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We discuss the usability of the gravitational wave detector LISA for studying the orientational
distribution of compact white dwarf binaries in the Galactic bulge. We pay special attention to mea-
suring the dipole pattern of the distribution around the Galactic rotation axis. Based on our new
formulation, which leverages the parity properties of the involved systems, we found that the appar-
ent thickness of the bulge in the sky becomes critical for the dipole measurement. We also discuss
the extra-Galactic studies for black hole binaries and neutron star binaries with BBO/DECIGO.

I. INTRODUCTION

Over the past 100 years, many researchers have been
interested in whether the orbital orientations of nearby
binaries are correlated with Galactic structures (see e.g.
[1] for early works). The astrometric data of visual bina-
ries have been the primary resources in this context. We
can find the recent observational situations on nearby bi-
naries in the detailed study by Agati et al. [2]. Analyzing
95 binaries within 18pc from the Sun, they argued that
these binaries appear to be randomly oriented.

Meanwhile, in 2023, Tan et al. [3] published a paper
on the orientations of the symmetric axes of planetary
nebulae (PNe) around the Galactic bulge. They selected
14 PNe that host (or are inferred to host) short-period
(≲ 1 day) binaries. They found that the symmetric axes
of these PNe tend to be parallel to the Galactic plane.
Since PNe are gases ejected during the formation of white
dwarfs [4], the symmetric axes of the selected PNe are
considered to align with the orbital axes of the inner
short-period binaries. Therefore, the observed patterns
of the PNe suggest that the associated 14 short-period bi-
naries around the bulge are not randomly oriented [3], in
contrast to the aforementioned binaries around the Sun
[2]. Binaries are fundamental systems in astrophysics [5],
and their formation process could be highly diverse even
in the Galaxy. We are encouraged to make further ob-
servational studies on orientations of binaries in various
environments.

For the orbital angular momentum orientation (de-

noted below by the unit vector j⃗) of a Galactic binary,
considering the whole-part relation, one would be par-
ticularly interested in its possible statistical alignment
with the Galactic rotation vector q⃗. More specifically,
if we take the rotation vector q⃗ as the polar direction
for the spherical harmonic expansion, the dipole pattern
(l,m) = (1, 0) of the unit vector j⃗ would be a high-
priority target. Unfortunately, the symmetric axes of the
PNe are insensitive to the odd l patterns, since the ob-
served PN axes do not allow us to distinguish between j⃗
and −j⃗. We will later comment on this point again, in
relation to the parity properties of the spherical harmon-
ics. Note that the two vectors j⃗ and q⃗ are both axial, and
the harmonic expansion does not depend on the adopted

handedness.

The proposed space gravitational wave (GW) inter-
ferometer LISA is expected to detect ∼ 104 close white
dwarf binaries (CWDBs) in the Galaxy [6–13] and deter-
mine their geometrical configuration [14, 15]. A signifi-
cant fraction (e.g. ∼ 30%) of the CWDBs are estimated
to be the bulge component [9]. It should also be stressed
that, for LISA, we can easily control the selection effects,
e.g. by using CWDBs only above ∼ 4mHz, where LISA
will make a complete Galactic survey [6, 16] (see also
[17] for the selection effects of the Gaia binary survey).
Therefore, as pointed out by the author [18], LISA could
be an essentially new observatory to examine the orien-
tational distribution of Galactic binaries relative to the
Galactic structure. However, in the previous paper [18],
the author applied a distant observer approximation, in
which the angular thickness of the bulge was ignored. In
fact, as shown later, this approximation results in a blind-
ness to the odd l-patterns, including the dipole mode. In
this work, as a follow-on study, we pay a special atten-
tion to the dipole pattern measurement, now carefully
taking into account the small bulge thickness. In addi-
tion, we newly introduce appropriate estimators for si-
multaneously measuring various harmonic patterns. Our
approach can be expanded to extra-Galactic studies for
binaries composed by black holes and neutron stars. We
will make a brief discussion on the prospect with BBO
and DECIGO.

This paper is organized as follows. In Sec. II, we dis-
cuss the axisymmetric model for the angular momentum
distribution of the bulge CWDBs and make its spheri-
cal harmonic decomposition. In Sec. III, we explain the
fourfold degeneracy at estimating the polarization angle
for a CWDB with LISA. We apply a systematic scheme
for handling the degeneracy. In Sec. IV, we introduce
simple estimators to separately measure the observable
spherical harmonic patterns of the orientational distribu-
tion function. We also present the shot noise limits for
the dipole and quadrupole measurements. In Sec. V, we
estimate the fluctuations induced by the parameter esti-
mation errors. In Sec. VI, we discuss the extra-Galactic
studies with BBO and DECIGO. Sec. VII is devoted to
a short summary.
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II. DISTRIBUTION FUNCTION

For CWDBs in the Galactic bulge, the joint probability
distribution function for the orbital orientations j⃗ and
the sky directions n⃗ can be generally expressed as P (⃗j, n⃗).
Here, in view of the mixing processes discussed below, we
assume that they are independently distributed P (⃗j, n⃗) =

P (⃗j)R(n⃗) and the function P (⃗j) is axisymmetric around
the Galactic rotation axis q⃗.
Given the probable bar-like structure in the central

part of our Galaxy [19, 20], one might conversely ex-
pect that there should be strong azimuthal (in particular

m = ±2) patterns in the function P (⃗j). However, the
formation epochs of the bulge CWDBs were likely to be
more broadly distributed than the rotation period of the
bar (currently ∼ 108 yr [19, 20]) [8]. Therefore, even
if the orientations of the binaries have some azimuthal
patterns (m ̸= 0) at their formation epochs, the chrono-
logical phase mixing should largely reduce the azimuthal
patterns in the integrated population at present. In con-
trast, the axisymmetric patterns m = 0 would be more
resistant to the mixing. One could also expect positional
intermixture facilitating independence between j⃗ and n⃗,
since the majority of bulge stars have not been corotat-
ing with the bar and also have random velocities [19–21].
In the present explanation, for simplicity, we supposed
that the orientation vectors j⃗ had been frozen since the
binary formation, as discussed in [3]. Below, we mainly
use the Galactic latitude b and longitude η to represent
the binary position n⃗ in the sky, and put R(n⃗) = R(b, η).

The axisymmetric function P (⃗j) should depend only

on the angle γ defined by the product cos γ = j⃗ · q⃗, thus
containing only m = 0 patterns

P (⃗j) =

∞∑
l=0

al0Yl0(γ) =

∞∑
l=0

√
2l + 1

4π
al0Ll(⃗j·q⃗) ≡ PA(cos γ)

(1)

with the normalization condition a00 = 1/
√
4π. The

spherical harmonics Ylm are generally expressed as

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Llm(cos θ)eimϕ (2)

with the associated Legendre polynomials Llm, including
the special cases Ll ≡ Ll0 for m = 0 [22]. We present
concrete examples for the Legendre polynomials Ll

L0 = 1, L1(α) = α, L2(α) =
(3α2 − 1)

2
. (3)

The functions Llm satisfy the symmetric relations

Llm(−α) = (−1)l+mLlm(α), Ll−m(α) = (−1)mLlm(α)
(4)

with the identity Llm(1) = δm0. From Eq. (4), we can
easily show the parity relation

Ylm(−j⃗) = (−1)lYlm(⃗j). (5)

𝑏

Sun

Galactic bulge

 𝑞𝑒𝑞

Galactic plane

𝑛

𝑒𝑟−𝑛
⊗

binary

FIG. 1: Geometrical configuration of a binary (at the Galac-
tic latitude b) on the slice of a constant Galactic longitude.
[Directional vectors]: All four vectors (q⃗, n⃗, e⃗q, e⃗r) are unit
vectors. The vector n⃗ shows the direction of the binary, and e⃗q
is the transverse projection of the Galactic rotation axis q⃗ with
the offset angle b. We also set e⃗r = n⃗ × e⃗q. [Source frame]:
We define the source frame as the polar coordinate system
with the polar direction −n⃗ (GW propagation direction) and
set the reference direction e⃗q for the azimuthal angle. In this

source frame, the orientation of the binary j⃗ (not shown here)
is specified by the inclination (polar) angle I and the polar-
ization (azimuthal) angle ψ.

To discuss GW strain observation (particularly for Sec.
III), it is crucially advantageous to work in a polar co-
ordinate system, where polar axis is directed in the GW
propagation direction (−n⃗ in Fig. 1). In Fig. 1, there
is still freedom to set the reference direction for the az-
imuthal angle of the polar coordinate and use the pro-
jected vector e⃗q, respecting the available Galactic sym-
metry. We hereafter refer to this polar coordinate system
as the source frame, and the orientation vector j⃗ will be
decomposed into the polar angle I and the azimuthal an-
gle ψ (respectively called the inclination and polarization
angles). In the source frame, the Galactic axis q⃗ is given
by (π/2 + b, 0) with the Galactic latitude b.
We next evaluate the orientational distribution func-

tions p(I, ψ|b) for the two variables (I, ψ) at a given sky
direction (b, η) (actually independent of the Galactic lon-
gitude η due to the symmetry around q⃗). We just need
to rewrite the function PA(cos γ) in Eq. (1) in terms of
the variables (I, ψ), taking into account the offset angle
b. Here the addition theorem for the spherical harmonics
works quite efficiently. For two unit vectors x⃗ and y⃗, we
generally have [22]

Ll(x⃗ · y⃗) = 4π

2l + 1

l∑
m=−l

Ylm(x⃗)Y ∗
lm(y⃗). (6)

Applying this theorem to each term Ll(⃗j · q⃗) in Eq. (1)
with the angular parameters in the source frame, we ob-
tain

p(I, ψ|b) =

∞∑
l=0

l∑
m=−l

al0

√
4π

2l + 1
Ylm(I, ψ)Y ∗

lm(b+
π

2
, 0)

=

∞∑
l=0

l∑
m=−l

al0Dlm(b)Ylm(I, ψ). (7)
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Here the real coefficients Dlm(b) are defined by

Dlm(b) ≡ (−1)l+m

√
(l −m)!

(l +m)!
Llm(sin b) (8)

and satisfy Dl−m = (−1)mDlm. From Eq. (4), we can
readily obtain the parity relations

Dlm(−b) = (−1)l+mDlm(b). (9)

From Eqs. (1) and (15), the coefficients can also be given
as the inner products

Dlm(b) =

∫
4π

dIdψ sin I Yl0(γ)Y
∗
lm(I, ψ), (10)

which will be useful to geometrically understand the
meaning of the coupling coefficients Dlm(b). For each
degree l, we can confirm the power conservation

l∑
m=−l

Dlm(b)2 = 1 (11)

(e.g. directly putting x⃗ = y⃗ = q⃗ in Eq. (6) and using
Ll(1) = 1).
We present the explicit form for the dipole coefficient

D10(b) = − sin b. (12)

In Fig. 2 (panels (a) and (b)), we provide its intuitive
explanation. For |b| ≪ 1 (valid for our bulge CWDBs),
we have D10(b) = O(b) and the most of the power is
stored in the m = ±1 modes with

|D11(b)| = |D1−1(b)| ≃ 1/
√
2. (13)

In general, we have Dlm(b) = O(b) for odd l + m, and
Dlm(b) = O(1) for even l +m.

III. GEOMETRICAL CANCELLATIONS

LISA will be a drastically new tool to geometrically
explore the Galactic CWDBs. However, observationally,
we cannot uniquely specify the polarization angle ψ for
each bulge CWDB from its GW signal. There are ac-
tually four possible solutions (see e.g. [23]). Following
the previous paper [18], we explain the basic aspects of
the fourfold degeneracy and apply a simple prescription
for our pattern analysis. Note that most of the CWDBs
are expected to have negligible eccentricities, e.g. due to
tidal dissipation effects.

First, let us consider a circular binary with the orien-
tation angles (I, ψ) and rotate it around the polar axis
−n⃗ by 180◦. The new binary has the angles (I, ψ + π),
but its gravitational waveform is identical to that of the
original one, because of the spin-2 nature of the wave
[24]. Correspondingly, using only GW data, we cannot

𝑏 > 0𝑏 < 0

−𝑛

× 1× 1

× 1× (−1)

(c)

(d)

(e)

 𝑒𝑞

𝑒𝑟

−𝑛

−𝑛

𝑏 > 0

−𝑛
 𝑒𝑞

𝑒𝑟

(b)

−𝑛

(a)

⊗

⊗

𝑏 > 0

FIG. 2: Dipole patterns Y10(γ) in the source frame. The red
and blue respectively show positive and negative values. (a)
For binaries at a Galactic latitude b, the intrinsic dipole pat-
tern Y10(γ) is tilted by the angle b. (b) As shown in Eq.
(10), the coefficient D10(b) = − sin b is the cross product be-
tween the tilted profile Y10(γ) and the probe Y ∗

10(I) = Y10(I)
(edged with the yellow line), which is axisymmetric around
the polar direction −n⃗. From the symmetries, we can easily
see D10(−b) = −D10(b) with D10(0) = 0. (c) Dipole pat-
terns from the pairwise latitudinal directions ±b. (d) When
combined in the same phase, the total profile becomes anti-
symmetric in the directions ±e⃗q, and the product with the
axisymmetric one Y10(I) vanishes with g100 = 0. (e) When
combined in the opposite phase, the total profile becomes ver-
tically symmetric, resulting in g101 ̸= 0.

determine which of the two values ψ and ψ+π is the true
polarization angle.
In fact, for the CWDBs, there will be more spurious

solutions other than ψ + π. If we rotate the binary now
by 90◦ (namely ψ → ψ + π/2), the polarization tensors
change signs. For the lowest quadrupole signal, these
signs can be absorbed as the overall phase shift, resulting
in the signal degeneracy. We can, in principle, distinguish
the two states (I, ψ) and (I, ψ + π/2) by using the post
Newtonian effects (see e.g. [24, 25]). Unfortunately, these
relativistic effects are very weak for our bulge CWDBs in
the mHz band and will be totally masked by the measure-
ment noise of LISA. Taking into account the spin-2 char-
acter again, there will be fourfold degeneracy between
ψ,ψ + π/2, ψ + π and ψ + 3π/2 (namely three spurious
solutions).
LISA will newly provide us with orientational informa-

tion for thousands of bulge CWDBs. At some stage, we
need to appropriately address the fourfold degeneracy not
just twofold. Here, as proposed in [18], we identify the
four solutions by compactifying the range of the polar-
ization angle ψ from the original one [0, 2π] to the folded
one [0, π/2]. More concretely, we consider the following
folded function

p̄(I, ψ|b) ≡ p(I, ψ|b) + p(I, ψ + π/2|b)
+p(I, ψ + π|b) + p(I, ψ + 3π/2|b) (14)
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as our observable distribution. This is a systematic ap-
proach without ambiguities. Here it is essential to work
in the source frame.

Importantly, the folding operation has a strong side ef-
fect. In Eq. (14), each harmonic term Ylm from Eq. (7) is

now proportional to
∑3
k=0 exp(imkπ/2), which vanishes

unless the order m is multiple of 4. Therefore, we can
write down

p̄(I, ψ|b) = 4
∑
l=0

|m|≤l∑
m∈K

al0Dlm(b)Ylm(I, ψ) (15)

with the group

K ≡ {0,±4,±8, · · ·} . (16)

Indeed, the functions 2Ylm (m ∈ K) compose an or-
thonormal basis for the folded orientational space 0 ≤
I ≤ π and 0 ≤ ψ ≤ π/2.

As mentioned earlier, in original function (7), our tar-
get signal a10 is mainly contained in the patterns Y1,±1

with |D1,±1| ≃ 1/
√
2 for the bulge directions at |b| ≪ 1.

However, these strong patterns at m = ±1 /∈ K dis-
appear at the folding operation. To detect the target
a10, we thus need to statistically amplify the weak avail-
able pattern ∝ Y10(I, ψ) with the coupling coefficient
|D10| = | sin b| ≪ 1, allowed by the literal bulge struc-
ture in the sky.

To discuss the statistical amplification of the weak sig-
nals from bulge CWDBs at various Galactic latitudes b,
we define the joint PDF

p̄(I, ψ, b) = p̄(I, ψ|b)R(b). (17)

Here we put the reduced distribution

R(b) ≡
∫ 2π

0

dηR(b, η). (18)

In the direction vertical to the Galactic plane, the
density profile of bulge stars is known to be well ap-
proximated by a Gaussian distribution with the scale
height ∼ 0.5kpc (nearly independent of the Galactic lon-
gitude η) [19]. Given the distance to the Galactic cen-
ter ∼ 8.3kpc, we have the corresponding angular scale
∼ σ ≡ 0.5/8.3 = 0.06 and use the following model here-
after

R(b) =
1√
2πσ2

exp

[
−b2

2σ2

]
. (19)

At this point, we will briefly comment on the geometri-
cal studies on the planetary nebulae. As mentioned ear-
lier, their symmetric axes do not distinguish j⃗ and −j⃗.
Then, given the parity relations in Eq. (5), the combi-

nation P (⃗j) +P(−j⃗) is insensitive to the odd l patterns,
including the dipole modes l = 1.

IV. ANISOTROPY MEASUREMENT

Next, we outline the estimation of the anisotropic sig-
nals al0 from the observed data {Ii, ψi, bi} with the labels
i = 1, · · · , N (N : the number of relevant binaries) and
0 ≤ ψi ≤ π/2.
In [18], the author discussed a primitive dualistic ap-

proach, targeting only the quadrupole pattern a20. Here,
for simultaneously measuring the multiple coefficients
al0, we introduce more elaborate estimators (see also [26])

X̂lmn =
1

N

N∑
i=1

bni Y
∗
lm(Ii, ψi). (20)

From Eqs. (15) and (17), their expectation values be-
come 〈

X̂lmn

〉
sample

= ⟨bnY ∗
lm(I, ψ)⟩Iψb (21)

= al0glmn (22)

with the coefficients

glmn ≡
∫ π/2

−π/2
dbR(b)bnDlm(b). (23)

These coefficients can be themselves measured with an
observationally driven Galactic model or with the fol-
lowing estimators

Ŵlmn =
1

N

N∑
i=1

bni Dlm(bi), (24)

but we do not go into detail, given their simplicity.
From the parity properties of bn, R(b) and Dlm(b), we

can easily derive the key relations

glmn = 0 for m+ l + n ≡ 1 (mod 2). (25)

For fourfolded PDF (17), due to the selection rulem ∈ K,
we must set l+n = 0 (mod 2) to obtain glmn ̸= 0. This is
the reason why we artificially added the index n. We can
thereby adjust parity relation (25) and measure al0 for an
odd l. As commented before, for the dipole a10, we need
to statistically amplify the small factor D10 = − sin b,
which is antisymmetric at b = 0 (see Fig. 2(e)). Indeed,
taking n = 1, we actually obtain the finite value

g101 = −eσ
2/2σ2. (26)

For reference, we present the leading order terms (with
the expansion parameter σ) for some of nonvanishing co-
efficients

g000 = 1, g101 = −σ2, g200 = −1

2
, g301 =

3

2
σ2,(27)

g400 =
3

8
, g440 =

1

8

√
35

2
(28)
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with the relations gl,−mn = (−1)mglmn originating from
Eq. (4). Note that, in [18], we applied the distant ob-
server approximation (equivalent to setting R(b) = δ(b)
and thus σ = 0), unlike the present study targeting the
odd l patterns.

Next, for the estimator X̂lmn, we evaluate the shot
noise ∆X̂lmn caused by the finiteness of the sample size

N . Its variance is expressed as
〈
∆X̂lmn∆X̂

∗
lmn

〉
Iψb

and

given as

⟨bnY ∗
lm(I, ψ)bnYlm(I, ψ)⟩Iψb

N
≃ σ2n(2n− 1)!!

4πN
(29)

with (−1)!! = 1!! = 1. Here, assuming the weak signal
case |al0| ≪ 1 (l ≥ 1), we only kept the monopole term
in Eq. (15). We then obtain a scaling relation for the
1-sigma detection limit of the dipole signal,

∆a10 ≃ ∆X̂101

g101
≃ 0.1

( σ

0.06

)−1
(

N

2000

)−1/2

. (30)

For the quadrupole pattern a20, we can make a similar
calculation for the associated estimator X̂200 and obtain
a better detection limit

∆a20 ≃ 0.01

(
N

2000

)−1/2

, (31)

due to the preferable property D20(b) = O(1), in contrast
to D10(b) = O(b) (see Eq. (15)).

V. MEASUREMENT ERRORS

In this section, we estimate the fluctuation δX̂101 of
the observable quantity X̂101 due to the estimation er-
rors of the involved parameters {bi, Ii}. Taking a linear

expansion for X̂101 and assuming independence of the
errors, we obtain

δX̂101 ∼ |Y10(θi)|δbi + |bi∂IY10(θi)|δIi√
N

. (32)

Here δbi and δIi represent the typical magnitudes of the
estimation errors. Replacing the coefficients |bi|, |Y10|
and |∂IY10| with their root mean square values as |bi| ∼
σ, |Y10| ∼ 1/

√
4π and |∂IY10| ∼ 1/

√
2π, we have

δX̂101 ∼ 1√
4πN

(δbi +
√
2σδIi). (33)

Next, requiring that the two terms in Eq. (33) are both

smaller than the shot noise ∆X̂101 ≃ σ/
√
4πN given in

Eq. (29), we obtain

δIi ≲ 1/
√
2, (34)

δbi ≲ σ ∼ 0.06. (35)

According to a recent numerical study on Galactic
CWDBs [27], we can expect δIi ≲ 0.2, satisfying condi-
tion (34). As indicated by the Fisher matrix analysis [28],
the inclination errors could be large for nearly face-on bi-
naries. In actual data analysis, it might be meaningful to
perform additional processing for these tail components
of the inclination estimation errors.
Meanwhile, inequality (35) simply indicates that we

need to resolve the Galactic latitudes b of bulge CWDBs
within the small angular width σ. In fact, this require-
ment will be more demanding, as we discuss below.
To begin with, we should recall that LISA revolves

around the Sun on the ecliptic plane. For a binary at
the polar ecliptic coordinate (θE , ϕE), the Doppler phase
modulation induced by the revolution is modeled as

2πft0 sin θE cos(ϕ(t)− ϕE). (36)

In this expression, t0 = 500 s is the photon propagation
time for the distance of 1a.u., and the time dependent
function ϕE(t) represents the angular position of LISA
on the ecliptic plane around the Sun.

In our target frequency regime f ≳ 4mHz, the Doppler
modulation (36) usually works as the primary signature
for the estimation of the sky position (θE , ϕE) of a bi-
nary [14], rather than the amplitude modulation due to
the time variation of the detector plane. However, for
a binary around the ecliptic plane, as understood from
the symmetry of expression (36) at θE = π/2, the error
ellipse in the sky is elongated in the direction normal to
the ecliptic plane [6, 15]. Indeed, using the simplified
Fisher matrix analysis for the gravitational wave phase
of a binary [15], the estimation error for its angle θE is
roughly evaluated by

δθEi ∼
(√

2πfit0ρi| cos θEi|
)−1

(37)

with the signal to noise ratio ρi of the binary. Unfortu-
nately for a bulge CWDB, the direction of the Galactic
center is only 5.6◦ below the ecliptic plane. Consider-
ing the intersection angle ∼ 60◦ between the Galactic
and ecliptic planes, the estimation error for the Galactic
latitude b of the binary is roughly given by

δbi ∼ 1

2
δθEi (38)

∼ 0.06
( ρi
10

)−1
(

fi
4mHz

)−1 (
cos θEi
0.1

)−1

. (39)

While the amplitude modulation could reduce the esti-
mation error δbi to some extent, given condition (35),
we might need to increase the product fiρi by taking a
larger frequency threshold at the sample selection for the
estimator X̂101. We might also need to reduce the statis-
tical weights for binaries very close to the ecliptic plane
θE = π/2. These treatments could reduce the effective
sample size N .
Note that the estimator X̂200 for the quadrupole pat-

tern a20 does not directly depend on the Galactic latitude
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b. From the comparison between the effects of the shot
noise and the parameter estimation errors, we obtain a
requirement similar to inequality (34).

VI. EXTRA-GALACTIC STUDIES WITH
BBO/DECIGO

Next, as an application of our approach, we discuss the
extra-Galactic binary analysis. BBO [29, 30] and DE-
CIGO [31, 32] are proposed space missions after LISA,
primarily targeting primordial GW backgrounds from the
early universe around 0.1-10Hz. We need to individu-
ally detect and subtract foreground inspiral signals made
by black hole binaries (BHBs) and neutron star binaries
(NSBs) at cosmological distances. Using widely (∼1a.u.)
separated multiple units, these missions are designed to
realize good sky localization for the binaries (see also
[33]). Indeed, the expected number of host galaxies in
the error cube of BBO is ∼ 0.01 for a BHB at z ∼ 1
[34]. The host galaxy (and its redshift) determination is
critical for high-precision cosmology and could also al-
low us to estimate its rotation axis q⃗. Interestingly, two
plausible solutions (geometrically corresponding to the
polarization angles ψ and ψ + π) appear again, but now
for the rotational vectors q⃗ of distant spiral galaxies. This
issue is well known in relation to the census of the trail-
ing and leading spiral arm patterns (see e.g. [21, 35, 36]).
The empirical laws (e.g. almost always trailing [21, 36])
will help us to efficiently select the right solution for q⃗.
With the recent estimation for the BHB merger rate

∼ 24Gpc−3yr−1 [37], the detection rate for BHBs at
z ≲ 1 will be ∼ 4000yr−1. Unlike small offset angles
|b| ≪ 1 for Galactic CWDBs, the host galaxies of the
BHBs will have have random orientations q⃗ relative to
their directions n⃗ (corresponding to typical offset angles
of b = O(1)). Thus, the detection limits for both the
dipole and quadrupole patterns (l = 1 and 2) will be
∆al0 ∼ 0.01(N/2000)−1/2. By increasing the observa-
tional period and thus the sample size N , we might de-

tect the alignment signatures, which will be quite useful
to argue the formation scenarios of BHBs.

A NSB would have an error cube one order of mag-
nitude larger than that of a BHB [34], but we might
observe EM signals which can be predicted ahead of the
NSB merger. It should also be noted that the kick ve-
locities at the formations of neutron stars could perturb
the orbital orientations j⃗ from the initial ones.

VII. SUMMARY

In the previous paper [18], we discussed the orienta-
tional analysis of bulge CWDBs with the planned GW
detector LISA, ignoring the bulge thickness (equivalent
to σ = 0). This simple approximation symmetrically
cancelled the signature of the odd-l patterns. In this
paper, paying attention to the dipole pattern measure-
ment, we developed a new formulation to deal with the
projected bulge structure in the sky. We also introduced
the refined estimators X̂lmn for separately measuring the
observable harmonic patterns. Here the index n is intro-
duced for leveraging the parity properties of the system.
We then evaluated the shot noises and obtained simple
scaling relations (30) and (31), which will help us to as-
sess the prospects for measuring the low l patterns. Since
the direction of the Galactic center is close to the eclip-
tic plane, it might be meaningful to develop a refined
analysis scheme for mitigating the relatively poor sky lo-
calization of the bulge CWDBs. finally, we presented a
brief discussion on the extra-Galactic studies with BBO
and DECIGO.
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