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Abstract

This work explores the relationship between state space methods and Koopman operator-based

methods for predicting the time-evolution of nonlinear dynamical systems. We demonstrate that

extended dynamic mode decomposition with dictionary learning (EDMD-DL), when combined with

a state space projection, is equivalent to a neural network representation of the nonlinear discrete-

time flow map on the state space. We highlight how this projection step introduces nonlinearity

into the evolution equations, enabling significantly improved EDMD-DL predictions. With this

projection, EDMD-DL leads to a nonlinear dynamical system on the state space, which can be

represented in either discrete or continuous time. This system has a natural structure for neural

networks, where the state is first expanded into a high dimensional feature space followed by a

linear mapping which represents the discrete-time map or the vector field as a linear combination

of these features. Inspired by these observations, we implement several variations of neural ordinary

differential equations (ODEs) and EDMD-DL, developed by combining different aspects of their

respective model structures and training procedures. We evaluate these methods using numerical

experiments on chaotic dynamics in the Lorenz system and a nine-mode model of turbulent shear

flow, showing comparable performance across methods in terms of short-time trajectory prediction,

reconstruction of long-time statistics, and prediction of rare events. We also show that these

methods provide comparable performance to a non-Markovian approach in terms of prediction of

extreme events.
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Accurately predicting the behavior of complex dynamical systems is a critical

challenge in many scientific and engineering fields, especially with the increasing

availability of large datasets. Two promising approaches for developing predic-

tive models from time-series data are neural ODEs, which construct continuous-

time models directly on the space of the original data, and approaches based

on Koopman operator theory, which lift the data to a high dimensional space

where the dynamics can be represented linearly. Recent works have shown that

the predictive performance of Koopman-based methods can be significantly im-

proved by projecting the prediction back to the state space on each timestep. We

show that this step converts the linear dynamics on the space of observables to a

nonlinear system on the state space, rendering the method essentially equivalent

to a neural ODE of a particular form. This insight helps to form new connec-

tions between these distinct approaches and inspires new methods that combine

the strengths of each. We validate these findings through numerical experiments

and performance comparisons on two chaotic systems arising in fluid dynamics,

showing that methods arising from each approach exhibit excellent, and nearly

equivalent predictive performance.

I. INTRODUCTION

Developing methods for forecasting the time-evolution of complex systems governed by

ordinary differential equations (ODEs) using models derived directly from data is of great

importance to many scientific and engineering applications, especially as data from many of

these systems has become more readily available in recent years. This demand has driven

the development of many neural network architectures tailored to time-series data. Some of

the most popular and effective modeling techniques for time sequence data include neural

networks with recurrent architectures, such as long short-term memory networks (LSTM)

[1] or gated recurrent units (GRU) [2]; reservoir computing methods [3]; and transformer-

based architectures [4] (see, for example, Refs. [5–8] for applications of these methods on

dynamical systems). However, these approaches implicitly abandon the dynamical systems

point of view by constructing models which predict future time evolution from long sequences

of past states. That is, these models are non-Markovian and thus effectively operate on
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a space of much higher dimension than the original state space. Here, our focus is on

developing models using data obtained from systems which are known to be governed by

differential equations. Therefore, we restrict ourselves to Markovian models, in which future

time evolution is uniquely determined from the present state. In this work we consider

parallels between neural network-based methods for modeling dynamical systems which

represent the dynamics directly on the state space and those which represent the dynamics

in the space of observable functions using Koopman operator approximations, as illustrated

in Fig. 1.

In recent years, data-driven modeling techniques derived from Koopman operator theory

have gained significant research attention due to their potential to provide linear represen-

tations for complex, nonlinear dynamical systems [9–11]. In the Koopman formalism, time

evolution is considered in the space of observable functions of the states, rather than in the

state space of the system. Therefore, though the time evolution is determined by a linear

operator, this operator typically acts on an infinite dimensional function space. Much of the

work in this area has focused on constructing useful finite-dimensional approximations of the

Koopman operator directly from data. Such approximations hold great promise for many

application areas, as they enable the use of modal analysis to identify structure in nonlinear

systems [10, 12], they can allow for model reduction when dealing with high-dimensional

data [13], and they can potentially be paired with linear methods for forecasting, estimation,

and control [14].

Many numerical techniques have been developed for constructing finite-dimensional ap-

proximations of the Koopman operator. One of the earliest and most common approaches

is dynamic mode decomposition (DMD), originally proposed by Schmid [15], which deter-

mines a best-fit linear time-evolution operator (or its eigenvalues and eigenvectors) given

time series data from the system (pairs of snapshots separated by one timestep). DMD is

appealing to many practitioners due to its simplicity and its ability to extract physically

meaningful features or modes directly from data without any a priori knowledge of the sys-

tem or dynamics. The connection between DMD and the Koopman operator was made by

Rowley et al. [16], which built upon the earlier works of Mezic that proposed a Koopman

mode decomposition directly from data [12, 17].

As pointed out by Rowley, et al [16], the finite dimensional approximation obtained from

DMD can only be rigorously connected to the Koopman operator if the observable functions
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FIG. 1. Schematic illustrating how EDMD-DL with a projection to the state space directly leads

to a neural network representation of the nonlinear dynamics on the state space.

used in the computation lie within an invariant subspace spanned by eigenfunctions of the

Koopman operator. In practice, however, this is usually not the case, such as when the data

is obtained directly from experimental observations. This lack of an invariant subspace then

leads to closure issues with the numerically obtained matrix approximation of the operator,

as the true operator propagates the selected observables forward in time into functions

that cannot be represented as a linear combination of these observables. This leads to

inaccurate approximations of Koopman modes and rapid error buildup when attempting to

use the operator approximation for forecasting [18, 19]. These issues have led to numerous

extensions of the original DMD algorithm [20], with many of them aiming to improve the

function space on which the operator is approximated by a careful selection of observables.

One of the most prominent variations is extended dynamic mode decomposition (EDMD)

[21], which performs the DMD computation for the best-fit linear time evolution operator on

measurement data that is “lifted” to a higher dimensional space by evaluating a pre-defined

set of dictionary functions on the data. Williams et al. [21] showed that EDMD offers an

improvement upon DMD, as it converges to the same results that would be obtained from

a Galerkin method in the limit of a large data set. However, aside from some heuristic

guidelines, the optimal choice of dictionary functions remained an open problem.
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In light of this challenge, many works have proposed methods to learn or discover an

appropriate choice of observables to be used in EDMD. Li et al. [22] proposed a method

called EDMD with dictionary learning (EDMD-DL) which optimizes the dictionary used

with EDMD by representing the dictionary as a neural network and optimizing its param-

eters by stochastic gradient descent to minimize a prediction loss. They showed that this

method yielded great improvements over standard choices of dictionary, both in terms of

approximating Koopman eigenfunctions and eigenvalues and in forecasting capabilities. Re-

cently, this method was extended by Constante-Amores, et al. [23], who showed that the

optimization of the dictionary and the operator can be combined into a streamlined training

procedure by backpropagating through the EDMD pseudoinverse calculation. EDMD-DL

typically allows for linear reconstruction of the state from the dictionary by explicitly includ-

ing the state in the dictionary as non-trainable elements. Other works [24, 25] have proposed

methods in which Koopman operators are approximated by learning linear dynamics on the

latent space of an autoencoder, thus learning both a nonlinear encoding (lifting) trans-

formation as well as a nonlinear decoding transformation to reconstruct the state. These

works also typically optimize the matrix representation of the operator and a dictionary for

lifting simultaneously by stochastic gradient descent without the need to perform a least-

squares or pseudoinverse calculation, as in standard EDMD. Relatedly, Constante-Amores,

et al. [26, 27] applied EDMD-DL to learn a dynamic model for the latent state from an

autoencoder-based reduced order model.

Despite these advances, Koopman-based methods with linear time-evolution still fail to

provide accurate forecasts of complex systems (see, for example, Ref. [23, 28]). In many

cases, this is likely due to the fact that certain systems are nonlinearizable [29]. That is,

it is not possible to find a finite-dimensional linear representation of a nonlinear system

with essentially nonlinear characteristics (such as multiple isolated attracting equilibria)

because such systems cannot globally be smoothly conjugate to a finite-dimensional linear

system. [18, 30–33]. This is due to the fact that any linear system can have at most one

isolated, attracting equilibrium. Further discussions on the existence of smooth embeddings

of nonlinear systems can be found in the recent works of Kvalheim and Arathoon [34, 35]

and Liu et al [36, 37]. Another recent series of papers have indicated that, from an applied

perspective, one mechanism that may be useful for constructing global linearizations is the

introduction of discontinuous indicator functions which separate distinct regions of attraction
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[38–40], effectively giving a piecewise linear Koopman representation. It has also been shown

that whether or not a system can be represented linearly in finite dimension is related to

the spectrum of the Koopman operator [12, 41, 42], in that systems where the associated

Koopman operator has a continuous spectrum do not admit a finite dimensional linear

representation [42]. This is a substantial limitation of the predictive capability of Koopman-

based methods, as it indicates that it is not possible for these methods to fully capture the

chaotic dynamics associated with the continuous spectrum.

Indeed, many Koopman-based methods for forecasting introduce a nonlinearity into the

time-evolution formulation to improve performance, with some doing so explicitly and some

subtly. Baddoo et al. [43] proposed learning a nonlinear forcing term jointly with a linear

operator using a kernel-based learning strategy to identify a sparse dictionary for the non-

linear forcing. They show that by disambiguating the linear and nonlinear terms in this

way, the identified linear operator is more robust, as it is not corrupted by noise effects

from the nonlinear terms as in the standard DMD training procedure. Similarly, Eivazi et

al. [44], introduced a modified version of Hankel-DMD [45, 46] (a Koopman-based model

in time-delay coordinates) that explicitly includes a nonlinear term in the time evolution

model, showing that their Koopman-based method provides models which achieve the same

level of prediction accuracy as non-Markovian time-series models using recurrent neural net-

works (RNNs). Others have proposed that a way to avoid the issue of the impossibility of

conjugacy to a linear system is to avoid including the full state explicitly in the Koopman

observables and instead introducing a nonlinearity in decoding the full state from a latent

state with linear time evolution. This is the idea behind many Koopman-based autoencoder

frameworks [24, 25].

Of particular interest here is a more subtle nonlinearity that has been introduced in

several Koopman-based prediction applications, where at each time step in the forward

rollout of the observables by the Koopman operator, the observables are projected back to

the state space and then “re-lifted” back to the observable space. This procedure was used

in the implementation of EDMD-DL for prediction in the work of Li, et al. [22]. Jünker

et al. [47] also pointed out the effectiveness of this method, showing that this strategy

greatly improves the predictive capability of EDMD as compared to purely linear time

evolution of the observables for damped pendulum and Duffing oscillator models. Recently,

this procedure was further studied in the work of Constante-Amores et al. [23] in the context
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of EDMD-DL, where it was shown that this strategy also yields improved performance for

several chaotic systems and a comparison was given in terms of the time between these

correction steps. The method was also studied recently by van Goor et al. [48], who showed

that by considering the lifting as a mapping to a manifold in a higher dimensional space, the

re-lifting procedure can be thought of as a projection back to this manifold, which will not

necessarily be invariant under the action of the matrix approximation of the operator. That

is, the re-lifting corrects the EDMD prediction by projecting it back onto the manifold. This

interpretation allows for a connection to be made between the projection method and the

invariance of the function space spanned by the EDMD dictionary under the action of the

Koopman operator. Nehma and Tiwari [49] also recently applied this method in their study

of learning Koopman representations using Kolmogorov-Arnold networks, showing that this

method can be used with a linear quadratic regulator control block.

While these Koopman-based approaches have shown great promise, other data-driven

methods have sought to use neural networks to learn dynamics directly on the state space.

When the vector field on the right hand side (RHS) of an ODE is represented as a neural

network, the resulting model is known as a neural ODE. The neural ODE method was

popularized in recent years by Chen et al. [50], who observed that gradients with respect to

the network parameters can be computed by either backpropagating through the operations

of a numerical ODE solver or by an adjoint sensitivity method. These gradients can then

be used to optimize the network parameters by stochastic gradient descent. While neural

ODEs have seen a resurgence in recent years, many of the underlying ideas can be found

in papers dating back to the 1990s [51–54], such as the work of Rico-Martinez et al. [51],

who used a neural ODE to develop a continuous-time model for a chemical reaction from

experimental data and showed that the neural ODE model captured bifurcations observed

in experiments.

Another popular approach to developing continuous time models directly on the state

space is the sparse identification of nonlinear dynamics (SINDy)[55], which models a vector

field on the state space as a sparse linear combination of a predefined dictionary of func-

tions of the state (a.k.a. features). SINDy is often presented as more interpretable than

neural network-based approaches, as the sparsity-promotion in the optimization attempts to

eliminate all but the most significant contributors to the dynamics. However, determining

an appropriate set of dictionary functions for a given system, is often challenging and may
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require expert domain knowledge. Additionally, SINDy requires access to data of the time-

derivatives of the states during training, whereas neural ODEs only require snapshot data

during training. For these reasons, our focus here is on neural ODE models in comparison

to EDMD-DL models, as both provide neural network-based modeling strategies to develop

models directly from sequences of snapshots. We show here that EDMD-DL with a state

space projection also represents the vector field as a linear combination of dictionary ele-

ments, where the dictionary is represented by a neural network. In this way, the method can

be interpreted as being related to SINDy, without sparsity promotion but on an optimized

feature space.

In this work, we elucidate the relationship between EDMD-DL with the projection cor-

rection step and neural ODEs. Specifically, we point out that by deviating from the typical,

linear time evolution of observables in Koopman formulations, the projection step intro-

duces a nonlinearity into the time evolution, which makes the method essentially equivalent

to learning a neural network approximation of the flow map, as illustrated in Fig. 1. In

this formulation, the flow map approximation has a natural neural network structure that

expands out to a high dimensional set of nonlinear features (from EDMD-DL), followed by

a linear mapping which selects from those features to represent the flow map. Moreover,

EDMD-DL parameterizes the dictionary with neural networks, allowing us to draw paral-

lels to neural ODEs, which represent the vector field of an ODE by a neural network. We

show that converting the discrete time EDMD-DL model to a continuous time formulation

directly yields a neural ODE, without the need for a separate training procedure. These

parallels motivate several model variations developed by combining structures and training

methods typically used in neural ODEs and EDMD-DL. In comparing the performance of

these methods in numerical examples with chaotic dynamics, we further highlight that by

including a projection back to the state space on each step of the EDMD-DL time evolution,

the resulting model is essentially equivalent to a neural ODE.

The remainder of this paper is organized as follows. In Sec. II, we review the dynamical

systems formalisms needed for developing models on the state space and based on the

Koopman operator. In Sec. III, we review numerical methods for training neural network

models for dynamical systems and discuss how these models are implemented for prediction

tasks. In Sec. IV, we discuss how the parallels between EDMD-DL and neural ODE methods

give rise to several variations of these models by combining aspects of each. We then
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implement these model variations on two chaotic dynamical systems: the Lorenz system

and a nine-mode model for a turbulent shear flow. With these implementations, we assess

the performance of the models in terms of short-time prediction error, reconstruction of

long-time statistics, and the prediction of rare events.

II. PRELIMINARIES

Consider an autonomous dynamical system in continuous time given by an ODE

dx

dt
= f(x). (1)

where x ∈ Rn is the state of the system and denote the associated discrete-time flow map

for time interval τ by Fτ : Rn → Rn such that

x(t+ τ) = Fτ (x(t)). (2)

We can also consider time evolution in a space O of observable functions of the state,

g : Rn → R. Associated with this system is an operator, Kτ : O → O defined by

Kτg(x) = g ◦ Fτ (x) = g(Fτ (x)) (3)

which propagates observable functions forward in time along trajectories of the system in

Eq. 1. This operator Kτ is known as the Koopman operator, or composition operator [56, 57].

The operator Kτ is linear, as

Kτ (c1g1 + c2g2)(x) = (c1g1 + c2g2)(Fτ (x))

= c1g1(Fτ (x)) + c2g2(Fτ (x))

= c1Kτg1(x) + c2Kτg2(x)

(4)

for c1, c2 ∈ R and g1, g2 ∈ O. The family of operators Kτ parameterized by τ has a semigroup

structure [57], and the infinitesimal generator of the Koopman semigroup can be used to

express the continuous time form of the dynamics on O. The infinitesimal generator, L is

defined by [57]

Lg = lim
t→0+

g ◦ Ft − g

t
= lim

t→0+

Kτg − g

t
= lim

t→0+

Kτ − I
t

g . (5)
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By this definition, the operator L gives the time derivative of g(Ft(x)). Expanding this by

chain rule gives the following explicit form.

Lg = d

dt
g(Ft(x)) =

∂g

∂x
· dFt(x)

dt
=
∂g

∂x
· f(x) (6)

The operator L is commonly referred to as the Koopman generator or the Lie operator

[11, 56], because Lg is the Lie derivative of g along the vector field f [58]. Further, by

solving Eq. 6, the Koopman operator and Lie operator can be shown to be formally related

by an exponential [59]

Kτ = eτL . (7)

Also, we note that while the Lie operator given in Eq. 6 represents a linear partial differential

equation, this equation is hyperbolic and can be solved by the method of characteristics,

wherein each characteristic is determined by solving a nonlinear ODE. This conceptual point

helps to provide some intuition as to how nonlinear dynamics can be represented by a linear

operator.

III. NUMERICAL METHODS

Here we briefly review a set of numerical methods for constructing dynamic models from

data based on the formalisms introduced in Sec. II. Specifically, we will be interested in

learning models from a time series dataset, which we will typically organize as snapshot

pairs

{(xi,yi = Fτ (xi))}mi=1 (8)

where xi ≡ x(ti), τ = ti+1 − ti is the sampling interval, and m is the number of data pairs.

We note that for the continuous time formulations considered below, such as neural ODEs, it

is not necessary to have a fixed time interval between datapoints in the dataset, but we will

take it to be fixed here for consistency between methods. We will additionally be interested

in fitting models using neural networks as function approximators, and those which preserve

the Markovian structure assumed in the dynamical systems formulation above – that future

time evolution is determined only from the present states. This requirement excludes several

popular deep learning based time series modeling approaches, such as reservoir computing,

LSTMs, and transformers.
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A. Neural ODEs

Perhaps the most straightforward way to construct a dynamics model from data is to

pose a functional form for the flow map in Eq. 2, as

xi+1 = Fτ (xi; θF) (9)

where the parameters θF are chosen to minimize the prediction loss

J(θF) =
m∑
i=1

∥yi − Fτ (xi; θF)∥22 . (10)

For example, Fτ can be represented as a simple feedforward neural network and the objective

minimized by stochastic gradient descent. Alternatively, Fτ could be assumed to be linear

in a predefined set of features ψj(x), such as monomials, radial basis functions, or a Fourier

basis; and then the parameters can be optimized by solving a linear least squares problem.

In many cases, we would prefer a continuous time model, which requires an approximation

of the ODE vector field f(x) in Eq. 1. When f is approximated by a neural network f(x; θf ),

the resulting model is called a neural ODE [50]. The parameters of a neural ODE are

optimized to minimize the objective

J(θf ) =
m∑
i=1

∥yi − ŷi∥22 , (11)

where ŷi is the prediction of yi found by integrating the ODE from ti to ti + τ from initial

condition xi

ŷi = xi +

∫ ti+τ

ti

f(x(t); θf )dt . (12)

The objective in Eq. 11 is typically optimized by stochastic gradient descent, where the

gradients with respect to the parameters θf are determined by either solving an adjoint

equation backward in time from ti + τ to ti to obtain these sensitivities or by using modern

automatic differentiation tools to backpropagate these gradients through the operations of

a numerical ODE solver [50]. Once the neural ODE model is trained, it can be implemented

to predict the time evolution of a system by simply integrating along the learned vector field

using a numerical ODE solver from a given initial condition.
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B. EDMD

Extended dynamic mode decomposition (EDMD) [21] is a method for constructing a

matrix approximation of the Koopman operator from data by considering the operator

acting on elements of a function subspace spanned by a predefined set of dictionary functions.

Consider the dictionary

D = {ψj : Rn → R}kj=1 (13)

whose elements span a subspace OD ⊂ O. Any observable gc ∈ OD can be represented as a

linear combination of the dictionary elements

gc(x) =
k∑

j=1

cjψj(x) = cTΨ(x) (14)

where Ψ : Rn → Rk is a vector-valued function containing the elements of D, and c ∈ Rk is

a vector of projection coefficients. A time-evolved observable Kτgc can also be expressed in

terms of the dictionary elements as

Kτgc(x) = cTKT
τ Ψ(x) + rc(x) (15)

where Kτ ∈ Rk×k is a matrix which approximates the action of the Koopman operator Kτ

by updating the projection coefficients c and rc ∈ O is a residual, which we will seek to

minimize by an appropriate choice of Kτ . If OD is Koopman invariant, then the operator can

be represented exactly as a matrix and the residual, rc(x) = 0. Note that the time-evolved

observable can also be represented, using Eq. 3, as

Kτgc(x) = gc ◦ Fτ (x) = cTΨ ◦ Fτ (x). (16)

Equating Eq. 15 and Eq. 16, the residual rc(x) can be written as

rc(x) = cT
(
Ψ(Fτ (x))−KT

τ Ψ(x)
)
. (17)

Since we would like to minimize the residual for arbitrary observables in OD, we can drop

the dependence on c and seek to minimize the objective

J(Kτ ) =
m∑
i=1

∥∥Ψ(yi)−KT
τ Ψ(xi)

∥∥2
2

(18)
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where yi = xi+1 = Fτ (xi). If the lifted measurement data is organized into the lifted data

matrices ΨX ,ΨY ∈ Rk×m as

ΨX =
[
Ψ(x1) , · · · , Ψ(xm)

]
, ΨY =

[
Ψ(y1) , · · · , Ψ(ym)

]
then J(Kτ ) can be expressed succinctly as

J(Kτ ) = ∥ΨY −KT
τ ΨX∥2F (19)

where ∥ · ∥F denotes the Frobenius norm. The solution of this least-squares problem for K

is given by

KT
τ = ΨYΨ

T
X

(
ΨXΨ

T
X

)†
(20)

where (·)† denotes the Moore-Penrose pseudoinverse [21]. We further detail how such a

matrix approximation can be used for predicting the time evolution of the states below in

Sec. IIID.

C. EDMD with dictionary learning

A challenge of the EDMD approach is finding an appropriate dictionary D on which to

compute the operator Kt, as the as the accuracy and convergence of the approximation

depend heavily on this choice. Ideally, the subspace spanned by the dictionary should be

Koopman invariant so that the residual can be driven to zero. To meet this requirement, it is

necessary that the dictionary elements all lie in a space spanned by Koopman eigenfunctions

[12, 16]. Additionally, we would like a dictionary from which the states can be recovered eas-

ily, and preferably linearly, for use in prediction applications. However, finding a dictionary

that satisfies these properties is nontrivial, as the appropriate dictionary depends heavily

on the underlying dynamical system and many common choices of dictionary do not scale

well with the state dimension, making them challenging to apply to systems of dimension

greater than 3 or 4.

An alternative approach proposed by Li et al. [22] is to allow the vector of dictionary

elements Ψ to be represented by a neural network, parameterized by weights θΨ; that is,

Ψ(x) = Ψ(x; θΨ). This allows the basis to be optimized jointly along with the matrix

approximation of the Koopman operator, Kτ , so that the objective in Eq. 18 becomes

J(Kτ , θΨ) =
m∑
i=1

∥∥Ψ(yi; θΨ)−KT
τ Ψ(xi; θΨ)

∥∥2
2

(21)

14



This approach is known as EDMD with dictionary learning (EDMD-DL). The original paper

of Li et al [22] proposed an iterative procedure for solving Eq. 21 which alternates between

two steps in which (1) the dictionary is fixed and the Koopman approximation Kτ is opti-

mized through the pseudoinverse calculation in Eq. 20 and then (2) the matrix Kτ is fixed

and the dictionary is optimized through stochastic gradient descent. Recently, Constante-

Amores et al. showed that these steps can be combined by performing the least-squares

calculation for Kτ within the dictionary optimization step and backpropagating through

this pseudoinverse-based solution of the least squares problem in optimizing the dictionary

[23]. Other works have optimized the elements of Kτ directly along with the dictionary by

stochastic gradient descent, avoiding the least squares calculation entirely (e.g., [24, 25, 60]).

D. Forecasting with EDMD models

Here we discuss different variations of EDMD-DL for predicting the time-evolution of the

states. First, we discuss the development of a projection operation which maps from the

feature vector Ψ to the states. Then we discuss how such a projection may be implemented

within time-series prediction. This can either be done as a post-processing step of a full

trajectory predicted linearly in the space of observables or by projecting back to the state

space on each timestep, thereby formulating a nonlinear map on the state space.

1. Recovering x from Ψ

Once the dictionary Ψ and the matrix operator Kτ are determined, the time evolution

of an observable gc in OD can be predicted by expressing it in terms of the dictionary D

as in Eq. 14 and then stepping the projection coefficients c forward in time with Kτ as in

Eq. 15. However, we are often more interested in forecasting the evolution of x along a single

trajectory from an initial condition x0 at t = 0. This can be done by using Kt to evolve the

dictionary elements Ψ(x) forward in time, as in the objective in Eq. 18,

Ψ(x(τ)) = KT
τ Ψ(x0). (22)

Again, note that this will only be exact if the span of OD is Koopman invariant; otherwise,

the residual can lead to significant error buildup in this prediction. While this method
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propagates the features Ψ linearly, it is still necessary to recover the states x from the

predictions of Ψ. That is, we need a mapping P : Rn → Rd, which effectively inverts the

lifting Ψ, projecting the features back to the state space; i.e. x = PΨ(x). One common

approach to this is to structure the dictionary so that the states x are included explicitly

[22, 23]; that is,

Ψ(x) =

 x

Ψ̃(x)

 (23)

where Ψ̃ are dictionary elements which are nonlinear functions of x. With this structure,

the projection back to the state space takes the simple, linear form PΨ(x) = PΨ(x) with

P =
[
In×n 0n×(k−n)

]
. Alternatively, if the states are not explicitly included in the dictionary,

the mapping P can be learned as a linear mapping in a similar manner to Kτ ; that is, by a

least squares calculation for standard EDMD [61] or jointly by gradient descent for EDMD-

DL. A more general approach is to assume that P is a nonlinear mapping and represent it as

a decoder neural network, as in many Koopman autoencoder formulations [24, 25]. Otto and

Rowley [25] performed comparisons of nonlinear reconstruction versus linear reconstruction

of the observables from the features, showing that for some examples performance actually

degrades by allowing for nonlinear reconstruction. For this reason, in our implementations

of EDMD-DL, we will include the state explicitly in the dictionary, as in Eq. 23. As noted

by Li, et al [22], including the states x as nontrainable dictionary elements also prevents

the training procedure from learning the trivial solution, Ψ(x) = 0, which is a minimizer of

Eq. 21. As pointed out by Otto and Rowley [25], it is also useful to normalize the error in

the state prediction and the dictionary prediction in the loss function

J(Kτ ; θΨ) =
m∑
i=1

[
∥yi −PKT

τ Ψ(xi; θΨ)∥2
∥yi∥2 + ϵ

+ λ
∥Ψ̃(yi; θΨ)− P̃KT

τ Ψ(xi; θΨ)∥2
∥Ψ̃(yi; θΨ)∥2 + ϵ

]
(24)

where P̃ =
[
0(k−n)×n I(k−n)×(k−n)

]
is the matrix which extracts only the nonlinear functions

Ψ̃ from the dictionary (but not the states x), ϵ is a small parameter introduced to avoid

divide-by-zero errors, and λ is an optional weighting parameter to adjust the relative effect

of the two terms. The reasoning for this is that the objective in Eq. 21 can be reduced by

simply choosing θΨ to reduce the magnitude of Ψ(x; θΨ), which may or may not improve the

state prediction.
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2. EDMD-DL with projection

The standard time-evolution strategy using an EDMD model, as described above, is to

lift the initial state x0 to obtain the initial feature vector Ψ0 = Ψ(x0) and then propagate

this lifted state forward linearly using the matrix approximation Kτ as in Eq. 22,

Ψi+1 = KT
τ Ψi (25)

where the subscripts on Ψ refer to values at timesteps evenly spaced by time interval, τ .

Iterating this for multiple timesteps allows us to obtain a trajectory in the feature space.

Once this trajectory is obtained, the corresponding trajectory of the states, x can be obtained

by mapping back to the state space using the operator P . A key characteristic of Koopman-

based approaches is that, as long as the operator P is linear, these methods allow for state

trajectories to be predicted from an initial condition using only linear operations (following

the initial nonlinear mapping to the feature space). This is key, as preserving linearity is

necessary in order to apply linear methods for control [61].

However, several recent works [23, 26, 47, 48] have shown that the predictive capabilities

of EDMD models can be substantially improved by performing a projection during the

forward rollout where after each step with the Koopman model, the prediction is projected

from the lifted state Ψ(xi) back to the original state space,

xi+1 = PKT
τ Ψ(xi) . (26)

To understand why this subtle change offers such improved performance, we first note that

Eq. 26 can be thought of as a nonlinear discrete-time model on the state space with a

particular form, as depicted in Fig. 1. That is, the model in Eq. 26 is of the same form as

Eq. 9 where

Fτ (x; θΨ) = PKT
τ Ψ(x; θΨ). (27)

So, in EDMD-DL, we learn a set of features Ψ which is typically of higher dimension than the

original state representation, x and whose time evolution is approximately linear. However,

when we implement this model for state prediction with a reprojection on each step, we

have essentially defined a nonlinear discrete time map on the state space of a form that first

expands out to a high dimensional feature vector, followed by two linear mappings: the first,

KT
τ , representing the time evolution and the second, P, representing a projection back to
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the original state space. Since it is common for the output layer of a neural network to be

linear (with no activation function following it), this model is essentially a neural network

representation of the flow map in a fairly standard form. This observation is the heart of

the present work.

Van Goor, et al. [48] recently examined this method as well, showing that there is a

geometric interpretation of this step as a projection onto a manifold. To see this, we can

think of the nonlinear feature map Ψ as a coordinate mapping to a manifold in a higher

dimensional space, Ψ : Rn → MΨ ⊂ Rk. That is, MΨ ⊂ Rk is defined as the image of Ψ

MΨ = {Ψ(x) | x ∈ Rn } ⊂ Rk . (28)

Then a trajectory in the state space, x(t), also defines a trajectory Ψ(x(t)) on MΨ. If the

function space spanned by the elements of D is Koopman invariant, then the dynamics on

MΨ can be represented exactly by a linear mapping

Ψ(Fτ (x)) = KT
τ Ψ(x) . (29)

However, if OD is not Koopman invariant, the true operator Kt will map elements of OD out

of this space, so a linear approximation of the dynamics onMΨ will not be exact. That is, the

EDMD approximation Kτ will map elements of MΨ off of this manifold even though MΨ is

invariant under the dynamics by definition (i.e., Ψ(Fτ (x)) ∈ MΨ). Performing a projection

step in the forward rollout can be viewed as a projection back onto the manifold MΨ of

the prediction using the EDMD approximation KT
τ when the space OD is not Koopman

invariant. By mapping back to the state space on each step and then re-lifting on the next

step, it is ensured that the prediction remains on MΨ. Specifically, Ψ(PKT
τ Ψ(x)) ∈ MΨ

even when KT
τ Ψ(x) /∈ MΨ.

E. Continuous-time models from EDMD

As noted in Sec. II, the Koopman formalism also gives rise to a continuous-time repre-

sentation of the dynamics on the observable space, described by the infinitesimal generator,

L. Using this formulation, an analagous projection step can be performed, which directly

yields a neural ODE representation of the state space dynamics, as illustrated in Fig. 2.

Based on this, several previous works have shown that continuous-time representations can
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also be derived from EDMD or similar regression methods [62–66]. Similarly to standard

EDMD, these methods produce a matrix representation L of the Koopman generator, L ,

which acts on observables gc = cTΨ ∈ OD by updating the projection coefficients:

Lgc = (Lc)TΨ = cTLTΨ+ rc(x) (30)

where, as before, the residual rc(x) arises due to the space OD not being Koopman invariant.

In many implementations, it is assumed that time derivative data of the states ẋ is available

(or can be obtained by finite-differencing). If this velocity data is available, then using the

generator definition in Eq. 6 we have

Lgc =
∂gc
∂x

· ẋ = c · ∂Ψ(x)

∂x
· ẋ . (31)

Then equating Eqs. 30 and 31, we see that the residual can be written as

rc(x) = cT
(
∂Ψ(x)

∂x
· ẋ− LTΨ

)
(32)

and so we can frame the EDMD regression for L by minimizing the objective

J(L) =
m∑
i=1

∥∥∥Ψ̇(xi)− LTΨ(xi)
∥∥∥2
2

(33)

where Ψ̇(x) = ∂Ψ
∂x

· ẋ. This is the approach taken in [64–66]. However, this is disadvanta-

geous, as time derivative data can be difficult to acquire from experiments, and obtaining

accurate finite-differencing approximations relies on measurements being closely spaced in

time. Alternatively, one can obtain a matrix approximation of the generator from the EDMD

approximation of the Koopman operator by applying the limit definition in Eq. 5 as

L =
Kτ − Ik×k

τ
(34)

though this approach will only be accurate for sufficiently small time interval, τ . Similarly,

we can make use of the exponential relationship between the Koopman operator and its

generator in Eq. 7 and obtain the matrix approximation of L using a matrix logarithm as

L =
1

τ
log(Kτ ) . (35)

This is the approach taken by Mauroy and Goncalves [62, 63], where it was also shown

that an ODE vector field can be computed directly from an EDMD approximation of the
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EDMD-DL (continuous time)

represents dictionary functions as neural networks 
with linear time-evolution

Projected Koopman Dynamics (continuous time)
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neural ODE representation for 

time evolution time evolution

FIG. 2. Schematic illustrating how the continuous-time EDMD-DL formulation with projection to

the state space leads to a neural ODE representation of the state space dynamics.

Koopman operator by solving a linear least squares problem for systems linear in parameters.

However, those works were limited to polynomial vector fields and vector fields composed

of a linear combination of predefined dictionary functions, respectively.

Once the matrix representation of the generator is obtained, it can be used to predict

the dynamics of the state, x, as this matrix acts on the dictionary elements to return their

time derivative. Specifically, given an initial state x0, we can lift it to obtain an initial

condition for the lifted state, Ψ0 = Ψ(x0), and then obtain a trajectory in this lifted state

by integrating the equation
dΨ

dt
= LTΨ . (36)

Integrating this yields a trajectory in the lifted state, Ψ, from which we can recover the

state predictions by mapping back to the state space, x = PΨ, as in Sec. IIID. Note that

Eq. 36 is a linear ODE in Ψ and is essentially a continuous time version of the linear time

evolution using the Koopman operator (without projection) in Eqs. 22, 25.

Analogously the EDMD formulation, where we defined a nonlinear discrete-time evolution

equation on the state space using the EDMD operator, Kτ , by projecting back to the state

space on each timestep (see Eq. 26), we can also define a nonlinear continuous time evolution

equation on the state space using the generator obtained from EDMD by lifting the state

Ψ(x), computing the time derivative of the feature vector, and then projecting the time

derivative back to the state space. This can be seen by simply taking the time derivative of

the projection back to the state space x = PΨ(x) as

dx

dt
=
∂P
∂Ψ

dΨ

dt
=
∂P
∂Ψ

LTΨ(x) . (37)

This form is only necessary if the mapping P back to the state space is nonlinear (such as
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in Koopman autoencoder formulations). If P is taken to be a linear mapping, PΨ = PΨ,

such as when the state is explicitly included in the dictionary (see Sec. IIID, Eq. 23), then

∂P
∂Ψ

= P and Eq. 37 can be simplified to

dx

dt
= PLTΨ(x) . (38)

In the case of EDMD-DL, where the feature vector Ψ(x) is parametrized by a neural network,

Ψ(x; θΨ) and optimized jointly with Kτ , this implies that the EDMD-DL training procedure

directly defines a neural ODE of a certain structure

dx

dt
= PLTΨ(x; θΨ) . (39)

In particular, the structure of this neural ODE is such that the state is expanded out to

a high dimensional set of features, Ψ(x; θΨ) which have been chosen as important during

EDMD-DL training, and then the linear mapping PLT selects a linear combination of these

features to represent the vector field.

In summary, in both discrete time and continuous time, performing a projection back

to the state space in the EDMD time evolution leads to a nonlinear dynamical system

in the state space with a natural structure for neural networks. Specifically, the state

is first expanded nonlinearly into a high dimensional feature space, followed by a linear

mapping which represents the dynamics as a linear combination of these features. In the

following section, we see how this observation motivates the development of several methods

that combine different aspects of EDMD and neural ODE based models. We also see that

the projection within EDMD-DL time evolution leads to greatly improved performance as

compared to the linear time evolution strategy used in standard EDMD-DL. Additionally,

the models using this projection achieve a level of accuracy in predicting extreme events

comparable to the non-Markovian approach of Racca and Magri [67].

IV. PERFORMANCE COMPARISON

A. Model structures

The discussion in Sec. III of the parallels between data-driven state-space modeling

techniques and the projected Koopman approach to predicting the state evolution motivates

a comparison between the numerical methods arising from each. In particular, we will
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TABLE I. Summary of model structures based on neural ODEs and EDMD-DL

Model Time evolution Training notes

Basic neural ODE ẋ = f(x; θf ) θf optimized as neural ODE

x(0) = x0 (loss in Eq. 11)

EDMD structured neural ODE ẋ = PLTΨ(x; θΨ) θΨ and matrix PLT optimized

x(0) = x0 as neural ODE (loss in Eq. 11)

EDMD-DL Ψi+1 = KTΨi θΨ and K optimized by EDMD-DL

xi = PΨi (loss in Eq. 24)

Ψ0 = Ψ(x0; θΨ)

EDMD-DL with projection xi+1 = PKTΨ(xi; θΨ) θΨ and K optimized by EDMD-DL

(loss in Eq. 24)

EDMD basis neural ODE ẋ = PLTΨ(x; θΨ) θΨ optimized by EDMD-DL (Eq. 24)

x(0) = x0 PLT optimized as neural ODE (Eq. 11)

EDMD direct neural ODE ẋ = PLTΨ(x; θΨ) θΨ, K optimized by EDMD-DL (Eq. 24)

x(0) = x0 L = 1
τ logK

compare two neural ODE models arising directly from the state space view and four neural

network models arising from EDMD approximations of the Koopman operator (with learned

dictionaries). These model variations are described in the text below and summarized in

Table I.

Neural ODE Models The first neural ODE model considered is a basic neural ODE,

without any explicit structural constraints. This model approximates the right hand side

of the ODE in Eq. 1 with a neural network, as described in Sec. IIIA and is trained to

minimize the one-step state-prediction loss in Eq. 11. We also consider an EDMD-structured

neural ODE, in which the output of the neural network is structured to represent the state

space dynamics similarly to EDMD-based approaches. In this model, the neural network

maps the state x to a high-dimensional feature vector that explicitly contains the state (as

in Eq. 23) before a final linear layer that selects a linear combination of these features to

represent the vector field. This neural ODE therefore has the same structure as the model

in Eq. 39, but is trained using the neural ODE training procedure, rather than any form of

EDMD.

Discrete-time EDMD models The first EDMD approach that we consider is the stan-

dard EDMD-DL method, where a dictionary paremetrized by a neural network and the
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corresponding Koopman operator matrix representation are jointly learned by optimizing

the objective in Eq. 24. Then to model the time-evolution, the initial state is lifted and

propagated linearly in the lifted space using the Koopman matrix (see Eq. 25). We also

consider the EDMD variation with reprojection, where the same dictionary and Koopman

matrix are used, but where on each timestep, the state is lifted, evolved forward in time,

and then reprojected (see. Eq. 26). In each EDMD-DL implementation, we constrain the

dictionary to be of the form in Eq. 23, where the state is explicitly included as a nontrainable

set of dictionary elements.

Continuous-time EDMD models We consider two variations of continuous-time models

derived from EDMD. In the first, we use the dictionary obtained from EDMD-DL as the

neural network in a neural ODE. That is, the dictionary is optimized, as in EDMD-DL, to

minimize Eq. 24, and then the linear layer that maps to the output is optimized through

the neural ODE training procedure. So the model has the structure of Eq. 39, where the

dictionary Ψ(x; θΨ) is determined by EDMD-DL and the linear mapping PLT is trained as

with the neural ODE loss in Eq. 11. We refer to this variation as an EDMD basis neural

ODE. Lastly, we consider a neural ODE model that is obtained directly from EDMD-DL,

without a separate training procedure. That is, the matrix representation of the generator

L is obtained from the EDMD-DL Koopman matrix Kτ by a matrix logarithm, as in Eq. 35.

We refer to this variation as an EDMD direct neural ODE.

In the sections below, we provide a numerical comparison of the performance of these

methods on two example systems: dynamics on the attractor of the Lorenz system and on a

9-mode model for a turbulent shear flow [68, 69]. In each implementation, we have made an

effort to keep the neural network architectures, training procedures, and hyperparameters

as consistent as possible between the different variations. In particular, all of the neural

networks have 4 hidden layers with 200 nodes in each hidden layer and GELU activations

between the layers. For the EDMD-DL models, the network output representing the non-

linear elements of the dictionary is of dimension 200, so that the total dictionary size is

k = 200 + n, where n is the state dimension. The models are implemented in PyTorch and

trained using the AdamW optimizer with weight decay of 10−6 and a OneCycle learning

rate schedule which peaks at 10−3 after 30% of the total number of training iterations and

then decays to 10−5.
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(a)
(b)

FIG. 3. Prediction results for the data-driven models on the Lorenz system for sampling interval τ =

0.02. (a) Normalized ensemble-averaged error over time. (b) Representative trajectory timeseries

of the states with predictions from each model.

B. Lorenz system

We consider the Lorenz system

dx

dt
= σ(y − x) (40a)

dy

dt
= x(ρ− z)− y (40b)

dz

dt
= xy − βz (40c)

with parameter values ρ = 28, σ = 10, and β = 8/3. For these parameter values, the

Lyapunov timescale is τL ≈ 1.1 [70]. A training dataset is generated by integrating the

system numerically using a Dormand-Prince (4)5 ODE solver and storing the solution with

sampling time of 0.02. The first 1000 time units are neglected as transience so that the data

lies on the attractor, and the next 50, 000 time units are stored with an 80/20 train/test

split. All models are trained for 100, 000 training iterations with a batch size of 40. We also

study the effects of the training timestep, τ , by training models with τ varying from 0.02 to

0.1.

Figure 3 demonstrates the short-time tracking error for each of the models on the Lorenz
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FIG. 4. Normalized ensemble-averaged error of each model evaluated at t = 2 for varying training

data sampling time, τ .

system, with τ = 0.02. Fig. 3(a) shows an ensemble-averaged relative error,

E(t) =
〈
∥x̂(t)− x(t)∥

∥x(t)∥

〉
(41)

where x̂ is the model prediction and ⟨·⟩ denotes an ensemble average. We evaluate this error

over time for each of the model by simulating the models from 1, 000 randomly selected

initial conditions from the test dataset. Fig. 3(b) shows an example trajectory timeseries,

along with the predictions from each of the models. From these results, it is clear that the

standard linear EDMD time evolution prediction diverges rapidly from the true trajectory,

while the other models perform well, with less than 2% relative error at t = τL. From the

ensemble-averaged error, we also see that the EDMD with reprojection and the EDMD-

structured neural ODE have a slightly slower error growth than the basic neural ODE,

perhaps indicating that there are benefits to explicitly including the state in the dictionary.

We now compare the performance of the models when trained on data sampled at larger

sampling times. For this, starting with the original training dataset we downsample it in time

to effectively vary the sampling time interval, τ . We train new models on the downsampled

datasets, while holding the total number of training iterations and other training parameters

constant. We then compare the models in terms of the ensemble-averaged error, E , evaluated

at t = 2τL. The results are shown in Fig. 4. We see that at large sampling times, the EDMD

basis neural ODE and EDMD direct neural ODE begin to fail, while at small sampling times
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FIG. 5. Long time predictions of each model from a common initial condition for 100 time units

on the Lorenz system. Each of these models maintains the shape of the attractor for long times.

These trajectories are generated by models trained with timestep τ = 0.02.

(less than τ = 0.06), all of the models perform well, with the relative error ranging from

1% to 5% at a prediction horizon of 2τL. The neural ODE models and EDMD-DL with

projection maintain this level of accuracy even at larger sampling times up to τ = 0.1.

Finally, while Figs. 3 and 4 analyzed the short-time performance of these models, we

demonstrate the long-time performance of the models by simulating each model for 100 time

units from a common initial condition. The resulting trajectory from each model is shown

in Fig. 5. We see that each of the models considered (excluding the standard EDMD-DL

approach) are able to capture the dynamics and reproduce the butterfly shape of the Lorenz

attractor.
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C. Low dimensional model of turbulent shear flow

Next we compare these methods on the nine-mode model for a sinusoidal shear flow

between parallel plates developed by Moehlis, Faisst, and Eckhardt (MFE) in [68, 69]. This

model provides a useful test case, as it displays complex dynamics with many characteristics

associated with turbulent shear flows in the transition regime, such as long chaotic transient

intervals with rare quasi-laminarization events, with all trajectories eventually collapsing to

the laminar state. These complex dynamics allow us to assess not only a model’s ability for

short time predictions and reproduction of long time statistics in the turbulent region, but

also the accuracy of the lifetime predictions and the model’s ability to predict extreme events.

For these reasons, this model has become a common test-case for data-driven time-series

prediction methods, particularly in the fluid dynamics community [26, 28, 67, 71].

The domain is wall-bounded at y = ±1 and periodic in the streamwise and spanwise

directions (x and z), with lengths Lx = 4π and Lz = 2π, respectively; and we consider

a channel Reynolds number of Re = 400, following Refs. [26, 28, 67, 71]. The Lyapunov

timescale associated with these parameter values is τL ≈ 61 [67]. The nine mode model

is constructed as a Galerkin projection of the Navier-Stokes equations onto nine Fourier

modes, as described in [68]. That is, the fluid velocity field u(x, t) is approximated as a

superposition of the modes, ui(x), with time-varying amplitudes ai(t)

u(x, t) =
9∑

i=1

ai(t)ui(x) . (42)

Performing the Galerkin projection yields a set of nine ODEs for the amplitudes. These

ODEs, as well as the Fourier modes for the model, are given explicitly in Ref. [68]. The

first mode of the model, u1(x), represents the base flow profile, so the laminar flow state

is associated with the amplitudes a = [1, 0, 0, 0, 0, 0, 0, 0, 0]T. The flow can be characterized

using the energy E(t) =
∑9

i=1 a
2
i (t). In the turbulent region of the state space, the system

shows large bursts of energy, corresponding to quasi-laminarization events, while the laminar

state corresponds to the steady value of E = 1. A typical time-series of the energy for this

system is shown in Fig. 6

A training dataset is constructed by numerically integrating the system from 100 random

initial conditions, a(0) ∼ U(−0.1, 0.1) for 30,000 time units or until laminarization occurs

with data stored at time intervals of τ = 0.5. The first 500 time units of each trajectory are

27
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Laminarization

FIG. 6. Typical time series for the energy in the MFE model for a turbulent shear flow. The

horizontal dashed line depicts the energy threshold used to define an extreme event.

discarded as transience. These trajectories have a mean lifetime of approximately 1.1× 104

(or 180 τL) and the resulting dataset contains approximately 2.1 × 106 snapshots. A test

dataset is generated using an identical procedure, using another set of randomly selected

initial conditions. All models are trained for 10 epochs with batch size of 40 (5.25 × 105

iterations).

Figure 7 shows the short-time prediction results for the data-driven models on the MFE

system. Fig. 7(a) shows the ensemble-averaged error over time for each model, computed (as

before) by simulating the models from 1000 randomly selected initial conditions from the test

dataset. Fig. 7(b) shows a representative trajectory from the test dataset, along with the

model predictions for the first three mode amplitudes. As in the case of the Lorenz system,

we see that the standard EDMD time evolution diverges rapidly from the true trajectory,

while the other time evolution methods perform well. Here all of the models trained with

the neural ODE training procedure outperform all of the EDMD-DL-based models in terms

of ensemble-averaged relative error, with the EDMD-structured neural ODE performing

slightly better than the basic neural ODE. Nevertheless, that all of these models perform

quite well, with less than 3% relative error at t = τL.

To assess the accuracy of the models in terms of reproducing the long-time statistics of

the system, we simulate the models from the 100 initial conditions of the trajectories in the

test dataset for 30,000 timesteps or until relaminarization is predicted. Shown in Fig. 8 are
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FIG. 7. Prediction results for the data-driven models on the MFE model of a turbulent shear flow.

(a) Normalized ensemble-averaged error. (b) Representative trajectory timeseries of the first three

modes.

the joint probability density functions (PDFs) of the amplitudes a1 and a3, from the test

data set and as predicted by each of the models. The standard EDMD model is omitted

here, since it tends to rapidly diverge from the true trajectory, as shown in Fig. 7. From Fig.

8, it is apparent that each of the other models reproduces the statistics qualitatively well.

To quantify the accuracy of these long-time statistics, we compute a Wasserstein distance

(a.k.a. earth mover’s distance) to quantify the discrepancy between the predicted and true

joint PDFs. This quantity measures the distance between distributions by solving an optimal

tranport problem to determine the most efficient way to move mass between distributions.

Given two discrete distributions, µ and ν (as obtained from a normalized histogram of the

data using nµ and nν bins, respectively), the Wasserstein-2 distance, W2(µ, ν) between the

distributions is given by

W2(µ, ν) =

(
min
γ

∑
i,j

γi,j∥µ(i) − ν(j)∥22

) 1
2

s.t. γ1 = µ, γT1 = ν, γ ≥ 0

(43)

where γ ∈ Rnµ×nν is a transport plan (i.e., γi,j assigns the amount of mass to move from bin

µ(i) to bin ν(j)). We compute the Wasserstein distances using the python library, Python

Optimal Transport [72], and we report the distances normalized by the distance between the

distributions of the test and training datasets. That is, we report the normalized Wasserstein
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FIG. 8. Joint probability densities of amplitudes a1 and a3 for (a) the test data set, (b) the basic

neural ODE model, (c) the EDMD-structured neural ODE model, (d) EDMD with reprojection

(e) the EDMD basis neural ODE, and (f) the EDMD direct neural ODE. The inset values give

normalized Wasserstein distance W2 between the distribution predicted by the model and the test

data distribution. Note the logarithmic scale.

distance

W2(µpred, µtest) =
W2(µpred, µtest)

W2(µtrain, µtest)
. (44)

for each model where µpred is the distribution of the dataset generated by a given model, and

similarly µtest and µtrain are the distributions of the test and training datasets respectively.

So W2 = 1 indicates that the error between the predicted and test histograms is of the same

magnitude as the error between the test and training datasets, which are generated by the

same model with different initial conditions. The W2 values for each model are displayed

as an inset in the joint PDF plots in Fig. 8. We see that each model has a W2 value of

approximately 1 or less, with the exception of the EDMD basis neural ODE model, which

appears to suffer from a large error near to the laminar state, indicating poor prediction of

30



relaminarization, while otherwise appearing qualitatively accurate.

Using the same predicted and test datasets as used for quantifying the long-time statis-

tics, we also evaluate the models in terms of their ability to predict the lifetime distribution

for the system. The lifetime distribution describes the expected amount of time that trajec-

tories spend in the turbulent region of the state space before laminarization. The lifetime

distribution is quantified by the survival probability, S(t), which describes the probability

that a trajectory will still be turbulent after time t [68]. For this, we say that the system has

laminarized when it reaches a high-energy, near-laminar state (E =
∑9

i=1 a
2
i > 0.8) which

remains steady for 5 time units (to within a tolerance of 10−6). Fig. 9 shows the lifetime

distribution of the test dataset along with the lifetime distribution predicted by each of the

models. From the lifetime distribution of the test-dataset, it can be seen that trajectories

tend to remain in the turbulent region for very long times, as the half-life of the survival

function is over 100 Lyapunov times. Therefore, to produce accurate reconstructions of the

long-time statistics, as in Fig. 8, the models are required to maintain accurate predictions

over very long timescales. In Fig. 9, we see that each of the considered models, aside

from the standard EDMD perform comparably, with each of them accurately approximat-

ing the lifetime distribution. The basic neural ODE and EDMD-structured neural ODE

models appear to capture the distribution the best at shorter times (t < 100τL), while the

EDMD-direct neural ODE performs better at larger times where the other models tend to

overestimate the survival probability. The standard EDMD-DL model prediction tends to

grow rapidly, and never collapses to the laminar state, which results in a survival probability

of 1 by the definition above.

Finally, we assess the ability of the data-driven models to forecast rare quasi-laminarization

events within a short time horizon by casting this task as a binary classification problem,

following Racca and Magri [67]. That is, we evaluate whether extreme events predicted by

the model within a specified time interval are true positives (TP ) or false positives (FP ).

Similarly, when a model does not predict an extreme event in the interval, we evaluate

whether this is a true negative (TN) or a false negative (FN). In this way, we can also

evaluate how rapidly the quality of extreme event prediction degrades as the prediction

horizon, h, before the interval of interest is increased. There are multiple ways to quantify

the statistical accuracy of predictions in binary classification problems. Precision quantifies

the fraction of true positive predictions out of all positive predictions, P = TP/(TP +FP ),
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FIG. 9. Lifetime distribution predictions for the models, given in terms of the survival function

S(t).

while recall quantifies the ratio of true positive predictions to the total number of event oc-

curences, R = TP/(TP +FN). Here we report the F -score, which is given by the harmonic

mean of precision and recall

F =
2

P−1 +R−1
=

(
1 +

FP + FN

2TP

)−1

. (45)

To compute the F -score for our models, we first select a set of starting points from the test

dataset evenly spaced at 1 τL apart. From these starting points, we simulate the model

forward for a time of h + τL, and assess the model’s extreme event prediction within the

interval [h, h + τL]. By processing the test dataset in this way, we construct a dataset

containing 18,000 starting points (and intervals) with 947 quasi-laminarization events. We

say that a quasi-laminarization event has occurred within a given interval if the energy is

below the threshold value at the beginning of the interval and increases past the threshold

within the interval. Some examples of these quasi-laminarization events are depicted in Fig.

6, along with the energy threshold considered here. We use an energy threshold of E = 0.2

and consider prediction horizons ranging from 0.5τL to 4.5τL.

Figure 10 shows the F -score as a function of the prediction horizon normalized with Lya-

punov time, h/τL, for each of the models. From these results, it is clear that the continuous

time neural ODE models outperform the discrete time and EDMD-DL-based approaches,

more accurately forecasting extreme events for every prediction horizon. Among the EDMD-
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FIG. 10. F-score assessment of quasi-laminarization event prediction as a function of prediction

horizon, h.

DL-based models, the EDMD-basis neural ODE outperforms EDMD-DL with reprojection

and the EDMD direct neural ODE. The standard EDMD-DL prediction is poor for every

prediction horizon, resulting in a much lower F-score than the other models. Also included

for comparison in Fig. 10 are the F -score results from Racca and Magri [67], who developed

a model using an echo state network, a type of recurrent neural network. Its predictions are

based on long sequences of past states and are thus non-Markovian, while our model predic-

tions are based only on the initial state. Nevertheless, their model only slightly outperforms

the present models, especially for the case of the EDMD-structured neural ODE.

V. CONCLUSIONS

Developing and improving upon neural network-based methods for time evolution predic-

tion of dynamical systems is a promising approach for the forecasting of complex dynamical

systems. In this work, we have examined the parallels between neural ODE methods and

methods based on finite-dimensional approximations of the Koopman operator using neural

network-based dictionaries. While methods based on the Koopman operator lead to an ap-

proximation of linear dynamics on the space of observables, in practice they often provide

poor predictions of the time-evolution of the states due to the difficulty associated with

determining a dictionary which spans a Koopman invariant space for a given system. This
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is especially true for chaotic systems, such as the ones considered here. It has been seen that

the state-predictions of these Koopman-based methods can be greatly improved by project-

ing back to the state space on each timestep. Here we have pointed out that by relifting to

the observable space from the state space on each step, we introduce a nonlinearity into the

time evolution formulation, resulting in a nonlinear discrete-time map on the state space.

Therefore using an EDMD approximation of the operator in this way with a neural network

dictionary can be seen as a discrete-time version of a neural ODE. Furthermore, we can also

apply a similar projection strategy to the continuous time formulations of EDMD based on

the Koopman generator to obtain a continuous time neural ODE directly from the EDMD-

DL-optimized operator and dictionary without any further training. Additionally, the model

structures arising from EDMD-DL with projection naturally possess a neural network struc-

ture that is commonly used in neural ODEs, in which the state is first expanded out to a

high-dimensional feature vector (represented by a multi-layer neural network) followed by a

linear mapping back to the state space to yield the vector field of the dynamics.

Inspired by these observations, we have implemented several variations of neural ODEs

and EDMD-DL, developed by combining different aspects of their respective model struc-

tures and training procedures. We provide performance comparisons on two chaotic systems

to demonstrate the equivalence of these methods and highlight the aspects of each model

that lead to improved performance. Specifically, we show that the novel neural ODE archi-

tecture based on the dictionary structure typically used in EDMD-DL, where the state is

explicitly separated from the nonlinear dictionary elements, leads to a small improvement in

the short-time prediction performance of neural ODEs, as compared to the standard neural

ODE architecture. In the context of neural ODEs, separating the linear and nonlinear parts

of the vector field provides a nice structure, as the neural network only has to account for

the nonlinear dynamics, with the linear terms represented separately. In the examples con-

sidered here, the EDMD-structured neural ODE architecture, trained with the usual neural

ODE loss, performed best overall, suggesting that this should be the standard structure for

neural ODEs.

We see that each of the neural ODE methods and EDMD-DL methods with projection

tend to perform comparably on these systems in terms of short-time trajectory prediction,

reconstruction of long-time statistics, and the prediction of extreme events; with all of them

offering a significant improvement over the standard EDMD-DL linear time evolution on the
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space of observables. Furthermore, we emphasize that each of these models perform very

well in terms of short-time prediction, with less than 3% relative error at t = τL for each

of the chaotic systems considered here and rare event prediction capability comparable to

the non-Markovian approach of Racca and Magri [67]. In addition to accurate short-time

tracking, we have also demonstrated that the model predictions are statistically accurate

for long times as well, as they yield accurate reconstructions of the long-time probability

density functions on the state space and accurately predict the turbulent lifetime for the

MFE model of a turbulent shear flow. These findings highlight the promise of neural ODEs

and Koopman-based approaches for developing data-driven models capable of generating

accurate time evolution predictions in complex and chaotic systems.
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[41] I. Mezić, Spectrum of the Koopman Operator, Spectral Expansions in Functional Spaces, and

State-Space Geometry, Journal of Nonlinear Science 30, 2091 (2020).
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