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Abstract

Mean-field limits have been used now as a standard tool in approximations, including for networks
with a large number of nodes. Statistical inference on mean-filed models has attracted more attention
recently mainly due to the rapid emergence of data-driven systems. However, studies reported in
the literature have been mainly limited to continuous models. In this paper, we initiate a study
of statistical inference on discrete mean-field models (or jump processes) in terms of a well-known
and extensively studied model, known as the power-of-L (L ≥ 2), or the supermarket model, to
demonstrate how to deal with new challenges in discrete models. We focus on system parameter
estimation based on the observations of system states at discrete time epochs over a finite period.
We show that by harnessing the weak convergence results developed for the supermarket model in
the literature, an asymptotic inference scheme based on an approximate least squares estimation
can be obtained from the mean-field limiting equation. Also, by leveraging the law of large numbers
alongside the central limit theorem, the consistency of the estimator and its asymptotic normality can
be established when the number of servers and the number of observations go to infinity. Moreover,
numerical results for the power-of-two model are provided to show the efficiency and accuracy of the
proposed estimator.
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1 Introduction

The origins of mean-field theory trace back to the pioneering works of Curie [8] and Weiss [36] in
magnetism and phase transitions. Since then, this theory has expanded across a wide array of fields to
study interacting particle systems, including statistical physics [9, 16, 23, 24], biological systems [10, 30],
communication networks [4, 20, 21, 22], and mathematical finance [19, 27].

Moreover, the application of mean-field theory in queueing systems is traced back to the work of
Dobrushin and Sukhov [14] and has since proliferated due to its many benefits, see, e.g., [11, 12, 31, 35]
for further developments. Indeed, in stochastic service systems, particularly those involving multiple
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parallel queues, load balancing is commonly applied to enhance performance by shortening queues,
reducing wait times, and increasing throughput. This balancing mechanism effectively modifies the
input-output dynamics to improve the system’s quality of service. When such systems are viewed as
interacting systems, mean-field theory becomes a natural framework to study their behavior. By using
mean-field analysis, the performance of large systems can be evaluated by examining their limiting
behavior as the system size approaches infinity. In particular, the limit often reduces when solving
a deterministic system known as the mean-field limit, which corresponds to a McKean-Vlasov-type
stochastic differential equation (SDE) solution. In McKean-Vlasov SDEs, the coefficients depend on
both the process itself and its distribution, forming a class of non-linear SDEs. The study of such
equations was initiated by McKean [23], inspired by Kac’s work in kinetic theory [25].

Although extensive literature exists on mean-field interacting systems, research on their statistical
inference has only gained attention in recent years. The pioneering work in this area is Kasonga’s
seminal paper [26], which addressed parameter estimation for interacting particle systems modeled by
Itô SDEs through a maximum likelihood approach. After Kasonga’s work, interest in the topic waned
for nearly two decades before reemerging with significant contributions, as seen in [1, 3, 5, 17, 29, 32]
and references therein. Since then, the field has grown steadily, establishing itself as a crucial area of
research. This renewed interest can be attributed to novel applications of mean-field theory and the
rise of new technologies enabling access to massive datasets generated by systems of interacting agents.

To date, most statistical inference studies on mean-field models, such as those mentioned above, focus
on interacting diffusion systems, with limited research on statistical inference for mean-field systems
with jumps. Notable exceptions include [13] and [28], where the authors proposed asymptotic estimation
for the Bernoulli interaction parameter in a system of interacting Hawkes processes as both the number
of particles and time approach infinity. In particular, as discussed in [37], statistical inference in mean-
field queueing models remains largely unexplored, despite statistical inference in queueing systems being
an active area of research. The reader can consult for example [2] where a comprehensive survey on
parameter and state estimation for queueing systems across various estimation paradigms was provided,
yet it does not address statistical inference for mean-field queueing systems. To fill this gap, we propose
in the current paper a statistical inference scheme for the parameters governing a specific mean-field
queuing system, namely the supermarket model, also known as the power of L ≥ 2 choices. Thus, to
the best of our knowledge, our current proposal represents a novel contribution in this area.

The supermarket model was independently introduced by Vvedenskaya et al. [35] and Mitzenmacher
[31]. It represents a system of N parallel identical queues, each served by a single server with a service
rate ν and infinite buffer capacity. Tasks arrive at a rate of Nλ; each task is allocated L queues chosen
uniformly at random among the N and joins the shortest one, with ties resolved uniformly. All events
in this system are independent. In particular, [35] and [31] studied the asymptotic behavior of the
system as the number of servers becomes large, showing that the process associated with queue lengths
converges to a deterministic limit represented by an infinite system of ordinary differential equations
(ODEs). This model and its extensions have since become widely studied due to its theoretical and
practical importance; see, e.g., [20, 6, 7] and the references therein. However, as noted, the statistical
inference for this model remains unexplored, which is the focus of this paper.

We propose a statistical inference scheme to estimate the arrival and service rates in a supermarket
model based on aggregate data obtained from discrete observations of a moment of the system over a
finite period. To this end, we propose to exploit the ODE obtained at the mean-field limit to construct
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an approximate least square estimator (LSE). Then, using the law of large numbers and the central
limit theorem established in the literature, we show that the proposed estimator is consistent and
asymptotically normal as the number of servers and observations grows large. In addition, we test our
estimator on synthetic data obtained by simulation which shows the accuracy of our approach.

It is worthwhile to provide the following remark: An intriguing general approach to statistical
inference for mean-field systems was proposed in [18]. This approach leverages a “misspecified” or
limiting model, created by approximating the system through large-systems asymptotics, incorporating
the law of large numbers and central limit theorem. This enables constructing an approximate likelihood
function, evaluated against the data generated by the true model. The estimator is then obtained
by maximizing this approximate likelihood function. A key advantage of this method is that the
approximate likelihood has a conditionally Gaussian structure, due to the central limit theorem, which
allows for efficient numerical evaluation of the estimator. Although one might consider using a similar
method to estimate parameters for the supermarket model, the complexity of the approximate likelihood
for this model complicates the analysis of the estimator’s asymptotic properties. This difficulty motivates
the adoption of an alternative approach, specifically, an approximate LSE scheme.

The rest of the paper is organized as follows: First, in Section 2, we recall the supermarket model
and introduce the appropriate notations. We also review some well-known asymptotic results about
the model, including a new technical result in Proposition 2.1 that will be used in the sequel. In
Section 3, we introduce the inference scheme along with our LSE and prove both the consistency and
asymptotic normality of the estimator. To facilitate the reading, we put all the long proofs in the
appendices. Section 4 provides simulations demonstrating that our estimator accurately predicts the
system parameters and validates the asymptotic normality result. Finally, in Section 5, we present
conclusions and open questions, followed by the bibliography.

2 Queuing network with selection of the shortest queue among sev-
eral servers

2.1 The setting

We start by recalling the supermarket model, first introduced separately in [31] and [35]. Consider
a network with N identical queues, each with a single server of service rate ν and an infinite buffer.
Tasks arrive at rate Nλ, and each task is allocated L queues with uniform probability among the N
servers and elects to join the shortest one, ties being resolved uniformly. The L selected queues may
coincide. All these random events are independent. Let XN

i (t) denote the length of the i-th queue at
time t and define the empirical measure process

ϱNj (t) :=
1

N

N∑
i=1

1{XN
i (t)=j}, j = 0, 1, . . . ,

which takes values in the space P(Z+) of probability measures on Z+ = {0, 1, 2, . . . } identified with the
infinite-dimensional simplex

S :=

{
s = {sj}j∈Z+ ∈ RZ+

+ :
∞∑
j=0

sj = 1

}
,
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where R+ is the set of all non-negative real numbers. Define the subspace SN := S ∩ ZZ+
+

N . Thus,
ϱN (t) ∈ SN for all t ≥ 0. Throughout this paper, we fix a constant T > 0. Let D([0, T ],S) be
the Skorokhod space of càdlàg functions defined on [0, T ] with values in S, equipped with the usual
Skorokhod topology. Let C([0, T ],S) be the space of continuous functions defined on [0, T ] with values
on S, equipped with the uniform topology.

2.2 Law of large numbers and central limit theorem for the empirical process

We recall now some results describing the asymptotic behavior of the supermarket model that will
be used to build the statistical inference scheme and the related analysis. For p ≥ 1, denote by ℓp the
space of p-th summable sequences, i.e.,

ℓp =

{
x = {xj}j∈Z+ ∈ RZ+ :

∞∑
j=0

|xj |p < ∞
}
,

and denote by ∥ · ∥p the norm on it. In particular, let ℓ2 be the space of square summable sequences
equipped with the inner product

⟨x, y⟩ =
∞∑
j=0

xjyj ,

which makes it a Hilbert space. Moreover, define its subspace

ℓ̃2 :=

{
s ∈ ℓ2 :

∞∑
j=0

j2s2j < ∞,
∞∑
j=0

sj = 0

}
.

Furthermore, for any j ∈ Z+, denote by ej ∈ ℓ2 the vector with 1 at the j-th coordinate and 0 elsewhere.
We first state the law of large numbers established in [20, Theorem 3.4] and reformulated in [6,

Corollary 1].

Theorem 2.1 Suppose that ϱN (0) → ϱ0 in S as N → ∞. Then ϱN → ϱ in probability in D([0, T ],S),
where ϱ is the unique solution in C([0, T ],S) to the ODE:

ϱ̇(t) = F (ϱ(t)), ϱ(0) = ϱ0, (2.1)

and, for any x ∈ ℓ1,

F (x) = λ

∞∑
j=0

[ L∑
i=1

(
L

i

)
xij−1

( ∞∑
m=j

xm

)L−i

−
L∑
i=1

(
L

i

)
xij

( ∞∑
m=j+1

xm

)L−i]
ej

+ν

∞∑
j=0

[xj+1 − xj ]ej . (2.2)

Next, we state results about the fluctuations of the empirical measure process ϱN from its law of
large number limit ϱ. To this end, define the process

ZN (t) :=
√
N(ϱN (t)− ϱ(t)), t ∈ [0, T ],
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the operator

Φ(t) := λ
∞∑
j=0

(ej+1 − ej)(ej+1 − ej)
T

( L∑
i=1

(
L

i

)
[ϱj(t)]

i

( ∞∑
m=j+1

ϱm(t)

)L−i)

+ν
∞∑
j=1

(ej−1 − ej)(ej−1 − ej)
Tϱj(t), (2.3)

and the map G : ℓ̃2 × S → ℓ̃2 by

Gj(x, s) :=
∂

∂u
Fj(s+ ux)

∣∣∣∣
u=0

, j ∈ Z+, x ∈ ℓ̃2, s ∈ S. (2.4)

Finally, we recall the definition of cylindrical Brownian motion which is a generalization of the scalar
Brownian motion to Hilbert spaces.

Definition 2.1 A collection of continuous real-valued stochastic processes {(Wt(h))0≤t≤T : h ∈ ℓ2}
defined on a filtered probability space (Ω,F ,P, {Ft}) is called an ℓ2-cylindrical Brownian motion if, for
every h ∈ ℓ2, (Wt(h))0≤t≤T is an {Ft}-Brownian motion with variance t∥h∥22 and, for all h, k ∈ ℓ2,

⟨W (h),W (k)⟩t = t⟨h, k⟩2, t ∈ [0, T ].

We state now the central limit theorem introduced in [6, Theorem 2].

Theorem 2.2 Suppose that supN∈N
∑∞

j=0 j
2ϱNj (0) < ∞ and ϱN (0) → ϱ0 in S as N → ∞. Also,

suppose that ZN (0) → z0 in ℓ2 and that

sup
N∈N

∞∑
j=0

j2(ZN
j (0))2 < ∞.

Then ZN converges to Z in distribution in D([0, T ], ℓ2) as N → ∞, where Z is the unique weak solution
to the following SDE:

dZ(t) = G(Z(t), ϱ(t))dt+ a(t)dW (t), Z(0) = z0 ∈ ℓ̃2, (2.5)

G is defined by (2.4), a(t) is the symmetric square root of the operator Φ(t) in (2.3), i.e., a2(t) = Φ(t),
and W is an ℓ2-cylindrical Brownian motion.

Remark 1 The stochastic integral
∫ t
0 a(s)dW (s) represents an ℓ2-valued Gausssian martingale M(t)

given as

Mi(t) =

∞∑
j=0

∫ t

0
Aij(s)dBj(s), t ∈ [0, T ], i ∈ Z+, (2.6)

with Aij(s) = ⟨ei, a(s)ej⟩2 and {Bj}j∈Z+ is an independent sequence of standard Brownian motions.
The well-posedness of the SDE (2.5) was established in [6, Proposition 2].

5



2.3 The power of two choices model

For the sake of simplicity, we focus in this paper on a special case of the supermarket model obtained
when L = 2. This model, known as the power of two choices, was first introduced and analyzed in [31].
In this case, the operator F in (2.2) takes the following explicit form:

F (x) = λ
∞∑
j=0

[
2xj−1

∞∑
m=j

xm − 2xj

∞∑
m=j+1

xm + x2j−1 − x2j

]
ej + ν

∞∑
j=0

[xj+1 − xj ]ej , x ∈ ℓ1, (2.7)

the map G : ℓ̃2 × S → ℓ2 in (2.4) takes now the explicit form:

Gj(x, s) = 2λ
∞∑

m=j

[xj−1sm + sj−1xm − xjsm+1 − sjxm+1] + ν(xj+1 − xj), j ∈ Z+, x ∈ ℓ̃2, s ∈ S,

and for any t ∈ [0, T ], the operator Φ(t) in (2.3) becomes

Φ(t) = λ
∞∑
j=0

(ej+1 − ej)(ej+1 − ej)
T

(
2ϱj(t)

∞∑
m=j+1

ϱm(t) + [ϱj(t)]
2

)

+ν

∞∑
j=1

(ej−1 − ej)(ej−1 − ej)
Tϱj(t).

The following result shows that the solution to (2.5) is a Gaussian process. Although the proof is
given for the power of two choices model, it can be adapted to cover the case with general L ≥ 2.

Proposition 2.1 Suppose that L = 2. Then, the solution Z(t) to the SDE (2.5) is a Gaussian process.

Proof See Appendix A. 2

3 Statistical inference of the supermarket model

Suppose the service and arrival rates, ν and λ, that govern the system are unknown. Our goal
is to estimate these parameters using observations collected over a specific time interval [0, T ]. The
complexity of the system’s dynamics makes brute-force Monte Carlo estimation computationally inten-
sive, particularly as the number of nodes, N , increases. Therefore, we propose developing an estimator
that utilizes the weak convergence results outlined in Section 2, specifically the law of large numbers
presented in Theorem 2.1 and the central limit theorem in Theorem 2.2.

In particular, we construct an approximate LSE based on the ODE given in (2.1). We subsequently
demonstrate that this estimator is consistent and asymptotically normal as both the system size and the
number of observations tend to infinity. For convenience, we denote the vector of unknown parameters
as θ = (λ, ν).
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3.1 The data

Our objective is to estimate the parameter vector θ that governs the dynamics of the power-of-
two model based on observations collected over a finite time interval. Specifically, we assume that
observations are not available for every server in the network; instead, they are gathered as an aggregate
measure of the system. Collecting individual data for each server can be prohibitively costly in practice,
particularly for large networks, which justifies our approach to data collection.

In this context, we assume that the available data for inference includes observations of the empirical
measure of the system, ϱN (t), over the finite time interval [0, T ] at m discrete points, defined as tk = kT

m :

ϱNj (tk) :=
1

N

N∑
i=1

1{XN
i (tk)=j}, j ∈ Z+, k = 1, 2, . . . ,m.

The observed data is then represented as

DN,m := {ϱN (tk) : 1 ≤ k ≤ m}.

Thus, this dataset reflects a realization of the system governed by the true parameters, say θ∗ = (λ∗, ν∗).

3.2 Least square estimator (LSE)

Recall from Theorem 2.1 that the empirical measure ϱN converges in probability towards ϱ the
unique solution to the ODE (2.1) as the number of servers N → ∞. We propose to take advantage of
this result to build an approximate LSE for the parameters θ∗ = (λ∗, ν∗) based on the dataset DN,m.

The least square function: Let us first introduce the following functions defined for all j ∈ Z+ and
x ∈ ℓ1,:

Uj(x) := 2xj−1

∞∑
i=j

xi − 2xj

∞∑
i=j+1

xi + x2j−1 − x2j , (3.1)

and

Vj(x) := xj+1 − xj . (3.2)

Therefore, by (2.7), one can observe that

F (x) = λ

∞∑
j=0

Uj(x)ej + ν

∞∑
j=0

Vj(x)ej . (3.3)

Moreover, let ϱ(t) be the unique solution to the ODE (2.1). To highlight the dependence on the
parameter θ = (λ, ν), we will write ϱ(t, θ) in the sequel. Furthermore, let us introduce the quadratic
function defined for any λ, ν ∈ R by

G(λ, ν) :=
∞∑
j=0

[
ϱj(T, θ

∗)− ϱj(0, θ
∗)− λ

∫ T

0
Uj(ϱ(s, θ

∗))ds− ν

∫ T

0
Vj(ϱ(s, θ

∗))ds

]2
.
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Notice that, by (2.1), one immediately observes that G(λ∗, ν∗) = 0. Thus, the function G(λ, ν) attains
its minimum at θ∗ = (λ∗, ν∗), namely

0 =
∂G
∂λ

∣∣∣∣
(λ,ν)=(λ∗,ν∗)

= −2
∞∑
j=0

[
ϱj(T, θ

∗)− ϱj(0, θ
∗)− λ∗

∫ T

0
Uj(ϱ(s, θ

∗))ds− ν∗
∫ T

0
Vj(ϱ(s, θ

∗))ds

] ∫ T

0
Uj(ϱ(s, θ

∗))ds,

(3.4)

and

0 =
∂G
∂ν

∣∣∣∣
(λ,ν)=(λ∗,ν∗)

= −2
∞∑
j=0

[
ϱj(T, θ

∗)− ϱj(0, θ
∗)− λ∗

∫ T

0
Uj(ϱ(s, θ

∗))ds− ν∗
∫ T

0
Vj(ϱ(s, θ

∗))ds

] ∫ T

0
Vj(ϱ(s, θ

∗))ds.

(3.5)

Solving the equations (3.4) and (3.5) leads to(
λ∗

ν∗

)
=

(
a11 a12
a21 a22

)−1(
b1
b2

)
=

1

a11a22 − (a12)2

(
a22 −a12
−a21 a11

)(
b1
b2

)
, (3.6)

where

a11 :=
∞∑
j=0

[∫ T

0
Uj(ϱ(s, θ

∗))ds

]2
,

a12 = a21 :=

∞∑
j=0

∫ T

0
Uj(ϱ(s, θ

∗))ds

∫ T

0
Vj(ϱ(s, θ

∗))ds,

a22 :=
∞∑
j=0

[∫ T

0
Vj(ϱ(s, θ

∗))ds

]2
,

b1 :=

∞∑
j=0

[ϱj(T, θ
∗)− ϱj(0, θ

∗)]

∫ T

0
Uj(ϱ(s, θ

∗))ds,

and

b2 :=
∞∑
j=0

[ϱj(T, θ
∗)− ϱj(0, θ

∗)]

∫ T

0
Vj(ϱ(s, θ

∗))ds.

Note that the right-hand side in (3.6) is well posed only if a11a22 ̸= (a12)
2. Nevertheless, a simple

application of Hölder’s inequality tells us that a11a22 ≥ (a12)
2. Therefore, one needs to investigate the

conditions under which the inequality
a11a22 > (a12)

2 (3.7)

holds. Below we give as examples two sufficient conditions that ensure the validity of (3.7).
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Lemma 3.1 Suppose that one of the following conditions holds:∫ T

0
ϱ1(s)ds >

∫ T

0
ϱ0(s)ds > 0, (3.8)

or ∫ T

0
ϱ0(s)ds >

∫ T

0
ϱ1(s)ds >

∫ T

0
ϱ2(s)ds > 0. (3.9)

Then, the inequality (3.7) holds.

Proof See Appendix B. 2

The approximate LSE: Recall that the data DN,m are observed on the prelimiting finite N -system.
Hence, using (3.6) we construct the following approximate LSE defined for any m ∈ N and N ≥ 2 as(

λN,m

νN,m

)
:=

1

aN,m
11 aN,m

22 − (aN,m
12 )2

(
aN,m
22 −aN,m

12

−aN,m
21 aN,m

11

)(
bN,m
1

bN,m
2

)
, (3.10)

where

aN,m
11 :=

∞∑
j=0

[
T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]2
,

aN,m
12 = aN,m

21 :=
∞∑
j=0

[
T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

][
T

m

m∑
k=1

Vj(ϱ
N (tk, θ

∗))

]
,

aN,m
22 :=

∞∑
j=0

[
T

m

m∑
k=1

Vj(ϱ
N (tk, θ

∗))

]2
,

bN,m
1 :=

∞∑
j=0

[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

] [ T
m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]
,

and

bN,m
2 :=

∞∑
j=0

[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

] [ T
m

m∑
k=1

Vj(ϱ
N (tk, θ

∗))

]
,

with tk = kT
m for k = 1, 2, . . . ,m. We will show next that the estimator in (3.10) is consistent and

approximately normal.
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3.3 Consistency of the LSE

We show in this section the consistency of the approximate estimator given in (3.10). To this end,
let us first prove the following technical lemma:

Lemma 3.2 Let {µn, n ∈ Z+} be a sequence of probability measures on Z+. Then, the following
statements are equivalent:

(i) µn converges weakly to µ0 as n → ∞.

(ii) limn→∞ µn(j) = µ0(j) for all j ∈ Z+.

(iii) limn→∞
∑∞

j=0 |µn(j)− µ0(j)| = 0.

Proof. Obviously, (iii)⇒(i)⇒(ii). (ii)⇒(iii) is complete by the observation that, for any m ∈ N,

∞∑
j=0

|µn(j)− µ0(j)| ≤
m∑
j=0

|µn(j)− µ0(j)|+
∞∑

j=m+1

µn(j) +
∞∑

j=m+1

µ0(j)

=

m∑
j=0

|µn(j)− µ0(j)|+
m∑
j=0

[µ0(j)− µn(j)] + 2

∞∑
j=m+1

µ0(j)

≤ 2

m∑
j=0

|µn(j)− µ0(j)|+ 2

∞∑
j=m+1

µ0(j).

2

We are now ready to prove the consistency of the estimator in (3.10).

Theorem 3.1 Suppose that ϱN (0) → ϱ0 in S as N → ∞ and (3.7) holds. Then,(
λN,m

νN,m

)
−→

(
λ∗

ν∗

)
in probability as N → ∞ and m → ∞.

Proof See Appendix C. 2

3.4 Asymptotic normality of the LSE

We now analyze the asymptotic distribution of the approximate LSE given in (3.10). In particular,
one aims to prove the asymptotic normality of

√
N

((
λN,m

νN,m

)
−
(
λ∗

ν∗

))
, (3.11)

as the network size N and the number of observations m go to infinity. To do so, we will prove that
(3.11) converges towards a linear combination of the process Z which is itself a Gaussian process by
Proposition 2.1.
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To ease of notations, define the following quantities:

I =
∞∑
j=0

{
a22

(
[ϱj(T, θ

∗)− ϱj(0, θ
∗)]

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]

+ [Zj(T, θ
∗)−Zj(0, θ

∗)]

∫ T

0
Uj(ϱ(s))ds

)

+ 2b1

∫ T

0
Vj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iVj(s, θ

∗)Zi(s, θ
∗)ds

]

− b2

(∫ T

0
Vj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]

+

∫ T

0
Uj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iVj(ϱ(s))Zi(s, θ

∗)ds

])

− a12

(
[ϱj(T, θ

∗)− ϱj(0, θ
∗)]

[ ∞∑
i=0

∫ T

0
∂iVj(ϱ(s))Zi(s, θ

∗)ds

]

+ [Zj(T, θ
∗)−Zj(0, θ

∗)]

∫ T

0
Vj(ϱ(s))ds

)}
,

J =
∞∑
j=0

{
a11

(
[ϱj(T, θ

∗)− ϱj(0, θ
∗)]

[ ∞∑
i=0

∫ T

0
∂iVj(ϱ(s))Zi(s, θ

∗)ds

]

+ [Zj(T, θ
∗)−Zj(0, θ

∗)]

∫ T

0
Vj(ϱ(s))ds

)

+ 2b2

∫ T

0
Uj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iUj(s, θ

∗)Zi(s, θ
∗)ds

]

− b1

(∫ T

0
Vj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]

+

∫ T

0
Uj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iVj(ϱ(s))Zi(s, θ

∗)ds

])

− a12

(
[ϱj(T, θ

∗)− ϱj(0, θ
∗)]

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]

+ [Zj(T, θ
∗)−Zj(0, θ

∗)]

∫ T

0
Uj(ϱ(s))ds

)}
,
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and

K = 2
∞∑
j=0

{
− a11

∫ T

0
Vj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iVj(ϱ(s))Zi(s, θ

∗)ds

]

− a22

∫ T

0
Uj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]

+ a12

(∫ T

0
Vj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]

+

∫ T

0
Uj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iVj(ϱ(s))Zi(s, θ

∗)ds

])}
.

One can observe that I, J , K are linear combinations of the Gaussian process Z(t) solution to the SDE
(2.5) (see Proposition 2.1).

The following theorem, states the asymptotic normality of the approximate LSE (3.11) under the
assumption that m√

N
→ ∞.

Theorem 3.2 Suppose that (3.7) holds. Then, under the assumption of Theorem 2.2, as N,m, m√
N

→
∞,

√
N

((
λN,m

νN,m

)
−
(
λ∗

ν∗

))
d−→ 1

[a11a22 − (a12)2]2

 [a11a22 − (a12)
2]I + (a22b1 − a12b2)K

[a11a22 − (a12)
2]J + (a11b2 − a12b1)K

 .

Proof See Appendix D. 2

Remark 2 By Proposition 2.1, we know that the limiting distribution given by Theorem 3.2 is normal.
Moreover, explicit (but tedious) expressions of the mean and the covariance matrix of the limiting normal
distribution can be obtained by virtue of (2.6) and (A.5).

4 Numerical experiments

In this section, we evaluate the consistency and asymptotic normality of the approximate LSE θ̂ =
(λN,m, νN,m) defined in (3.10) using simulated data. Specifically, we aim to validate the assertions made
in Theorem 3.1 and Theorem 3.2. To this end, we propose to generate the datasets DN,m = {ϱN (tk) :
1 ≤ k ≤ m} by simulating the power of two choices model, with true parameters (θ = (λ, ν) = (0.5, 1)),
for various network sizes N ∈ N and different numbers of observations m ∈ N. For each combination of
(N,m), we simulate a total of 100 samples which are then utilized to estimate the arrival and service
rates θ = (λ, ν) using the approximate LSE θ̂ = (λN,m, νN,m). The estimated values are plotted in
Figure 1 and Figure 2.
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(a) (b)

(c) (d)

(e)

Figure 1: Values of 100 Least squares estimates of the parameter λ = 0.5 with different network sizes
N and number of observations m: (a) N=100, m=1000; (b) N=500, m=10000; (c) N=1000, m=10000;
(d) N=2000, m=20000; (e) N=3000, m=30000
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(a) (b)

(c) (d)

(e)

Figure 2: Values of 100 Least squares estimates of the parameter ν = 1 with different network sizes N
and number of observations m: (a) N=100, m=1000; (b) N=500, m=10000; (c) N=1000, m=10000; (d)
N=2000, m=20000; (e) N=3000, m=30000
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4.1 Consistency of the estimator

We aim to numerically assess the consistency of the estimator θ̂ = (λN,m, νN,m). To achieve this,
we utilize the estimated values of θ̂ = (λN,m, νN,m) obtained from simulated datasets for various values
of N and m to calculate the following empirical moments:

• The empirical mean

¯̂
θ = (λN,m, νN,m) =

1

100

( 100∑
i=1

λN,m
i ,

100∑
i=1

νN,m
i

)
≈ E(λN,m, νN,m).

• The empirical standard deviation

sθ̂ = (sλN,m , sνN,m) =

√√√√ 1

99

( 100∑
i=1

(λN,m
i − λN,m)2,

100∑
i=1

(νN,m
i − νN,m)2

)
≈
√
V(λN,m, νN,m).

• The empirical mean square error

MSE =
1

100

( 100∑
i=1

(λN,m
i − λ)2,

100∑
i=1

(νN,m
i − ν)2

)
≈ E

(
(λN,m − λ)2, (νN,m − ν)2

)
.

• The empirical mean error

Mean− Error =
1

100

( 100∑
i=1

(λN,m
i − λ),

100∑
i=1

(νN,m
i − ν)

)
≈ E

(
(λN,m − λ), (νN,m − ν)

)
.

The results are presented in Table 1. As observed, as N and m increase, the empirical mean of the
estimator converges to the true parameter values, while the corresponding standard deviations decrease.
Furthermore, both the mean squared error and the absolute mean error diminish as N and m grow
larger. These findings validate the consistency of the estimator, as stated in Theorem 3.1.

Parameters moments
¯̂
θ = (λN,m, νN,m) sθ̂ = (sλN,m , sνN,m) MSE Mean Error

N = 100, m = 1000 (−0.03, 0.33) (0.13, 0.14) (0.30, 0.45) (−0.53,−0.66)

N = 500, m = 10000 (0.18, 0.61) (0.13, 0.15) (0.12, 0.17) (−0.31,−0.38)

N = 1000, m = 10000 0.28, 0.74) (0.10, 0.11) (0.05, 0.07) (−0.21,−0.25)

N = 2000, m = 20000 (0.46, 0.95) (0.08, 0.08) (0.008, 0.009) (−0.03,−0.04)

N = 3000, m = 30000 (0.48, 0.97) (0.07, 0.07) (0.005, 0.006) (−0.01,−0.02)

Table 1: Empirical moments of the approximate LSE θN,m = (λN,m, νN,m)
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4.1.1 Asymptotic normality

In this section, we assess the asymptotic normality of the approximate LSE θ̂ = (λN,m, νN,m)
as established in Theorem 3.2. Specifically, we numerically verify that the normalized error term√
N
(
(λN,m − λ), (νN,m − ν)

)
converges to a Gaussian distribution as N and m approach infinity.

We utilize the simulated 100 samples from the power of two choices model with the true param-
eter θ = (λ, ν) = (0.5, 1), varying the network size N and the number of observations m. For each
combination of (N,m), we compute the first four empirical moments of the normalized error terms√
N
(
(λN,m − λ), (νN,m − ν)

)
: the mean, variance, skewness, and kurtosis. The results are summarized

in Table 2. Notably, we observe that the skewness and kurtosis values tend to approximate those of a
normal distribution (0 for skewness and 3 for kurtosis), even for relatively small values of network size
N and number of observations m.

Normalized error moments Mean Variance Skewness Kurtosis

N=100,m=1000 (−5.37,−6.60) (1.75, 2.07) (−0.16,−0.41) (3.44, 4.31)

N=500,m=10000 (−7.15,−8.65) (8.99, 11.32) (0.51, 0.60) (3.90, 4.21)

N=1000,m=10000 (−6.89,−8.08) (11.08, 14.38) (0.01, 0.02) (2.72, 2.51)

N=2000, m=20000 (−1.47,−2.01) (13.96, 15.59) (0.07, 0.20) (2.80, 2.68)

N=3000, m=30000 (−0.86,−1.48) (17.00, 17.15) (0.10, 0.26) (3.40, 3.07)

Table 2: Empirical moments of the normalized errors
√
N
(
(λN,m − λ), (νN,m − ν)

)
To further substantiate our findings, we test the normality of the normalized error terms using a

Kolmogorov-Smirnov test. We conduct this test on the 100 simulated datasets across the different
values of network size N and number of observations m. The resulting p-values are presented in Table
3. As shown, the p-values are sufficiently large, suggesting that the null hypothesis asserting that the
error terms

√
N
(
(λN,m − λ), (νN,m − ν)

)
follow a normal distribution is not rejected, even for smaller

values of N and m. This result indicates that the error terms tend to the normal distribution quickly.
Nevertheless, it is also noted that the p-values are high for all (N,m) combinations, and they do not
necessarily increase with larger network sizes N and higher numbers of observations m. This effect may
be attributed to the fact that the true mean and variance of the error terms are unknown, requiring
the use of empirical values, which may account for the observed outcomes.

Network and data sizes (N,m) P-value for
√
N(λN,m − λ) P-value for

√
N(νN,m − ν)

(N,m) = (100, 1000) 0.71 0.48

(N,m) = (500, 10000) 0.55 0.59

(N,m) = (1000, 10000) 0.99 0.33

(N,m) = (2000, 20000) 0.97 0.94

(N,m) = (3000, 30000) 0.65 0.66

Table 3: Kolmogorov-Smirnov tests for the normalized parameter estimator errors
√
N
(
(λN,m −

λ), (νN,m − ν)
)
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Finally, we plot the histograms of the normalized error terms
√
N
(
(λN,m−λ)

)
and

√
N
(
(νN,m−ν)

)
,

along with a kernel density estimator. The results are shown in Figure 3 and Figure 4. Once again, we
observe that the assertion of normality for the error terms aligns well with the empirical data.

Figure 3: Histograms of the normalized errors
√
N(λN,m − λ) with the associated kernel density esti-

mate plots for different values of the network size N and the number of observations m with the true
parameters θ = (λ, ν) = (0.5, 1)
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Figure 4: Histograms of the normalized errors
√
N(νN,m−ν) with the associated kernel density estimate

plots for different values of the network size N and the number of observations m, corresponding to
true parameters θ = (λ, ν) = (0.5, 1)

5 Conclusions and perspectives

In this paper, we considered the parameter estimation problem of the supermarket model. Based
on an aggregate dataset, we constructed an approximate LSE by exploiting the law of large numbers
together with the central limit theorem established for the model in the literature. Moreover, we proved
the consistency together with the asymptotic normality of the estimator as both the size of the network
and the number of observations go to infinity. Finally, we presented a numerical study where we tested
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our estimator against synthetic data obtained by simulating the power-of-two model highlighting our
theoretical results.

The current work is the first statistical scheme for mean-field queuing systems and opens a new
perspective. One naturally aims to investigate the statistical inference problem for other models. For
instance, one can investigate the approximate LSE approach to the model proposed in [6] for load
balancing mechanisms in cloud storage systems which is a generalization of the supermarket model.
The established law of large numbers together with the central limit theorem make the approximate
LSE approach used in the current work conceivable, provided that one can overcome the technical
difficulty arising from the more complicated mean-field limiting equation. Another variation of the
supermarket model for which one can study the parameter estimation problem is the one introduced in
[7] in which the servers can communicate with their neighbors and where the neighborhood relationships
are described in terms of a suitable graph. Again, the limit as the number of servers goes to infinity was
identified, which can be exploited to build a statistical scheme, however, no central limit theorem nor
a stationary distribution was established, therefore, the asymptotic normality of the estimator cannot
be obtained by the similar scheme used in the current paper. Another interesting open problem is
the nonparametric estimation of the interaction kernel in general mean-field queuing systems studied in
[11]. Indeed, one can consider the exploitation of the limiting mean-field equation to build an estimator.
However, contrary to our current proposal where the unknown parameters enter linearly in the mean-
field limiting equation, in the nonparametric estimation one needs to deal with an optimization problem
in function space. A potential avenue is to exploit the stationary distribution to build an estimator
in the stationary regime and then investigate a justification for the interchange of limits N → ∞ and
t → ∞.

Finally, the problem of statistical inference for general mean-field models on discrete space remains
open and, as mentioned in the introduction, very few references exist.

A Proof of Propositoin 2.1

Let ξ(t) = (ξj(t))
T be the solution to the following infinite-dimensional ODE:

dξ(t) = G (M(t) + ξ(t), ϱ(t)) dt, ξ(0) = z0 ∈ ℓ̃2.

Define Z(t) := M(t) + ξ(t). Then, Z(t) satisfies the SDE:

dZ(t) = G(Z(t), ϱ(t))dt+ a(t)dW (t), Z(0) = z0.

By [6, Proposition 2], we know that Z(t) ∈ ℓ̃2 for all t ∈ [0, T ] almost surely. By the estimate [6, Page
69, line -1] and Fatou’s lemma (cf. [6, Page 78, Proof of Theorem 2]), we get

E

[
sup

t∈[0,T ]

∞∑
m=0

(m+ 1)2M2
m(t)

]
< ∞.

Then, M(t), ξ(t) ∈ ℓ1 for all t ∈ [0, T ] almost surely. Moreover, for any j ∈ Z+, we have ξj(0) = (z0)j ,
and
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dξj(t)

dt
= Gj(Z(t), ϱ(t))

= 2λ

∞∑
m=j

{[Mj−1(t) + ξj−1(t)]ϱm(t) + [Mm(t) + ξm(t)]ϱj−1(t)

−[Mj(t) + ξj(t)]ϱm+1(t)− [Mm+1(t) + ξm+1(t)]ϱj(t)}
+ν{[Mj+1(t) + ξj+1(t)]− [Mj(t) + ξj(t)]}

= 2λ[Mj−1(t)−Mj(t)]

∞∑
m=j

ϱm(t) + 2λ[ξj−1(t)− ξj(t)]

∞∑
m=j

ϱm(t)

+2λ[ϱj−1(t)− ϱj(t)]

∞∑
m=j

[Mm(t) + ξm(t)] + 2λMj(t)ϱj(t) + 2λξj(t)ϱj(t) + 2λϱj(t)[Mj(t) + ξj(t)]

+ν{[Mj+1(t)−Mj(t)] + [ξj+1(t)− ξj(t)]}

= 2λ[Mj−1(t)−Mj(t)]

∞∑
m=j

ϱm(t) + 2λ[ϱj−1(t)− ϱj(t)]

∞∑
m=j

Mm(t) + ν[Mj+1(t)−Mj(t)]

+4λMj(t)ϱj(t) + 4λξj(t)ϱj(t)

+2λ[ϱj−1(t)− ϱj(t)]

∞∑
m=j

ξm(t) + 2λ[ξj−1(t)− ξj(t)]

∞∑
m=j

ϱm(t) + ν[ξj+1(t)− ξj(t)]

= 2λ

 ∞∑
m=j

ϱm(t)

 [Mj−1(t)−Mj(t)] + 2λ[ϱj−1(t)− ϱj(t)]

∞∑
m=j

Mm(t) + 4λϱj(t)Mj(t) + ν[Mj+1(t)−Mj(t)]

+2λ[ϱj−1(t)− ϱj(t)]

∞∑
m=j+2

ξm(t) + {2λ[ϱj−1(t)− ϱj(t)] + ν}ξj+1(t)

+

2λ

ϱj−1(t) + ϱj(t)−
∞∑

m=j

ϱm(t)

− ν

 ξj(t) + 2λ

 ∞∑
m=j

ϱm(t)

 ξj−1(t). (A.1)

Since
∑∞

m=0Zm(t) = 0, we get

∞∑
m=j+2

ξm(t) = −
∞∑

m=0

Mm(t)−
j+1∑
m=0

ξm(t).

Similarly, by
∑∞

m=0 ϱm(t) = 1, we get

∞∑
m=j

ϱm(t) = 1−
j−1∑
m=0

ϱm(t).

Then, we can rewrite (A.1) as follows:

dξj(t)

dt
= 2λ

[
1−

j−1∑
m=0

ϱm(t)

]
[Mj−1(t)−Mj(t)]− 2λ[ϱj−1(t)− ϱj(t)]

j−1∑
m=0

Mm(t) + 4λϱj(t)Mj(t) + ν[Mj+1(t)−Mj(t)]
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−2λ[ϱj−1(t)− ϱj(t)]

j−2∑
m=0

ξm(t) + 2λ

[
1−

j−2∑
m=0

ϱm(t)− 2ϱj−1(t) + ϱj(t)

]
ξj−1(t)

+

{
2λ

[
−1 +

j−1∑
m=0

ϱm(t) + 2ϱj(t)

]
− ν

}
ξj(t) + νξj+1(t). (A.2)

Note that (A.2) can be regarded as an infinite-dimensional non-autonomous linear system of ODEs with
random coefficients. Define g(t) = (gj(t))

∞
j=0 and C(t) = (Cjl(t))

∞
j,l=0 by

gj(t) := 2λ

[
1−

j−1∑
m=0

ϱm(t)

]
[Mj−1(t)−Mj(t)]− 2λ[ϱj−1(t)− ϱj(t)]

j−1∑
m=0

Mm(t)

+4λϱj(t)Mj(t) + ν[Mj+1(t)−Mj(t)]

= −2λ[ϱj−1(t)− ϱj(t)]

j−2∑
m=0

Mm(t) + 2λ

[
1−

j−2∑
m=0

ϱm(t)− 2ϱj−1(t) + ϱj(t)

]
Mj−1(t)

+

{
2λ

[
−1 +

j−1∑
m=0

ϱm(t) + 2ϱj(t)

]
− ν

}
Mj(t) + νMj+1(t), (A.3)

and

Cjl(t) :=



−2λ[ϱj−1(t)− ϱj(t)], if 0 ≤ l ≤ j − 2,

2λ
[
1−

∑j−2
m=0 ϱm(t)− 2ϱj−1(t) + ϱj(t)

]
, if l = j − 1,

2λ
[
−1 +

∑j−1
m=0 ϱm(t) + 2ϱj(t)

]
− ν, if l = j,

ν, if l = j + 1,
0, if l ≥ j + 2.

(A.4)

Then, (A.2) becomes
dξ(t)

dt
= C(t)ξ(t) + g(t), ξ(0) = z0.

Denote C = 6λ+ ν. Therefore, for any j ∈ Z+ and t ∈ [0, T ], by (A.3), we get

|gj(t)| ≤ C

{
|Mj−1(t)|+ |Mj(t)|+ |Mj+1(t)|+ [ϱj−1(t) + ϱj(t)]

[
π2

6
sup

t∈[0,T ]

∞∑
m=0

(m+ 1)2M2
m(t)

] 1
2
}
.

Then,

sup
t∈[0,T ]

∥g(t)∥1 ≤ 5C

[
π2

6
sup

t∈[0,T ]

∞∑
m=0

(m+ 1)2M2
m(t)

] 1
2

.

For x ∈ ℓ1, j ∈ Z+ and t ∈ [0, T ], by (A.4), we get

|(C(t)x)j | ≤ C

{
[ϱj−1(t) + ϱj(t)]

j−2∑
l=0

|xl|+ |xj−1|+ |xj |+ |xj+1|

}
.

21



Then,

∥C(t)x∥1 ≤ 5C∥x∥1.

Hence, by induction, we obtain that

∥[C(t)]nx∥1 ≤ (5C)n∥x∥1, n ∈ N.

Thus, we have the following explicit expressions:

ξ(t) = e
∫ t
0 C(s)dsz0 +

∫ t

0
e
∫ t
s C(u)dug(s)ds, Z(t) = M(t) + ξ(t). (A.5)

Since M(t) is a Gaussian martingale, by (A.3), we deduce that the distributions of ξ(t) and Z(t) are
both Gaussian. The proof is complete.

B Proof of Lemma 3.1

By Hölder’s inequality, we find that a11a22 ≥ (a12)
2 and the equality sign holds if and only if a11 = 0,

or a22 = 0, or
a11, a22 > 0 and

for all j′ ∈ Z+ (see, e.g. [33])∫ T
0 Uj′(ϱ(s, θ

∗))ds( ∞∑
j=0

[∫ T
0 Uj(ϱ(s, θ∗))ds

]2) 1
2

=

∫ T
0 Vj′(ϱ(s, θ

∗))ds( ∞∑
j=0

[∫ T
0 Vj(ϱ(s, θ∗))ds

]2) 1
2

.
(B.1)

Note that for s ∈ [0, T ],

U0(ϱ(s, θ
∗)) = −2ϱ0(s, θ

∗)
∞∑
i=1

ϱi(s, θ
∗)− (ϱ0(s, θ

∗))2,

and

U1(ϱ(s, θ
∗)) = 2ϱ0(s, θ

∗)
∞∑
i=1

ϱi(s, θ
∗)− 2ϱ1(s, θ

∗)
∞∑
i=2

ϱi(s, θ
∗) + (ϱ0(s, θ

∗))2 − (ϱ1(s, θ
∗))2,

Then, by the fact that
∞∑
i=0

ϱi(s, θ
∗) = 1, we get

U0(ϱ(s, θ
∗)) = −2ϱ0(s, θ

∗)(1− ϱ0(s, θ
∗))− (ϱ0(s, θ

∗))2 = ϱ0(s, θ
∗)(ϱ0(s, θ

∗)− 2),

and

U1(ϱ(s, θ
∗)) = 2ϱ0(s, θ

∗)(1− ϱ0(s, θ
∗))− 2ϱ1(s, θ

∗)(1− ϱ0(s, θ
∗)− ϱ1(s, θ

∗)) + (ϱ0(s, θ
∗))2 − (ϱ1(s, θ

∗))2

= (ϱ0(s, θ
∗)− ϱ1(s, θ

∗))(2− ϱ0(s, θ
∗)) + (ϱ1(s, θ

∗))(ϱ0(s, θ
∗) + ϱ1(s, θ

∗)).
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We have
V0(ϱ(s, θ

∗)) = ϱ1(s, θ
∗)− ϱ0(s, θ

∗),

and
V1(ϱ(s, θ

∗)) = ϱ2(s, θ
∗)− ϱ1(s, θ

∗).

(a) Suppose that (3.8) holds. Then,
∫ T
0 U0(ϱ(s, θ

∗))ds < 0 and
∫ T
0 V0(ϱ(s, θ

∗))ds > 0. Thus, (B.1)
cannot hold and hence (3.7) holds.

(b) Suppose that (3.9) holds. Then,
∫ T
0 U1(ϱ(s, θ

∗))ds > 0 and
∫ T
0 V1(ϱ(s, θ

∗))ds < 0. Thus, (B.1)
cannot hold and hence (3.7) holds.

C Proof of Theorem 3.1

By Theorem 2.1, [15, (5.7), page 117 and Proposition 5.3, page 119] and Lemma 3.2, we obtain that

sup
t∈[0,T ]

∞∑
j=0

|ϱNj (t, θ∗)− ϱj(t, θ
∗)| → 0 (C.1)

in probability as N → ∞. Moreover,

|aN,m
11 − a11| ≤

∞∑
j=0

∣∣∣∣∣∣
[
T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]2
−
[∫ T

0
Uj(ϱ(s))ds

]2∣∣∣∣∣∣
≤ sup

j∈Z+

{ ∣∣∣∣∣ Tm
m∑
k=1

Uj(ϱ
N (tk, θ

∗)) +

∫ T

0
Uj(ϱ(s))ds

∣∣∣∣∣
}

×
∞∑
j=0

∣∣∣∣∣ Tm
m∑
k=1

Uj(ϱ
N (tk, θ

∗))−
∫ T

0
Uj(ϱ(s))ds

∣∣∣∣∣
≤ T sup

j∈Z+

{
sup

t∈[0,T ]

∣∣Uj(ϱ
N (t, θ∗))

∣∣+ sup
t∈[0,T ]

∣∣Uj(ϱ(t, θ
∗))
∣∣}

×
∞∑
j=0

{ ∣∣∣∣∣ Tm
m∑
k=1

Uj(ϱ
N (tk, θ

∗))− T

m

m∑
k=1

Uj(ϱ(tk, θ
∗))

∣∣∣∣∣
+

∣∣∣∣∣ Tm
m∑
k=1

Uj(ϱ(tk, θ
∗))−

∫ T

0
Uj(ϱ(s))ds

∣∣∣∣∣
}
.

By (3.1), we get |Uj(x)| ≤ 6∥x∥1 for all x ∈ ℓ1 and j ∈ Z+. Then

|aN,m
11 − a11| ≤ 12T

{
T sup

t∈[0,T ]

∞∑
j=0

∣∣Uj(ϱ
N (t, θ∗))− Uj(ϱ(t, θ

∗))
∣∣

+

∞∑
j=0

∣∣∣∣∣ Tm
m∑
k=1

Uj(ϱ(tk, θ
∗))−

∫ T

0
Uj(ϱ(s))ds

∣∣∣∣∣
}
.
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Therefore, by (C.1), we get that the right hand side of the last inequality goes to 0 in probability asN,m →
∞. Similarly, we can show that

|aN,m
12 − a12|, |aN,m

22 − a22|, |bN,m
1 − b1|, |bN,m

2 − b2| → 0 in probability as N,m → ∞.

Therefore, the proof is complete.

D Proof of Theorem 3.2

By (3.6) and (3.10), we get

√
N

((
λN,m

νN,m

)
−
(
λ∗

ν∗

))
=

√
N


aN,m
22 bN,m

1 −aN,m
12 bN,m

2

aN,m
11 aN,m

22 −(aN,m
12 )2

− a22b1−a12b2
a11a22−(a12)2

−aN,m
21 bN,m

1 +aN,m
11 bN,m

2

aN,m
11 aN,m

22 −(aN,m
12 )2

− −a21b1+a11b2
a11a22−(a12)2

 .

Moreover, simple calculations lead to

aN,m
22 bN,m

1 − aN,m
12 bN,m

2

aN,m
11 aN,m

22 − (aN,m
12 )2

− a22b1 − a12b2
a11a22 − (a12)2

=
(aN,m

22 bN,m
1 − aN,m

12 bN,m
2 )− (a22b1 − a12b2)

aN,m
11 aN,m

22 − (aN,m
12 )2

+
(a22b1 − a12b2)[(a11a22 − (a12)

2)− (aN,m
11 aN,m

22 − (aN,m
12 )2)]

(aN,m
11 aN,m

22 − (aN,m
12 )2)(a11a22 − (a12)2)

,

and

−aN,m
21 bN,m

1 + aN,m
11 bN,m

2

aN,m
11 aN,m

22 − (aN,m
12 )2

− −a21b1 + a11b2
a11a22 − (a12)2

=
(−aN,m

21 bN,m
1 + aN,m

11 bN,m
2 )− (−a21b1 + a11b2)

aN,m
11 aN,m

22 − (aN,m
12 )2

+
(−a21b1 + a11b2)[(a11a22 − (a12)

2)− (aN,m
11 aN,m

22 − (aN,m
12 )2)]

(aN,m
11 aN,m

22 − (aN,m
12 )2)(a11a22 − (a12)2)

.

To simplify notation, let us define

IN,m :=
√
N

[
(aN,m

22 bN,m
1 − aN,m

12 bN,m
2 )− (a22b1 − a12b2)

]
,

JN,m :=
√
N

[
(−aN,m

21 bN,m
1 + aN,m

11 bN,m
2 )− (−a21b1 + a11b2)

]
,

HN,m := aN,m
11 aN,m

22 − (aN,m
12 )2,

and

KN,m :=
√
N

[
(a11a22 − (a12)

2)− (aN,m
11 aN,m

22 − (aN,m
12 )2)

]
.
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We will analyze the convergence of IN,m,JN,m and KN,m as N,m, m√
N

→ ∞. By the Skorohod rep-

resentation theorem (cf. [15, Page 102]), we can and do assume without loss of generality that ZN

converges to Z in probability in D([0, T ], ℓ2). To save space, we will prove the convergence of IN,m, the
convergence of the other terms follows by similar arguments.

First, we have

IN,m = IN,m
1 + IN,m

2

with

IN,m
1 =

√
N
(
aN,m
22 bN,m

1 − a22b1
)

and IN,m
2 =

√
N
(
a12b2 − aN,m

12 bN,m
2

)
.

Moreover,

IN,m
1 =

√
Na22(b

N,m
1 − b1) +

√
NbN,m

1 (aN,m
22 − a22),

and

IN,m
2 = −

√
N
(
a12(b

N,m
2 − b2) + bN,m

2 (aN,m
12 − a12)

)
.

Then, by adding and subtracting terms, we get

bN,m
1 − b1

=

∞∑
j=0

[ϱj(T, θ
∗)− ϱj(0, θ

∗)]

{[
T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]
−

[
T

m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]}

+

∞∑
j=0

{[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

]
− [ϱj(T, θ

∗)− ϱj(0, θ
∗)]

}{[
T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]
−

[
T

m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]}

+

∞∑
j=0

[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

]{[ T
m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]
−
∫ T

0
Uj(ϱ(s))ds

}

+

∞∑
j=0

{[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

]
− [ϱj(T, θ

∗)− ϱj(0, θ
∗)]

}∫ T

0
Uj(ϱ(s))ds. (D.1)

Below we consider the convergence of each summation term in (D.1).

(a) By Theorem 2.2, as N → ∞, the term

√
N

∞∑
j=0

{[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

]
− [ϱj(T, θ

∗)− ϱj(0, θ
∗)]

}∫ T

0
Uj(ϱ(s))ds

converges in probability to

∞∑
j=0

[Zj(T, θ
∗)−Zj(0, θ

∗)]

∫ T

0
Uj(ϱ(s))ds.

25



(b) By (2.1) and (3.1)–(3.3), we get

|Uj(ϱ(tk, θ
∗))− Uj(ϱ(s))| ≤ 2ϱj−1(tk, θ

∗)

∞∑
i=0

∣∣ϱi(tk, θ∗)− ϱi(s, θ
∗)
∣∣+ 2

∣∣ϱj−1(tk, θ
∗)− ϱj−1(s, θ

∗)
∣∣

+2ϱj(tk, θ
∗)

∞∑
i=0

∣∣ϱi(tk, θ∗)− ϱi(s, θ
∗)
∣∣+ 2

∣∣ϱj(tk, θ∗)− ϱj(s, θ
∗)
∣∣

+2
∣∣ϱj−1(tk, θ

∗)− ϱj−1(s, θ
∗)
∣∣+ 2

∣∣ϱj(tk, θ∗)− ϱj(s, θ
∗)
∣∣

≤ 6
∞∑
i=0

∣∣ϱi(tk, θ∗)− ϱi(s, θ
∗)
∣∣

≤ 6
∞∑
i=0

∫ tk

s

∣∣Fi(ϱ(u, θ
∗))
∣∣du

≤ 6(6λ+ 2ν)T

m
.

Then, ∣∣∣∣∣∣√N
∞∑
j=0

[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

]{[ T
m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]
−
∫ T

0
Uj(ϱ(s))ds

}∣∣∣∣∣∣
=

∣∣∣∣∣∣√N
∞∑
j=0

[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

]{ m∑
k=1

∫ tk

tk−1

[Uj(ϱ(tk, θ
∗))− Uj(ϱ(s))]ds

}∣∣∣∣∣∣
≤

√
N

∞∑
j=0

[
ϱNj (T, θ∗) + ϱNj (0, θ∗)

]{ m∑
k=1

∫ tk

tk−1

6(6λ+ 2ν)T

m
ds

}

=
24(3λ+ ν)T 2

√
N

m

→ 0 as
m√
N

→ ∞.

(c) By the estimate [6, Page 70, line 4], we have that

sup
N∈N

E

 sup
t∈[0,T ]

∞∑
j=0

(j + 1)2(ZN
j (t, θ∗))2

 < ∞. (D.2)

Then, by Fatou’s lemma, we get

E

 sup
t∈[0,T ]

∞∑
j=0

(j + 1)2(Zj(t, θ
∗))2

 < ∞. (D.3)

By (2.1) and (3.1)–(3.3), we get

|Uj(ϱ
N (tk, θ

∗))− Uj(ϱ(tk, θ
∗))| ≤ 6

∞∑
i=0

∣∣ϱNi (tk, θ
∗)− ϱi(tk, θ

∗)
∣∣,
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which together with (C.1) and (D.2) implies that∣∣∣∣∣√N
∞∑
j=0

{[
ϱNj (T, θ∗)− ϱNj (0, θ∗)

]
− [ϱj(T, θ

∗)− ϱj(0, θ
∗)]

}

·

{[
T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]
−

[
T

m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]}∣∣∣∣∣
=

∣∣∣∣∣
∞∑
j=0

[
ZN
j (T, θ∗)−ZN

j (0, θ∗)
]{[ T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]
−

[
T

m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]}∣∣∣∣∣
≤ 6

∞∑
j=0

[
|ZN

j (T, θ∗)|+ |ZN
j (0, θ∗)|

]{ T

m

m∑
k=1

∞∑
i=0

|ϱNi (tk, θ
∗)− ϱi(tk, θ

∗)|

}

≤ 6T
∞∑
j=0

[
|ZN

j (T, θ∗)|+ |ZN
j (0, θ∗)|

]
· sup
t∈[0,T ]

∞∑
i=0

|ϱNi (t, θ∗)− ϱi(t, θ
∗)|

→ 0 in probability as N → ∞.

(d) For i ∈ Z+ and k ∈ {1, 2, . . . ,m}, define a non-negative measure τ i,k on Z+ by

τ i,kl :=

{
ϱl(tk, θ

∗), l < i,

ϱNl (tk, θ
∗), l ≥ i.

Note that

∂lUj(x) =


0, l < j − 1,

2
∑∞

p=j−1 xp, l = j − 1,

2xj−1 − 2
∑∞

p=j xp, l = j,

2xj−1 − 2xj , l ≥ j + 1.

Then, for s ∈ [tk−1, tk], we have

∣∣∣∣∣√N [Uj(ϱ
N (tk, θ

∗))− Uj(ϱ(tk, θ
∗))]−

∞∑
i=0

∂iUj(ϱ(s))ZN
i (tk, θ

∗)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=0

{√
N [Uj(τ

i,k)− Uj(τ
i+1,k)]− ∂iUj(ϱ(s))ZN

i (tk, θ
∗)
}∣∣∣∣∣

≤
∞∑
i=0

∣∣∣√N [Uj(τ
i,k)− Uj(τ

i+1,k)]− ∂iUj(ϱ(s))ZN
i (tk, θ

∗)
∣∣∣

=

∞∑
i=0

∣∣∣∣∣√N

∫ ϱNi (tk,θ
∗)

ϱi(tk,θ∗)
∂iUj(ϱ0(tk, θ

∗), . . . , ϱi−1(tk, θ
∗), u, ϱNi+1(tk, θ

∗), ϱNi+2(tk, θ
∗), . . . )du
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−
√
N

∫ ϱNi (tk,θ
∗)

ϱi(tk,θ∗)
∂iUj(ϱ(s))du

∣∣∣∣∣
≤ 2

{
sup

t∈[0,T ]

∞∑
i=0

|ZN
i (t, θ∗)|

}{
sup

1≤k≤m

∞∑
i=0

sup
s,t∈[tk−1,tk]

|ϱi(s, θ∗)− ϱi(t, θ
∗)|+ sup

t∈[0,T ]

∞∑
i=0

|ϱNi (t, θ∗)− ϱi(t, θ
∗)|

}
.

(D.4)

By [15, (5.7), page 117 and Proposition 5.3, page 119], we have that

sup
t∈[0,T ]

∥ZN (t, θ∗)−Z(t, θ∗)∥2 → 0 (D.5)

in probability as N → ∞. Then, by (C.1) and (D.2)–(D.5), we get

∣∣∣∣∣√N

∞∑
j=0

[ϱj(T, θ
∗)− ϱj(0, θ

∗)]

{[
T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]
−

[
T

m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]}

−
∞∑
j=0

[ϱj(T, θ
∗)− ϱj(0, θ

∗)]

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]∣∣∣∣∣
≤

∞∑
j=0

[ϱj(T, θ
∗) + ϱj(0, θ

∗)]

{
m∑
k=1

∫ tk

tk−1

∣∣∣∣∣√N [Uj(ϱ
N (tk, θ

∗))− Uj(ϱ(tk, θ
∗))]−

∞∑
i=0

∂iUj(ϱ(s))Zi(s, θ
∗)

∣∣∣∣∣ ds
}

≤ 2 sup
j∈Z+

{
m∑
k=1

∫ tk

tk−1

∣∣∣∣∣√N [Uj(ϱ
N (tk, θ

∗))− Uj(ϱ(tk, θ
∗))]−

∞∑
i=0

∂iUj(ϱ(s))Zi(s, θ
∗)

∣∣∣∣∣ ds
}

≤ 2 sup
j∈Z+

{
m∑
k=1

∫ tk

tk−1

∣∣∣∣∣√N [Uj(ϱ
N (tk, θ

∗))− Uj(ϱ(tk, θ
∗))]−

∞∑
i=0

∂iUj(ϱ(s))ZN
i (tk, θ

∗)

∣∣∣∣∣ ds
}

+2 sup
j∈Z+

{
m∑
k=1

∫ tk

tk−1

∣∣∣∣∣
∞∑
i=0

∂iUj(ϱ(s))ZN
i (tk, θ

∗)−
∞∑
i=0

∂iUj(ϱ(s))Zi(tk, θ
∗)

∣∣∣∣∣ ds
}

+2 sup
j∈Z+

{
m∑
k=1

∫ tk

tk−1

∣∣∣∣∣
∞∑
i=0

∂iUj(ϱ(s))Zi(tk, θ
∗)−

∞∑
i=0

∂iUj(ϱ(s))Zi(s, θ
∗)

∣∣∣∣∣ ds
}

≤ 4T

{
sup

t∈[0,T ]

∞∑
i=0

|ZN
i (t, θ∗)|

}{
sup

1≤k≤m

∞∑
i=0

sup
s,t∈[tk−1,tk]

|ϱi(s, θ∗)− ϱi(t, θ
∗)|+ sup

t∈[0,T ]

∞∑
i=0

|ϱNi (t, θ∗)− ϱi(t, θ
∗)|

}

+12T sup
t∈[0,T ]

∞∑
i=0

|ZN
i (t, θ∗)−Zi(t, θ

∗)|+ 12
m∑
k=1

∫ tk

tk−1

∞∑
i=0

|Zi(tk, θ
∗)−Zi(s, θ

∗)|ds

→ 0 in probability as N,m → ∞.

Thus, by (a)–(d), we deduce that as N,m, m√
N

→ ∞,
√
N(bN,m

1 − b1) converges in probability to

∞∑
j=0

[ϱj(T, θ
∗)− ϱj(0, θ

∗)]

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]
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+
∞∑
j=0

[Zj(T, θ
∗)−Zj(0, θ

∗)]

∫ T

0
Uj(ϱ(s))ds. (D.6)

By adding and subtracting terms, we get

aN,m
12 − a12 =

∞∑
j=0

{[
T

m

m∑
k=1

Uj(ϱ
N (tk, θ

∗))

]
−

[
T

m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]}[
T

m

m∑
k=1

Vj(ϱ
N (tk, θ

∗))

]

+
∞∑
j=0

{[
T

m

m∑
k=1

Uj(ϱ(tk, θ
∗))

]
−
∫ T

0
Uj(ϱ(s))ds

}[
T

m

m∑
k=1

Vj(ϱ
N (tk, θ

∗))

]

+
∞∑
j=0

∫ T

0
Uj(ϱ(s))ds

{[
T

m

m∑
k=1

Vj(ϱ
N (tk, θ

∗))

]
−

[
T

m

m∑
k=1

Vj(ϱ(tk, θ
∗))

]}

+
∞∑
j=0

∫ T

0
Uj(ϱ(s))ds

{[
T

m

m∑
k=1

Vj(ϱ(tk, θ
∗))

]
−
∫ T

0
Vj(ϱ(s))ds

}
.

Similar to the above argument, we can show that as N,m, m√
N

→ ∞,
√
N(aN,m

12 − a12) converges in

probability to

∞∑
j=0

∫ T

0
Vj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iUj(ϱ(s))Zi(s, θ

∗)ds

]

+
∞∑
j=0

∫ T

0
Uj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iVj(ϱ(s))Zi(s, θ

∗)ds

]
.

(D.7)

Similarly, as N,m, m√
N

→ ∞,
√
N(bN,m

2 − b2) converges in probability to

∞∑
j=0

[ϱj(T, θ
∗)− ϱj(0, θ

∗)]

[ ∞∑
i=0

∫ T

0
∂iVj(ϱ(s))Zi(s, θ

∗)ds

]

+

∞∑
j=0

[Zj(T, θ
∗)−Zj(0, θ

∗)]

∫ T

0
Vj(ϱ(s))ds, (D.8)

and
√
N(aN,m

22 − a22) converges converges in probability to

2

∫ T

0
Vj(ϱ(s))ds

[ ∞∑
i=0

∫ T

0
∂iVj(s, θ

∗)Zi(s, θ
∗)ds

]
. (D.9)

Therefore, using (D.6)–(D.9), we deduce that

IN,m p−→ I,

Similarly, we obtain

JN,m p−→ J , KN,m p−→ K.

Finally, by Theorem 2.1, we deduce that HN,m → a11a22 − (a12)
2 in probability as N,m → ∞.

Therefore, the proof is complete by the continuous mapping theorem (cf. [34, Theorem 2.3]).
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