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We revisit a time-dependent, oval-shaped billiard to investigate a phase transition from bounded
to unbounded energy growth. In the static case, the phase space exhibits a mixed structure. The
chaotic sea in the static scenario leads to average energy growth for a time-dependent boundary.
However, inelastic collisions between the particle and the boundary limit this unbounded energy
increase. This transition displays properties similar to continuous phase transitions in statistical
mechanics, including scale invariance, interrelated critical exponents governed by scaling laws, and
an order parameter/susceptibility approaching zero/infinity at the transition. Furthermore, the
system exhibits an elementary excitation that promotes particle diffusion and lacks topological
defects that provide modifications to the probability distribution function.

I. INTRODUCTION

Phase transitions have been observed in nature since
the beginning of civilization and are studied across di-
verse fields and systems using a variety of theoretical
and experimental approaches. For educational purposes,
a commonly cited example in primary schools worldwide
is the phase transition of water: when the temperature is
lowered to 0 oC at standard atmospheric pressure, water
undergoes a phase transition from liquid to solid (ice).
In the opposite direction, heating water to 100 oC re-
sults in a phase transition from liquid to vapor. Both
of these transitions are examples of first-order (discrete)
phase transitions [1].

Another example of a phase transition occurs in fer-
romagnetic materials such as iron [2–4]. In these mate-
rials, the ferromagnetic phase, characterized by ordered
and aligned spins, experiences a change to a paramag-
netic phase with predominantly disordered spins (non-
magnetized) at a critical temperature Tc. This transition
is classified as a second-order (continuous) phase transi-
tion, as indicated by a set of observables that characterize
the behavior at the transition point.

Numerous other phase transitions have been stud-
ied. For instance, certain materials undergo a transi-
tion to a superconducting state [5–7] at very low tem-
peratures, exhibiting zero (or nearly zero) electrical re-
sistance. This superconducting transition is also con-
sidered a second-order phase transition. At ultra-cold
temperatures, atoms with specific magnetic properties
can also condense into a single quantum state, forming
a Bose-Einstein condensate [8–10]. Furthermore, many
materials experience structural phase transitions between
solid phases. A notable example is the transformation of
graphite into diamond under high pressure in carbon [11–
13].

Other types of transitions are also observed in other
scientific fields, such as nonlinear dynamics. For example,
in the transition from integrability to non-integrability

[14], a system changes from regular behavior to mixed dy-
namics, where chaos emerges in phase space [15]. In the
integrable regime, the phase space is characterized exclu-
sively by periodic or quasi-periodic motion, making the
system’s behavior predictable over time. Alternatively,
in a mixed regime, phase space contains chaotic regions
surrounded by periodic islands, and invariant tori may
still exist. The chaotic dynamics in this context lead to
diffusion, which becomes a crucial point of investigation.
The chaotic diffusion exhibits scaling invariance [16], de-
scribed by a set of scaling hypotheses yielding a scaling
law. This law provides an analytical relation between
critical exponents near the phase transition [17]. Using
scaling variables allows the diffusion curves for different
control parameters to collapse onto a single and, hence,
universal curve, confirming the presence of scaling invari-
ance near the transition. Scaling invariance has also been
observed in various systems, including the bouncing ball
model [18], waveguides [19], social media networks [20],
and billiard systems [21, 22].

A billiard is a dynamical system composed of a par-
ticle or a set of non-interacting particles undergoing
specular collisions with a rigid boundary that confines
them [23]. Billiards are typically classified based on
the shape of their boundary (e.g., circular [24, 25], el-
liptical [26, 27], oval [28, 29], stadium [30–32]), which
fundamentally influences the system’s dynamics, result-
ing in fully integrable, chaotic, ergodic, or mixed be-
havior. These systems can be modeled by Hamilto-
nians of the form H(x, p, t) = p2/2m + V (x, t) where
V (x, t) = V0(x) + V1(x, t) and V0(x) is associated with
time-dependent boundary variations, introduces non-
integrability [33]. Notably, scaling behavior in these sys-
tems is frequently linked to diffusion processes, which
serve as a valuable framework for understanding tran-
sitions and applications across various physical systems
[34–38]. The study of such diffusion mechanisms in bil-
liards deepens our knowledge of such dynamics and pro-
vides an opportunity for potential applications in diverse
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fields.
This paper investigates a transition from limited to

unlimited diffusion in a time-dependent oval billiard. The
border is written in polar coordinates as R(θ, t) = 1 +
ϵ[1+η cos(t)] cos(pθ), where ϵ controls the integrability of
the system and η defines the amplitude of the temporal
dependence. Despite being an integrable system for ϵ =
0, a mixed phase space characterizes the dynamics for
ϵ ̸= 0 [23]. According to the Loskutov-Ryabov-Akinshin
(LRA) conjecture [39], the existence of chaos in the phase
space is a sufficient condition for the occurrence of Fermi
acceleration [40] (unlimited energy growth) when a time
perturbation of the boundary is introduced. However,
this phenomenon is not robust with the introduction of
inelastic collisions with the boundary [41].

We, therefore, revisit a time-dependent oval-like bil-
liard to discuss a phase transition from bounded to un-
bounded diffusion. The system’s dynamics is described
by a discrete mapping T (θn, αn, Vn, tn). Dissipation is
introduced in the system via inelastic collision, allowing
us to characterize the phase transition near the bound-
ary between dissipative and conservative dynamics. In
the dissipative case, the average velocity for an ensem-
ble of particles approaches a stationary state, while the
conservative dynamics lead to unbounded energy growth.
We show that the behavior of the average velocity for an
ensemble of particles can be described by the probability
distribution function P (V, n), which provides the proba-
bility of observing a given particle with a certain velocity
at a specific time, thereby marking our original contribu-
tion to the problem. Furthermore, we aim to address four
main questions: (i) what symmetry is broken at the tran-
sition? (ii) what is the order parameter, and how does
its susceptibility behave at the transition? (iii) what are
the topological defects? and (iv) how can we classify the
elementary excitation that drives particle diffusion?

This paper is organized as follows: Section II describes
the model for the time-dependent oval billiard and dis-
cusses its scaling properties. Sections III and IV give
the proposed probability distribution, such as the solu-
tion of the diffusion equation. The critical exponents are
also presented. Section V presents the discussions and
conclusions.

II. THE MODEL AND THE MAPPING

The system consists of a particle or an ensemble of non-
interacting particles confined to move within a bound-
ary with radius written in polar coordinate as Rb(θ, t) =
1 + ϵ[1 + η cos(t)] cos(pθ) where θ is the polar angle, ϵ
is a parameter controlling the circle perturbation. For
ϵ = 0, the system is integrable; the phase space is fo-
liated, showing only periodic and quasi-periodic orbits.
The parameter η controls the amplitude of the time per-
turbation. For η = 0 and ϵ ̸= 0, the phase space is mixed,
containing both chaos, regular dynamics such as periodic
islands and invariant spanning curves marking the exis-

(a)

(b)

FIG. 1. Plot of the phase space for: (a) ϵ = 0 and; (b) η = 0
with ϵ = 0.04 and p = 3.

tence of whispering gallery orbits for ϵ < ϵc = 1
(1+p2)

with p denoting any integer number. Figure 1 shows a
plot of the phase space for (a) ϵ = 0 and (b) η = 0 with
ϵ = 0.04 and p = 3.

When η ̸= 0, the mixed structure of the phase space,
as shown in Fig. 1(b), is destroyed. As claimed by
the LRA conjecture [39], the chaotic dynamics is a suf-
ficient condition to produce unbounded diffusion for an
ensemble of particles when a time perturbation to the
boundary is introduced [29]. The dynamics of the sys-
tem is described by a four-dimensional nonlinear map-
ping relating the dynamics of the impact n with the
n + 1 via an operator T for a set of dynamical vari-
ables T (θn, αn, Vn, tn) = (θn+1, αn+1, Vn+1, tn+1), where
α gives the angle the trajectory of the particle does with
a tangent line at the polar angle θ. At the same time, V
denotes the particle’s velocity, and t is the time. To ob-
tain the instant of the collision, we follow the trajectory
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of the particle for a time t ≥ tn as

Xp(t) = X(θn, tn) + |V⃗n| cos(αn + ϕn)(t− tn), (1)

Yp(t) = Y (θn, tn) + |V⃗n| sin(αn + ϕn)(t− tn). (2)

The instant of the impact is obtained when Rp(t) =√
X2(t) + Y 2(t) = Rb. We use specular reflection law at

a non-inertial referential frame of the boundary; hence,
we have

V⃗n+1 · T⃗n+1 = |V⃗n|[cos(αn + ϕn) cos(ϕn+1)] + (3)

+|V⃗n|[sin(αn + ϕn) sin(ϕn+1)],

V⃗n+1 · N⃗n+1 = −|V⃗n|[− cos(αn + ϕn) sin(ϕn+1)]−
−|V⃗n|[sin(αn + ϕn) cos(ϕn+1)] + 2V⃗b(tn+1) · N⃗n+1. (4)

This leads the velocity of the particle in the (n + 1)th

collision to be written as

|V⃗n+1| =
√
(V⃗n+1 · T⃗n+1)2 + (V⃗n+1 · N⃗n+1)2. (5)

The new angle marking the trajectory of the particle is

αn+1 = arctan

[
V⃗n+1 · N⃗n+1

V⃗n+1 · T⃗n+1

]
. (6)

The phenomena we want to investigate are related to
energy diffusion in time. The natural observable is then
the square root of the averaged squared velocity, defined
as

V =

√√√√ 1

M

M∑
i=1

1

n

n∑
j=1

V 2
i,j . (7)

Two different averages were made in Eq. (7): one over an
ensemble of M different initial conditions and the other
over time, also called Birkov’s average.

For the conservative case, as discussed earlier [21, 27,
42–44], the behavior of Vrms can be summarized as: (i)
for small initial velocities such as those with the order
of the maximum velocity of the boundary, Vrms ∝ nβ

with β ≈ 0.5; (ii) for larger initial velocities a plateau
is observed of constant Vrms marked by V plat ∝ V α

0 is
observed for n ≪ nx and α ≈ 1; (iii) the changeover from
the plateau to the growth regime is written as nx ∝ V z

0 ,
with z ≈ 2. It is known this behavior can be described
by a homogeneous and generalized function leading to a
scaling law z = α/β. With proper scaling variables, all
Vrms curves overlap onto a single and universal plot.

Our goal is to discuss the suppression of the unbounded
growth, and we will do it by describing the probability
density to observe a certain particle with a given veloc-
ity at an instant of time n. To do that, we consider
the collisions of the particles with the boundary to be
inelastic, introducing dissipation in the normal velocity
component. Hence, the reflection law is given by

V⃗n+1 ·N⃗n+1 = −γV⃗n ·N⃗n+1+(1+γ)V⃗b[tn+1+Z(n)]·N⃗n+1

(8)
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FIG. 2. (a) Vrms vs. n(ϵη)2 constructed from the analytical
expression for initial velocity V0 = 10−5 for different values
of γ and ηϵ. (b) Overlap of the curves in a) into a single
universal curve using the the scaling transformations Vrms →
Vrms/(1− γ)α1(ϵη)α2 and n → n/(1− γ)z1(ϵη)z2 .

where Z(n) ∈ [0, 1] is a random number introduced to
account for the stochasticity in the system, and γ ∈ [0, 1]
is the restitution coefficient. For γ = 1, the collisions
are elastic, and all results for the non-dissipative case are
obtained.
For γ < 1, the fractional energy loss suppresses the

FA. The system is described by a new set of scaling
hypotheses and critical exponents: (i) for n ≪ nx

the growth regime is given by Vrms ∝ [(ηϵ)2n]β with
β ≈ 0.5; (ii) for n ≫ nx the saturation is described by
V sat ∝ (1−γ)α1(ηϵ)α2 where α1 ≈ −0.5 and α2 ≈ 1; (iii)
the changeover from the growth regime to the plateau is
written as nx ∝ (1−γ)z1(ηϵ)z2 , with z1 ≈ −1 and z2 ≈ 0.
Figure 2(a) shows the behavior of the curves, as described
above.
As in the conservative case, this behavior can be de-

scribed by a homogeneous and generalized function lead-
ing to two scaling laws z1 = α1

β and z2 = α2

β − 2.

The main point of the present paper is to describe
the scaling result using the probability density function
P (V, n), which will be obtained by solving the diffusion
equation, as discussed in the next section.

III. SOLUTION OF THE DIFFUSION
EQUATION

Let us start the section by mentioning that the dy-
namics of the dissipative case lead to the suppression of
the unbounded diffusion, hence imposing an upper limit
for the velocity of the particles. We assume that the dy-
namics of the ensemble of particles behave like a particle
moving randomly along the phase space, which turns out
to be an important assumption for the application of the



4

diffusion equation, which is written as

∂P (V, n)

∂n
= D

∂2P (V, n)

∂V 2
. (9)

As mentioned, P (V, n) gives the probability density to
observe a given particle with a certain velocity V at the
instant n while D is the diffusion coefficient. It corre-
sponds to how quickly particles can spread along the
phase space over time. It quantifies the rate at which
particles disperse through the phase space due to ran-
dom motion (in our case, produced by equivalent chaotic
dynamics). It then explains how fast the particles diffuse
and furnishes an underlying mechanism producing the
spread. Moreover, it reflects the tendency of particles
to move from regions of higher concentration to areas of
lower concentration. Therefore, a higher diffusion coeffi-
cient yields a faster spreading, while a lower one denotes
a slower movement. As we will discuss shortly, the diffu-
sion coefficient D is not constant in this investigation. It
depends on the control parameters and time n. However,
its variation is sufficiently slow that it can be considered
constant for small variations in n.
To solve the diffusion equation, we impose the

following boundary conditions: (i) P (V, n)|V→0 =
P (V, n)|V→∞ = 0 with a specific initial condition of the
type; (ii) P (V, 0) = δ(V − V0), ensuring that at n = 0 all
particles are starting from the same initial velocity dis-
tributed in M different initial conditions uniformly dis-
tributed over α, θ and t. Using the image method for-
malism combined with the distribution for a semi-infinite
line [45], we end up with the solution

P (V, n) =
τ√

4πDn

[
e

(
−(V −V0)2

4Dn

)
− e

(
−(V +V0)2

4Dn

)]
, (10)

with τ = erf
(
V0/

√
4Dn

)
being a constant that emerges

from the condition that
∫∞
−∞ P (V, n)dV = 1, i.e, P (V, n)

must be normalized.
A comparison between the phenomenological and the

analytical distribution proposed can be seen in Fig. 3
(a-d) for the initial velocity V0 = 0.5 and parameters
ηϵ = 0.2, γ = 0.999 and p = 3.
Obtaining the expression for P (V, n) allows to

write V 2(n) through the integration V 2(n) =∫∞
0

V 2P (V, n)dV , which gives

V 2(n) = V 2
0 + 2Dn+ V0τ

√
4Dn

π
e−V 2

0 /4Dn; (11)

and subsequently Vrms(n) =

√
⟨V 2

(n)⟩, therefore

Vrms =

(
V 2
0 + 2Dn+ V0τ

√
4Dn

π
e−V 2

0 /4Dn

)1/2

. (12)

Let us now discuss the diffusion coefficient D specif-
ically. It can be obtained from the mean squared dis-
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FIG. 3. (a) Plot of P (V ) for an ensemble of M = 3500 par-
ticles in a dissipative time dependent oval billiard for the pa-
rameters η = 0.2, ϵ = 0.1, γ = 0.999, p = 3 and V0 = 0.5 after
n = 10, 100 and (b) 5000 collisions. (c) A plot of the analyt-
ical distribution was constructed using equation mapping for
D = 0.01,V0 = 10, n = 10, 30, 300, and (d) 3000 collisions.
The curves are rather similar to each other.

placement of particles over time

D =
V 2
n+1 − V 2

n

2
=

(γ2 − 1)V 2
n

4
+

(1 + γ)2η2ϵ2

16
, (13)

where we considered and average over the following vari-
ables t ∈ [0, 2π], θ ∈ [0, 2π] e α ∈ [0, π] obtained directly
from the nonlinear mapping. The average velocity then
reads as

V 2
n+1 =

(1 + γ2)V 2
n

2
+

(1 + γ)2η2ϵ2

8
. (14)

Let us discuss the behavior of the average velocity.
From the equations of the mapping and doing an aver-
age over an ensemble of initial conditions, we have that

V 2
n+1−V 2

n =
V 2
n+1−V 2

n

(n+1)−n ≃ dV 2

dn . Integrating this expression
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FIG. 4. (a) Plot of V 2 vs. n as given by Eq. (15) for different
control, as shown in the figure. The behavior is remarkably
similar to the previously presented in Fig. 2(a). (b) The plot
of D vs. n for the same control parameters of (a).

in n, we end up with

⟨V 2(n)⟩ =
(1 + γ)

4(1− γ)
η2ϵ2 +

1

n+ 1

[
V 2
0 − (1 + γ)

4(1− γ)
η2ϵ2

]

×

[
1− e

(γ2−1)(n+1)
2

1− e
(γ2−1)

2

]
. (15)

Figure 4(a) shows the behavior of V 2 vs. n as given by
Eq. (15) for different control parameters while Fig. 4(b)
shows the behavior of D vs. n for the same set of control
parameters.

It is easy to see from the figure that the curves V 2 grow
for a short time while the diffusion coefficient maintains a
constant value, as previously assumed for the solution of
the diffusion equation. It shows the particles are diffus-
ing on the velocity axis as soon as the diffusion D is con-
stant. However, as the velocity increases, the dissipation
suppresses the diffusion. As expected, the diffusion coef-
ficient exhibits a changeover from the regime of continu-
ous plateau to a regime of decay. The regime of growth
of V 2 is produced by the constant plateau of D while the
decrease of D marks the saturation for V 2, limiting the
diffusion. The changeover from the regime of growth of
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FIG. 5. (a) Plot of D vs. n for the transformation D →
D/[(ηϵ)2(1 + γ)2]. (b) shows a plot of D vs. n for the trans-
formations D → D/[(ηϵ)2(1 + γ)2] and n → n(1− γ2)/2.The
control parameters are the same as those shown in Fig. 4.

V 2 to the saturation coincides with the changeover from
the domain of plateau for D to its decay.
As we notice, V 2 behavior is scaling invariant. The

diffusion coefficient D is the same way. The diffusion co-
efficient behaves as a constant for a short time. After a
crossover nx, it bends towards a regime of decay. The
scaling variables showing universality and hence scaling
invariance for D are: (i) D → D/[(ηϵ)2(1+ γ)2], as show
an excellent overlap onto a single plot as seen in Fig.
5(b). When a transformation n → n(1− γ2)/2 is applied
to the horizontal axis, as shown in Fig. 5(b), all curves of
D vs. n obtained for different control parameters overlap
in a single universal plot, confirming the scaling invari-
ance for the diffusion coefficient D.
Let us now discuss the implications of the results ob-

tained for Eq. (15). Considering sufficiently long time,
typically limn→∞ we obtain that a saturation is reached
for V sat ∝ (1 − γ)α1(ηϵ)α2 . Comparing this result with
the behavior of Vrms as n → ∞ given by

Vsat ∝ (1− γ)−1/2ηϵ, (16)

we found by an immediate analysis that α1 = −0.5 and
α2 = 1.0. Considering the limit of n ≪ nx and assuming
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that γ → 1, therefore close to the transition, we obtain

Vrms =

[
n(γ + 1)2

8
η2ϵ2

]1/2
. (17)

As expected, a straightforward comparison with the scal-
ing hypotheses Vrms ∝ nβ returns β = 0.5. Lastly, the
behavior at the crossover can be written as equaling the
Eqs. (16) and (17) leading to

nx ∝ 1

(1− γ)(1 + γ)
. (18)

A comparison with the expression nx ∝ (1−γ)z1(ηϵ)z2 re-
turns the two last exponent: z1 = −1 and z2 = 0. These
results are also in agreement with the proposed scaling
laws for the system, obtained through the homogeneous
generalized function mentioned in Section 2;

z1 =
α1

β
=

−0.5

0.5
= −1, (19)

z2 =
α2

β
− 2 =

1

0.5
− 2 = 0. (20)

These exponents can be obtained through the curves
presented in Fig. 2(a). A power law fit from direct nu-
merical simulations gives β ≈ 0.4946(9), while the values
of α1 and α2 demand the construction of two new curves,
as shown in Fig. 6: (a) Vsat vs. (1− γ) and; (b) Vsat vs.
ηϵ respectively, with the power law fit for those retrieving
α1 = −0.492(2) and α2 = 1.009(3), showing remarkable
agreement with the established results for this system.

Figure 2(b) presents the overlap of the curves shown in
(a) into a single and hence universal curve through the
scaling transformations Vrms → Vrms/(1 − γ)α1(ϵη)α2

and n → n/(1− γ)z1(ϵη)z2 .

IV. THE PHASE TRANSITION

Let us now concentrate on discussing the elements
characterizing the phase transition. A few essential char-
acteristics are observed in a continuous phase transition
[1] leading to a set of four main questions to be addressed:
(i) Identify the symmetry breaking of the system at the
transition; (ii) Define a suitable order parameter that ap-
proaches zero at the transition at the same time its sus-
ceptibility diverges in the same limit; (iii) Analyze the
elementary excitations leading to the diffusion of parti-
cles and; (iv) Classify the topological defects of the sys-
tem impacting on the transport of particles along of the
phase space.

First, let us discuss the interpretation of an order pa-
rameter and how it affects the transition. Indeed, and as
discussed in statistical mechanics, an order parameter is
an observable that distinguishes between different phases
of a system. It typically has a null value in a symmetric
phase and a non-zero value in a non-symmetric phase.
As we will see, for a second-order phase transition, the
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FIG. 6. (a) Plot of Vsat vs. (1− γ). A power law fitting gives
α1 = −0.492(2). (b) Plot of Vsat vs. ηϵ with a power law fit
giving α2 = 1.009(3).

order parameter changes continuously from zero to a fi-
nite value as the system passes through the critical point
(from conservative to dissipative). This behavior is con-
firmed by the scaling behavior observed for the saturation
of the curves, shown for Vrms and clearly described by
the critical exponents.
With this discussion in mind, we identify the quantity

σ = 1
Vsat

as a candidate to be an order parameter that
attends the requirement of the classification of a second-
order phase transition. Since Vsat ∝ (1− γ)−1/2(ηϵ) it is
clear that σ goes continuously to zero at the limit γ →
1. Its susceptibility, marking the response of the order
parameter to the variation of the dissipation parameter,
accounts as

χ =
∂

∂γ

1

Vsat
=

∂

∂γ
(1− γ)1/2(ηϵ)−1 =

−(ηϵ)−1

2(1− γ)1/2
, (21)

diverges in the limit of vanishing dissipation, giving clear
evidence of a second-order phase transition.
Discussing the order parameter allows us to identify

the symmetry at the transition. For the conservative
case where inelastic collisions are not present, and the
unbounded growth of energy is observed, the average
velocity has a behavior of the Vrms ∝ [(ηϵ)2n]β , with
β ≈ 0.5 leading the dynamics to show a symmetric phase
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for the regime of growth, i.e., a power law growth. In
the limit of sufficiently large n, there is no bound for
Vsat, making the order parameter converge continuously
and smoothly to zero, marking a symmetric phase. At
the same time, its susceptibility diverges. The scenario
changes when dissipation is present. Instead of a regime
of unbounded growth marked by a power law, the average
velocity is described as a homogeneous and generalized
function with a scaling law connecting critical exponents.
For large enough n, a regime of saturation is observed,
turning the order parameter to be a finite number so its
susceptibility. There is a clear symmetry break of the
behavior of Vrms with an unbounded growth for the con-
servative case to the bounded growth for the dissipative
case.

Elementary excitation is a term based on dynamics
that are responsible for producing particle diffusion. For
the case of ϵ = η = 0, the dynamics happen in a circular
boundary shape. There is no boundary oscillation, and
the dynamics is completely integrable. For ϵ ̸= 0 and
η = 0, the phase space shows a mixed structure with
chaos circumventing periodic islands and invariant span-
ning curves. For the case of η ̸= 0, the boundary is now
time-dependent. The collisions of the particle with the
border can now exchange energy and momentum, leading
to diffusion in the velocity axis. The amount of velocity
change upon collision is determined by the amplitude of
the moving wall velocity, therefore a quantity that de-

pends on the Vb = dRb(t)
dt ∝ ηϵ. We thus note the ele-

mentary excitation responsible for a velocity change and
hence to the diffusion is the own amplitude of the mov-
ing wall velocity. Since it is the pre-factor of a periodic
function cosine, its squared average is Va = ηϵ√

2
.

As a final point, the topological defects are structures
in the phase space responsible for affecting particle trans-
port. In a Hamiltonian case, the phase space has peri-
odic islands that may lead to sticky dynamics near them.
Given an orbit confined near a periodic island at a sticky
trajectory may affect the probability density and hence
the average properties of the dynamics, the periodic is-
lands are assumed as topological defects [14] and influ-
ence the dynamics locally. In the dissipative case, pe-
riodic islands are absent due to the dissipation. In a
generic case, the periodic islands centered by elliptical
fixed points turn into sinks, hence attractors, that af-

fect the dynamics of the particles when tiny dissipation
is present. Sinks are not observed for the control param-
eters considered in the paper, leading us to assume that
topological defects do not exist for the parameter ranges
considered in the present investigation.

V. SUMMARY AND CONCLUSIONS

We characterized a transition from a dissipative to a
non-dissipative dynamic for a time-dependent billiard.
Our results conclude that the transition observed has
properties that fit the transition at a continuous phase.
The originality of the investigation lies in the analytical
solution of the diffusion equation leading to the recovery
of phenomenological results already known in the liter-
ature. The discussion allowed us to identify an order
parameter approaching zero at the transition, marked
by a symmetric phase confirmed by unbounded energy
growth for a non-symmetric phase where the order pa-
rameter has a finite value. The elementary excitation of
the system was identified as the amplitude of the mov-
ing wall velocity, hence imposing a maximum change of
energy upon collision, yielding the particle to diffuse in
the velocity axis. Finally, the topological defects related
to the so-called sinks (attracting fixed points) are not
observed in the phase space for the range of control pa-
rameters considered in the present paper. So far, the
transition from bounded to unbounded energy growth in
a time-dependent billiard has characteristics resembling
a continuous phase transition where scaling invariance is
present with scaling laws and critical exponents defining
the criticality near the transition.
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