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Oblivious Algorithms for Maximum Directed Cut: New Upper and

Lower Bounds

Samuel Hwang∗ Noah G. Singer† Santhoshini Velusamy‡

Abstract

In the maximum directed cut (Max-DiCut) problem, the input is a directed graph G =
(V,E), and the goal is to pick a partition V = S ∪ (V \ S) of the vertices such that as many
edges as possible go from S to V \ S. Oblivious algorithms, introduced by Feige and Jozeph
[FJ15], are a simple class of algorithms for this problem. These algorithms independently and
randomly assign each vertex v to either S or V \ S, and the distribution of v’s assignment is
determined using only extremely local information about v: its bias, i.e., the relative difference
between its out- and in-degrees. These algorithms have natural implementations in certain graph
streaming models, where they have important implications [SSSV23a; SSSV23b; KPV23].

In this work, we narrow the gap between upper and lower bounds on the best approximation
ratio achievable by oblivious algorithms forMax-DiCut. We show that there exists an oblivious
algorithm achieving an approximation ratio of at least 0.4853, while every oblivious algorithm
obeying a natural symmetry property achieves an approximation ratio of at most 0.4889. The
previous known bounds were 0.4844 and 0.4899, due to Singer [Sin23] and Feige and Jozeph
[FJ15], respectively. Our techniques involve designing principled parameterizations of the spaces
of algorithms and lower bounds and then executing computer searches through these spaces.

1 Introduction

In this work, we study a special class of algorithms, called oblivious algorithms, for a specific
constraint satisfaction problem, called maximum directed cut (Max-DiCut). We first informally
describe these two notions; see §2.2 below for formal definitions.

1.1 Background: Directed cuts, bias, and oblivious algorithms

An input instance to Max-DiCut is a directed graph G = ([n], E) (possibly with edge weights)
on vertex set [n] = {1, . . . , n}. A cut is a vector x = (x1, . . . , xn) ∈ {±1}n, and can be viewed
as an assignment of a bit to each vertex in the graph. An edge (v1, v2) is satisfied by the cut x

if xv1 = 1 and xv2 = 0. The value of a cut is the fraction of edges it satisfies, and the value of a
graph, denoted valG, is the maximum value over all cuts.

To define oblivious algorithms, we first define a scalar quantity associated to each vertex in a
directed graph called bias. The bias of a vertex is simply

biasG(v)
def
=

outdegG(v)− indegG(v)

outdegG(v) + indegG(v)
,
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where outdegG(v) and indegG(v) are respectively the out- and in-degrees of v in G. Note that
biasG(v) ranges from +1 (v has only out-edges) to −1 (v has only in-edges).

Oblivious algorithms are a class of randomized algorithms for Max-DiCut which “only know”
about the bias of each vertex. More formally, an oblivious algorithm is defined by a so-called
selection function S : [−1,+1] → [0, 1]. The corresponding algorithm OS, given a graph G, produces
an assignment by independently setting each vertex v to equal 1 w.p. S(biasG(v)) and 0 otherwise.
The approximation ratio of OS, denoted α(OS), is the ratio of the expected value of this “oblivious
assignment” to the value of the best assignment, minimized over all graphs G.

Oblivious algorithms for Max-DiCut were introduced by Feige and Jozeph [FJ15], who proved
both upper and lower bounds1 on their capacity to approximate Max-DiCut:

Theorem 1.1 (Prior upper bound, [FJ15, Thm. 1.3]). There exists an oblivious algorithm OS

achieving an approximation ratio α(OS) ≥ 0.483.

A selection function S : [−1,+1] → [0, 1] is antisymmetric if for all b ∈ [−1,+1], S(−b) = 1−S(b)
(see also Definition 2.7). Most of the selection functions which have been studied have this property.

Theorem 1.2 (Prior lower bound for antisymmetric selection, [FJ15, Thm. 1.4]). If S : [−1,+1] →
[0, 1] is an antisymmetric selection function, then the oblivious algorithm OS achieves an approxi-
mation ratio α(OS) ≤ 0.4899.

We include a brief proof of Theorem 1.2 in Appendix A to facilitate comparison with our new
lower bounds.

Theorem 1.3 (Prior lower bound for general selection, [FJ15, Thm. 1.5]). If S : [−1,+1] → [0, 1]
is any selection function, then the oblivious algorithm OS achieves an approximation ratio α(OS) ≤
0.4998.

Remark. The constant in Theorem 1.3 is not optimized in the work of Feige and Jozeph [FJ15].
However, it is straightforward to compute the best possible constant achievable with their proof
technique. Indeed, the proof of [FJ15, Thm. 1.5] considers two graphs G and L, and shows that
if S is any selection function with S(12 ) = 1

2 + δ, then S achieves ratio at most 0.4899 + δ on G
and 1

2 − 2δ2 on L; hence, S achieves ratio strictly below 1
2 on either G or L. But equating these

two quantities and solving for δ yields δ = 0.0099; at this point, both quantities are roughly 0.4998.
At any other value of δ, at least one of the quantities will be larger, and therefore, 0.4998 is the
optimal bound.

One particularly nice feature of oblivious algorithms described by [FJ15] is that (if the selection
function S is piecewise constant) the approximation ratio of OS can be calculated by a simple linear
program (LP); indeed, this LP essentially “encodes” the process of minimizing the approximation
ratio over all possible graphs to find the worst-case input (see Theorem 2.1 below). A more recent
work of Singer [Sin23] provided an open-source python implementation of the ratio-calculating LP,
and used it to improve Theorem 1.1 via a more refined analysis of a similar oblivious algorithm:

Theorem 1.4 (Improved prior upper bound, [Sin23]). There exists an oblivious algorithm OS

achieving an approximation ratio α(OS) ≥ 0.484.

However, both the works [FJ15; Sin23] left a significant open question:

1Note on language: In this paper, we use the usual convention that upper bounds are algorithms and lower bounds
are hardness results. Confusingly, an “upper bound” actually lower-bounds the maximum ratio achievable by any
oblivious algorithm, while a “lower bound” upper-bounds this ratio.
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Question. What is the best possible approximation ratio α(OS) which can be achieved by any
oblivious algorithm OS for Max-DiCut?

As we describe in §1.3 below, oblivious algorithms for Max-DiCut are known to imply algo-
rithms achieving (arbitrarily close to) the same ratio in several different streaming models [SSSV23a;
SSSV23b; KPV23]. Resolving this question would therefore characterize the best approximation
ratios achievable via these streaming techniques. In this work, we make progress on the question
and tighter upper and lower bounds on oblivious algorithms via intricate computer searches.

1.2 Results

We define a class of selection functions, which we call piecewise linear (PL) sigmoid functions (see
Definition 3.1 below). These functions are denoted PLSigmoidb, where b ∈ [0, 1] is an “intercept”
parameter. Theorems 1.1 and 1.4 were proven by analyzing discretizations (i.e., piecewise-constant
versions) of PLSigmoid1/2. We demonstrate a strictly better oblivious algorithm, using a discretiza-
tion of a PL sigmoid function with a different intercept, namely, PLSigmoid149/309:

Theorem 1.5 (New upper bound). There exists an oblivious algorithm OS achieving an approxi-
mation ratio α(OS) ≥ 0.485359.

We also complement this theorem with lower bounds, both for PLSigmoid1/2 itself and for
arbitrary PL sigmoid functions:

Theorem 1.6 (Lower bound for PL sigmoid selection with b = 1/2 intercept). α(OPLSigmoid1/2
) ≤

0.485282.

Theorem 1.7 (Lower bound for PL sigmoid selection with arbitrary intercept). For every b ∈ [0, 1],
α(OPLSigmoidb

) ≤ 0.486.

Note that these two lower bounds hold for PL sigmoid functions themselves (which are con-
tinuous), while the upper bound Theorem 1.5 used a discretization of such a function, so they are
not formally comparable. In particular, we observe that given the approximation ratio seems to in-
crease and converge to a limit during finer discretization (see Fig. 2 below). In light of this, we note
that the ratio in this theorem, 0.485282, is only slightly larger than the ratio from Theorem 1.5,
0.485275. This is heuristic evidence that the selection function PLSigmoid149/309 has a strictly
higher approximation ratio than the selection function PLSigmoid1/2.

We prove another, more general, lower bound that holds against antisymmetric selection func-
tions:

Theorem 1.8 (Lower bound for symmetric selection). For every antisymmetric selection function
S, OS achieves an approximation ratio α(OS) ≤ 0.4889.

Theorem 1.8 should be compared against Theorem 1.2, which it improves by roughly 0.001. Fi-
nally, we prove a lower bound against arbitrary (not necessarily antisymmetric) selection functions:

Theorem 1.9 (Lower bound for general selection). For every selection function S, OS achieves
an approximation ratio α(OS) ≤ 0.4955.

The proof of this theorem is itself a conceptual contribution: The lower bound is witnessed by
a single, simple graph, with only one bias (up to sign). In contrast, Theorem 1.2 was weaker (by
0.003), and its proof used multiple graphs, one of which had two distinct biases appearing (up to
sign).
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1.3 Motivations

Downstream applications. Feige and Jozeph [FJ15] were interested in oblivious algorithms
both in their own right as a nontrivial class of combinatorial algorithms for Max-DiCut and be-
cause of connections with “local” and “distributed” models of computation. But more recently,
several works have established that the existence of good oblivious algorithms for Max-DiCut

implies the existence of certain kinds of good streaming algorithms for Max-DiCut. These al-
gorithms are given a list of the graph’s directed edges as input and must output an estimate of
its Max-DiCut value. In particular, the existence of α-approximation oblivious algorithms for
Max-DiCut is known to imply (α − ǫ)-approximation algorithms for all ǫ > 0 in the following
models:

Space Input ordering # passes Setting Citation

O(log n) Random 1 Classical [SSSV23b]
O(log n) Adversarial 2 Classical [SSSV23b]

O(
√
npolylog n) Adversarial 1 Classical [SSSV23a]

O(polylog n) Adversarial 1 Quantum [KPV23]

Table 1: Streaming models into which oblivious algorithms are known to “translate”, achieving the
same approximation ratio up to arbitrarily small constants.

Thus, further improved oblivious algorithms, like we provide in this paper, imply further im-
provements in the state-of-the-art for all of these streaming models.

The fact that oblivious algorithms can be “implemented” as streaming algorithms in these
models is motivated by lower bounds known in some related models. In particular, it was known
by a previous result of Chou, Golovnev, and Velusamy [CGV20] that (4/9 − ǫ)-approximations
to Max-DiCut can be computed using O(log n) space in a single, classical, adversarially-ordered
pass, while (4/9+ǫ)-approximations require Ω(

√
n) space for a single, classical, adversarially-ordered

pass. Thus, the fact that Feige and Jozeph [FJ15] constructed oblivious algorithms achieving an
approximation ratio 0.483 > 4/9 implied that the [CGV20] lower bound was “tight”: Adjusting
the model to add either polylogarithmically more space, random ordering, a second pass, or access
to quantum bits yields strictly better approximations! In contrast, for Max-DiCut’s “undirected
cousin” Max-Cut, optimal lower bounds are known even for O(

√
n)-space random-ordering algo-

rithms and o(n)-space adversarial-ordering algorithms [KKS15; KK19]. In the quantum setting,
Kallaugher, Parekh, and Voronova [KPV23] claim that Max-DiCut is the first discrete optimiza-
tion problem with a provable exponential separation in complexity between classical and quantum
algorithms. These separations are all powered by the existence of oblivious algorithms achieving a
ratio strictly above 4/9.

Oblivious algorithms for other problems. Oblivious algorithms for Max-DiCut have also
been studied in several other areas. In mechanism design, Lukovics [Luk14] showed that any mono-
tone2 oblivious algorithm is a strategy-proof mechanism3 for Max-DiCut. Buchbinder, Feldman,

2An oblivious algorithm is said to be monotone if its corresponding selection function S is monotone, i.e., S(x) ≤
S(y) if and only if x ≤ y.

3A mechanism for Max-DiCut is defined as follows. There are m players, each given a unique edge of the directed
graph. A mechanism is a function that asks each player to reveal their edge and then chooses a (random) assignment
of the vertices. The player may or may not reveal their edge truthfully. The utility of each player is the expected
probability that their edge is satisfied by this assignment. A mechanism is said to be strategy-proof if the optimal
strategy for every player is to be truthful.
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and Schwartz [BFS19] showed applications of oblivious algorithms to the online submodular opti-
mization problem.

Singer [Sin23] recently extended the definition of oblivious algorithms to a more general version
of Max-DiCut called Max-kAnd, where each constraint applies to k variables and specifies a
single required bit for each variable. (Max-DiCut is the special case where k = 2 and in each
constraint, exactly one variable needs to be assigned 1 and the other 0.) He also generalized the
LP of [FJ15] for calculating the ratio of a piecewise-constant oblivious Max-DiCut algorithm to
Max-kAnd, and used this to achieve streaming separation results à la [SSSV23b].

1.4 Structure of rest of the paper

§2 contains some of the preliminary background used in the rest of the paper. In §3, we discuss our
new selection function that achieves an approximation ratio of at least 0.485275. In §4.2, we prove
Theorem 1.6 by explicitly constructing a graph (only on two vertices!) for which the PLSigmoid1/2
function achieves a strictly weaker than 0.485282 approximation. In §4.3, we prove Theorem 1.7
by constructing three graphs (one of which is on forty vertices!) and showing that every PLSigmoid

function has an approximation ratio of at most 0.486 on at least one of these graphs. We also
give a detailed description of the linear program that we use to generate these graphs. In §5, we
prove Theorem 1.9 using a pair of graphs (a two-vertex and a four-vertex graph). Finally, in §6,
we prove Theorem 1.8 and give a detailed description of the methodology we use to construct the
lower bound instance.

1.5 Code

All code for this paper is available on GitHub at https://github.com/singerng/oblivious-csps/.

2 Preliminaries

We begin with some basic notations for directed graphs and for oblivious algorithms.

2.1 Directed graphs

Definition 2.1 (Directed graphs). A (weighted) directed graph G is a pair (V,w) where V is a
set of vertices and w : V × V → R≥0 is a weight function satisfying w(v, v) = 0 for all v ∈ V .

Oftentimes, we are interested in weighted graphs with integer weights. In this setting, it is
useful to think of (multi)graphs as pairs (V,E), where E ⊆ V × V is a multiset of edges (again,
(v, v) 6∈ V for all v ∈ V ); the set E induces the weighted graph where w(v1, v2) is the multiplicity
of (v1, v2) in E.

Definition 2.2 (Degree). Let G = (V,w) be a directed graph. For a vertex v ∈ V , the out-, in-,
and total degrees of v are

outdegG(v)
def
=

∑

u∈V

w(v, u), indegG(v)
def
=

∑

u∈V

w(u, v), and degG(v)
def
= outdegG(v) + indegG(v).

A vertex v is isolated if degG(v) = 0.

We also let mG
def
=

∑

v1 6=v2∈V
w(v1, v2) denote the total weight in G.
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Definition 2.3 (Bias). Let G = (V,w) be a graph, and v ∈ V a nonisolated vertex. Then the bias
of v is

biasG(v)
def
=

outdegG(v)− indegG(v)

degG(v)
.

Observe that −1 ≤ biasG(v) ≤ +1.

2.2 Max-DiCut and oblivious algorithms

Definition 2.4 (Max-DiCut). The maximum directed cut (Max-DiCut) problem is defined as
follows: The input is a directed graph G = (V,w). For any assignment (a.k.a. cut) x = (xv)v∈V ∈
{0, 1}V , the Max-DiCut value of x is

valG(x)
def
=

1

mG

∑

v1 6=v2∈V

w(v1, v2) · 1[xv1 = 1 and xv2 = 0].

The Max-DiCut value of G is

valG
def
= max

x∈{0,1}V
valG(x).

The goal of the Max-DiCut problem is to approximate valG given G.

Now, we consider algorithms for Max-DiCut which estimate valG using only the biases of
vertices in G:

Definition 2.5. An oblivious algorithm for Max-DiCut is defined by a selection function S :
[−1,+1] → [0, 1]. The corresponding algorithm, denoted OS, behaves as follows. Given a directed
graph G = (V,w), OS outputs

OS(G) :=
1

m

∑

v1 6=v2∈V

w(v1, v2) · (S(biasG(v1)))(1 − S(biasG(v2))).

Observe that AS(G) equals the expected value of the random cut which assigns each (noniso-
lated) vertex v as an independent Bern(biasG(v)) random variable. Thus, AS(G) ≤ valG. We are
interested in how good of an approximation the algorithm provides:

Definition 2.6 (Approximation). Let G be a graph and OS an oblivious algorithm. The approxi-
mation ratio of OS on G is

α(OS;G)
def
=

OS(G)

valG
.

The approximation ratio of OS is

α(OS)
def
= inf

graph G
α(OS;G).

In this paper, we are interested in some specific types of selection functions.

Definition 2.7 (Antisymmetry). A selection function S : [−1,+1] → [0, 1] is antisymmetric if
S(x) = 1− S(−x) for all x ∈ [−1,+1].

Notably, if S is antisymmetric, then S(0) = 1/2. Antisymmetry is a natural desideratum for
selection functions for Max-DiCut, since the operation of flipping all edges (i.e., switching to
the “transpose” weight function w⊤(v1, v2) = w(v1, v2)) preserves the Max-DiCut value; this
operation also negates the bias of every vertex, and so antisymmetry implies that the output of the
oblivious algorithm is also preserved.

Another class of selection functions we are interested in is “piecewise constant” functions:
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Definition 2.8. A selection function S : [−1,+1] → [0, 1] is ℓ-class piecewise constant if there
exists a partition of the domain [−1,+1] into ℓ intervals I1, . . . , Iℓ, and ℓ values p1, . . . , pℓ, such
that S(x) = pi for all x ∈ Ii.

2.3 Linear program

For completeness, we include here the linear program introduced by [Sin23] for calculating the
approximation ratio of an antisymmetric piecewise constant selection function. For ℓ ∈ N, let
[±ℓ] = {−ℓ, . . . ,+ℓ}.
Theorem 2.1 (LP for antisymmetric selection functions). Let ℓ ∈ N. Let 0 ≤ t0 ≤ · · · ≤ tℓ = 1,
and 0 ≤ p1, . . . , pℓ ≤ 1. Define intervals I+i := (+ti−1,+ti] and I−i := [−ti,−ti−1) for i ∈ [ℓ] and
I0 := [−t0,+t0]. Let S : [−1,+1] → [0, 1] be the antisymmetric selection function which maps I+i

to pi and I−i to 1− pi for i ∈ [ℓ] and I0 to 1
2 . Then the approximation ratio α(OS) achieved by OS

equals the value of the following linear program:



















































minimize
{w(c):c∈C}

∑

c∈C

p(c)w(c)

s.t. w(c) ≥ 0 ∀c ∈ C
∑

c∈C+

w(c) = 1

bi(W
+(i) +W−(i)) ≤ W+(i)−W−(i) ∀i ∈ [±ℓ]

W+(i)−W−(i) ≤ ai(W
+(i) +W−(i)) ∀i ∈ [±ℓ]

where we define the set of N-valued matrices:

C =







c ∈ N
{±1}×[±ℓ] :

∑

b∈{±1}

∑

i∈[±ℓ]

cb,i = 2







;

the subset of C supported on the +1 row:

C+ = {c ∈ C : c−1,i = 0 ∀i ∈ [±ℓ]};

a constant for each vector in C:

p(c) =

(

1

2

)c(+1,0)+c(−1,0)
∏

i∈[ℓ]

p
c(+1,+i)+c(−1,−i)
i (1− pi)

c(+1,−i)+c(−i,+i);

constants for i ∈ [±ℓ]:
ai = sup Ii and bi inf Ii;

and the linear functions on {w(c)}, for i ∈ [±ℓ]:

W+(i) =
∑

c∈C

c+i w(c) and W−(i) =
∑

c∈C

c−i w(c).

We note that Feige and Jozeph [FJ15] gave an alternative (but highly similar) LP which worked
for arbitrary selection functions — i.e., not just antisymmetric ones — but required roughly twice
as many variables. In this paper, we only run the LP for antisymmetric selection functions, so we
use the LP from [Sin23] because of the cost savings.
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Figure 1: The step function PLSigmoid1/2 and its discretization into ℓ = 5 positive bias classes. The
discretization is the function in red. The jump discontinuities are notated using standard marks:
Open circles are open interval ends and closed circles are closed interval ends. The continuous
(non-discretized) function PLSigmoid1/2 disagrees with its discretization only within the interval
[−1/2,+1/2] (marked by the vertical dashed line segments). The continuous function is represented
by the black line segment within this interval.

3 Improved oblivious algorithms (Theorem 1.5)

Our goal in this section is to prove Theorem 1.5:

Theorem 1.5 (New upper bound). There exists an oblivious algorithm OS achieving an approxi-
mation ratio α(OS) ≥ 0.485359.

To prove this theorem, we introduce a specific type of antisymmetric selection function we are
interested in, namely, an “S -shaped” piecewise linear function:

Definition 3.1 (PL sigmoid functions). A piecewise linear (PL) sigmoid function is a selection
function of the following form: For an intercept parameter b ∈ [0, 1],

PLSigmoidb(x) =











0 x ≤ −b

1/2 + x
2b −b ≤ x ≤ +b

1 x ≥ +b.

Note that according to PLSigmoidb, vertices with bias exceeding b in magnitude are assigned
deterministically (i.e., they are always assigned to +1 or −1, depending on their sign), and vertices
with smaller bias interpolate linearly between these two extremes. See Fig. 1 for a visual depiction
of a PL sigmoid and its discretization.

In the prior works [FJ15; Sin23], the highest approximation ratios achieved by oblivious algo-
rithms were found by using discretized versions of PLSigmoid1/2. These discretizations — in the
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antisymmetric case — are controlled by a parameter ℓ, denoting the number of positive bias classes.
(There are L = 2ℓ+ 1 bias classes in general.) Singer [Sin23] used ℓ = 200, though it appears that
his discretization was uniform and so it split the interval [1/2, 1] into ≈ 100 bias classes, and we
condense them into only one bias class. We also use a finer discretization with ℓ = 251. Most
importantly, we use a different intercept parameter b. To choose b, we performed a binary search
using a discretization with ℓ = 51. We found that an intercept at b = 149/309 gives the best bound
among the intercepts we inspected.

Proof of Theorem 1.5. We set b = 149/309 and use a discretization of PLSigmoidb with ℓ = 251
classes. We plug this discretization into the linear program for calculating approximation ratios for
antisymmetric functions (Theorem 2.1). Ours is the natural discretization: We set ti =

i
ℓ−1b for i ∈

{0, . . . , ℓ−1}, and then tℓ = 1.4 We set pi =
PLSigmoidb(

i−1

ℓ−1
)+PLSigmoidb(

i
ℓ−1

)

2 for i ∈ [ℓ−1], and pℓ = 1.
Evaluating the linear program in Theorem 2.1 using the code in figures/new algorithm.py in
the source repository, we deduce α(OPLSigmoidb

) ≥ 0.485275.

Fig. 2 below depicts the effect of increasingly fine discretization on approximation ratio. We
suspect that even further improvements are possible by running the LP for an even finer discretiza-
tion, but we do not know how to calculate the limit of infinitely fine discretization (i.e., the value
of the actual step function).

4 Lower bounds

In this section, we present a number of lower bounds against oblivious algorithms. These bounds
hold at varying levels of “granularity”: Some are only against individual selection functions (like
PLSigmoid1/2, constructed in the last section), while others hold against all PL sigmoid functions,
all antisymmetric functions, or even all functions. However, the proofs of these theorems are united
by an underlying methodology for producing candidate lower bound graphs, which combines grid
search and linear programming. We discuss this methodology next before turning to the proofs of
specific bounds.

4.1 Methodology for finding hard instances

First, we describe our general strategy in this section for finding graphs that are hard for oblivious
algorithms. This description is not strictly necessary for our proofs: One may simply take the
explicit graphs we produce and verify that they have the desired lower bound properties. Also,
some of the graphs are simple enough that one could have invented them by hand. However, we
include this description to shed some light on where the more complex graphs come from. Also,
when we can indeed prove such “uniform” lower bounds, the resulting quantitative bound will hold
even against ensembles of oblivious algorithms.

Ideally, given a set C of oblivious algorithms, we would like to produce a graph G and show that
all algorithms in C perform poorly on G. This is, in some sense, “dual” to the problem of finding
good oblivious algorithms, where we want a single oblivious algorithm that performs well on all
graphs. In general, we do not have strong evidence as to whether or not this dual procedure is
tight, i.e., whether we can certify optimal bounds on the performance of algorithms for the classes
we’re interested in by coming up with a single hard graph G. Indeed, some of our proofs instead

4À la Theorem 2.1, this creates L = 2ℓ + 1 = 503 bias classes, labeled I
−ℓ, . . . , I+ℓ. In particular, I0 = [0, 0],

I+i = ( i−1

ℓ−1
b, i

ℓ−1
b] for i ∈ [ℓ− 1], and i+ℓ = (b, 1], and I

−i is defined symmetrically.
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PLSigmoid149/309
PLSigmoid1/2

Figure 2: A plot depicting how the fineness of discretization affects the approximation ratio calcu-
lated by the linear program of Theorem 2.1, for two continuous selection functions: PLSigmoid1/2
and PLSigmoid149/309. Each point represents the approximation ratio of some oblivious algorithm,
as calculated by the linear program in Theorem 2.1. The horizontal axis records the number of
bias classes (up to sign, i.e., as in Theorem 2.1), and the vertical axis records the calculated ap-
proximation ratio. This plot was produced by figures/discretization.py in the source code.

consider a small set of graphs and prove that any oblivious algorithm in C must perform poorly on
at least one of these algorithms; we do not know whether this potentially stronger proof method is
tight, either.

Let L ∈ N, −1 ≤ t1 < · · · < tL ≤ +1, and P ⊆ [0, 1]L. We will be interested in graphs that
contain only vertices of biases t1, . . . , tL. For any such graph G, we can view a vector p ∈ P ⊆ [0, 1]L

as an oblivious algorithm: Each vertex of bias i is assigned to 1 w.p. p(i). Our LP will output
the graph which is “worst-case” for all algorithms in P (i.e., such that the performance of the best
algorithm in P is minimized), among all graphs with vertices of bias t1, . . . , tL.











































minimize
{w(v1,v2):v1,v2∈V }

max
p∈P

∑

v1=(b1,i1),v2=(b2,i2)∈V

p(i1)(1− p(i2))w(v1, v2)

s.t. w(v1, v2) ≥ 0 ∀v1, v2 ∈ V
∑

i1,i2∈[L]

w((1, i1), (0, i2)) = 1

ti(W
+(i) +W−(i)) = W+(i)−W−(i) ∀v = (b, i) ∈ V
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where we define the linear functions

W+(v1) =
∑

v2∈V

w(v1, v2) and W−(v1) =
∑

v2∈V

w(v2, v1).

(While the objective, as written, is the maximum of a finite number of linear functions, this can
be converted to a standard-form LP by using the standard trick which introduces one additional
variable.) Note that every feasible solution to this linear program is a weighted, directed graph on
V where:

1. The cut from {1} × [±ℓ] to {0} × [±ℓ] satisfies weight 1.

2. The vertices (0, i) and (1, i) have bias ti (if they are nonisolated) for i ∈ [±ℓ].

3. For p ∈ [0, 1]L, the quantity
∑

v1=(b1,i1),v2=(b2,i2)∈V
p(i1)(1 − p(i2))w(v1, v2) calculates the

expected weight cut by the oblivious algorithm p.

That this suffices to produce the worst-case graph is essentially a consequence of some reasoning
due Feige and Jozeph [FJ15] for a similar LP; the idea is to “condense” vertices into 2L equivalence
classes based purely on their bias and their assignment in an optimal cut, and also to rescale so
that the optimal cut has weight 1.

However, to find lower bounds against concrete classes of selection functions, two issues remain.
Firstly, we need to choose the biases b1, . . . , bL. We typically do this by either fixing a small value
of L and performing a grid search, or by picking uniformly spaced points. Secondly, in the case
where we desire to prove a bound against a large or infinite set P∗ of selection functions — e.g., the
set of all antisymmetric selection functions, or PL sigmoid selection functions — we need to reduce
the set of selection functions to a tractable size. We typically do this by discretizing the space of all
selection functions in some form to form some small subset P. This does cause some additional loss
in the approximation ratio, which will ideally be small. To carry out the proof, we first produce
a candidate graph G which holds against P, and then (ideally) show that it holds almost as well
against P∗ by directly solving the maximization problem over P∗. In the case where P∗ is the set
of all antisymmetric functions (or all functions), maximizing the weight of the assignment over P∗

corresponds to solving an L-variate quadratic optimization problem.

4.2 Bounds against PLSigmoid1/2 (Theorem 1.6)

We have the following bound on PLSigmoid1/2:

Theorem 1.6 (Lower bound for PL sigmoid selection with b = 1/2 intercept). α(OPLSigmoid1/2
) ≤

0.485282.

Proof. Let G denote the graph in Fig. 3 with 1 < c < 3 TBD. Vertex 1 has bias + c−1
c+1 . Since c < 3,

c−1
c+1 < 1

2 . Thus, PLSigmoid1/2 assigns vertex 1 to 1 w.p. p := 1
2 + c−1

c+1 , and 2 to 1 w.p. 1 − p,
satisfying weight

p2c+ q2 =

(

1

2
+

c− 1

c+ 1

)2

c+

(

1

2
− c− 1

c+ 1

)2

.

Thus, PLSigmoid1/2 achieves ratio at most

p2 + q2c−1 =

(

1

2
+

c− 1

c+ 1

)2

+

(

1

2
− c− 1

c+ 1

)2

c−1
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1

2

c 1

Figure 3: Parameter: c > 1. The LIGHT BLUE vertex (1) has bias + c−1
c+1 . The PINK vertex

(2) has bias − c−1
c+1 . The assignment 1 → 1, 2 → 0 satisfies weight c. An oblivious assignment

1 → p, 2 → q satisfies weight p(1− q)c+ q(1− p). (Every two-vertex graph (without self-loops and
with two nontrivial edges) is isomorphic to this graph up to rescaling.)

for all 1 < c < 3. Setting5 c = (9 + 12
√
2)/23, the expression is equal to 6

√
2 − 8 ≈ 0.485282, as

desired.

4.3 Lower bound for PL sigmoid functions (Theorem 1.7)

Theorem 1.7 (Lower bound for PL sigmoid selection with arbitrary intercept). For every b ∈ [0, 1],
α(OPLSigmoidb

) ≤ 0.486.

Proof of Theorem 1.7. We prove this theorem by considering three separate cases based on the
value of the intercept b of PLSigmoidb:

Case 1: 1/2 ≤ b ≤ 1. For this case, we consider the graph from Theorem 1.6 with c = 1.12916.
It follows from the proof of Theorem 1.6 that PLSigmoid1/2 achieves an approximation ratio of

at most 0.485282 on this graph. The approximation ratio of PLSigmoidb on this graph is given by

1.12916p2 + (1− p)2

1.12916
,

where p = S(b1) and b1 = 0.12916/2.12916. We now argue that 1/2 ≤ b ≤ 1 implies that PLSigmoidb
gets an approximation ratio of at most 0.485282 on this graph. Observe that the derivative of
1.12916p2 + (1− p)2 is 0 at 1/2.12916 ≈ 0.46967. Hence in the range 0.46967 ≤ p ≤ 1, 1.12916p2 +
(1−p)2 is an increasing function of p. By the definition of PLSigmoidb, we have that p = 1/2+b1/2b
when b ≥ 1/2. Hence, for 1/2 ≤ b ≤ 1, the largest possible approximation is achieved at b = 1/2
and we already established that this is at most 0.485282.

Case 2: 0.225 ≤ b ≤ 1/2. Let bi = −0.475 + 0.05(i − 1) for all i ∈ {1, . . . , 20}.
We describe a concrete graph GLP, which we visualize in the next figure.6 GLP has 36 ver-

tices, which we label {1, . . . , 18} and {3′, . . . , 20′}. The graph has the property that for each
i ∈ {1, . . . , 20}, the vertices i and i′ have bias bi. (We treat the biases of the nonexistent vertices 1′,
2′, 19, and 20 as vacuous.) Further, GLP has the following very simple unweighted edge structure:

1. For each i ∈ {1, . . . , 18}, there is an edge i → (i+ 2)′.

5This value of c gives the minimum possible bound (though this fact is not necessary).
6This graph was originally calculated by the LP paradigm described in §4.1. P consisted of the single rounding

function PLSigmoid149/309 . The particularly simple structure of the found solution let us describe it analytically, as
we do here.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′ 12′ 13′ 14′ 15′ 16′ 17′ 18′ 19′ 20′

Figure 4: The (unweighted version) of the graph used in Case 2 of the proof of Theorem 1.7.

2. For each i ∈ {1, . . . , 17}, there is an edge (i+ 3)′ → i.

3. There are edges 3′ → 1 and 20′ to 18. (Note that 3′ and 20′ have no edges of type (2).)

One may verify that the bias constraints and the edge structure together determine every edge
weight up to vertex rescaling: E.g., if a vertex v has bias b and indegree w, then it must have
outdegree w 1+b

1−b .
Since GLP is fixed, for any intercept b ∈ (0, 1], valGLP

(PLSigmoidb) is a quadratic function of
the selection probabilities {PLSigmoidb(v)v∈V (G)}. Further, recall that vertices in GLP have biases
{b1, . . . , b20}, so we are interested in the selection probabilities {PLSigmoidb(bi)}i∈[20]. For each bias
bi, if bi ≤ −b, then PLSigmoidb(bi) = 0 and if bi ≥ b, then PLSigmoidb(bi) = 1. Otherwise, we can
write

PLSigmoidb(bi) =
bi + b

2b
=

1

2
+

bi
2b

,

a linear function in b−1. Hence over any interval b ∈ [bi, bi+1], valGLP
(PLSigmoidb) is a quadratic

function of b−1. We can therefore find the maximum b∗ of this quadratic function; if b∗ is in the
interval, we are done, otherwise we take the maximum value over b ∈ {bi, bi+1}.

We perform the explicit calculations for the edge-weights and the oblivious ratio in Mathematica
(plsigmoid lb.nb in the source repository) since the rational numbers have many digits. The
maxima over the intervals [b20, 1/2], [b19, b20], [b18, b19], [b17, b18], [b16, b17], and [b15, b16] rounded up
in the sixth decimal place are, respectively, 0.485895, 0.485870, 0.485488, 0.484375, 0.482019, and
0.477739; all are less than 0.486.

Case 3: 0 ≤ b ≤ 0.225. Now, consider the graph shown in Figure 5 with c = 1+b
1−b . Vertices 1

and 2 have bias b and vertices 3 and 4 have bias −b. By the definition of PLSigmoidb, it assigns
{1, 2} → 1, {3, 4} → 0 and the corresponding cut has value c2 − 1. On the other hand, the
assignment {1, 3} → 1, {2, 4} → 0 satisfies weight c2 − 1+ 2 · 1 = c2 +1. Hence, the approximation
ratio is at most (c2 − 1)/(c2 + 1). For b ≤ 0.225, this value is less than 0.486.

We conclude that no PL sigmoid function can achieve an approximation ratio of 0.486, as
desired.

5 Lower bound for arbitrary selection functions (Theorem 1.9)

In this section, we prove Theorem 1.9:

Theorem 1.9 (Lower bound for general selection). For every selection function S, OS achieves
an approximation ratio α(OS) ≤ 0.4955.

This gives a lower bound on the ratio achievable by any (not necessarily antisymmetric) selection
function. We use the graph in Fig. 3 above as well as Fig. 5 below:
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1

2

3

4

1 c 1 cc2 − 1

Figure 5: Parameter: c > 1. The LIGHT BLUE vertices ({1, 2}) have bias + c−1
c+1 (note that

(c2−1)+1−c
(c2−1)+1+c = c(c−1)

c(c+1) = c−1
c+1). The PINK vertices ({3, 4}) have bias − c−1

c+1 . The assignment

{1, 3} → 1, {2, 4} → 0 satisfies weight c2 − 1 + 2 · 1 = c2 + 1. An oblivious assignment {1, 2} →
p, {3, 4} → q satisfies weight p(1− p)(c+ 1) + q(1− q)(c+ 1) + p(1− q)(c2 − 1).

Proof. Let 0 ≤ λ < 1 and c > 1 be parameters. Consider a graph G consisting of disjoint copies of
the graphs in Figs. 3 and 5 weighted by λ and 1− λ, respectively. Examining these graphs, we see
that all vertices in G have bias ± c−1

c+1 . Further, there exists a cut cutting weight

λc+ (1− λ)(c2 + 1) (5.1)

while an oblivious assignment assigning the positive-bias vertices to 1 w.p. p and the negative-bias
vertices to 1 w.p. q achieves value

λ(p(1− q)c+ q(1− p)) + (1− λ)p(1− p)(c+ 1) + q(1− q)(c+ 1) + p(1− q)(c2 − 1). (5.2)

At λ = 15
32 and c = 9

8 ,
7 the quantity in Eq. (5.2) is optimized at (p, q) = (13522295 ,

943
2295 ). Dividing

this value by the value of Eq. (5.1) at the same values of λ and c, we arrive at a ratio of 4031104
8135775 ≈

0.4955.

6 Lower bounds for antisymmetric selection functions

(Theorem 1.8)

In this section, we prove Theorem 1.8:

Theorem 1.8 (Lower bound for symmetric selection). For every antisymmetric selection function
S, OS achieves an approximation ratio α(OS) ≤ 0.4889.

This theorem improves on the bound of Feige and Jozeph [FJ15] (see Theorem 1.2 above). The
proof uses the following single graph:

Proof. LetG denote the graph in Fig. 6.8 As described in the figure’s caption, this graph has a cut of
weight 179.28, while any oblivious cut has value v(p, q) = 53.6175−36p2+p(70.02−36q)+35.01q−9q2

7These fractions were suggested by numerical search on a computer; they are almost certainly non-optimal, but
we include fractions so that the calculations in this proof can be checked exactly. For simplicity’s sake, we mention
that a ratio strictly below 1

2
(and indeed, better than that of Theorem 1.3) is achieved by redoing this calculation at

λ = 1

3
and c = 5

4
.

8We found the graph in Fig. 6 by employing the linear programming methodology described in §4.1. We considered
L = 5 possible bias classes, {±b1,±b2, 0}, where b1 and b2 were multiples of 1

10
, and performed a grid search over

these possibilities. To discretize the space of all antisymmetric functions, we considered all functions mapping b1 and
b2 to multiples of 1

100
between 1

2
and 1.
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1 3 75

2 4 86

6.2775 7.6725 12.1275 9.92253.6 5.4
94.185

118.215 22.005

13.9951.035

25.065
24.03

Figure 6: Graph giving an improved lower bound against antisymmetric selection functions. The
PINK vertices (1 and 2), the PURPLE vertices (3 and 4), the LIGHT BLUE vertices (7 and 8),
and the DARK BLUE vertices (5 and 6) have biases −0.1, 0, +0.1, and +0.2, respectively. The
cut assigning {1, 3, 5, 7} → 1 and {2, 4, 6, 8} → 0 has weight 6.2775+118.215+25.065+3.6+13.995+
12.1275 = 179.28. An antisymmetric oblivious cut assigning {1, 2} → 1−p, {3, 4} → 1

2 , {5, 6} → q,
and {7, 8} → p has value (6.2775+7.6725)p(1−p)+94.185 · 12 (1−p)+118.215 · 12p+24.03 · 14 +1.035 ·
1
2(1−q)+25.065· 12q+22.005p(1−q)+13.995q(1−p)+(3.6+5.4)q(1−q)+(12.1275+9.9225)·p(1−p) =
53.6175 − 36p2 + p(70.02 − 36q) + 35.01q − 9q2.

where 0 ≤ p, q ≤ 1 are assignment probabilities for the two bias classes. Since ∂v
∂p = 70.02−72p−36q

and ∂v
∂q = 35.01 − 36p − 18q, both derivatives vanish when q = 1.945 − 2p. Substituting back, we

see that v(p, 1.945− 2p) = 87.6647; this is the minimum value of v(p, q) over R2 (and it is achieved
at e.g. (p, q) = (0.6, 0.745) ∈ [0, 1]2). Finally, 87.6647

179.28 ≈ 0.48898, as desired.
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A Recap: The prior lower bound of Feige and Jozeph [FJ15]

(Theorem 1.2)

In this appendix, we include a brief description and analysis of the graph used to prove the lower
bound of Feige and Jozeph [FJ15] (Theorem 1.2):

Theorem 1.2 (Prior lower bound for antisymmetric selection, [FJ15, Thm. 1.4]). If S : [−1,+1] →
[0, 1] is an antisymmetric selection function, then the oblivious algorithm OS achieves an approxi-
mation ratio α(OS) ≤ 0.4899.

To prove this theorem, Feige and Jozeph [FJ15] used the pair of graphs appearing in Fig. 7
below:

1

2

3

4

5

6

1 c c2 − 1 c2 − 1 c2 − 1 1 c

(a) Parameter: c > 1 (“G1” from [FJ15]).

The LIGHT BLUE vertices ({1, 2}) have bias

+(c − 1)/(c + 1). The PURPLE vertices

({3, 4}) have bias 0. The PINK vertices
({5, 6}) have bias −(c − 1)/(c + 1). The assign-
ment {1, 3, 5} → 1, {2, 4, 6} → 0 satisfies weight
2 · (c2 − 1)+ 2 · 1 = 2c2. An oblivious assignment
{1, 2} → p, {3, 4} → q, {5, 6} → r satisfies weight
p(1− p)(c+ 1)+ p(1− r)(c2 − 1) + r(1− r)(c2 −
1) + r(1 − q)(c2 − 1) + q(1 − q)(c+ 1).

1

2

3

4

1 c 1 cc− 1

(b) Parameter: c > 1 (“G2” from [FJ15]). The

LIGHT BLUE vertex (2) has bias +(c−1)/(c+

1). The PURPLE vertices ({1, 4}) have bias 0.
The PINK vertex (3) has bias −(c−1)/(c+1).
The assignment {1, 3} → 0, {2, 4} → 1 satisfies
weight 2c. An oblivious assignment 2 → p, 3 →
q, {1, 4} → r satisfies weight p(1 − r)(c) + r(1 −
p) + r(1 − r)(c − 1) + r(1 − q)(c) + q(1 − r).

Figure 7: The pair of graphs used to prove a lower bound against antisymmetric selection functions
by Feige and Jozeph [FJ15].

Proof. Let 0 ≤ λ ≤ 1 and c > 1 be two TBD constants. Let G denote a weighted disjoint union of
the graphs in Figs. 7a and 7b, weighted by λ and 1− λ, respectively. As in the figures’ caption, G
has a cut satisfying weight

λ(2c2) + (1− λ)(2c).

Now, consider an antisymmetric selection function S : [−1,+1] → [0, 1]. Suppose S(+ c−1
c+1) = p. By

antisymmetry, S(0) = 1
2 and S(− c−1

c+1) = 1− p. Thus, as in the caption, OS satisfies weight

λ

(

p(1− p)(c+ 1) +
1

2
p(c2 − 1) +

1

4
(c2 − 1) +

1

2
p(c2 − 1) + p(1− p)(c+ 1)

)

+ (1− λ)

(

1

2
p(c) +

1

2
(1− p) +

1

4
(c− 1) +

1

2
p(c) +

1

2
(1− p)

)

= (1− λ)

(

1 +

(

1

4
+ p

)

(c− 1)

)

+ λ

((

1

4
+ p

)

(c2 − 1) + 2(c+ 1)(1 − p)p)

)
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Thus, OS has ratio at most

(1− λ)
(

1 +
(

1
4 + p

)

(c− 1)
)

+ λ
((

1
4 + p

)

(c2 − 1) + 2(c+ 1)(1 − p)p
)

2(λc2 + (1− λ)c)
.

Evaluating at c = 5
4 and λ = 3

4 (found in [FJ15] using computer search) and then maximizing over
p gives the bound.

We note that the graphs we used to prove Theorem 1.9, i.e., Figs. 3 and 5, are simpler than the
graphs used in [FJ15] to prove Theorem 1.2, i.e., Fig. 7: In particular, there are no vertices of bias
zero.
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