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Abstract

The width of the magnetic hysteresis loop is often correlated with the material’s magnetocrys-
talline anisotropy constant κ1. Traditionally, a common approach to reduce the hysteresis
width has been to develop alloys with κ1 as close to zero as possible. However, contrary to
this widely accepted view, we present evidence that magnetoelastic interactions governed by
magnetostriction constants, elastic stiffness, and applied stresses play an important role in
reducing magnetic hysteresis width, despite large κ1 values. We use a nonlinear micromag-
netics framework to systematically investigate the interplay between—material constants
λ100, c11, c12, κ1, applied or residual stresses σR, and needle domains—to collectively lower
the energy barrier for magnetization reversal. A distinguishing feature of our work is that we
correlate the energy barrier governing the growth of needle domains with the width of the
hysteresis loop. This energy barrier approach enables us to capture the nuanced interplay
between anisotropy constant, magnetostriction, and applied stresses, and their combined
influence on magnetic hysteresis. We propose a mathematical relationship on the coercivity
map: κ1 = α(c11 − c12)(λ100 + βσ11)

2 for which magnetic hysteresis can be minimized for an
uniaxial residual stress σR = σ11ê1 ⊗ ê1 (and for some constants α, β). These results serve
as quantitative guidelines to design magnetic alloys with small hysteresis, and potentially
guide the discovery of a new generation of soft magnets located beyond the κ1 → 0 region.

Keywords: Micromagnetics, Magnetostriction, Magnetic Hysteresis

1. Introduction

Ferromagnets exhibit a lag in magnetic response when cycled under an external field. This
characteristic lag is called magnetic hysteresis and is a widespread phenomenon observed in
ferromagnets. This hysteresis, on the one hand, is crucial to the design of memory-based
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devices, but on the other hand, signifies the energy loss during cycling [1, 2]. Despite the
common occurrence of hysteresis across magnetic alloys, we neither understand its origins
nor can we accurately predict its nonlinear manifestation in material systems [3, 4]. This
gap in knowledge limits our ability to design and discover the next generation of magnetic
alloys with minimal hysteresis.

One explanation for magnetic hysteresis is that the domain walls, which move back
and forth in a magnetic alloy during cycling, get pinned to grain boundaries and other
defects [5, 6]. Kersten’s ferromagnetic theory [7] and Becker’s analysis of inclusion defects
[8] postulate that domain walls minimize surface energy by pinning to defects. These defects
inhibit boundary movement and affect magnetization reversal. For example, today, non-
magnetic precipitates with a large aspect ratio are synthesized to reduce domain wall pinning
and contribute to lower hysteresis [9]. However, the domain wall pinning theory does not
account for the significant effect of the demagnetization field around defects [8].

More recently, researchers have been developing modeling tools, in which machine learn-
ing methods are used to construct a continuum energy landscape [5, 10, 11]. In these studies,
researchers employ feature extraction and dimensionality reduction techniques, such as prin-
cipal component analysis, to investigate the effect of defect density, shape, and position on
domain wall pinning. These studies provide insights into the interplay between magnetiza-
tion and microstructural features in the alloy, and emphasize the role of morphological and
structural defects in computing magnetic hysteresis. Interestingly, however, bulk magnetic
alloys such as the permalloy Fe21.5Ni78.5—synthesized independently by different research
groups and likely with varying microstructures—consistently show similar magnetic hystere-
sis responses [12, 13]. This uniformity in hysteresis behavior is surprising, given the typical
variability in morphological features of an alloy from different synthesis conditions. Further-
more, magnetic hysteresis persists in single-crystal defect-free magnetic alloys [14]. These
observations motivate us to question whether magnetic properties such as hysteresis is only
a function of the microstructural features, or also affected by other factors including material
constants, particle geometry, and processing techniques [15, 16, 12].

Another explanation for magnetic hysteresis is related to the alloy’s magnetocrystalline
anisotropy constant κ1. This anisotropy constant is a fundamental material constant that
penalizes magnetization rotation away from the material’s crystallographic easy axes and
is thought to play a dominant role in magnetization reversal [12, 17]. That is, alloys with
large κ1 are typically characterized by large magnetic hysteresis and therefore a common
strategy to develop magnetic alloys with small hysteresis is to systematically tune the alloy
composition to reduce the anisotropy constant to zero κ1 → 0. Consequently, most of the
soft magnets developed today are concentrated in the narrow material parameter space with
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|κ1| < 200 J/m3, see Fig. 1(a). However, there are a few outlier compounds that have small
hysteresis despite their large κ1 values, see Fig. 1(a) [18, 19, 20, 21, 22].1 These examples
illustrate another gap in our understanding of the origins of magnetic hysteresis—that is,
whether the anisotropy constant κ1 is the only material constant governing the width of
magnetic hysteresis.

Other magnetic material constants (e.g., magnetostriction, elastic stiffness, shape anisotropy
constants) and mechanical constraints (e.g., residual stresses, substrate strains) are theorized
to affect magnetization reversal [23, 24, 25], but their precise role on coercivity is not well un-
derstood. For example, the magnetostriction constant—that describes the coupling between
lattice strain and magnetization—is shown to hinder magnetization reversal and contributes
to the power loss in soft magnetic cores [26]. This constant is typically on the order of a
few micro-strains and is often neglected in magnetic hysteresis calculations [27]. However,
in magnetic alloys with large magnetostriction (e.g., Fe-Ga alloys) the interplay between
elasticity and magnetism plays a crucial role in generating rich microstructural patterns and
in governing the macroscopic deformation of the magnetic material [28, 29]. Moreover, the
presence of residual stresses and/or epitaxial strains affects magnetization reversal and is
shown to alter the shape and size of hysteresis loops [30, 31, 32]. These studies illustrate
the prevalent role of magnetoelastic interactions on magnetization reversal. However, we
do not clearly understand whether and how these interactions affect magnetic hysteresis
and whether these interactions can be optimally designed to reduce magnetic coercivities
[33, 34, 35].

In recent work, we showed the subtle but important role of magnetostriction on magnetic
hysteresis [38, 39, 40]. Using our newly developed coercivity tool [38], based on micromag-
netics [41] and non-linear stability analysis, we demonstrated that the energy barrier for
magnetization reversal is related to a delicate interplay between anisotropy κ1 and magne-
tostriction λ100 constants. This interplay between magnetic constants has been overlooked
in previous works because of the extremely small values of magnetostriction constants (on
the order of ∼ 10−6 strains) and, the mathematical models used to investigate hysteresis
are based on the linear approximation of the free energy function that often overestimates
magnetic hysteresis [41]. These methods miss the shoulder of hysteresis loops and are not
suitable to elucidate the fine balance between material constants.2 In contrast to these ear-

1Specimen geometries and the associated demagnetization fields significantly impact the magnetic hys-
teresis loops. For a given geometry, however, magnetic hysteresis can be further reduced by carefully tuning
the alloy composition [12].

2This discrepancy in coercivity values between theoretical predictions and experimental measurements is
called Brown’s ‘coercivity paradox’ [41, 25, 42].
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Figure 1: (a) The magnetocrystalline anisotropy and magnetostriction constants of commonly used soft
magnetic alloys. Most soft magnetic alloys developed today have κ1 → 0, λ100 → 0 and/or λ111 → 0.
However, outlier compounds, such as Fe50Ni50 with κ1 ≈ 1000 J/m3 or Galfenol with κ1 ≈ 5000 J/m3 [12],
highlight open questions on the role of other magnetic material constants on coercivity. (b) In our coercivity
tool, we introduce a localized disturbance, in the form of a needle-domain, in a large magnetic ellipsoid body.
These needle domains are commonly observed in experiments [36] and we theorize that these domains grow
abruptly during magnetization reversal. The micrographs of the needle domain in iron-film are adapted with
permission from [36] Copyright 2020 American Physical Society. (c) Micrographs and schematics showing
the growth of needle domains into stripe domains from the nuclei at the 180◦ domain walls. This figure
is adapted from Fig. 5(e) in Ref. [37] with permission. Copyright 2018 American Physical Society. (d) A
representative calculation of magnetic hysteresis using our coercivity tool. The needle domain grows in size
under an external field and at a critical value, known as coercivity, the magnetization in the ellipsoid domain
reverses. The inset figures show microstructural evolution during magnetization reversal, and the color bar
represents the orientation of magnetization.
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lier works, our computations provide insights into the longstanding permalloy problem (i.e.,
why the specific composition of the Fe21.5Ni78.5 alloy has the smallest hysteresis) [40], and
quantitatively establishes the role of the magnetostriction constant λ100 on lowering coer-
civity at the 78.5% Ni-composition. Furthermore, we propose a parabolic relation between
material constants (c11−c12)λ2

100

κ1
= Const., for which magnets can have small hysteresis [39].

These results initiate a new line of research, in which multiple material parameters can be
systematically designed to reduce coercivity in soft magnets [39].

The magnetostriction λ100, however, is one such magnetoelastic constant, and the effect
of other material properties—most notably elastic stiffness, and residual stresses—on mag-
netization reversal is unknown. For example, the elastic stiffness constants C(c11, c12, c44)
determine the deformation of a magnet under an applied mechanical/magnetic load and con-
tributes to the micromagnetic energy terms governing magnetization reversal. While c11, c12
affect magnetization reversibility, their precise role on hysteresis loops and coercivities is
not well understood. Moreover, heat treatment of soft magnets and several applications of
soft magnets (e.g., memory elements, sensors) introduce residual stresses (and/or thermal
stresses) σR in the material [43]. These pre-existing stress states in the material coupled with
their intrinsic stiffness constants are shown to alter fundamental magnetic properties and
therefore affect magnetization reversal [44, 45, 46]. We hypothesize that these magnetoelas-
tic interactions affect magnetic hysteresis and can be systematically designed to dramatically
reduce coercivity.

In this paper, we test this hypothesis using our nonlinear micromagnetics framework
[38, 40, 39]. We use the magnetic alloy Fe50Ni50 as a representative example3, and investi-
gate whether and how material constants, such as magnetostriction (λ100), elastic stiffness
(c11, c12), and residual stresses σR, contribute to hysteresis width, and how we can design
these magnetoelastic interactions to reduce magnetic hysteresis (Study 1). We next system-
atically scan the material parameter space (by computing N = 726 independent micromag-
netic calculations) to identify suitable combinations of residual stresses, magnetostriction,
and elastic stiffness, for which magnetic hysteresis can be dramatically reduced (Study 2).
Our key finding is that for a specific combination of magnetoelastic constants, λ100, c11, c12,
and σR, the height of energy barrier for magnetization reversal is lowered. We theoretically
analyze the energy barrier governing magnetization reversal and find that coercivity is min-
imum when the magnetoelastic constants approximately satisfy the parabolic relationship

3The Fe50Ni50 alloy has a large anisotropy constant κ1 ≈ 1000 J/m3 and is an example of a magnet
with relatively large coercivity (e.g., in comparison to the permalloy Fe21.5Ni78.5). This alloy serves as a
suitable example of a ‘bad’ soft magnet with large coercivity, in which the magnetoelastic interactions can
be designed to reduce its hysteresis, and serves as a representative example in this work.
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κ1 = α(c11 − c12)(λ100 + βσ11)
2. Our analysis, based on the concept of energy barriers,

explains the mathematical relationship between material constants and applied or residual
stress in lowering magnetic hysteresis. These results establish coercivity maps that provide
quantitative insights into how elastic stiffness constants C, magnetostriction constants λ100,
and residual stresses σR affect the parabolic locus for minimum coercivities. These findings
would serve as design guidelines to systematically develop magnetic alloys with small hys-
teresis and enable the discovery of a new generation of soft magnets that are located beyond
the κ1 → 0 region in Fig. 1(a).

2. Methods

Traditionally, researchers compute magnetic hysteresis by doing linear stability analysis of
a uniformly magnetized domain [41]. In this technique, a second variation of the micromag-
netics energy is simplified to a eigenvalue problem and its non-trivial solutions are associated
with the magnetization reversal. A well known drawback of this approach is that, when the
material constants are substituted (e.g., of iron) the solutions overestimate hysteresis widths
by several orders of magnitude. This discrepancy between the theoretical prediction and
experimental measurement of the coercive force is called the ‘coercivity paradox’ [41, 25].
Furthermore, many of the standard techniques to compute magnetic hysteresis do not ac-
count for magnetostriction—a reasonable assumption given that this material constant is
often small (on the order of ∼ µϵ = 10−6) in well known soft magnetic alloys.

In a departure from these earlier methods to predict coercivity, we compute magnetic
hysteresis in terms of energy barriers [47, 48, 49, 50] and localized disturbances [38, 40, 39].
In this technique, we consider a pre-existing nucleus, which serves as a large localized dis-
turbance to an otherwise uniformly magnetized domain, and analyze the energy barriers
associated with the nucleus growth. By lowering the energy barrier we arrive at a mathe-
matical relation between material constants for which hysteresis is reduced. This approach
has been successfully used to reduce thermal hysteresis in shape-memory alloys [51, 52]
(another type of phase transformation material) and presents a way forward to designing
magnetic hysteresis.

For example, in our recent works on soft magnetic alloys [38, 40, 39, 53], we consider
nuclei in the form of needle domains that are commonly observed around defects and/or
at sharp corners. These needle domains form to minimize the demagnetization energy, see
Fig. 1(b) [14]. Under an external field, these needle domains are the first to grow in size (first
in length and then in width), leading to a complete magnetization reversal [14, 38]. In our
modeling framework, we treat these needle domains as non-negligible localized disturbances
and correlate their growth with the width of the hysteresis loop. By doing so, we trace the
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hysteresis loop for a soft magnet and predict its coercivity, see Fig. 1(d).4 In this work, we
build on this technique to not only derive a relation between material constants but also
consider the role of applied stresses in reducing magnetic hysteresis.

Our coercivity tool is based on micromagnetics with magnetostriction [41, 25]. The total
free energy Ψ for a magnetic body E ⊂ R3 is a functional of magnetization m = M

ms
=

m1ê1 +m2ê2 +m3ê3 and strain E:

Ψ =

∫
E

{
∇m ·A∇m+ κ1(m

2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1) +

1

2
[E− E0(m)] · C[E− E0(m)]

− µ0msHext ·m− σR · E

}
dx+

∫
R3

µ0

2
|Hd|2 dx. (1)

In Eq. 1, the spontaneous strain E0(m) for the cubic crystal is

E0(m) =
3

2

λ100(m
2
1 − 1/3) λ111m1m2 λ111m1m3

λ111m1m2 λ100(m
2
2 − 1/3) λ111m2m3

λ111m1m3 λ111m2m3 λ100(m
2
3 − 1/3)

. (2)

In Eq. 1, Hext corresponds to the applied magnetic field and σR corresponds to the ap-
plied mechanical stress (or residual stress). The fundamental material constants, such as
the gradient energy constant A, anisotropy constant κ1, elastic stiffness constant C, mag-
netostriction constants λ100, λ111, and the saturation magnetization ms determine the free
energy landscape. Further details of the notations in Eq. 1 are discussed in the supplementary
information and in Refs. [38, 39].

We describe the magnetization dynamics based on the generalized Landau-Lifshitz-Gilbert
equation Eq. 3, and solve for magnetostatic and mechanical equilibrium conditions Eq. 4–5:

∂m

∂τ
= −m×H− αm× (m×H) (3)

∇ · (−∇ζm +msm) = 0 in R3 (4)

∇ · σ = −∇ · C[E− E0(m)] = 0 in E . (5)

Here, H = − 1
µ0m2

s

δΨ
δm

is the effective field, τ = γmst is the dimensionless time step, γ is the
gyromagnetic ratio, and α is the damping constant. We numerically solve Eqs. 3–5 in Fourier

4This approach of computing magnetic hysteresis has been applied for the Fe-Ni alloy system and explains
the small coercivity at the permalloy composition (Fe21.5Ni78.5) [40]. The coercivity tool also provides insights
into the energy barriers, arising from magnetostriction, which affect hysteresis in soft magnetic alloys [38, 39].
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space using the Gauss-Seidel projection method [27]. Further details on the numerics can
be found in Refs. [27, 38, 54]. In this study, we calibrate our micromagnetics model for the
Fe50Ni50 alloy, see Tables 1–2 for material constants.

To compute coercivity, we model a 3D domain Ω of size 128 × 128 × 22 grid points
with a nonmagnetic inclusion Ωd of size 8 × 8 × 6 at its geometric center. This 3D domain
is embedded within a large plate-like smooth ellipsoid E and the demagnetization factor
associated with this oblate ellipsoid is Nd = ê3 ⊗ ê3), see Fig. 1(b). In our model, we use
the ellipsoid and reciprocal theorems to compute the demagnetization fields arising from the
poles of the ellipsoid geometry, see the Supplement in Ref. [38]. That is, we estimate the
coercivity of a bulk magnetic ellipsoid by numerically modeling the 3D domain with suitable
boundary conditions (see Ref. [38] for details). We initialize the 3D domain with a uniform
magnetization m = ê1, (except at the defect site, where m = 0) along the material’s easy
axes. A needle-like domain forms around the defect to minimize the demagnetization energy.
We apply an external field Hext parallel to the initial magnetization, which is large enough to
saturate it, see Fig. 1(b). We then decrease this applied field and the needle domain around
the defect grows until a critical field is reached at which the magnetization reverses abruptly.
We trace the hysteresis loop and quantify coercivity for each combination of elastic stiffness
constants (c11, c12) and residual stresses σR.

3. Results

Magnetoelastic Interactions and Hysteresis

In Study 1, we test our hypothesis that magnetoelastic interactions arising from magne-
tostriction, elastic stiffness, and residual stresses can be optimally designed to lower coer-
civity in soft magnetic alloys despite the alloy’s large magnetocrystalline anisotropy. As a
reference case, we investigate the effect of magnetoelastic interactions on the hysteresis loop
of a soft magnetic alloy Fe50Ni50. This alloy is known to have a larger coercivity than the
permalloy Fe21.5Ni78.5 because of its relatively large magnetocrystalline anisotropy constant,
κ1 ≈ 1000 J/m3. In this study, we use Fe50Ni50 as a candidate material and show that we can
further reduce its coercivity by suitably designing its magnetoelastic interactions. By doing
so, we demonstrate a potential material design approach in which magnetostriction, residual
stresses, and elastic stiffness constants are systematically designed to reduce coercivity. This
design strategy follows our previously proposed mathematical design rule [39], i.e., hysteresis
in soft magnetic alloys is minimized close to the (c11−c12)λ2

100

2κ1
= Const. parabola.5

5The parabolic relation derived in our previous work [39], suggests that in addition to achieving minimum
coercivity for κ1 → 0 there exists other regions along (c11−c12)λ

2
100

2κ1
= Const. at which coercivity is small.
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Figure 2: (a) The effect of residual stresses σR = σ11ê1⊗ê1 affect the length of the needle domain microstruc-
tures. For example, compressive stresses (≈ −40 MPa) stabilize longer needle domains, making them more
susceptible to abrupt growth under an external magnetic field. (b) magnetostriction λ100 and (c) residual
stress σ11 on the shape and size of hysteresis loops. The gray-dashed line in subfigures (b-c) corresponds to
the Fe50Ni50 reference alloy.

At the microstructural level, we note that the compressive (σ11 < 0) and tensile (σ11 > 0)
stresses have opposing effects on the needle domain geometry, see Fig. 2(a). On the one
hand, compressive stresses σ11 < 0, applied to alloys with λ100 > 0, energetically favors
magnetization along the ê2 directions, i.e., m = ±ê2. These stresses when applied to a
free-standing microstructure with needle domains leads to longer needles in the equilibrium
state. In our calculations, these longer needles require a smaller external field for domain
growth and magnetization reversal and σ11 < 0 lowers the coercivity of the magnetic alloy, see
Fig. 2(c). On the other hand, tensile stresses shorten the length of the needle domains, and
these shorter needles require a relatively stronger external field for complete magnetization
reversal. These results indicate that applied stresses can have a significant effect on the
magnetic properties of materials, and the magnitude and type of the applied stresses can
have opposite effects on coercivity.

Fig. 2(b-c) illustrates the effect of two different factors, namely magnetostriction and
residual stresses, on the magnetic hysteresis of a Fe50Ni50. Fig. 2(b) shows that increasing

While this relation is based on ⟨100⟩ easy axes and might differ for alloys with different easy axes (and/or
in the presence of residual stresses). The parabolic relation is intended to be a guide to the search for soft
magnetic alloys with large κ1.
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the value of magnetostriction λ100 from 10 µϵ to 500 µϵ (with 1 µϵ = 10−6) reduces the
coercivity from 8.16 Oe to 5.3 Oe. However, further increasing the value of magnetostriction
from 500 µϵ to 1500 µϵ results in a four-fold increase in coercivity, from 5.3 Oe to 21.73 Oe.
This shows that, despite the large magnetocrystalline anisotropy constant of the alloy, there
is an optimal value of magnetostriction (i.e., approximately satisfying (c11−c12)λ2

100

2κ1
= Const.)

that minimizes coercivity. Similarly, Fig. 2(c) shows that applying compressive residual
stresses of σ11 = −40 MPa to the Fe50Ni50 alloy dramatically reduces its coercivity from
8.16 Oe to 1.41 Oe.6 However, when tensile stresses of similar magnitude are applied to the
Fe50Ni50 alloy, the coercivity value increases to 15 Oe.

Figs. 2(b-c) show that a change in magnetostriction or residual stresses not only affects
coercivities but also affects the shape of hysteresis loops. For example, when λ100 is in-
creased from 500 to 1500 µϵ, pinched or step-like features emerge on the hysteresis loop, see
Fig. 2(b). Similar features are observed in the hysteresis loop of Fe50Ni50 with residual stress
of σ11 = −40 MPa. These step-like features correspond to the new intermediate microstruc-
tural states. For example, λ100 = 1500 µϵ in Fig. 2(b), magnetizations are approximately
oriented along (

√
2
3
,
√

1
3
, 0) and/or the (

√
1
3
,
√

2
3
, 0) directions. These intermediate states

with magnetization orientation away from the easy axes (i.e., ⟨100⟩ for alloys with κ1 > 0)
are supported by the relatively large magnetostriction constant (λ100 = 1500 µϵ) or the
significant applied stress (σ11 = −40 MPa).

Overall, Fig. 2 shows that, soft magnets with suitable magnetostrictive coefficients can
have small hysteresis despite the large κ1 values. These magnetoelastic interactions could be
achieved in an experimental setting through controlled alloy doping [56, 57, 58, 59], additive
manufacturing [60, 61], or epitaxial growth of materials on substrates with appropriate pre-
strains [62]. Furthermore, the tailoring of magnetoelastic interactions not only allows for the
design of coercivities but also for the shape of hysteresis loops, which would be relevant for
soft magnetic applications in actuators and memory devices.

Energy Barriers and Coercivity Maps

In Study 2, we systematically scan the material parameter space (by computing N = 726

independent micromagnetic calculations) to identify suitable combinations of residual stress,
magnetostriction, and elastic stiffness constants, for which magnetic hysteresis can be dra-
matically reduced. Specifically, we compute the coercivity of soft magnets within the fol-

6These residual stresses correspond to an uniaxial strain of about ±200 µϵ (with typical Young’s Modulus
of about 200 GPa) for soft magnetic alloys. As noted before, these residual stresses could naturally arise
from mechanical constraints or defects during heat treatment and are similar in value to the thermal strains
in soft magnets [55].

10



lowing parameter ranges: elastic stiffness constants 90 GPa ≤ c11 ≤ 239 GPa, magne-
tostriction constants −1000 µϵ ≤ λ100 ≤ 1000 µϵ (with λ111 = 0) and anisotropy constants
0 ≤ κ1 ≤ 2000 J/m3. Furthermore, we study the effect of residual stresses σR = σ11ê1 ⊗ ê1,

σ11 = ±200 kPa on coercivity across the material parameter space. In these calculations,
we analyze the energy contributions from magnetocrystalline anisotropy, magnetostriction,
and applied loads, all of which collectively govern magnetization reversal. Overall, our com-
putations establish coercivity maps for a range of magnetoelastic interactions characterized
by material parameters such as σR, C, and λ100, offering a quantitative guideline for alloy
design and development.

Fig. 3(a-d) shows the coercivity maps for soft magnets as a function of magnetostriction
λ100, anisotropy κ1, and elastic stiffness constants c11, c12. These maps show that magnetic
alloys with large anisotropy constants κ1 can have small coercivities that are comparable
to alloys with κ1 → 0, provided the magnetostriction constants of these alloys satisfy a
certain parabolic locus κ1 ∝ λ2100. Furthermore, Fig. 3(a-d) shows that the elastic stiffness
c11−c12 constants govern the width of this parabolic locus. For example, magnets with large
elastic stiffness c11 − c12 = 150 GPa have a narrower parabolic locus for minimum coercivity
(κ1 ≈ 1

800
λ2100), than magnets with small elastic stiffness c11−c12 = 50 GPa that have a wider

parabolic locus for minimum coercivity (κ1 ≈ 1
2400

λ2100). In magnets with extremely small
stiffness constants c11 − c12 = 1 GPa, the parabolic locus for minimum coercivity reduces to
be approximately a line along κ1 = 0.

To interpret the effect of stiffness constants on the parabolic locus, we analyze the
dominant energy terms governing magnetization reversal for a representative alloy (with
κ1 = 1000 J/m3 and λ100 = 800 µϵ), see Figs. 3(e-h).7 We theoretically analyze these energy
barriers in the next section, but for now we compare the different contributions from the
anisotropy energy term (labelled as κ1 in Figs. 3(e-h)):∫

E
κ1(m

2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)dx, (6)

7The energy contributions are analyzed on the shoulder of hysteresis loops, at which point the needle
microstructure has grown to its full length and this transient microstructural state precedes the complete
magnetization reversal in the computational domain, see Fig. 5(b).
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Figure 3: Contour plots showing coercivity values for each combination of magnetostriction constant λ100

and anisotropy constant κ1 for different elastic stiffness constants (a) c11−c12 = 150 GPa, (b) c11−c12 = 100
GPa, (c) c11 − c12 = 50 GPa, and (d) c11 − c12 = 1 GPa. The parabolic locus of minimum coercivity is
shown in white on each of these contour plots. For clarity, the parabola for c11 − c12 = 1 GPa is highlighted
in cyan. The histograms (e-h) show energy contributions at a representative point (shown by the red dot in
(a-d)) with κ1 = 1000 J/m3 and λ100 = 800 µϵ. The energies in these subfigures are evaluated in unit of
(µ0m

2
sλ

2
100/κ1)× 104. In subfigures (e-g), the primary elastic energy term contributing to the height of the

energy barrier is the coupled magnetoelastic term with the multiplier c11 − c12.

and the three magneto-elastic energy terms (in the absence of applied mechanical loads):∫
E

1

2
[E− E0(m)] · C[E− E0(m)]dx

=

∫
E

{
2c44

3∑
i,j=1
i>j

(
εij −

3

2
λ111mimj

)2

︸ ︷︷ ︸
c44 term

+
c11 − c12

2

3∑
i=1

[
εii −

3

2
λ100

(
m2

i −
1

3

)]2
︸ ︷︷ ︸

c11 − c12 term

+
c12
2

(
3∑

i=1

εii

)2

︸ ︷︷ ︸
c12 term

}
dx.

(7)

These elastic energy terms are labeled as ‘c44’, ‘c11 − c12’, ‘c12’ in Figs. 3(e-h) and the strain
tensors is written as:

E =
∑
i,j

εij(êi ⊗ êj). (8)

We find the micromagnetics energy contribution arising from the c11 − c12 term in Eq. 7
to dominate magnetization reversal in magnets with c11 − c12 ≥ 50 GPa. However, for
magnetic alloys with stiffness constants of c11−c12 = 1 GPa (see Fig. 3(d)), the elastic energy
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contribution is negligible and the anisotropy energy term dominates magnetization reversal.
The axial strains in Eq. 7 scale linearly with the magnetostriction constant εii ∝ λ100 and the
elastic energy approximately scales as (c11− c12)λ2100. This elastic energy term, with suitable
stiffness and magnetostriction constants, plays a significant role in reducing coercivity in
Figs. 3(a-c).

Using the coercivity map with c11− c12 = 150 GPa as a representative example Fig. 3(a),
we next analyze the effect of residual stresses σ11 = ±200 kPa on the parabolic locus for
minimum coercivity, see Fig. 4(a,c). We model residual stresses as an unaxial mechanical
load, introduced as an additional energy term −σ11ε11 in Eq. 1. In the absence of residual
stresses, see Fig. 3(a), magnetic alloys with material constants satisfying the condition κ1 =
α(c11 − c12)λ

2
100 (with α as a scalar constant) have minimum coercivity. This parabola is

symmetric about the λ100 = 0 axis. However, when small residual stresses σR = σ11ê1 ⊗ ê1

with σ11 = ± 200 kPa, are applied the parabola for minimum coercivity becomes asymmetric
about the λ100 = 0 axis, see Figs. 4(a,c). We attribute this asymmetry, or a linear shift of the
parabolic locus, to the additional energy term −σR ·E = −σ11ε11. We predict that the small
residual stresses induce a linear shifting of the minimum coercivity parabola, now expressed
as κ1 = α(c11 − c12)(λ100 + βσ11)

2, where β is another constant. We analytically explain this
linear shift of the parabolic locus in the next section.

Overall, Figs. 3-4 establish coercivity maps that identify specific combinations of stiffness
constants c11, c12, magnetostriction λ100, residual stresses σR, and anisotropy constants κ1,
for which coercivity can be minimized. These maps would serve as quantitative design
guidelines to design soft magnetic alloys with small hysteresis.

4. Energy Barrier Analysis for Minimum Coercivity

In this section, we theoretically analyze the effect of a localized disturbance (in the form
a needle domain) and residual stresses on magnetic hysteresis. Specifically, we evaluate the
energy barriers limiting the growth of a needle domain on an otherwise uniformly magne-
tized ellipsoid, and correlate these barriers to the width of the hysteresis loop (or coercivity).
By minimizing the energy barriers governing magnetization reversal, we arrive at a math-
ematical relationship between material constants and applied stresses for which magnetic
hysteresis is minimized. Our calculation is by no means a rigorous theoretical proof, but
an analytical interpretation of the relationship between material constants and mechanical
loads that collectively lower magnetic hysteresis. We support our analysis using our numer-
ical micromagnetic computations.

As a first step, we analyze the stability of uniform magnetization on an ellipsoid under
an external field. In the following sections, we build on this analysis by introducing a needle
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Figure 4: Heatmaps showing the coercivity of magnetic alloys as a function of magnetocrystalline anisotropy
and magnetostriction constants under an external stress of (a) σ11 = 200 kPa, (b) σ11 = 0 (the free standing
state for comparison) and, (c) σ11 = −200 kPa. The parabolas in white represent the locus of minimum
coercivity values as a function of magnetocrystalline anisotropy, magnetostriction, and residual stresses. We
analytically derive these parabolic relations in section 4 and attribute their asymmetry about the λ100 = 0
axis to the residual strains.

domain and applying residual stresses to the uniformly magnetized ellipsoid. We then analyze
the combined effects of these localized disturbances and mechanical loads on energy barriers
governing magnetization reversal.

Linear Stability Analysis of a Uniformly Magnetized Ellipsoid

Let us consider a large oblate ellipsoid E in three-dimensional space R3 that is uniformly
magnetized along the easy axis m = m1ê1, see Fig. 5(c). In the absence of defects, the
uniform magnetization minimizes the anisotropy energy (magnetization along easy axis),
the demagnetization energy (with poles far apart on the ellipsoid), and the exchange energy
(no domain walls). At mechanical equilibrium, the strains on the ellipsoid E are equal to the
spontaneous values E0(m), and thus minimize the total elastic energy of the system. Under
an external magnetic field Hext = −Hextê1, there is a finite Zeeman energy contribution in the
system. This Zeeman energy is minimized when the magnetization on the ellipsoid reorients
to align with the applied field. This reorientation, however, costs energy and perturbs the
system away from equilibrium.

To analyze this increase in the free energy, we model a small and uniform in-plane pertur-
bation θ → 0 to rotate the magnetization away from its easy axis. That is, the magnetization
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Figure 5: (a) Schematic illustration of the energy wells located at m1 = ±1 and at m2 = ±1. At these energy
wells, the strains are minimized and correspond to the spontaneous strain values E0(m). (b) At the shoulder
of the hysteresis loop (preceding magnetization reversal), a transient microstructural state is observed. In
this state, the needle domain is extended to its maximum length and the domain walls are nearly parallel
to one another. At this stage, the microstructure resembles a stripe-like domain with near-divergence-free
magnetization. The ideal values of magnetization and strains in these domains correspond to the values at
the energy wells, i.e., m = m1ê1 and ε̂11 = 1, ε̂22 = ε̂33 = − 1

2 , and m = m2ê2 and ε̂22 = 1, ε̂11 = ε̂33 = − 1
2 ,

respectively. For i ̸= j the shear strains are zero in both domains. (c) Illustration of a uniformly magnetized
ellipsoid in linear stability analysis.

is:

m = cosθ ê1 + sinθ ê2

≈
(
1− θ2

2

)
ê1 + θ ê2 for θ ≪ 1. (9)

This perturbation contributes to an increase in the magnetocrystalline anisotropy energy,
however, the uniform perturbation does not introduce magnetization gradients (no exchange
energy). At mechanical equilibrium the elastic energy is negligible (because E = E0(m)).
Recall that we consider a large plate-like ellipsoid with a surface normal along the the ê3

direction, see Fig. 5(c). For this ellipsoid geometry the demagnetization factor is Nd =

ê3 ⊗ ê3, and we neglect the contributions from the in-plane perturbations of magnetization
to the demagnetization energy. Therefore, the total energy of this perturbed ellipsoid under
an external field is:

Ψθ =

∫
E
[κ1(m

2
1m

2
2 +m2

2m3
2 +m2

3m
2
1)− µ0msHext ·m]dx (10)

=

∫
E
[κ1cos

2θsin2θ − µ0msHextcosθ]dx (11)

≈
∫
E
[κ1θ

2 − µ0msHext(1−
θ2

2
)]dx = [κ1θ

2 − µ0msHext(1−
θ2

2
)] (12)
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The energy in Eq. 12 to the second order O(θ2) corresponds to the energy barrier limiting
magnetization reversal on an ellipsoid of unit volume. At the coercivity point, the equilibrium
and stability conditions are, respectively, given by:

δΨθ

δθ
= 0,

δ2Ψθ

δθ2
≤ 0. (13)

The equilibrium condition is satisfied for:

δΨθ

δθ
= 2κ1θ + µ0msHextθ = 0, (14)

and the stability criterion should be negative for magnetization reversal:

δ2Ψθ

δθ2
= 2κ1 + µ0msHext ≤ 0. (15)

Therefore the linear approximation of the micromagnetics energy for a uniformly magnetized
domain shows the coercivity to be consistent with the results of the Stoner-Wohlfarth model
[63]:

|Hc| = |Hext| =
2κ1
µ0ms

. (16)

In our analysis, we considered a second variation of the micromagnetics energy (i.e., linear
stability analysis) and derived a linear relation between the coercivity and the magnetocrys-
talline anisotropy constant, see Eq. 16. In this analysis, we assumed a smooth ellipsoid
body and a coherent rotation of the uniformly magnetized domain. A well-known difficulty
of these assumptions (and therefore the linear approximation result) is that when we sub-
stitute experimentally measured values of the anisotropy constant in Eq. 16 (e.g., for iron,
κ1 = 4.3×103 J/m3) the result overestimates coercivity by 3 orders of magnitude [41]. It is in-
teresting to note that analyzing the stability of a magnetized domain, with a microstructural
picture of magnetization rotation, demonstrates the dominant role of anisotropy constant on
coercivity. The subtle, but important, effect of magnetostriction on magnetic hysteresis is
not captured in this approach.

A Localized Disturbance on a Uniformly Magnetized Ellipsoid

We next consider a localized disturbance (e.g., a non-magnetic inclusion defect Ωd ≪ E
positioned at the center of a uniformly magnetized ellipsoid and analyze the energy terms
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governing magnetization reversal.8 We note that by introducing a defect, we locally perturb
the uniform magnetization on the ellipsoid, and a strong demagnetization field is generated
around the defect. Needle domains, as predicted by Néel [64] and widely observed in exper-
iments [14], form around the defect to minimize the demagnetization energy, see Fig. 1(b).
These needle domains serve as a large-localized disturbance to the uniform magnetization
and grow under an external field, see Fig. 5(b). At the coercivity point, the needles have
extended to their maximum length and resemble a stripe-like pattern. This microstructural
picture of a growing needle domain under an external magnetic field differs from the coherent
magnetization rotation considered in Sec. 4. We use the transient stripe-domain microstruc-
tural state, on the shoulder of the hysteresis loop, to analyze the energy barriers limiting
magnetization reversal.

In an ideal scenario, such as the infinitely long stripe-domain pattern in Fig. 5(b), the
magnetization in the needle domains is uniform with m = m2ê2 and the strains correspond
to the bottom of energy wells, i.e., E = E0. The strains inside Êin and outside Êout the
needle domain are, respectively:

Êin =

−1/2

1

−1/2

, Êout =

1

−1/2

−1/2

, (17)

as shown in Fig. 5(b). For later use, we normalize the strain tensor as Ê = E/λ100. These
strains for the idealized stripe-domain in Eq. 17 would satisfy the kinematic compatibility
condition Êin− Êout =

1
2
(a⊗ n̂+ n̂⊗a) for vectors a, n̂. For the strains in Eq. 17, the vector

n̂ = ⟨110⟩ corresponds to the domain wall orientation in the reference configuration. For
these strains E = E0 and the elastic energy in the system is zero.

In our computations, however, we note that the strains across the needle domains deviate
from the spontaneous values (Ê ̸= Ê0(m)) and accumulate finite elastic energy in the system,
see Fig. 6(c-d). We attribute this deviation in strains to (a) the non-zero misfit strains
between the defect (a non-magnetic inclusion) and the magnetized domains, and (b) the
domain walls that do not exactly satisfy the compatibility condition. These deviations in
strains ÊD = [E−E0(m)]/λ100 (or, equivalently the elastic energy) contributes to the energy

8Please note that this is a simplified construction of the localized disturbance when compared to the
periodic array of defects used in our micormagnetic calculations. We solve the governing equations in the
micromagnetics model using the Fast Fourier Transform algorithm with periodic boundary conditions in
Sec. 3.

17



barrier limiting magnetization reversal:∫
E

1

2
[E− E0(m)] · C[E− E0(m)]dx =

∫
E

1

2
λ2100ÊD · CÊDdx. (18)

Fig. 6 shows the individual contributions of the magneto-elastic and anisotropy energy terms
at the needle domain (point ‘c’ in Fig. 1(d)) and the stripe domain states (point ‘d’ in
Fig. 1(d)), respectively. In these microstructural states, the anisotropy energy is concentrated
at the domain walls, and increases during magnetization reversal. However, in the presence
of a defect, the magnetoelastic energy terms play an important role in lowering the energy
barrier governing magnetization reversal. For example, the energy term proportional to
c11 − c12 decreases with the growing needle domain. This is a consequence of the lowering of
lattice misfit strains along the domain walls as the longer needles/stripe domains satisfy the
kinematic compatibility condition. The other elastic energy terms remain largely unchanged
during magnetization reversal. Therefore, the reduction in energy contribution arising from
the c11 − c12 term facilitates magnetization switching and lowers coercivity. This interplay
between magnetocrystalline anisotropy and magnetoelastic energies that collectively lowers
coercivity was not captured in the linear stability analysis of a uniformly magnetized domain
undergoing coherent magnetization rotation.9

At the needle-domain and stripe-domain states, we note that the demagnetization energy
and exchange energy are the only two energy terms containing ∇m. As illustrated in our
previous work [39], we find that these energy terms are only significant within the domain
walls of width lw ∼

√
A/κ1, which is much smaller than the characteristic length of the

system. For the majority of the spaces inside the domain, the divergence of magnetization
is negligible. As a result, these energy terms play a minor role in governing magnetization
reversal at the transient microstructural (i.e., stripe-domain) state.

On the shoulder of the hysteresis loop, the primary energy contributions limiting the
growth of the needle domain are the anisotropy and the magnetoelastic energy terms in
Eqs. 6,7. Let ∆ denote the changes in the anisotropy and magnetoelastic energy contributions
arising from an infinitesimal change of the average magnetization on the domain. These
energy terms contribute to a finite energy barrier limiting magnetization reversal. We have:

9It is important to note that the coercivity Hc does not monotonously decrease as the elastic energy (scaled
by (c11 − c12) or λ2

100) increases. A possible explanation is that when λ100 is increased beyond a critical
point, our previous picture of the needle domain is energetically unfavorable because of the large lattice misfit
between the defect and the magnetized domain, and new intermediate states with average magnetization
along (

√
2
3 ,
√

1
3 , 0) and (

√
1
3 ,
√

2
3 , 0) directions are stabilized. These intermediate states do not evolve via

energy-minimizing deformations (i.e., domain structures with more compatible interfaces during evolution),
and the argument of reducing the elastic energy barrier during magnetization reversal is no longer valid.
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Figure 6: (a,b) The needle and stripe domain structures from an example simulation of the magnetization
reversal process. The material parameter is set to be κ1 = 1000 J/m3, λ100 = 800 µϵ and c11−c12 = 150 GPa.
The plots, from left to right, correspond to points c, and d in the coercivity loop in Fig. 1(d). (c,d) Energy
contributions for configurations (a) and (b) respectively. The energies in these subfigures are evaluated in
unit of (µ0m

2
sλ

2
100/κ1)× 104. The dashed lines indicate the decrease of the elastic energy term proportional

to c11 − c12, ∆Ψel.
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∆Ψtot = ∆

∫
E

3∑
i,j=1
i>j

m2
im

2
jdx

+
(c11 − c12)λ

2
100

2κ1
∆

(∫
E

3∑
i=1

ε̂2D,iidx

)

= ∆F [m] +
(c11 − c12)λ

2
100

2κ1
∆G[Ê] ≥ −∆ΨZeeman = −µ0msHext

κ1
∆Z[m],

(19)

in which F [m] and Z[m] =
∫
E m · ê1dx are functionals of m and G[Ê] is a functional of Ê.

As the needle domain extends, the anisotropy energy of the system increases (∆F [m] > 0),
however, at the same time, the extended needles approach a stripe-domain pattern that
approximately satisfy the kinematic compatibility condition. This compatibility reduces the
total magnetoelastic energy contribution, i.e., ∆G[m] < 0, see Fig. 6(c-d). This interplay
between the anisotropy and magnetoelastic energy terms govern the height of the barrier,
and the critical Zeeman energy necessary for magnetization reversal is:

∆F [m] +
(c11 − c12)λ

2
100

2κ1
∆G[Ê] = −µ0msHc

κ1
∆Z[m]. (20)

This energy barrier for magnetization reversal is minimized for:

κ1
(c11 − c12)λ2100

= − ∆G[Ê]

2∆F [m]
= α. (21)

Eq. 21 shows a parabolic relation between anisotropy and magnetostriction constants for
which coercivity is reduced. In our numerical calculations, we find that the ratio α to
depend on the choice of other material constants (e.g., magnetostriction λ111, elastic stiffness
C) and to some extent on the defect geometry. For example, this ratio affects the width of
the parabolas for minimum coercivity in Figs. 3(a-d), however, the relation κ1 ∝ λ2100 is a
common feature in the coercivity heatmaps.

Overall, we compute a nonlinear stability analysis of magnetization reversal and reveal
the unexpected role of magnetoelastic interactions in lowering hysteresis. The results demon-
strate a parabolic relationship between anisotropy and magnetostriction constants for mini-
mum coercivity. This subtle, but important, effect of magnetoelastic interactions on magnetic
hysteresis was not captured in the prior linear stability analysis approach, and in the past
has provided insights into the permalloy problem [40] and the coercivity paradox [38]. We
build on this result by analyzing the effect of applied stresses on magnetic hysteresis and the
parabolic relation for minimum coercivity.
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Effect of Residual Stress on the Energy Barrier

We next analyze the effect of the applied or residual stresses on the energy barrier gov-
erning the growth of the needle domain. The total elastic energy stored in the ellipsoid under
a constant applied or residual stress σR is:

ψR
elas =

∫
E

{1
2
[E− E0(m)] · C[E− E0(m)]− σR · E

}
dx. (22)

Using ED = E− E0(m), and S as the compliance tensor, we rewrite the elastic energy as:

ψR
elas =

∫
E

{1
2
ED · CED − σR · [ED + E0(m)]

}
dx

=

∫
E

{1
2
ED · CED +

1

2
σR · SσR − 1

2
σR · SσR − σR · [ED + E0(m)]

}
dx

=

∫
E

[
1

2
(ED − SσR) · C(ED − SσR)− σR · E0(m)− 1

2
σR · SσR

]
dx

=

∫
E

[
1

2
Eeff · CEeff − σR · E0(m)

]
dx+ Const.

(23)

In Eq. 23, the energy term
∫
E −

1
2
σR · SσRdx is a constant, and we define Eeff = ED − SσR

to be an effective strain tensor under the applied or residual stress (see section 6 of the
Supplement for strain decomposition). This effective strain accounts for heterogeneous lattice
misfit strains at defects and domain walls, and homogeneous lattice distortions arising from
applied mechanical stresses. Eq. 23 can be viewed as the sum of an effective internal energy
of the system and an external field energy ∆ψ = ψR = −σR · E0(m). These applied or
residual stresses affects the energy barrier governing the growth of the needle domain, and
therefore, alters the coercivity of a magnet, see Fig. 4(a,c).

In our computations, we model a simple uniaxial stress on the ellipsoid σR = σ11ê1 ⊗ ê1.
From Eq. 23, we note that this stress linearly scales the total elastic energy of the system
(normalized by κ1) as:

ΨR = − 1

κ1

∫
E
σR · E0(m)dx = −3λ100σ11

2κ1

∫
E

(
m2

1 −
1

3

)
dx. (24)

The second variation of this additional energy term is positive (δ2ΨR/δθ
2 > 0) if both the

applied stresses and magnetostriction deform the lattices in a similar manner, that is σ11 > 0

and λ100 > 0, or, σ11 < 0 and λ100 < 0. This is because both the applied stresses and the
spontaneous strains (from magnetostriction) stabilize the uniform magnetization m = m1ê1

on the ellipsoid in an energy minimizing state. Additional energy is therefore required to
perturb the system from its energy minimizing state and to grow the needle domain, which in
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turn corresponds to an increase in the coercivity values. By contrast, if the applied stresses
and magnetostriction constants have opposing effects on lattice deformation, i.e., σ11 > 0

and λ100 < 0, or, σ11 < 0 and λ100 > 0, the coercivity of soft magnets is reduced. We use this
analytical interpretation to explain the shift of the minimum coercivity parabola in Fig. 4
under small mechanical loads.10

Parabolic Relation with Residual Stress

Under small external stresses of the form σR = σ11ê1⊗ ê1 with σ11 ≈ 200 kPa, the needle-
domain geometry in the initial state is perturbed by a negligibly small amount.11 This small
perturbation does not affect the microstructural evolution pathway during magnetization
reversal. However, the applied stresses do affect the coercivity values and therefore the
parabolic relation for minimum coercivity, see Fig. 4. In this section, we analytically interpret
the shift of the minimum coercivity parabola under applied stresses (see Figs. 4(a,c)).

From Figs. 3(a-d), we note that the coercivity of a magnetic alloy Hc is a function of
the magnetocrystalline anisotropy constant κ1 and the magnetostriction constant λ100.12 We
also note that this coercivity is affected by the applied or residual stresses, see Figs. 4(a,c).
Based on Figs. 3, 4, we approximate the effective coercivity Hc, as a sum of the intrinsic
coercivity Hκ,λ, determined by material constants, and a coercivity shift Hσ, induced by the
applied mechanical stresses.

As discussed in Sec. 4, the applied stresses increase or decrease the energy barrier govern-
ing magnetization reversal, see Eq. 24. For sufficiently small mechanical loads—which neither
significantly change the needle domain geometry nor the magnetization reversal pathway—
we correlate the change in elastic energy arising from the applied or residual stresses to the
change in the Zeeman energy necessary for magnetization reversal.

Let us assume that the residual stresses perturb the average magnetization on the ellipsoid
⟨m⟩ by an infinitesimal angle δθ ≪ 1. The corresponding changes to the Zeeman and the

10We consider residual stresses of the order of a few hundred kPa to be small as these loads do not
significantly change the geometry of needle-domains or that of the intermediate stripe-domain patterns. We
consider these domains as pre-existing nucleus in our energy barrier analysis.

11This perturbation is negligible when compared to the change in the needle domain length with σ11 ≈
40 MPa in Fig. 2.

12Please note that other material parameters such as the stiffness tensor, magnetostriction along {111},
saturation magnetization ms were held constant in our computations.
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residual elastic energy on an ellipsoid of unit volume at θ ≈ 0, respectively, are:

∆ΨZeeman =
1

2
δ2ΨZeeman =

µ0ms|Hσ|
2κ1

δ2(cos θ) = −µ0ms|Hσ|
2κ1

δθ2 (25)

∆ΨR =
1

2
δ2ΨR = −3λ100σ11

4κ1
δ2(cos2 θ) =

3λ100σ11
2κ1

δθ2. (26)

From Eqs. 25-26, the coercivity shift induced by applied stresses is given by Hσ ≈ −(3λ100σ11/µ0ms)ê1.
For a constant magnetocrystalline anisotropy and a constant value of the applied mechani-
cal stress, we approximate the effective coercivity function as a Taylor series polynomial at
λ100 = λ∗ and up to second order O[(λ100 − λ∗)2]:

|Hc| ≈ |H∗|+ ∂2|Hc|
∂λ2100

(λ100 − λ∗)2. (27)

In Eq. 27, we assume the function |Hc|(λ100) to be twice differentiable at λ100 = λ∗, and from
Fig. 3, we note that the local minimum in the coercivity maps satisfies ∂|Hc|/∂λ100 = 0. In
the presence of small residual stresses, and using Hσ ≈ −(3λ100σ11/µ0ms)ê1, the coercivity
function can be approximated as:

|Hκ,λ +Hσ| ≈ |H∗|+ ∂2|Hc|
∂λ2100

(λ100 − λ∗)2 (28)

|Hκ,λ| = |H∗|+ ∂2|Hc|
∂λ2100

(λ100 − λ∗)2 +
3λ100σ11
µ0ms

= k

(
λ100 − λ∗ +

3λ100σ11
2kµ0ms

)2

+ Const. ∀ k =
∂2|Hc|
∂λ2100

̸= 0.

The intrinsic coercivity in Eq. 29 |Hκ,λ| is minimized for

λ100 − λ∗ +
3σ11

2kµ0ms

= 0, or (29)

λ100 = λ∗ − 3σ11
2kµ0ms

. (30)

In Eq. 30, we view − 3σ11

2kµ0ms
= −βσ11 as a linear shift of the parabolic locus for minimum

coercivity (for some constants β, k).13 That is, from Eq. 21 and Eq. 30, we have the parabolic

13The constant k = ∂2|Hc|
∂λ2

100
̸= 0 is approximately independent of λ100, as observed from Fig. 4, and we

provide its specific form and interpret its physical meaning in the supplementary information.
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locus for minimum coercivity to be:

κ1 = α(c11 − c12)(λ100 + βσ11)
2, (31)

for some constants α, β that would depend on the geometry of the inclusion defect(s) and
other magnetic material parameters that are held as constants in one of our coercivity maps.
The shift of the parabolic locus given by Eq. 31 is consistent with our numerical calculations
in Fig. 4 under applied stresses σ11 = ±200 kPa (see Section 6 of the supplement for details).

5. Discussion

In this work, we investigated whether and how magnetoelastic interactions, which are
commonly neglected in the study of magnetic hysteresis, affect coercivity. Our theoretical
analysis shows that magnetoelastic interactions, for suitable values of magnetostriction and
applied stresses, dominate magnetization reversal and can be designed to reduce magnetic
hysteresis. In Study 1, we show that the coercivity of an alloy can be reduced (i.e., compara-
ble to permalloy) despite its large anisotropy constant at suitable values of magnetostriction
constant λ100 and residual stresses σR. In Study 2, we use a theory-guided search of the ma-
terial parameter space to establish coercivity maps as a function of magnetoelastic constants
(λ100, c11, c12) and applied stresses (σR). These calculations establish coercivity heatmaps
that provide quantitative guidelines to design magnets with small hysteresis. Finally, we
theoretically analyze the energy barriers limiting the growth of a needle domain (under ap-
plied stresses) on magnetic hysteresis. Our results identify a parabolic relation between
material constants and applied stresses κ1 = α(c11 − c12)(λ100 + βσ11)

2 for which coercivity
is minimized. Below, we discuss some limiting conditions on our results and then highlight
the key features of our work.

Limitations

In our micromagnetic calculations, we model a finite computational domain Ω embedded
within an infinitely large ellipsoid E . We numerically solve the governing equations Eq. 3–
5 on Ω using a Fast Fourier Transform (FFT) algorithm, and analytically calculate the
geometry-dependent demagnetization fields. The FFT introduces periodic boundary condi-
tions on Ω, which requires careful consideration of the computational domain to minimize
stray field interactions between periodic images. To mitigate this effect, we select defect and
domain sizes such that V (Ωd) ≪ V (Ω), ensuring that the locally varying demagnetization
field decays near computational domain boundaries, i.e., H̃d → 0 (see [38, 65] for further
details). Another limitation in our study is the assumption of homogeneous and uniaxial
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applied stress when computating coercvity. In reality, applied or residual stresses—often
localized and inhomogeneous, particularly near defects and precipitates—can accumulate
during material synthesis or when integrating magnetic alloys into devices. These stress
distributions, along with defect geometries and needle domain distribution, could affect our
theoretical predictions of coercivity. Additionally, in our computations, we independently
vary the magnetostriction constant λ100 while keeping the elastic stiffness constants fixed.
However, during alloy synthesis, altering the magnetostriction (e.g., via substitutional dop-
ing) may impact the elastic stiffness and vice versa. The interdependence between material
constants is not fully understood, and a broader combinatorial investigation, using experi-
mental validation, first-principles calculations, or model Hamiltonian approaches would be
valuable. With these caveats in mind, we next highlight the key findings of our work.

Significance

The distinguishing feature of our micromagnetics work is that we correlate magnetic co-
ercivity with the energy barriers governing the growth of needle domains. In so doing, we
capture the nuanced interplay between magnetocrystalline anisotropy and magnetostriction
constants in lowering magnetic hysteresis. We find that the magnetization reverses readily
in magnetic alloys with suitable magnetostrictive coefficients, despite their large anisotropy
constants. This finding contrasts with some reports in the literature, in which the small mag-
netostriction (in addition to small anisotropy) is considered necessary for lowering hysteresis
[66, 67, 68]. While small magnetostriction and anisotropy constants contribute to small hys-
teresis and lowering these constants to near zero values has been the current strategy for
developing soft magnetic alloys, as shown in Fig. 1(a), our results expand the material pa-
rameter space to search for new combinations of magnetic constants (including λ100,C, σR)
with small hysteresis. Another feature of our work is that in addition to designing funda-
mental material constants (e.g., λ100,C) to reduce hysteresis, we show that one can introduce
mechanical constraints, such as compressive or tensile stresses to tailor coercivity. Further-
more, we show how applied or residual stresses affect the shape of the hysteresis loops, which
would be relevant to the application of magnetic materials in engineering memory and ac-
tuator devices. Overall, we demonstrate how applied or residual stresses can be engineered
to optimize the energy barriers governing magnetization reversal, and theoretically arrive a
mathematical relation κ1 = α(c11 − c12)(λ100 + βσ11)

2 for minimum coercivity. This relation
could serve as a quantitative design principle in the discovery of new soft magnetic alloys.

25



6. Conclusion

To conclude, we present a micromagnetics framework based on magnetostriction and lo-
calized disturbances as a way forward to computing hysteresis in magnetic alloys. Using this
approach, we show that magnetoelastic interactions, arising from magnetostriction, elastic
stiffness constants, and applied or residual stresses, affect the shape and width of hysteresis
loops. Our energy barrier analysis shows that the magnetoelastic interactions can be quanti-
tatively designed following the κ1 = α(c11−c12)(λ100+βσ11)2 design rule to reduce magnetic
hysteresis despite large anisotropy constants.
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Supplementary information

Notations in our micromagnetics model

Notation Description

E An ellipsoid magnetic body occupying a region E

R3 Three-dimensional space

µ0 Vacuum permeability constant

ms Saturation magnetization in the ferromagnetic phase

m Nondimensionalized magnetization, m = M
ms

A = AI Gradient energy (or exchange energy) coefficient

κ1 Magnetocrystalline anisotropy constant associated with rotation
the magnetization away from its easy axes

λ100, λ111 Magnetostriction constants represent the relative change in length
of a magnetic material when exposed to an external field. The
subscripts denote the strains along the ⟨100⟩ and the ⟨111⟩ crystal-
lographic directions.

E Strain tensor

E0(m) Spontaneous (or preferred) strain tensor. For a cubic crystal it is
calculated as:

E0(m) =
3

2


λ100(m

2
1 − 1/3) λ111m1m2 λ111m1m3

λ111m1m2 λ100(m
2
2 − 1/3) λ111m2m3

λ111m1m3 λ111m2m3 λ100(m
2
3 − 1/3)


C Elastic stiffness constant

σR Residual stress

ζm Magnetostatic potential:

ζm(x) = − 1

4π

∫
E
∇ 1

|x− y|
·M(y)dy

Hd Demagnetization field, Hd = −∇ζm

Hext External field

Table 1: Notations and description of symbols used in the text
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Material parameters

Table 2 shows the magnetic material constants, namely the anisotropy constant κ1, the
magnetostriction constants λ100, λ111, and the saturation magnetization ms, of FeNi alloys
used in this calculation. The elastic stiffness constants corresponding to the cubic symmetry
of Fe-Ni alloys are used with c11 = 240 GPa, c12 = 89 GPa, and c44 = 76 GPa.

Ni content (%) κ1 (kJ/m3) λ100 (×10−6) λ111 (×10−6) ms(×106A/m)

50 0.958 10.0 30.9 1.25

78.5 −0.161 11.8 1.91 0.84

Table 2: List of material constants for the FeNi alloy system [13].

Homogeneous and Heterogeneous Strains

The magnetoelastic energy in Eq. 1 accounts for the non-spontaneous strains E ̸= E0(m)

stored in the ellipsoid. These strains, on the one hand, arise from lattice misfit at the domain
walls and defect-ellipsoid interfaces, and on the other hand arise from lattice distortions due
to applied or residual stresses. Following Khachaturyan’s theory [69], we decompose the
total strain tensor on the ellipsoid as a sum of a homogeneous or a spatially independent
component Ē, and a heterogeneous or a spatially varying component Ẽ(x): E = Ẽ+ Ē.

The heterogeneous strain Ẽ(x) satisfies the mechanical equilibrium condition ∇ · σ = 0

(Eq. 5) and has non-zero values in the vicinity of the defect. The homogeneous strain Ē

represents the macroscopic shape change of the ellipsoid body and is defined such that:∫
E
Ẽdx = 0. (32)

Using these definitions of the homogeneous and heterogeneous strains, we next rewrite the
micromagnetics energy in Eq. 1 as:

Ψ =

∫
E

{
∇m ·A∇m+ κ1(m

2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1) +

1

2
Ē · CĒ+ Ē · CẼ− Ē · C[E0(m)]

+
1

2
[Ẽ− E0(m)] · C[Ẽ− E0(m)]− µ0msHext ·m− σR · (Ē+ Ẽ)

}
dx+

∫
R3

µ0

2
|Hd|2 dx.

(33)

To identify the homogeneous strain corresponding to the equilibrium state of the ellipsoid
under an applied stress, we minimize the micromagnetics energy in Eq. 33 with respect to
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the homogeneous strain tensor Ē:

∂Ψ

∂Ē
= VCĒ+ C

�
�

�
��>
0∫

E
Ẽdx− C

∫
E
E0(m)dx− VσR = 0. (34)

Here V is the volume of the ellipsoid. From Eq. 32, we have
∫
E Ẽdx = 0. Simplifying Eq. 34

the homogeneous strain on an ellipsoid, which is subjected to a finite and a homogeneous
residual stress, is given by:

Ē =
1

V

∫
E
E0(m)dx+ C−1σR

=
1

V

∫
E
E0(m)dx+ SσR

= E0(m̄) + ER. (35)

In Eq. 35, S represents the compliance tensor of the material, m̄ represents the volume
average magnetization on the ellipsoid, and ER represents the homogeneous residual strain
tensor corresponding to the homogeneous residual stresses σR applied to the ellipsoid E . In
our calculations (Fig. 4), we apply uniaxial residual stress σR = σ11ê1⊗ ê1 of about 200 kPa.
The corresponding strain response in the material can be approximated as

ER = εRê1 ⊗ ê1 − νεRê2 ⊗ ê2 − νεRê3 ⊗ ê3, (36)

where εR = S11σ11 = c11+c12
c211+c11c12−2c212

σ11 and ν = −S12/S11 = c12/(c11 + c12) is the Poisson’s
ratio. Since c11, c12 ∼ 102 GPa and σ11 ∼ 102 kPa, εR ∼ 10−6 ≪ 1. These residual strains do
not move the system significantly away from the bottom of the energy wells (i.e., the residual
strains are negligible compared to the relatively large separation between the energy wells).
These residual strains (or equivalently the residual stresses) affect the form of the parabolic
locus as shown in Figs. 4(a,c).

Denominator of α

In Eq. 21 we introduce a relation (denoted by α) for which the energy barrier is minimized
and is valid for non-zero values of its denominator, ∆F [m] ̸= 0. In this subsection, we inspect
the different values for ∆F [m].

Let us start with a simplified case of an ellipsoid, in which the fields are uniform, and
the magnetization m = cos θê1 + sin θê2. Thus,

∆F [m] = V∆(sin2 θ cos2 θ) = V
1

2
sin(4θ) (37)
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In Eq. 37, ∆F [m] = 0 would imply that θ = 0, π/4, · · · . However, for needle domains on
an infinitely large ellipsoid, the perturbation to the average magnetization is 0 < θ ≪ 1.
Therefore, without loss of generality, we assume that the denominator of α is typically greater
than zero.

Parabolic Relation and Minimum Coercivity

In this subsection, we interpret the value of k introduced in Eq. 29. For micromagnetic
calculations without residual stresses, e.g., in Fig. 3(a), the coercivity and the value of k can
be written as:

∆ΨZeeman = −µ0ms|Hc|
κ1

V∆(cos θ) = −∆Ψtot

⇒|Hc| =
κ1

µ0msV

1

∆(cos θ)
∆

∫
E

3∑
i,j=1
i>j

m2
im

2
jdx+

(c11 − c12)λ
2
100

2κ1

∫
E

3∑
i=1

ε̂2D,iidx


⇒k =

∂2|Hc|
∂λ2100

=
c11 − c12
µ0msV

1

∆(cos θ)
∆

(∫
E

3∑
i=1

ε̂2D,iidx

)
.

(38)

Next, we consider a coercivity map with residual stresses of σ11 = 200 kPa as in Fig. 4.
On this coercivity map, we select three representative points at κ1 = 500, 1000, 1500 J/m3

(with c11−c12 = 150 GPa) with the corresponding magnetostriction constants λ100 predicted
by the parabolic locus of minimum coercivity Fig. 3(a): κ1 ≈ λ2100/800. We then calculate
the values of k and the parabolic shift βσ11, respectively. We find that the estimated shift
is close to what we observed in Fig. 4 (βσ11 ≈ 220 × 10−6) and it varies slowly with the
changing λ100, due to the minor changes in microstructures. We note that for large values of
λ100, such as 1500 µϵ, the shift is slightly larger and it deviates from the predicted minimum
coercivity parabola.

κ1 (J/m3) λ100 (×10−6) kµ0ms (GPa) βσ11 (×10−6)

500 632.0 1.856 162

1000 894.0 1.719 174

1500 1095.0 1.520 197

Table 3: Predicted value of k and parabolic shift under residual stress σ11 = 200 kPa.

Notice that our approximation m ≈ (1, 0, 0) in the analysis of residual stress holds as long
as the system is still in the needle domain state. In this state, the elastic energy decreases
at magnetization reversal, which means k > 0. Therefore, the minimum coercivity parabola
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is predicted to shift downward (σ11 > 0) or upward (σ11 < 0), and the trend of coercivities
in Fig. 4 is the same as our prediction in Eq. 31, exhibiting the anticipated increase (or
decrease). In addition, we have observed that if σ11λ100 are the same, the coercivities are
also the same in Fig. 4 (i.e. Hc(κ1, λ100, σ11) = Hc(κ1,−λ100,−σ11)), as is also predicted
by the symmetry of our free energy. On the other hand, if the residual stress is larger, the
needle domain state might not be stable, and the coercivity maps could show quite distinct
patterns.
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