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PROJECTIVE SMOOTH REPRESENTATIONS IN NATURAL CHARACTERISTIC

AMIT OPHIR AND CLAUS SORENSEN

Abstract. We investigate under which circumstances there exists nonzero projective smooth F [G]-
modules, where F is a field of characteristic p and G is a locally pro-p group. We prove the non-existence
of (non-trivial) projective objects for so-called fair groups – a family including G(F) for a connected
reductive group G defined over a non-archimedean local field F. This was proved in [SS24] for finite
extensions F/Qp. The argument we present in this note has the benefit of being completely elementary
and, perhaps more importantly, adaptable to F = Fq((t)). Finally, we elucidate the fairness condition via
a criterion in the Chabauty space of G.

1. Introduction

Projective objects play a prominent role in the modular representation theory of a finite group G. For

instance, if F is a field of characteristic p dividing |G|, the Grothendieck group K0(F [G]) is part of the

Cartan-Brauer triangle [Sch13, p. 46]. Also, in the very definition of the all-important stable module

category of F [G] one kills morphisms which factor through a projective module.

One side of the p-adic Langlands correspondence (or rather its mod p counterpart) involves smooth

F [G]-modules where G is now an infinite p-adic reductive group, and F is still a field of characteristic p.

(A G-representation V is smooth if the action G × V −→ V is continuous for the discrete topology on

V .) The smooth F [G]-modules form an abelian category ModF (G) and one could hope to recast modular

representation theory in this generality. As was shown in [SS24] this situation is dramatically different

from the case of finite groups: There are no projective objects in ModF (G) other than V = {0}.

We mention in passing that the complex case is dissimilar: If G is a p-adic reductive group, and we

fix a character χ of the center, the category Modχ
C
(G) of smooth C[G]-modules with central character

χ has lots of projective objects. In fact, any irreducible supercuspidal representation is projective (and

injective). See [AR04] for more precise results in this direction – including a converse.

One of the goals of this note is to extend parts of [SS24] to groups G = G(F) where G is a connected

reductive group over any non-archimedean local field F – possibly of positive characteristic. The argu-

ments in [SS24] make heavy use of Poincaré subgroups, and therefore only apply for finite extensions of

Qp. We stress that [SS24] had a different goal (to understand the derived functors of smooth induction)

and the non-existence of nonzero projective objects was a byproduct. The methods of this note are more

elementary and completely avoid cohomology.

We work in greater generality. We continue to let F denote a field of characteristic p, but we allow

G to be any locally pro-p group (by which we mean it admits an open subgroup which is pro-p in the

induced topology). If G is discrete, smoothness is automatic, and we obviously have plenty of projective

F [G]-modules – such as F [G] itself. For that reason we will always assume G is non-discrete.

The key hypothesis is the following: We assume G admits an open subgroup K such that for all open

subgroups H ⊂ K there exists an open subgroup H ′ ( H for which we have strict inclusions

(1.1) K ∩ gH ′g−1 ( K ∩ gHg−1
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for all g ∈ G. This condition also appeared in [SS24] where it was shown to control the vanishing of the

top derived functor RdIndGK(F ) for a d-dimensional p-adic Lie group G. A pair (G,K) satisfying (1.1)

is called fair in this note. Non-trivial reductive groups G = G(F) as above always admit a subgroup K

for which (G,K) is fair. In fact one can take any compact open subgroup K ⊂ G, as follows easily from

Bruhat-Tits theory. We remark that in general (1.1) implies G is non-discrete (take H = {e}).

With this terminology our main result is the following:

Theorem 1.2. Let F be a field of characteristic p > 0. Let G be a locally pro-p group which admits an

open subgroup K such that (G,K) is fair, i.e. satisfies (1.1). Then the category of smooth F [G]-modules

ModF (G) has no nonzero projective objects.

This extends [CK23, Thm. 3.1] to locally pro-p groups, and it partially generalizes [SS24] to local fields

F = Fq((t)) of characteristic p.

In fact our Theorem 4.4 gives a stronger result than Theorem 1.2: In Section 4 we consider the category

of representations with a fixed central character. More precisely, we fix a closed central subgroup C ⊂ G,

a continuous character χ : C → F×, and we show that the category Modχ
F (G) (of smooth F [G]-modules

on which C acts via χ) has no nonzero projective objects if (G/C,KC/C) is fair (⇒ C is not open). For

the sake of exposition we have emphasized the case where C is trivial here in the introduction.

Fixing the central character may seem like a nuance, but the categories appearing in the p-adic local

Langlands program for GL2(Qp) consist of representations with a fixed central character. More precisely

one considers locally admissible smooth F [GL2(Qp)]-modules with central character χ (and similarly for

more general coefficient rings O instead of F ). See [Pas13] for example.

In Section 6 we suggest one way out of the no projectives conundrum, which is to endow ModF (G) with

a coarser exact structure relative to which there are enough projectives. We also discuss the corresponding

stable category, following [Kel96]. This bears a resemblance to the relative homological approach of [DK23,

Sect. 2, Sect. 5].

In Section 7 we give a topological criterion for (G,K) being fair, in terms of the Chabauty space S(G)

of all closed subgroups. We reproduce an argument of Pierre-Emmanuel Caprace proving that (G,K) is

fair if and only if the closure of the G-conjugacy class of K contains no discrete subgroups.

2. Preliminary remarks for profinite groups

Let K be an infinite profinite group. We let Ω denote the set of open subgroups of K.

Lemma 2.1. The index [K : U ] becomes arbitrarily large as U ∈ Ω varies.

Proof. Start with any U ∈ Ω. Since K is infinite we may pick an element u ∈ U\{e}. Since U is open

there is a U ′ ∈ Ω such that uU ′ ⊂ U . By choosing U ′ small enough we can arrange that e /∈ uU ′. Clearly

U ′ ( U , and consequently [K : U ′] > [K : U ]. Thus we can make the index arbitrarily large. �

We fix a field F and consider the category ModF (K) of smooth K-representations on F -vector spaces.

Recall that a representation V is smooth if every v ∈ V has an open stabilizer – in other words v is fixed

by some U ∈ Ω. In particular dimF F [K]v < ∞. We let V U denote the subspace of U -fixed vectors in V .

Definition 2.2. For v ∈ V as above, we let Ωv denote the set of U ∈ Ω for which

(a) U fixes v, and
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(b) [K : U ] > dimF F [K]v.

Note that Ωv 6= ∅ by Lemma 2.1. By Frobenius reciprocity, each vector v ∈ V U corresponds to a

morphism in ModF (K),

ϕU,v : indK
U (F ) −→ V

f 7−→
∑

κ∈U\K
f(κ)κ−1v.

Here indKU (F ) is the space of functions f : U\K → F , on which K acts via right translations. This is a

finite-dimensional smooth K-representation of dimension [K : U ]. Obviously im(ϕU,v) = F [K]v, so ϕU,v

is not injective when U ∈ Ωv.

We consider the sum of all these morphisms,

ϕ : S ==
⊕

v∈V

⊕

U∈Ωv

indKU (F ) −→ V

(fU,v)U,v 7−→
∑

U,v
ϕU,v(fU,v).

Clearly ϕ is surjective since ϕU,v(charU ) = v (and any v ∈ V is fixed by some U ∈ Ωv). If V is a projective

object of ModF (K) there exists a section σ : V → S of ϕ in ModF (K). Thus ϕ ◦ σ = IdV .

Proposition 2.3. Suppose F is a field of characteristic p > 0. If p∞ divides |K| there are no nonzero

projective objects in ModF (K), and conversely.

Proof. First assume p∞ divides the pro-order |K|, and pick a Sylow pro-p-subgroup K ′ ⊂ K (which is

infinite by assumption). The restriction functor ModF (K) → ModF (K
′) preserves projective objects

since indKK′ is an exact right adjoint functor (as K is compact). We may therefore assume that K is an

infinite pro-p group.

If V is a projective object of ModF (K), we consider a section σ of ϕ as above. The section restricts to

an embedding σ : V K →֒ SK . As noted earlier, ker(ϕU,v) 6= {0} when U ∈ Ωv. Therefore the inclusion

{0} 6= ker(ϕU,v)
K ⊂ indKU (F )K = {constants}

is an equality. In particular ϕU,v vanishes on the constant functions, and consequently ϕ vanishes on SK .

Since ϕ◦σ = IdV we deduce that V K = {0}, which is equivalent to V = {0}. (See [AW67, Lem. 1, p. 111]

for example.)

For the converse, suppose p has finite exponent in |K|. Then there exists a U ∈ Ω such that p ∤ |U |.

A standard averaging argument shows the functor (−)U is exact on ModF (K). By Frobenius reciprocity

this amounts to indK
U (F ) being a projective object in ModF (K). �

This result (Proposition 2.3) was proved independently in [CK23, Thm. 3.1] using a different method.

3. The general case

We now take G to be a locally profinite group, by which we mean it has an open subgroup K which is

profinite in the induced topology. We assume G is not discrete, i.e. any such K is infinite. We choose a

K once and for all, and continue to let Ω = {open subgroups of K}.
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Definition 3.1. We say the pair (G,K) is fair if ∀H ∈ Ω there is an H ′ ∈ Ω such that

K ∩ gH ′g−1 ( K ∩ gHg−1

for all g ∈ G. The group G is fair if (G,K) is fair for some profinite open subgroup K ⊂ G.

In what follows IndGK denotes the full smooth induction functor, i.e. the right adjoint to the restriction

functor ModF (G) → ModF (K). Note that IndGK is not exact in general; see [SS24]. To fix ideas we adopt

the convention that G acts by right translations on induced representations.

Remark 3.2. The fairness condition (Df. 3.1) also appeared in [SS24]. For a d-dimensional p-adic Lie group

G, and K a compact open subgroup, it is shown in [SS24] that (G,K) is fair if and only if RdIndGK(F ) = 0.

(Here RiIndGK is the ith right derived functor of IndGK .)

Now V denotes an object of ModF (G). We will often denote its restriction V |K simply by V when

there is no risk of confusion. From Section 2 we have the morphism ϕ : S ։ V in ModF (K).

Proposition 3.3. The induced morphism IndGK(ϕ) is surjective if (G,K) is fair (cf. Def. 3.1).

Proof. Start with an arbitrary F ∈ IndGKV and pick an H ∈ Ω fixing F . We simplify the notation by

introducing vx := F (x) ∈ V K∩xHx−1

for all x ∈ G. If H ′ satisfies the condition in Def. 3.1 we see that

[K : K ∩ xH ′x−1] > [K : K ∩ xHx−1] ≥ dimF F [K]vx.

Thus K ∩ xH ′x−1 ∈ Ωvx , and it makes sense to consider the contribution to S indexed by v = vx and

U = K ∩ xH ′x−1.

Claim: ∀x ∈ G there is an fx ∈ SK∩xH′x−1

such that ϕ(fx) = vx.

To see this, consider the morphism ϕK∩xH′x−1,vx . It maps the characteristic function charK∩xH′x−1 to

vx. We take fx to be charK∩xH′x−1 viewed as a vector in the summand indK
K∩xH′x−1(F ) of S indexed by

v = vx and U = K ∩ xH ′x−1. This proves the claim.

Choose a set of representatives R′ for K\G/H ′. This uniquely determines an A ∈ (IndG
KS)H

′

such

that A(r′) = fr′ for all r′ ∈ R′. We check that IndGK(ϕ)(A) = F . Let g ∈ G be arbitrary, and write

g = κr′h′ with κ ∈ K, r′ ∈ R′, and h′ ∈ H ′. Then

IndGK(ϕ)(A)(g) = ϕ(A(g)) = ϕ(A(κr′)) = κϕ(A(r′)) = κϕ(fr′) = κvr′ .

On the other hand, since F is fixed by H ′ ⊂ H ,

F (g) = F (κr′) = κF (r′) = κvr′ .

This shows that indeed IndGK(ϕ)(A) = F , and as F is arbitrary IndGK(ϕ) is surjective. �

Adjunction gives us the commutative diagram

HomModF (K)(V, S) HomModF (G)(V, Ind
G
KS)

HomModF (K)(V, V ) HomModF (G)(V, Ind
G
KV ).

∼

ϕ∗ IndG
K(ϕ)∗

∼
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Assume (G,K) is fair. If V is a projective object of ModF (G), the morphism IndG
K(ϕ)∗ in the diagram

is surjective by Proposition 3.3. Hence so is the dashed morphism ϕ∗. In particular ϕ admits a section σ

in ModF (K).

Theorem 3.4. Let F be a field of characteristic p > 0. Suppose (G,K) is fair for some infinite pro-p

open subgroup K ⊂ G. Then there are no nonzero projective objects in ModF (G).

Proof. By the preliminary remarks leading up to the Theorem, ϕ admits a section σ in ModF (K). The

(second paragraph of the) proof of Proposition 2.3 now applies verbatim. �

For future reference perhaps it is worth highlighting the following reformulation of Theorem 3.4.

Corollary 3.5. Keep the setup and assumptions from Theorem 3.4. Suppose χ : Z → F× is a continuous

character of a profinite abelian subgroup Z ⊂ G with pro-order prime-to-p. Then the subcategory ModχF (G)

(=smooth F [G]-modules on which Z acts by χ) has no nonzero projective objects.

Proof. For V ∈ ModF (G) we let V χ := {v ∈ V : zv = χ(z)v, ∀z ∈ Z} denote the χ-eigenspace. The

resulting functor (·)χ is right adjoint to the inclusion functor ι : ModχF (G) → ModF (G). Once we observe

(·)χ is exact, ι preserves projectives (and we are done by 3.4).

The usual averaging argument applies: For v ∈ V , fixed by some small enough open subgroup U ,

consider

ṽ :=
1

[Z : Z ∩ U ]
·
∑

z∈Z/Z∩U
χ(z−1)zv ∈ V χ.

If γ : V → V ′ is a morphism in ModF (G), and v ∈ V is a vector for which γ(v) ∈ V ′χ, then clearly

γ(ṽ) = γ(v). Thus, if γ is surjective, then so is γχ : V χ → V ′χ. �

4. Representations with a fixed central character

In this section we discuss how to adapt the previous arguments to the category of representations with

a fixed central character. Our setup is the following: The group G is locally pro-p and we fix an open

subgroup K which is pro-p in the induced topology. The field F has characteristic p. We pick a closed

central subgroup C ⊂ Z(G) along with a continuous character χ : C → F× and consider the category

ModχF (G) of smooth F [G]-modules on which C acts by χ. (We observe that χ is automatically trivial on

any pro-p subgroup of C such as C ∩K.)

We will assume (G,K) is C-fair in the following sense (cf. Df. 3.1, which is the case where C is the

trivial subgroup):

Definition 4.1. We say the pair (G,K) is C-fair if ∀H ∈ Ω there is an H ′ ∈ Ω such that

K ∩ gH ′Cg−1 ( K ∩ gHCg−1

for all g ∈ G. (Here we keep the notation Ω := {open subgroups of K}.) Equivalently, (G/C,KC/C) is

fair in the sense of Df. 3.1. (To see this note that every open subgroup of KC/C has the form HC/C

for an open subgroup H ⊂ K, and vice versa.)

This implies that C is not open (by taking H = C ∩K in Df. 4.1). As a result thereof, Lemma 2.1

generalizes:

Lemma 4.2. The index [K : U(C ∩K)] becomes arbitrarily large as U ∈ Ω varies.
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Proof. Start with any U ∈ Ω. Pick an element u ∈ U\C (which is possible as C is not open). There is a

U ′ ∈ Ω such that uU ′ ⊂ U\C (as C is closed). Clearly U ′(C ∩K) ( U(C ∩K) – otherwise one can write

u = u′c with u′ ∈ U ′ and c ∈ C which leads to the contradiction c ∈ uU ′. �

Instead of the set Ωv from Df. 2.2 we consider the set ΩC,v of all U ∈ Ω fixing v such that

[K : U(C ∩K)] > dimF F [K]v.

By Lemma 4.2 this set ΩC,v is non-empty. Here v is a vector in an object V of ModF (K/C∩K). Therefore,

for U ∈ ΩC,v, we have a morphism ϕU,v : indK
U(C∩K)(F ) → V in the latter category with nonzero kernel.

We again consider their direct sum

ϕ : S =
⊕

v∈V

⊕
U∈ΩC,v

indKU(C∩K)(F ) −→ V.

The right adjoint of the restriction functor ModχF (G) → ModF (K/C ∩K) is given as follows: First we

extend V to a representation of KC by letting C act via χ. This gives an object V ⊠ χ of ModχF (KC)

which we induce to a representation IndGKC(V ⊠ χ) in ModχF (G).

Mimicking Proposition 3.3, we now start with an object V from ModχF (G). We restrict V to K and

consider the morphism ϕ : S ։ V constructed above.

Proposition 4.3. The induced morphism IndGKC(ϕ⊠ χ) is surjective if (G,K) is C-fair (cf. Df. 4.1).

Proof. Let H ∈ Ω and start with an F ∈ IndGKC(V ⊠χ)H . Now vx := F (x) ∈ (V ⊠χ)KC∩xHx−1

. Choose

an H ′ as in 4.1. To run the proof of Proposition 3.3 in this context, it remains to note that

[K : (KC ∩ xH ′x−1)(C ∩K)] > [K : (KC ∩ xHx−1)(C ∩K)].

If this inequality was an equality we would have

(KC ∩ xH ′x−1)C = (KC ∩ xHx−1)C

which contradicts the strict inclusion in 4.1. �

The rest of the proof of Theorem 3.4 now extends word for word and gives:

Theorem 4.4. Let F be a field of characteristic p. Suppose (G,K) is C-fair for some pro-p open subgroup

K ⊂ G. Then there are no nonzero projective objects in ModχF (G) for all characters χ : C → F×.

Proof. In this setup we have the commutative diagram

HomModF (K/C∩K)(V, S) HomModχ

F
(G)(V, Ind

G
KC(S ⊠ χ))

HomModF (K/C∩K)(V, V ) HomModχ

F
(G)(V, Ind

G
KC(V ⊠ χ)).

∼

ϕ∗ IndG
KC(ϕ⊠χ)∗

∼

If V is projective in ModχF (G) we find that ϕ : S ։ V admits a section σ. Since ϕU,v vanishes on the

constant functions, ϕ must vanish on SK which contains σ(V K). Thus V K = 0 =⇒ V = 0. �

5. Examples of fair pairs

A fair group is obviously not discrete (take H = {e} in Def. 3.1). In this section we give some basic

examples of fair groups.
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5.1. Groups with a non-discrete center. Let G be a locally profinite group with non-discrete center

Z(G). Then (G,K) is fair for any profinite open subgroup K ⊂ G.

Proof. Let H ∈ Ω. Pick a z ∈ Z(G) ∩H , z 6= e. There exists an H ′ ∈ Ω, contained in H , such that

e /∈ z(Z(G) ∩H ′).

Now, for the sake of contradiction, suppose there is a g ∈ G for which K ∩ gH ′g−1 = K ∩ gHg−1.

Intersecting both sides with Z(G) yields the equality Z(G) ∩H ′ = Z(G) ∩H . For instance,

Z(G) ∩ (K ∩ gHg−1) = K ∩ g(Z(G) ∩H)g−1 = K ∩ (Z(G) ∩H) = Z(G) ∩H.

However, the equality Z(G) ∩H ′ = Z(G) ∩H implies e ∈ z(Z(G) ∩H ′). This contradicts the properties

of H ′. �

5.2. Reductive groups over local fields. Let G = G(F) for a connected reductive group G defined

over a (non-archimedean) local field F. (We emphasize that we allow F to have positive characteristic.)

Then (G,K) is fair for any compact open subgroup K.

Proof. It suffices to show (G,K) is fair for a cofinal system of compact open subgroups, so we may

assume K is a principal congruence subgroup. As in [SS24], we pick a special vertex x0 in the Bruhat-

Tits building and consider the principal congruence subgroups Km of the special parahoric subgroup K0.

We have implicitly fixed a maximal F-split subtorus S such that x0 lies in the associated apartment. We

let Z = Z(F) denote the F-points of the centralizer Z of S, and Z+ is the usual contracting monoid (see

[SS24] for more details). By the Cartan decomposition G = K0Z
+K0 it suffices to show that ∀n there is

an n′ > n such that

Km ∩ zKn′z−1 ( Km ∩ zKnz
−1

for all z ∈ Z+. This follows immediately from the Iwahori factorization of Km∩ zKnz
−1 as in [SS24]. �

In the next subsection we give an alternative proof which works in a more general setup.

5.3. Groups with a weak Cartan decomposition. We say G has a weak Cartan decomposition if

there is a compact subset C ⊂ G, and a non-discrete subgroup S ⊂ G, such that

G = C · ZG(S) · C

where ZG(S) denotes the centralizer of S in G.

Theorem 5.1. Suppose that G has a weak Cartan decomposition. Then (G,K) is fair for any compact

open subgroup K ⊂ G.

Remark 5.2. Such G are reminiscent of groups with a Cartan-like decomposition, cf. [CW23, Df. 3.1],

which means G = C · A · C for a compact open subgroup C ⊂ G and a set A of representatives for the

double cosets C\G/C.

Proof. We start by recalling the tube lemma: Let X,Y be topological spaces, and assume Y is compact.

Suppose V ⊂ X × Y is an open subset containing a slice {x} × Y . Then there exists an open subset

U ⊂ X such that V ⊃ U × Y ⊃ {x} × Y .
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For lack of a reference we indicate a proof hereof: Write V =
⋃

i∈I Ui × Vi as a union of open boxes.

Then Y =
⋃

i∈I′ Vi where I
′ = {i ∈ I : x ∈ Ui}, which we refine to a finite subcovering Y = Vi1 ∪· · ·∪ViN .

One immediately checks that U = Ui1 ∩ · · · ∩ UiN satisfies the requirements.

Consider the continuous map

ξ : S × C −→ G

(s, c) 7−→ csc−1.

It maps the slice {e} × C to {e}. In particular ξ−1(K) ⊃ {e} × C, and therefore ξ−1(K) contains a tube

U × C for some open neighborhood U ⊂ S of e. This means:

(5.3) {csc−1 : s ∈ U, c ∈ C} ⊂ K.

Similarly, given an H as in Definition 3.1, the same argument applied to the map (s, c) 7→ c−1sc yields

an open neighborhood V ⊂ S of e such that

(5.4) {c−1sc : s ∈ V, c ∈ C} ⊂ H.

We may assume V ⊂ U .

Once and for all we pick an element σ ∈ V − {e} (which exists since S is non-discrete) and introduce

the compact subset

Σ := {c−1σc : c ∈ C} ⊂ G.

Since the complement G − Σ is an open neighborhood of e there is an open subgroup H ′ ( H with

H ′ ∩Σ = ∅. We claim this H ′ works in 3.1. If not, there is a g ∈ G for which we get an equality

K ∩ gH ′g−1 = K ∩ gHg−1.

Write g = czc′ according to the weak Cartan decomposition (c, c′ ∈ C and z ∈ ZG(S)). Then:

i. cσc−1 ∈ K by (5.3);

ii. cσc−1 = gc′−1z−1σzc′g−1 = gc′−1σc′g−1 ∈ gHg−1 by (5.4).

(In part ii we used the fact that z and σ commute.) In summary cσc−1 ∈ K ∩ gHg−1. By our hypothesis

on g this element cσc−1 must therefore lie in K ∩ gH ′g−1. Consequently

c′−1σc′ = g−1czσz−1c−1g = g−1cσc−1g ∈ g−1(K ∩ gH ′g−1)g = g−1Kg ∩H ′ ⊂ H ′.

On the other hand c′−1σc′ ∈ Σ. This contradicts the assumption that H ′ ∩Σ = ∅. �

This applies in particular to covering groups of G(F), as discussed in [FP22, Sect. 3.1] for example.

They consider central extensions G̃(F) of G(F) by a finite abelian group. In [FP22, Sect. 5.4] the Cartan

decomposition of G(F) is lifted to a Cartan decomposition of G̃(F). See [FP22, Thm. 5.3] for instance.

Theorem 5.5. Suppose that G has a weak Cartan decomposition G = C · ZG(S) · C. Let A be a closed

central subgroup of G such that A∩S is not open in S, and let χ : A → F× be a smooth character. Then

there are no nonzero projectives in ModχF (G).

Proof. By Theorem 5.1 and Theorem 4.4, it is enough to show that the weak Cartan decomposition of

G induces a weak Cartan decomposition on G/A. Given a set B ⊂ G, we denote by B ⊂ G/A its image

under the quotient map. Clearly, G/A = C · ZG(S) · C, and C is compact. Since ZG(S) ⊂ ZG/A(S), we
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have G/A = C · ZG/A(S) · C. By assumption, A ∩ S is not open in S, hence S is not discrete in G/A.

Therefore, G/A = C · ZG/A(S) · C is a weak Cartan decomposition of G/A. �

6. Other exact structures

One solution addressing the lack of projective objects in ModF (G) is to endow this category with other

exact structures. The survey [Buh10] serves as our main reference for the basic notions and properties of

exact categories.

Let Emax be the class of all short exact sequences 0 → V ′ → V → V ′′ → 0 in ModF (G). For a fixed

open subgroup U ⊂ G we consider the class EU ⊂ Emax of all such sequences which split in ModF (U). The

axioms in [Buh10, Df. 2.1] are easy to verify. This is precisely [Buh10, Exc. 5.3] applied to the restriction

functor ModF (G) → ModF (U) (with split exact sequences). Thus (ModF (G), EU ) is an exact category.

Remark 6.1. If U ′ ⊂ U are compact open subgroups of G with index [U : U ′] ∈ F× an immediate

averaging argument shows that EU ′ = EU . (If V → V ′′ admits a U ′-equivariant section σ then σ̃(v) =
1

[U :U ′]

∑
u∈U ′\U u−1σ(uv) defines a U -equivariant section.)

An admissible monic is a morphism α : V ′ → V in ModF (G) which admits a U -equivariant retraction

(a morphism ρ : V → V ′ in ModF (U) such that ρ ◦ α = IdV ′). We use the notation ֌ for admissible

monics.

Similarly, an admissible epic is a morphism β : V → V ′′ in ModF (G) which admits a U -equivariant

section (a morphism σ : V ′′ → V in ModF (U) such that β ◦ σ = IdV ′′). We use the notation ։ for

admissible epics.

Projective and injective objects of (ModF (G), EU ) are defined in [Buh10, Df. 11.1]. For example, P

is projective if every admissible epic β : V ։ V ′′ induces a surjective map β∗ : HomModF (G)(P, V ) →

HomModF (G)(P, V
′′). (See also [Buh10, Prop. 11.3].)

Proposition 6.2. Let U be an open subgroup of G. Then the following holds:

(a) The exact category (ModF (G), EU ) has enough projectives (see [Buh10, Df. 11.9]) and enough

injectives.

(b) The projective objects are precisely the direct summands of representations of the form indGU (W )

with W ∈ ModF (U). The injective objects are the summands of IndGU (W ) as W varies.

(c) If G is compact, (ModF (G), EU ) is a Frobenius category (see [Buh10, Sect. 13.4]).

Proof. For part (a) let X be an arbitrary object of ModF (G) and consider the counit of adjunction

B : indGU (X |U ) −→ X

f 7−→
∑

g∈U\G
g−1f(g).

This is an admissible epic. Indeed B has a U -equivariant section x 7→ fx, where fx denotes the function in

indGU (X |U ) supported on U and sending the identity to x. Also, indG
U (X |U ) is projective in (ModF (G), EU )

for the following reason. Any admissible epic β : V ։ V ′′ as above induces a surjective map

HomModF (U)(X |U , V ) −→ HomModF (U)(X |U , V
′′)

since σ ◦ (−) is a right inverse. By Frobenius reciprocity this amounts to β∗ being surjective. We conclude

that for any X there is an admissible epic P ։ X with P projective.
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To show (ModF (G), EU ) also has enough injectives we consider the unit of adjunction

A : X −→ IndG
U (X |U )

x 7−→ [g 7→ gx].

This is an admissible monic. A U -equivariant retraction is given by evaluation at the identity. It remains

to note that IndGU (X |U ) is injective. So, let α : V ′
֌ V be an admissible monic as above. Again,

by Frobenius reciprocity for the full induction, it suffices to observe that pulling back via α induces a

surjective map

HomModF (U)(V,X |U ) −→ HomModF (U)(V
′, X |U )

since (−) ◦ ρ is a left inverse. Hence any X admits an admissible monic X ֌ I into an injective I.

In the previous proofs of the projectivity of indGU (X |U ) and the injectivity of IndGU (X |U ) there was

nothing special about X |U . We can run the exact same arguments for any U -representation W instead

of X |U . Altogether this proves parts (a) and (b).

Part (c) follows immediately from (b) since indG
U (W ) = IndGU (W ) when G is compact. �

Any Frobenius category has an associated stable category, which is triangulated. As described in

[Kel96, Sect. 6] this construction can be mimicked in greater generality.

In our setup the injectively stable category Sin(G,U) has the same objects as ModF (G) but the

morphisms are

HomSin(G,U)(V1, V2) = HomModF (G)(V1, V2)/I(V1, V2)

where I(V1, V2) is the space of morphisms V1 → V2 which factor through an injective object (with respect

to the exact structure EU ).

The suspension functor T : Sin(G,U) −→ Sin(G,U) has the property that there is a short exact

sequence

0 → X
A
→ IndGU (X |U ) → T (X) → 0

in EU for all X (where A is the adjunction map which appeared in the proof of Proposition 6.2). In other

words T (X) is the cokernel of A. By [Kel96, Thm. 6.2] this gives Sin(G,U) the structure of a suspended

category (see [Kel96, Sect. 7]). Essentially what this means is it satisfies all the axioms for a triangulated

category except that the suspension functor need not be an equivalence.

Similarly, the projectively stable category Spr(G,U) is defined by modding out morphisms which factor

through a projective object. In this case there is a functor Ω : Spr(G,U) −→ Spr(G,U) such that there is

an exact sequence

0 → Ω(X) → indGU (X |U )
B
→ X → 0

in EU for all X (with B as in the proof of Proposition 6.2). Thus Ω(X) is the kernel of B.

When G is compact we have a Frobenius category. In this case Sin(G,U) = Spr(G,U) and T , Ω are

mutually quasi-inverse equivalences of categories. This gives a triangulated category S(G,U).

When G is finite and U = {e} the above construction yields the stable module category S(G) which is

of pivotal importance in modular representation theory (when |G| is divisible by the characteristic of F ).

See [BIK12] for example.

We are optimistic that Sin(G,U) and Spr(G,U) will likewise play a central role in modular represen-

tation theory for non-compact groups, and we hope to explore this in continuation of this paper.
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7. An interpretation of fairness in the Chabauty space

The set S(G) = {closed subgroups of G} carries a natural topology which makes it a compact Hausdorff

space; see [Cha50]. The group G acts on S(G) by conjugation, and for a K ∈ S(G) we will consider the

G-orbit {gKg−1 : g ∈ G} ⊂ S(G) and its closure.

We owe the following observation, and its proof, entirely to Pierre-Emmanuel Caprace. We are very

grateful to him for allowing us to include his argument here.

Proposition 7.1. The pair (G,K) is fair if and only if

{gKg−1 : g ∈ G} ⊂ {non-discrete closed subgroups of G}.

Proof. First we assume (G,K) is not fair. This means there is some H ∈ Ω such that for all open

subgroups H ′ ⊂ H there exists a g ∈ G for which we have an equality

K ∩ gH ′g−1 = K ∩ gHg−1.

We pick a neighborhood basis at the identity {Hi}i∈I , for some directed set I, consisting of open subgroups

Hi ⊂ H . For each i ∈ I we select a gi ∈ G with the property that

K ∩ giHig
−1
i = K ∩ giHg−1

i .

Equivalently, g−1
i Kgi ∩H ⊂ Hi. Consider the net (g−1

i Kgi)i∈I in S(G). Since S(G) is compact we can

extract a convergent subnet (g−1
f(j)Kgf(j))j∈J for some reindexing function f : J → I. Call the limit ∆.

We claim ∆ is discrete, which will finish the proof of the if part (by contraposition).

Intersection with H gives a continuous map (see [HS14, Prop. 2.2] for instance)

S(G) −→ S(H)

C 7−→ C ∩H.

We deduce that g−1
f(j)Kgf(j) ∩H converges to ∆ ∩H . On the other hand this net converges to {e} since

g−1
i Kgi ∩H ⊂ Hi and Hi → {e}. As S(G) is Hausdorff we conclude that ∆∩H = {e}, and in particular

∆ is discrete.

To prove the only if part, assume there is some discrete group ∆ in the closure of {g−1Kg : g ∈ G}.

We write ∆ as a limit of a net (y−1
j Kyj)j∈J (for some possibly new directed set J). Since ∆ is discrete,

∆ ∩H = {e} for some open subgroup H ⊂ K. For every open subgroup H ′ ( H there is a j for which

y−1
j Kyj ∩H ⊂ H ′,

using that y−1
j Kyj ∩H → {e}. We infer that the inclusions below are equalities:

y−1
j Kyj ∩H ⊂ y−1

j Kyj ∩H ′ ⊂ y−1
j Kyj ∩H.

Conjugation by yj shows that

K ∩ yjHy−1
j = K ∩ yjH

′y−1
j .

Therefore (G,K) is not fair. �

In the previous proof we used the topology of geometric convergence on S(G). This is identical to the

Chabauty topology by [GR06, Lem. 2, p. 880], for example.



12 AMIT OPHIR AND CLAUS SORENSEN

Remark 7.2. Caprace has informed us that the so-called Neretin groups fail to satisfy Proposition 7.1:

For such groups there are choices of K for which {gKg−1 : g ∈ G} has {e} as an accumulation point.

Acknowledgments. We thank Alexander Lubotzky, Alireza Salehi Golsefidy, and Pierre-Emmanuel

Caprace for sharing their knowledge throughout this project.
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