uf($)| = Z 1= Zﬂf(p— 1) = Z Z ,u,(a) = Zﬂ(a)ﬂ($,a(f)+1, 1)

peUy(x) p<z p<zal|sp—1 a<lz
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where 7(xz,m,b) dnotes the number of primes p < x with p = b mod m.
Let B > 1 be arbitrary. Observing that Ay =) M;L((f%)“) (where ¢ is Euler’s
totient function) we may write |Uy(z)| — Ay Li(z) as a sum

(3.1) 3 ula) (W(x’a(f)ﬂ, 1) — M)

(F+1
a<log®(z) ¢(a )
(3.2) + Y aem(@ad)
logB(z)<a<z
Li(x)
(3.3) + Z a0y
a>loghB

The summand B1)) is O(W) by the Theorem of Siegel-Walfisz [8, Cor. 5.29].
To approach the other two terms we use the assumption that f is thick. Let
S = f71(0) be the thin zero set of f. By assumption ap(S) < 1, so there is ¢ > 0
with ¢ 4+ ap(S) < 1; this entails

(3.4) > é <y Y allfc <y~°

ae(S) ae(S)
a>y a>y

as y tends to infinity.
Now consider the summand (B.2)). The rough estimate 7(x,n,1) < £ suffices to
deduce

(H+1 _zr
> w@n(ea < Y

logB (z)<a<z logB(z)<a
1
< Y 1Y Z Z )
a€(S) be(S/
a>log?®/?(z) b>log5/2(w)

<Lz

(e )
1OgCB/2(Z'> B/2(SC)
Recall that B was arbitrary; this proves that (3:2]) is O( TogA (I))

(3) can be bounded analogously using that n'=¢ < ¢(n) for all € > 0 (see [T,
Thm. 327)). O

The last summand

With this preparation we are able to prove Theorem [L3]

Proof of Theorem [I3. 1t is known that a(Gs) < a(Hs) < a(Z) = 2 by Lemma
2Iand [, §5.1]. It suffices to prove a(Gg) = 2. We define a function f: P — Ny
with support SU{2}. For odd primes p we define f(p) = 1 iff p € S and we impose
f(2) =1 to ensure that Ay # 0. It follows from Theorem [3.3] via partial summation
that

1
Z — = Asloglog(z) + O(1).
peUs(2)
p—1 if2esS

el if2¢ S

radg(p’ — 1) _,, -1 _
Z S(I; )p % > Z (P2 )p 2
pI<z peUf(z)

> Z p~! = Asloglog(z) + O(1).
peUs(x)

For p € Uy(x) we have radg(p — 1) = { . This allows us to deduce
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We conclude that the Weil representation zeta function ¢ (s) divergesat s = 2. [

4. RANDOM PROCYCLIC GROUPS

Let 6 € (0,1) be given. Recall that a set S of prime numbers is random w.r.t.
the §-model, if the events p € S and p’ € S are independent for p # p’ and occur
with probability
p1—6 -1

—1
More precisely, we encode sets S of primes as characteristic functions; this leads
to the probability space Q@ = [[,»{0,1} with the product probability measure

1—6
Hp Up,s Where i, 5(1) = B _1_1. From now on we consider the procyclic groups Gg

and Hg for S chosen randomly in the J-model.

P(pe§) =

Lemma 4.1. Let (X¢):ier be a one-parameter family of non-negative random vari-
ables with 0 < E(X;) < co . Assume that

Var(X;) = O(E(X;)?) ast— oo.
Then P(limsup,_, % =0) <1
Proof. Write 02 = Var(X;). Assume that 02 < AE(X;)? for A > 0 and all ¢t > ny.
The Cantelli-Chebyshev inequality allows us to deduce for all ¢ > ng
2

P(Xt < %E(Xt)) = P(Xt ~E(X;) < f%E(Xt)) < m

o? 4
S ST 15 :
O't + ﬁa’t 4)\ + 1
Assume for a contradiction that P(limsup,_, . % = 0) = 1. For almost all

w € Q, there is t, € Ry such that X;(w) < %E(Xt) for all ¢ > t,. In particular,
the union of the events 4, = {w € Q| X;(w) < $E(X;) for all t > n} occurs with
probability 1. This implies that there is n > ng with

4N 1 4N
>P(Xn —EXn)>PAn A
Dtl- < 3BEn)) 2 P(An) > 177
and this gives the desired contradiction. O

The following number theoretic result is the key ingredient in our main theorem,;
it is a consequence of the Bombieri-Vinogradov theorem.

Lemma 4.2. Let 6 € (0,1) and let A > 2. Then

Z a®n(t,a,1)% = bs Li(t)? + O( r )

= log™ (t)

ast — oo where bs =y oo, #j)z The implied constants depend on A and §.

Proof. Tt is well-known that a' ¢ < ¢(a) for every € > 0 (see [7, Thm. 327]), hence
the series ), #;)2 converges. Pick 0 < < 1. We write

Z a’n(t,a,1)* = Z a’n(t,a,1)* + Z a’n(t,a,1)?.

a<t a<t? tf<a<t

pIP PP
To bound X5 we use the observation m(¢,a,1) < % and deduce

t2
Y a(s; =2 Y < t2/ 272y < 2010

t
t2
+0

log™ (1)

)

tf<a<t tf<a<t
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since § < 1.
We rewrite 31 — bs Li(t)?
(4.1)
s ~ Li(t)\2 i a’ (b a Li(t) a2 a’
agea (=0 0-505) +2L(t>¢;te¢(a)( (t.0.1) = 5oy ) L) G;WV

Using a'=¢ < ¢(a) for every ¢ > 0, we see that the last summand in (&I) is
bounded by

t1+5+2€

5 < Li(t / x 2ty «
03 Gy <HO", og®()

a>t?

and for § 4+ 2¢ < 1, the last expression is O(% The other two summands

(t))'
in ([@I)) can be treated using the Bombieri-Vinogradov theorem (see e.g. [3, Theo-

rem 9.2.1]). It readily implies

B Li(t) t
Z‘ﬂ(t,a,l) () ‘ < 1ogA(t)'

a<t?

and this allows us to deduce (using a’ < ¢(a))

a’ Li(t) t
Zwlﬂ'(t,a,l)* ¢( ‘< logA(t)

a<t?

The theorem of Bombieri-Vinogradov as stated in [6] implies

> ola)(wlt,a,1) — I(;(S)))Q = O(logtw)'

a<t?

As a consequence (using a® < gb( )) this implies

Zaé(ﬂ(t,a,l) t) Zéb ( 1) — I(;l((j))f

agte <t9
t2
<
log”()
as t — oo. This completes the proof. (]

Proof of Theorem[I 1. For each n € N we define the random variable

I 1 ifne€(9)
" 10 otherwise
The expectation of I, is the probability that n is an S-number, i.e. that all prime
factors of n belong to S:
-5

Hp 7_1 =rad(n SHp P’ < rad(n)™°

pln pln
For s € Ry we define a random variable
= E I,,m™%.
meN

Since the random variables I,,, are positive, the monotone convergence theorem
implies that

E(Y(s) = 3 E(L)m ™ < 3 rad(m)°m~ = [[(1 + L—).

meN meN P
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The Dirichlet series on the right hand side converges absolutely for all s > 1 —§. If
the expectation of a random variable is finite, the almost surely the random variable
is finite. With Lemma 2] this gives a(Gg) < a(Hg) < 2 — § almost surely.

For the lower bound, recall that log (7, (s) = D pep 2 i rads (p? —1)p~*7. We
consider the partial sums of this series for s = 1 — § as a random variable in S.

The S-radical of a number n gives rise to the random variable R, = [[,, p =
peES
len((p —1)I, + 1). As the I, are independent, we have

E(R.) =[] (- proty 1) = rad(n)!-?
n p _ 1 .
pln
For every t € Ry we consider the random variable
X, = ZRp_lp‘s*l.
p<t

We are going to verify the conditions of Lemma [£1] for the family X;.

As a first step we show that the expectation of X; is of the order Li(t), i.e.
E(X;) < Li(t). For the upper bound, we use the prime number theorem. For every
A > 1 we have

The lower bound is a consequence of Mirsky’s Theorem; i.e., we count primes p < ¢
such that p — 1 is squarefree (apply Theorem with f the constant 1-function).
This gives

p—1 1-§
E(X,) =) radp-1)'""p"" > Y (T)

p<t p<t

p—1 sqf.
t
2270 3 1 =20 0) = e i) + O )
< log” (1)
p—1 sqf.

for some cs > 0.

We proceed to estimate the variance of X;. As X is bounded, we have Var(X;) =
E(X?)-E(X;)? and to apply LemmalZTlit suffices to show that E(X?) = O(E(X;)?) =
O(Li(t)?) as t — oc.

Let n,m € N be integers. The expectation of R, R,, is

[T II» ™ II - +p™") < 2rad(n)'~° rad(m)'~° rad(n,m)’.
Pl

plm pl(n,m)
ptm pin

Here (n,m) denotes the ged of n and m and rad(n, m) is the radical of (n,m). This
gives, using Lemma in the last step,

E(X7)= Y E(Ry 1Ry, 1)(pip2)""

p1,p2<t
<2 Y rad(p— 1) rad(p; — 1)' P rad(py — 1,p2 — 1)’ (p1p2)°

p1,p2<t

<2 Za6 Z rad(p; — 1) rad(pa — 1) (p1p2)° !

a<t p1,p2=1 mod a

<2 Z a’n(t,a,1)* < Li(t)?

a<t
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We conclude using Lemma [AT] that P (hm SUD;_, o0 %&) > 0) > 0. Positivity of
lim sup;_, %&) does not depend on any finite set of primes in S, hence it is a tail

event and Kolmogorov’s 0-1 law implies P (lim SUP¢_, 00 %(tt) > 0) =1.
This allows us to conclude the proof. Let S be a set of primes with limsup,_, ., )Ii‘l—((ts))

0. Then there is ¢ > 0 and an sequence t; < ta < ... tending to infinity, such that
Z rads(p — 1)p° ' > cLi(t)
p<t;

for all 5. Let € > 0 be arbitrary. Clearly
Z radg(p — 1)p°~2+¢ > cLi(tj)tj_H'E

p<t;
for all j and the right hand side tends to infinity with ¢;. Hence a(Gg) >2—6 —¢
almost surely for all € > 0. O
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