
Probably Approximately Precision and Recall Learning

Lee Cohen∗ Yishay Mansour† Shay Moran‡ Han Shao§

Abstract

Precision and Recall are foundational metrics in machine learning applications where both
accurate predictions and comprehensive coverage are essential, such as in recommender systems
and multi-label learning. In these tasks, balancing precision (the proportion of relevant items
among those predicted) and recall (the proportion of relevant items successfully predicted) is
crucial. A key challenge is that one-sided feedback—where only positive examples are observed
during training—is inherent in many practical problems. For instance, in recommender systems
like YouTube, training data only consists of songs or videos that a user has actively selected,
while unselected items remain unseen. Despite this lack of negative feedback in training, it
becomes crucial at test time; for example, in a recommender system, it’s essential to avoid
recommending items the user would likely dislike.

We introduce a Probably Approximately Correct (PAC) learning framework where each
hypothesis is represented by a graph, with edges indicating positive interactions, such as between
users and items. This framework subsumes the classical binary and multi-class PAC learning
models as well as multi-label learning with partial feedback, where only a single random correct
label per example is observed, rather than all correct labels.

Our work uncovers a rich statistical and algorithmic landscape, with nuanced boundaries on
what can and cannot be learned. Notably, classical methods like Empirical Risk Minimization
fail in this setting, even for simple hypothesis classes with only two hypotheses. To address these
challenges, we develop novel algorithms that learn exclusively from positive data, effectively
minimizing both precision and recall losses. Specifically, in the realizable setting, we design
algorithms that achieve optimal sample complexity guarantees. In the agnostic case, we show
that it is impossible to achieve additive error guarantees (i.e., additive regret)—as is standard in
PAC learning—and instead obtain meaningful multiplicative approximations.

∗Stanford. Email: leecohencs@gmail.com. Authors are ordered alphabetically.
†Tel Aviv University and Google Research. Email: mansour.yishay@gmail.com.
‡Departments of Mathematics, Computer Science, and Data and Decision Sciences, Technion and Google Research.

Email: smoran@technion.ac.il.
§Harvard. Email: han@cmsa.fas.harvard.edu.

ar
X

iv
:2

41
1.

13
02

9v
1

 [
cs

.L
G

]
 2

0
N

ov
 2

02
4

mailto:leecohencs@gmail.com
mailto:mansour.yishay@gmail.com
mailto:smoran@technion.ac.il
mailto:han@cmsa.fas.harvard.edu

1 Introduction

Precision and Recall are fundamental metrics in a variety of machine learning applications where
accurate prediction and comprehensive coverage are both critical. Recommender systems are one
example of machine learning applications where precision and recall are essential. These systems,
used in online platforms like streaming services and e-commerce websites, suggest items—such as
movies, music, or products—that match user preferences. For instance, Netflix aims to recommend
shows that a user will watch and enjoy, based on limited past interactions. Another example is
multi-label learning, in which each input corresponds to multiple labels (for instance, an image may
contain multiple objects), and the learning objective is to return all labels associated with each
input.
A critical aspect of designing such systems is balancing two key metrics:

• Precision- The proportion of recommended items that the user likes. Low precision loss means
most suggested items are liked by the users.

• Recall- The proportion of items the user would like that are successfully recommended. Low
recall loss ensures the system does not miss out on suggesting items the user would have liked.

Precision and recall are often at odds. Increasing the number of recommendations can improve
recall but may reduce precision. Beyond recommender systems, which will be our running example,
these metrics play a vital role in multi-label learning, such as predicting all the objects present in an
image, and in platforms like dating apps, where matching users effectively depends on balancing the
relevance and variety of suggestions.
In an ideal scenario, we might consider a full information model where, for each user in the training
set, the algorithm has access to all the items they like. This setup implicitly includes negative
examples, as items not on a user’s list are considered unliked. At test time, the algorithm would
then predict a list of recommendations for a given random user. Such a setting aligns well with the
standard Probably Approximately Correct (PAC) framework [Val84], allowing us to apply standard
PAC solutions (e.g., Empirical Risk Minimization).
However, this assumption of full information is often unrealistic in many applications. In real-world
scenarios, we typically only observe a small fraction of the items a user liked in the training set, with
no explicit information on items the user would not chosen. This setting is better characterized as a
partial-information model. For instance, in Spotify, for each observed user in our training data, we
might only know the songs they have listened to, without knowing about the vast majority they
have not listened to. At test time, given a random user drawn from the same distribution as the
training set, we present a full list of recommended items (and not just a single song).
Following standard practice in learning theory, we consider a hypothesis class H. Each hypothesis
in H is modeled by a finite graph, g. For example, in the context of recommender systems, nodes
represent users and items, and an edge between a user and an item indicates that the item is liked
by the user (and should therefore be recommended). Our goal is to return a graph that minimizes
both precision and recall losses. The recall and precision losses of graph g are measured with respect
to the target graph gtarget, which captures the true set of items liked by each user:

ℓprecision(g) := Ex∼D

[|Ng (x) \Ngtarget(x)|
ng (x)

]
,

ℓrecall(g) := Ex∼D

[|Ngtarget(x) \Ng (x)|
ngtarget(x)

]
,

1

where Ng′(x) denotes the neighborhood of a node x in a graph g′ and ng′(x) = |Ng′(x)| denotes the
number of neighbors of x.
Note that binary and multiclass PAC learning can be viewed as special cases of our model, where
the graphs are bipartite: one side contains nodes representing the inputs x, the other side contains
nodes represent the labels y, and an edge (x, y) indicates that y is the label of x. We can also
model multi-label PAC learning by allowing multiple edges (x, y) where each y represents one of the
(potentially, multiple) labels of x.
We distinguish between two settings- realizable and agnostic. In the realizable setting, we as-
sume gtarget is in the class H, and, aim to find an hypothesis with small precision and recall losses.
In the agnostic setting, we do not assume that a perfect hypothesis is in the class. Instead, we
aim to compete with the “best” hypothesis (graph) in the class, acknowledging that some error is
unavoidable. In the context of the agnostic setting, defining the “best” hypothesis is subtle. One
hypothesis might have high precision but low recall, while another has the opposite. Depending on
the application’s needs, one may prefer higher precision over recall or vice versa.
This naturally leads us to the concept of Pareto-loss objective, which captures the trade-offs between
precision and recall along the Pareto frontier.1 Namely, the “best” graphs are on a Pareto frontier,
which is the set of graphs where no other graphs are better in both precision and recall simultaneously
(see, e.g., Figure 1). Here, we try, given desired precision and recall losses parameters (p, r) to return
a graph whose precision and recall losses (p′, r′) satisfy p′ ≲ p and r′ ≲ r. For example, one might
aim to optimize precision while keeping recall below a specific threshold (e.g., at most 0.5).

Figure 1: Example of graphs with varying precision and recall losses. Each point is a distinct graph,
with red points on the Pareto frontier, showing optimal trade-offs between precision and recall losses.
The empty graph always achieves zero precision loss (but has no guarantee on the recall loss), while
the complete graph always achieves zero recall loss (but has no guarantee on the precision loss).

Our goal is to design algorithms whose sample complexity is polynomial in the log size of the class
and the inverses of the accuracy and confidence parameters, and in some cases, on the maximum
degree of the graph (which is arguably small in certain applications). We focus on finite hypothesis
classes and aim for sample complexity bounds that depend logarithmically, rather than linearly,
on the size of the class. This goal is motivated by standard sample complexity bounds in PAC
learning and is particularly relevant when training data is costly to obtain, as is often the case with

1The term “Pareto” originates from Vilfredo Pareto, an economist who observed that certain distributions followed
a pattern where improvements in one dimension often involved trade-offs in another. The Pareto frontier, inspired by
this principle, represents optimal trade-offs between competing objectives. Here, our Pareto loss captures the balance
between precision and recall, aiming to improve both while acknowledging the inherent trade-off.

2

https://en.wikipedia.org/wiki/Pareto_front

human-provided feedback.2 However, we aim to avoid dependencies on the number of vertices or
edges in the graph.
Our learning problem is significantly more challenging than standard supervised learning tasks due to
the absence of negative examples. Namely, we only observe positive examples, making it impossible
to estimate precision loss directly. Without knowing what items users dislike, we cannot estimate
how many irrelevant items a hypothesis might recommend. This limitation challenges approaches
like standard supervised learning, which rely on both positive and negative examples.
In standard supervised learning, a classical solution known as Empirical Risk Minimization (ERM)
involves finding a hypothesis that best fits the data by minimizing the average loss over all observed
examples. However, in our case, the absence of negative examples means that ERM cannot be
applied effectively, as there is no way to determine how well a hypothesis avoids irrelevant items.
For example, the complete graph (where every possible recommendation is made) is consistent with
every training set, since we have no negative examples to contradict it. However, such a hypothesis
might have poor precision. Without negative examples in the training set, any hypothesis that covers
all observed positive examples appears equally valid, even if it recommends many irrelevant items
and incurs a high precision loss. The failure of the ERM principle is not unique to our learning
problem; it also occurs in other learning problems, such as multi-class classification [DSBS15], density
estimation [DL01; BKM19], and partial concept learning [AHHM22].
In fact, it is not just that ERM would fail; we provide an example in which two hypotheses have
nearly the same recall loss but very different precision losses, making it impossible to determine
which hypothesis has better precision loss based solely on the training data (see Example 1 for more
details).
These challenges necessitate novel approaches to learning and evaluating hypotheses.

Contributions

• Learning Model: We propose a learning model that operates under partial information,
where the algorithm observes only positive examples. For each user drawn from unknown
distribution D, it randomly observes one item they like. This model reflects real-world
constraints and is more practical than assuming access to complete preference profiles as done
in multi-label learning.

• Realizable Setting: We design algorithms that, given a sample of size

O

(
log(|H|/δ)

ε

)
,

achieve recall and precision losses of at most ε with probability at least 1 − δ. We propose
two distinct approaches to achieve this goal: the first circumvents the challenge of estimating
precision by minimizing an appropriate surrogate loss, while the second takes a more intuitive
approach inspired by the maximum likelihood principle [SB14]. In essence, this second
algorithm, when presented with two graphs consistent with the data, prioritizes the one with
smaller degrees in a suitably quantified sense.

• Agnostic Setting: We demonstrate that achieving a vanishing additive error, as is standard
in learning theory, is impossible in this setting by providing lower bounds on the sum of

2While it would be interesting to explore infinite hypothesis classes and characterize them via a combinatorial
measure in the style of VC dimension, the findings in [LB24] suggest that such a dimension may not exist in this
setting. We leave this as an intriguing open question, as addressing it falls beyond the scope of this work, which
focuses on the finite case—a setting that is already challenging.

3

precision and recall losses, with multiplicative factors greater than 1. In the other direction,
we show that constant multiplicative factor guarantees are indeed achievable by adapting our
realizable setting algorithms to the agnostic case. Closing the gap between our upper and lower
bounds on the best achievable multiplicative factor (5 vs. 1.05) remains an open question.
For the Pareto-loss case, we establish both upper and lower bounds for the following question:
Given that there exists a hypothesis in the class with precision and recall losses (p, r), which
guarantee pairs (p′, r′) are achievable? Finally, we pose open questions about determining the
optimal factors achievable in the agnostic setting.

Related Work Precision and recall are natural and standard metrics used broadly in machine
learning, spanning applications from binary classification [JL19], multi-class classification [GBV20],
regression [TR09], and time series [TLZAG18] to information retrieval [AKV16] and generative
models [SBLBG18]. Beyond precision-recall, another related metric—the area under the ROC curve
(AUC)—has also been extensively studied in the history of binary classification [CM03; CM04;
Ros04; AGHHR05], with a focus on generalization. Our work, however, studies a different problem
of multi-label learning where the goal is to recommend a list of items to each user. Recommending a
list of items has also been addressed in the context of cascading bandits [KSWA15]. However, while
our objective is to identify the items that each user likes, their focus is on learning the top K items
that are liked by most users. Another feature of our learning problem is that we can only learn from
positive examples. PAC learning for binary classification from positive examples has been studied in
the literature [Den98; DDGL99; LDG00; BD20].
Multi-label learning [McC99; SS00] has been an area of study in machine learning, with various,
primarily experimental approaches (see, e.g., [EW01; PC11; KVJ12] and [ZZ14; BTDK22] for
surveys). In multi-label learning, the training set consists of examples, each associated with multiple
labels rather than just one. The goal is to train a model that can learn the relationships between
the features of each example and all its labels. At test time, the learner predicts a list of labels for
new examples, aiming to capture all the relevant labels that apply, rather than just a single one.
Some works have examined multi-label learning from a theoretical standpoint, focusing in particular
on the Bayes consistency of surrogate losses. Bayes-consistency in multi-label learning ensures that
minimizing a surrogate loss also leads to minimizing the true target loss, which is crucial in multi-label
settings where optimizing the actual loss is often computationally infeasible as it is non-convex,
discrete losses in multi-label settings. Initiated by [GZ11] who first addressed Bayes-consistency
for Hamming and ranking losses, showing binary relevance’s consistency with Hamming loss but
highlighting ranking loss difficulties. Extensions include rank-based metrics like precision@κ and
recall@κ [MRRK19], which are loss functions defined under the constraint that the number of labels
predicted by the model is limited to κ. Recently, [MMZ24] established H-consistency bounds for
multi-label learning, offering stronger guarantees than Bayes-consistency by providing non-asymptotic
guarantees that apply to finite number of samples. Our model is inherently more challenging than
traditional multi-label learning because our training set consists of examples, each associated with
only a single correct label rather than all possible correct labels, with no negative feedback. Yet, at
test time, the learner still needs to predict a list of relevant labels for new examples.

2 Model

As is standard in learning theory, we assume a hypothesis class H of graphs, our goal is to design
algorithms whose sample complexity is polynomial in the log size of the class and the inverses of
the accuracy and confidence parameters. More specifically, we are given a (possibly huge) set X of

4

nodes and a hypothesis class H of graphs on X . We denote an unknown target graph gtarget. The
training set consists of a sequence (xi, vi)

m
i=1. The nodes x1, . . . , xm are drawn IID from unknown

distribution D. For each node xi, a random neighbor vi is drawn uniformly from its neighborhood
Ngtarget(xi) in the target graph. The algorithm then outputs a graph goutput, and the goal is to
minimize the expected precision and recall losses:

ℓprecision(goutput) := Ex∼D

[|Ngoutput(x) \Ngtarget(x)|
ngoutput(x)

]
,

ℓrecall(goutput) := Ex∼D

[|Ngtarget(x) \Ngoutput(x)|
ngtarget(x)

]
,

where for any graph g, Ng(x) denotes the neighborhood of a node x in g and ng(x) = |Ng(x)| denotes
the number of neighbors of x.
We focus on designing learning rules that can compete with the “best” graph in H. Specifically, if
there is a graph g ∈ H with precision and recall losses p and r, respectively, can we output a graph
goutput whose precision and recall losses are comparable to p and r? To answer this question we
consider two natural metrics: scalar loss and Pareto loss.

Scalar-Loss Objective The scalar loss is defined as the average of precision and recall losses3

ℓscalar(g) :=
ℓprecision(g) + ℓrecall(g)

2
.

For any α > 0, we say α-approximate optimal scalar loss is achievable if there exists a polynomial P
such that, for any finite hypothesis class H, there is an algorithm A such that the following holds:
For any ε, δ > 0 and any distribution D, if A is given an IID training set of size P (log|H|, 1/ε, 1/δ),
with probability at least 1− δ, it outputs a graph with scalar loss satisfying

ℓscalar(goutput) ≤ α ·min
g∈H

ℓscalar(g) + ε .

We emphasize that we aim to avoid dependencies on the number of vertices or edges in the graph, as
allowing quadratic dependence on the number of nodes trivializes the problem. Our primary focus is
on finite hypothesis classes, where we discuss dependencies on the cardinality of the hypothesis class,
as is common in standard learning theory.

Pareto-Loss Objective Let p, p′, r, r′ ∈ [0, 1]. We write (p, r) =⇒ (p′, r′) to denote the following
statement: there exists a polynomial P such that, for any finite hypothesis class H, there is an
algorithm A such that the following holds: If D is a distribution for which there exists a graph in H
with precision and recall losses (p, r), then for any ε, δ > 0, if A is given p, r and an IID training
set of size P (log|H|, 1/ε, 1/δ), with probability at least 1− δ, it outputs a graph with precision and
recall losses at most p′ + ε and r′ + ε.4

We are asking the following a question for each of our losses:

What is the smallest α such that α-approximate optimal scalar loss is achievable?
Given p, r ∈ [0, 1], which pairs (p′, r′) satisfy (p, r) =⇒ (p′, r′)?

3The results can be generalized to any weighted sum of precision and recall losses via w1ℓ
precision(g)+w2ℓ

recall(g) ≤
2max(w1, w2)ℓ

scalar(g).
4Actually, our algorithms only requires the knowledge of r.

5

This graph learning problem is considerably more challenging than standard supervised learning.
If the entire neighborhood were observed in the training set rather than a random neighbor vi ∼
Unif(Ngtarget(xi)), the task would reduce to standard supervised learning. However, observing only a
random neighbor prevents an unbiased estimate of precision loss, complicating the problem. We
demonstrate it in the following example.

Example 1. In Fig 2, in the target graph, user xi likes a large number n of songs. Our hypothesis
class contains two graphs, each with exactly one edge connecting to user xi. In the red graph graph
g1, the edge always connects to a true positive (i.e., the recommended song is one the user likes),
while in the blue graph g2, it connects to a false positive (i.e., the recommended song is one the user
dislikes). Both graphs have high recall loss, ℓrecall(g1) = n−1

n and ℓrecall(g2) = 1. But graph g1 has a
precision loss of 0 as it always recommends a correct song, while graph g2 has a precision loss of 1
as it always recommends a wrong song. Since n is large, it is unlikely that any song recommended by
either graph will appear in the training set, making it impossible to distinguish between them, despite
their drastically different precision losses.

xi

u1 u2 u3 un−1 un u′
· · ·

Figure 2: The target graph (black) has neighborhood Ngtarget(xi) = {u1, . . . , un} where n is huge.
The graph g1 (red) has only one neighbor un ∈ Ngtarget(xi) while g2 (blue) has only one neighbor
u′ /∈ Ngtarget(xi).

One might argue that the issue in the above example arises from the large degree of the target
graph; however, we will later show that even when the target graph has a small degree, accurately
estimating and optimizing precision remains impossible.
We emphasize that, unlike in other supervised learning settings, such as PAC learning, where
minimizing empirical risk is often straightforward (e.g., by outputting any classifier that is consistent
with the training set), here the learner only observes a single item vi per user xi, rather than the
user’s entire neighborhood. As a result, minimizing empirical precision loss in this context is far
from trivial. For instance, regardless of the target graph, a complete graph is always consistent with
the training set but can still incur high precision loss.

3 Main Results

The Realizable Setting We begin by presenting our results in the realizable setting, where the
target graph belongs to the hypothesis class. In this case, there is no distinction between optimizing
the scalar-loss objective and the Pareto-loss objective. We propose two new algorithms that achieve
both the scalar-loss and Pareto-loss objectives.

Theorem 1. In the realizable setting, there exist algorithms such that given an IID training set of
size m ≥ O(log(|H|/δ)

ε), with probability at least 1− δ, the output graph goutput satisfies

ℓrecall(goutput) ≤ ε , ℓprecision(goutput) ≤ ε .

6

Since 1(vi /∈ Ng(xi)) is an unbiased estimate of the recall loss ℓrecall(g), any consistent graph (i.e.,
graph g with

∑m
i=1 1(vi /∈ Ng(xi)) = 0) will have low recall loss. But ERM does not work as the

training set contains only positive examples, and a complete graph is consistent with any training
set but can incur high precision loss. Hence, the main challenge lies in minimizing the precision loss.
One of our proposed algorithms is based on the natural idea of maximum likelihood. At a high level,
although multiple graphs may be consistent with the training set, for any observed edge (xi, vi), if it
is in graph g, the probability of observing this edge is 1

ng(xi)
when g is the target graph. Consequently,

we can rule out the complete graph, as its likelihood of generating any specific observed edge is low.
The main challenge in the analysis, then, is how to connect the precision loss to the likelihood.
The other algorithm is more directly aligned with the scalar-loss objective. While we cannot obtain
an unbiased estimate of the precision loss, and hence the scalar loss, we introduce a surrogate loss
that both upper- and lower-bounds the scalar loss within a constant multiplicative factor. Then we
output a graph minimizing this surrogate loss.

The Agnostic Setting In the agnostic setting, we show in the next two theorems that it is
impossible to achieve an additive error for both scalar-loss and Pareto-loss objectives as is standard
in learning theory.

Theorem 2. There exists a class H = {g1, g2} of two graphs, such that for any (possibly randomized
improper) algorithm, there exists a target graph gtarget with bounded degree and a data distribution D
with ming∈H(ℓ

scalar(g)) > 0 s.t. for any sample size m > 0, with probability 1 over the training set,
the expected (over the randomness of the algorithm) loss of the output goutput

E
[
ℓscalar(goutput)

]
≥ 1.05 ·min

g∈H
(ℓscalar(g)) .

Theorem 3. There exists a class H = {g1, g2} of two graphs, such that for any (possibly randomized
improper) algorithm given the knowledge of (p, r) = (7

16 ,
1
4), there exists a target graph gtarget with

bounded degree and a data distribution D for which there exists a graph g† ∈ H with ℓrecall(g†) = 1
4

and ℓprecision(g†) = 7
16 s.t. for any sample size m > 0, with probability 1 over the training set, the

expected (over the randomness of the algorithm) precision and recall losses of the output goutput satisfy

E
[
ℓrecall(goutput)

]
+

12

5
E
[
ℓprecision(goutput)

]
≥ 7

5
.

Remark 1. Hence the output graph either suffers ℓrecall(goutput) > 1
4 = ℓrecall(g†) or ℓprecision(goutput) ≥

23
48 = 23

21ℓ
precision(g†). Thus (7

16 ,
1
4) ̸⇒ (7

16 + 0.01, 14 + 0.01).

Thus, in the scalar-loss case, we allow for a multiplicative factor α. In the Pareto-loss case, we ask a
more general question: which pairs of guarantees (p′, r′) are achievable, given that there exists a
hypothesis in the class with precision and recall losses (p, r)? Since the recall loss is optimizable, for
any given r, if there exists a hypothesis in the class with recall loss r, we can always achieve that
recall loss. Therefore, we refine our question as follows: given any p, r ∈ [0, 1], what is the minimum
precision loss p′ such that (p, r) ⇒ (p′, r)?
Since the recall is estimable, when we have an algorithm achieving α-approximate scalar loss, we
can first eliminate all graphs with recall loss higher than r and then run this algorithm over the
remaining graphs. Then we can achieve (p, r) ⇒ (α(p+ r), r).

7

Theorem 4. There exist an algorithm such that given an IID training set of size m ≥ O(log(|H|/δ)
ε2

),
with probability at least 1− δ, the output graph goutput satisfies

ℓscalar(goutput) ≤ 5 ·min
g∈H

ℓscalar(g) + ε .

This implies that for any p, r ∈ [0, 1], (p, r) ⇒ (5(p+ r), r) .

This result is achieved using the same surrogate loss idea in the realizable setting. However, in
the agnostic setting, applying maximum likelihood directly no longer works. This is because it is
possible that none of the graphs in the hypothesis class are consistent with the training set and
thus all graphs have zero likelihood. Instead, we make some modifications to adapt the maximum
likelihood idea work for Pareto-loss objective.
As we can see, there is a gap between the upper and lower bounds in the agnostic case, leaving an
open question: What is the optimal multiplicative approximation factor α in the scalar case, and
what is the optimal p′ such that (p, r) ⇒ (p′, r′)?

The Semi-Realizable Setting The results in the agnostic setting fail to offer meaningful
guarantees in certain natural scenarios, such as p = 0 and r = 1

2 (i.e., when there exists a
recommendation hypothesis that captures half of each user’s liked items without recommending
any items the user does not like). We are therefore interested in the following question: whether
(p = 0, r) ⇒ (p′ = 0, r′ = r)?
We propose an algorithm with sample complexity depending on the target graph’s degree and show
that it is impossible to achieve zero precision loss with sample complexity independent of the target
graph’s degree.
As discussed previously, it’s impossible for us to estimate the precision loss. However, we can still
separate graphs with zero precision loss and non-zero precision loss if the target graph’s degree is
bounded. If the precision loss

ℓprecision(g, x) =
|Ng(x) \Ngtarget(x)|

ng(x)
= 1−

|Ng(x) ∩Ngtarget(x)|
ng(x)

of graph g at user x is 0, we have

|Ng(x) ∩Ngtarget(x)|
ng(x) · ngtarget(x)

=
1− ℓprecision(g, x)

ngtarget(x)
=

1

ngtarget(x)
.

If the precision loss ℓprecision(g, x) is positive, we have

|Ng(x) ∩Ngtarget(x)|
ng(x) · ngtarget(x)

=
1− ℓprecision(g, x)

ngtarget(x)
<

1

ngtarget(x)
.

Hence, we can use the quantity Ex∼D

[|Ng(x)∩Ngtarget (x)|
ng(x)·ngtarget (x)

]
to separate graphs with zero and non-zero

precision loss, and it is estimable. For each graph g, when the gap of this quantity between graph
with zero precision loss and g is ∆g,D := Ex∼D

[
1

ngtarget (x)

]
− Ex∼D

[|Ng(x)∩Ngtarget (x)|
ng(x)·ngtarget (x)

]
> 0, then by

obtaining 1
∆2

g,D
samples of x, we can tell that g has nonzero precision loss. Let ∆D be the smallest

gap of this quantity between graphs with zero and nonzero precision losses:

∆D = min
g∈H:ℓprecision(g)>0

∆g,D .

Then we can have sample complexity dependent on this gap.

8

Theorem 5. There exists an algorithm such that if there exists a graph g′ ∈ H with ℓprecision(g′) = 0

and ℓrecall(g′) = r, then given an IID training set of size O(log(|H|/δ)
∆2

D
), with probability 1−δ, it outputs

a graph with ℓprecision(goutput) = 0 and ℓrecall(goutput) = r.

When the target graph’s degree ngtarget(x) is bounded by C everywhere, we have

E
[|Ng(x) ∩Ngtarget(x)|

ng(x) · ngtarget(x)

]
= E

[
1− ℓprecision(g, x)

ngtarget(x)

]
≤ E

[
1

ngtarget(x)

]
− E

[
ℓprecision(g, x)

C

]
.

Therefore, we have ∆g,D ≥ ℓprecision(g)
C . This implies that when the target graph has bounded degree,

we are able to find the graph with zero precision loss. However, when the target graph’s degree
becomes too large, we show that it is impossible to achieve precision-recall of (0, r).

Theorem 6. There exists a class H = {g1, g2} of two graphs, for any m > 0 and any (possibly
randomized improper) algorithm A, there exists a target graph gtarget and a data distribution D for
which there exists a graph g† ∈ H with ℓprecision(g†) = 0 s.t. with probability 1− δ over the training
set, the expected (over the randomness of the algorithm) precision and recall losses of the output
goutput satisfy either E

[
ℓrecall(goutput)

]
≥ ming∈H ℓrecall(g) + Ω(1) or E

[
ℓprecision(goutput)

]
= Ω(1).

In the proof of the theorem, we construct a target graph with a degree much larger than the sample
size m, as well as graphs g1 and g2 with degree 1. In this setup, regardless of whether g1 has perfect
precision (i.e., the neighborhood in g1 is a subset of the true neighborhood) or very poor precision,
we cannot distinguish between these two cases because we never observe a neighbor in g1 being
sampled. Therefore, the only way to achieve zero precision loss is to output the empty graph, which,
however, results in a high recall loss.

4 Proof Overview

Given a sequence of IID users x1, . . . , xm, let ℓ̂precision(g) = 1
m

∑m
i=1

|Ng(xi)\Ngtarget (xi)|
ng(xi)

and ℓ̂recall(g) =

1
m

∑m
i=1

|Ngtarget (xi)\Ng(xi)|
ngtarget (xi)

denote the empirical precision and recall losses. It suffices to focus on
empirical precision and recall losses minimization since by standard concentration bounds, minimizing
these empirical losses leads to the minimization of the expected recall and precision losses.

Minimizing Precision Loss Through Maximum Likelihood The maximum likelihood method
returns goutput = argmaxg∈H

∏m
i=1

1(vi∈Ng(xi))
ng(xi)

, which is equivalent to returning the graph with the
minimum sum of log degrees among all consistent graphs, i.e.,

goutput = argmin
g:g is consistent

m∑
i=1

log(ng(xi)) .

Any consistent graph will have low empirical recall loss by applying standard concentration inequality
and thus, ℓ̂recall(goutput) is small and we only to show that the empirical precision loss is small. The
main technical challenge in the analysis is how to connect precision loss with likelihood.
Since gtarget is contained in the hypothesis class in the realizable setting and it is consistent with the
training data, due to our algorithm, we have

m∑
i=1

log(ngoutput(xi)) ≤
m∑
i=1

log(ngtarget(xi)) . (1)

9

We first prove that for any graph g, its empirical precision loss can be bounded by a term of log
degree and the empirical recall loss as follows:

ℓ̂precision(g) ≤ 2

m

∑
i∈[m]:

ng(xi)

n
gtarget (xi)

≥1

log
ng(xi)

ngtarget(xi)
+ 2ℓ̂recall(g) . (2)

By combining Eq (1) and (2), we have

ℓ̂precision(goutput) ≤ − 2

m

∑
i:

n
goutput (xi)

n
gtarget (xi)

<1

log
ngoutput(xi)

ngtarget(xi)
+ 2ℓ̂recall(goutput) .

However, with high probability, the first term − 2
m

∑
i:

n
goutput (xi)

n
gtarget (xi)

<1
log

ngoutput (xi)

ngtarget (xi)
is small. This is

because, for any graph g, the probability of outputting g is

Pv1:m

(
goutput = g

)
≤ Pv1:m(g is consistent) ≤

∏
i:

ng(xi)

n
gtarget (xi)

<1

ng(xi)

ngtarget(xi)
.

For any graph g with large − 2
m

∑
i:

ng(xi)

n
gtarget (xi)

<1
log

ng(xi)
ngtarget (xi)

, the probability of outputting such a

graph is low.

Modifying Maximum Likelihood in the Agnostic Setting In the agnostic setting, all graphs
in the hypothesis class may have zero likelihood of being the true graph; thus, the standard maximum
likelihood method doesn’t work. However, we can make slight modifications to the maximum
likelihood method to make it work for the Pareto-loss objective.
As mentioned earlier, the maximum likelihood method is equivalent to returning the graph with the
minimum sum of log degrees among all consistent graphs. Hence, it can be decomposed into two
steps: minimizing the recall loss and then regulating by minimizing the sum of log degrees. In the
agnostic setting, given any r, we first find the set Ĥ of all graphs in the hypothesis class with recall
loss at most r + 2ε, and then regulate by minimizing the sum of log truncated degrees by returning

goutput = argmin
g′∈Ĥ

max
g∈Ĥ

1

m

∑
i∈[m]

log
ng′(xi) ∧ 4ng(xi)

ng(xi) ∧ 4ng′(xi)
,

where a ∧ b := min(a, b). The truncation plays an important role here. Intuitively, let g† denote the
graph with precision and recall losses p and r, respectively. If there exists an xi such that ng†(xi)

is very large, minimizing the sum of log-untruncated degrees will never return g†. By applying
truncation, we limit the effect of a single user with a very large degree.

Minimizing the Surrogate for the Scalar Loss Here we consider an alternative learning rule
based on two simple principles for discarding sub-optimal hypotheses. We illustrate these principles
with the following intuitive example: consider a music recommender system, and assume we are
considering two candidate hypotheses, g′ and g′′. Both hypotheses recommend classical music;
however, g′ recommends pieces by Bach 20% of the time and pieces by Mozart 10% of the time,
while g′′ never recommends any pieces by Mozart or Bach.

10

Now, suppose that in the training set, users frequently choose to listen to pieces by Mozart. This
observation suggests that g′′ should be discarded, as it never recommends Mozart. This leads to our
first rule: if a hypothesis exhibits a high recall loss, it can be discarded. The second rule addresses
precision loss, which is more challenging because it cannot be directly estimated from the data. To
illustrate the second rule, imagine that in the training set, users tend to pick Bach pieces only 5% of
the time. This suggests that g′ is over-recommending Bach pieces, and therefore, g′ might also be
discarded based on its likely precision loss.
We formally capture this using a metric defined in the following. For any graph g, let Ug

i denote
the uniform distribution over the neighbors Ng(xi) of xi. Then, for any graph g, we define a vector
vg : H×H → [0, 1] by

vg(g
′, g′′) =

1

m

m∑
i=1

Ug
i (Ng′(xi) \Ng′′(xi)) =

1

m

m∑
i=1

Pv∼Ug
i

(
v ∈ Ng′(xi) \Ng′′(xi)

)
.

Intuitively, vg(g′, g′′) represents the fraction of items users like that are recommended by g′ but not
by g′′ in the counterfactual scenario where g is the target graph. If g is indeed the target graph,
then this quantity should be consistent with our training data, i.e.,

vg(g
′, g′′) ≈ vĝ(g

′, g′′) ,

where ĝ is the observed (empirical) graph; i.e., the graph in which every xi is connected to the
random number vi which is observed in the training set. In the above example, vg′(g′, g′′) is 20%
while vĝ(g

′, g′′) is 5% and thus g′ is unlikely to be the target graph.
We define a metric dH between two graphs g1 and g2 by

dH(g1, g2) = ∥vg1 − vg2∥∞ .

Surprisingly, we show that dH(g
target, g) is a surrogate for the scalar loss, providing both lower and

upper bounds on the scalar loss with a constant multiplicative factor:

1

2
dH(g

target, g) ≤ ℓscalar(g) ≤ dH(g
target, g) .

A standard union bound argument yields that with probability at least 1− δ,

dH(ĝ, g
target) ≤ O

(√
log |H|+ log(1/δ)

m

)
.

By triangle inequality, we have

dH(g
target, g) ≤ dH(ĝ, g) +O

(√
log |H|+ log(1/δ)

m

)
.

Then, we return a graph goutput ∈ H such that

dH(ĝ, g
output) = min

g∈H
dH(ĝ, g).

11

The Hardness of No Knowledge of the Target Graph’s Degree For any graph g, it’s
precision loss at any user x is

|Ng(x)\Ngtarget (x)|
ng(x)

and we only get a random neighbor v ∼ Ngtarget(x).
If we are given the knowledge of the degree ngtarget(x) of the target graph, then we can obtain an

unbiased estimate of the precision loss, i.e., 1− ngtarget (x)

ng(x)
· 1(v ∈ Ng(x)). But the difficulty lies in

that we don’t know ngtarget(x).
Consider the following example illustrated in Fig 3. For a given user x, there is a set of n nodes equally
divided into two sets N1(x) and N2(x). Consider two graphs—g1 with neighborhood Ng1(x) = N1(x)
and g2 with neighborhood Ng2(x) = N1(x) ∪N2(x) being all n nodes.
In a world characterized by β ∈ [18 ,

2
3], the target graph is generated in the following random way:

Randomly select 3
4 · βn nodes from N1(x) and 1

4 · βn nodes from N2(x). No matter what β is, w.p.
3
4 , v is sampled uniformly at random from N1(x) and w.p. 1

4 , v is sampled uniformly at random
from N2(x). That is, every node in N1(x) has probability 3

2n of being sampled and every node in
N2(x) has probability 1

2n of being sampled. Hence, if we have never seen the same user twice, we
cannot distinguish between different β’s.
For any gtarget generated from the above process, the scalar loss of g1 at x is

ℓscalar(g1, x) =1−
(|Ngtarget(x) ∩Ng1(x)|

2|Ng1(x)|
+

|Ngtarget(x) ∩Ng1(x)|
2|Ngtarget(x)|

)
= 1− (

3/4 · βn
n

+
3/4 · βn
2βn

)

=
5

8
− 3

4
β ,

and the scalar loss of g2 at x is

ℓscalar(g2, x) = 1−
(|Ngtarget(x) ∩Ng2(x)|

2|Ng2(x)|
+

|Ngtarget(x) ∩Ng2(x)|
2|Ngtarget(x)|

)
= 1−

(
βn

2n
+

βn

2βn

)
=

1

2
− 1

2
β .

When β is large, g1 has a smaller loss; when β is small, g2 has a smaller loss. With a huge number
of users, we might never observe the same user twice and, therefore, cannot distinguish between
different β values. Consequently, it’s impossible to determine which of the two graphs has a smaller
loss. We show that, in this example, even if algorithms are allowed to be randomized and improper,
it still impossible to compete with the best graph in the hypothesis class.

x

N1(x) N2(x)

(a) g1

x

N1(x) N2(x)

(b) g2
x

N1(x) N2(x)

(c) gtarget for small β

x

N1(x) N2(x)

(d) gtarget for large β

Figure 3: Illustration of g1, g2 and randomly generated gtarget.

12

5 Algorithms and Proofs

Notations Let ℓprecision(g, x) and ℓrecall(g, x) denote the precision loss and recall loss of graph g at
node x:

ℓprecision(g, x) =
|Ng(x) \Ngtarget(x)|

ng(x)
,

ℓrecall(g, x) =
|Ngtarget(x) \Ng(x)|

ngtarget(x)
.

Let ℓ̂precision(g) = 1
m

∑
ℓprecision(g, xi) and ℓ̂recall(g) = 1

m

∑
ℓrecall(g, xi) denote the empirical precision

and recall losses. Let a ∧ b := min(a, b).

5.1 Maximum Likelihood Method in the Realizable Case

In the realizable setting, the target graph gtarget is in the hypothesis class. Given the IID training
data (x1, v1), . . . , (xm, vm), the maximum likelihood method returns the graph

goutput = argmax
g∈H

m∏
i=1

1(vi ∈ Ng(xi))

ng(xi)
.

In other words, goutput is a graph in H satisfying

• consistency:
∑m

i=1 1(vi /∈ Ngoutput(xi)) = 0

• regulation: among all consistent graphs, goutput = argming:g is consistent
∑m

i=1 log(ng(xi)).5

Theorem 1. In the realizable setting, there exist algorithms such that given an IID training set of
size m ≥ O(log(|H|/δ)

ε), with probability at least 1− δ, the output graph goutput satisfies

ℓrecall(goutput) ≤ ε , ℓprecision(goutput) ≤ ε .

Proof of Theorem 1 It suffices to prove that for any fixed (x1, . . . , xm), when m ≥ 12 log(4|H|/δ)
ε , w.p.

at least 1− δ/2 over v1:m, the empirical values of recall and precision are small, ℓ̂recall(goutput) ≤ ε/2
and ℓ̂precision(goutput) ≤ ε/2. Then we can show ℓrecall(goutput) ≤ ε and ℓprecision(goutput) ≤ ε by
applying empirical Bernstein bounds to both precision and recall losses. Now we prove this statement.
Bounding recall loss is easy as

∑m
i=1 1(vi /∈ Ng(xi)) is an unbiased estimate of recall loss. With

probability 1− δ/4 over the randomness of vi ∼ Unif(Ngtarget(xi)) for all i ∈ [m], the empirical loss
for recall is

ℓ̂recall(g) =
1

m

m∑
i=1

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

≤
m∑
i=1

1(vi /∈ Ng(xi)) + ε/6 = ε/6 , (3)

for all consistent g with
∑m

i=1 1(vi /∈ Ng(xi)) = 0. Hence, w.p. 1− δ/4, ℓ̂recall(goutput) ≤ ε/6.
5the base of log in this work is 2.

13

Bounding precision loss is more challenging. Let Ag = {i ∈ [m]|ngtarget(xi) ≤ 2ng(xi)}. Then we can
decompose the empirical precision loss as

ℓ̂precision(g)

=
1

m

m∑
i=1

|Ng(xi) \Ngtarget(xi)|
ng(xi)

≤ 1

m

∑
i∈Ag

|Ng(xi) \Ngtarget(xi)|
ng(xi)

+
1

m

m∑
i=1

1(i /∈ Ag)

≤ 1

m

∑
i∈Ag

min

(
2|Ng(xi) \Ngtarget(xi)|

ngtarget(xi)
, 1

)
+

2

m

∑
i/∈Ag

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

=
2

m

∑
i∈Ag

min

(
ng(xi) + |Ngtarget(xi) \Ng(xi)| − ngtarget(xi)

ngtarget(xi)
,
1

2

)
+

2

m

∑
i/∈Ag

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

≤ 2

m

∑
i∈Ag

min

(
ng(xi)

ngtarget(xi)
− 1,

1

2

)
+

2

m

∑
i∈Ag

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

+
2

m

∑
i/∈Ag

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

≤ 2

m

∑
i∈Ag

min

(
ng(xi)

ngtarget(xi)
− 1,

1

2

)
+ 2ℓ̂recall(g) .

The second term is the empirical loss for recall, which is upper bounded by Eq (3).
For the first term,

1

m

∑
i∈Ag

min

(
ng(xi)

ngtarget(xi)
− 1,

1

2

)

=
1

m

∑
i:

ng(xi)

n
gtarget (xi)

≥ 1
2

min

(
ng(xi)

ngtarget(xi)
− 1,

1

2

)

≤ 1

m

∑
i:

ng(xi)

n
gtarget (xi)

≥1

min

(
ng(xi)

ngtarget(xi)
− 1,

1

2

)

≤
∑

i:
ng(xi)

n
gtarget (xi)

≥1

log
ng(xi)

ngtarget(xi)
,

where the last inequality adopts the following fact: for all z ≥ 1, min(z − 1, 12) ≤ log z. On the other
hand, we have

1

m

∑
i:

ng(xi)

n
gtarget (xi)

≥1

log
ng(xi)

ngtarget(xi)
≤ 1

m

∑
i:

ng(xi)

n
gtarget (xi)

<1

log
ngtarget(xi)

ng(xi)

when g satisfies
∑m

i=1 log(ng(xi)) ≤
∑m

i=1 log(ngtarget(xi)). Hence, for any graph g with ℓ̂precision(g) >
ε
2 and ℓ̂recall(g) ≤ ε

6 , we have∑
i:

ng(xi)

n
gtarget (xi)

<1

log
ngtarget(xi)

ng(xi)
≥ m

2
(ℓ̂precision(g)− 2ℓ̂recall(g)) > m · ε/12 ≥ log(4|H|/δ) .

14

The probability of outputting such a graph g is

Pv1:m

(
goutput = g

)
≤ Pv1:m(g is consistent) ≤

∏
i:

ng(xi)

n
gtarget (xi)

<1

ng(xi)

ngtarget(xi)
<

δ

4|H|
.

Hence, with probability at least 1− δ/2 over v1:m, goutput will satisfy

ℓ̂recall(goutput) ≤ ε/6 , ℓ̂precision(goutput) ≤ ε/2 .

Then we are done with the proof.

5.2 Modified Maximum Likelihood Method in the Agnostic Case

In the agnostic setting, we shift our goal from finding a graph with nearly zero precision and recall
losses to determining, given any p, r ∈ [0, 1], the minimum precision loss p′ such that (p, r) ⇒ (p′, r).
In fact, we can show something stronger: we do not need to know p. Specifically, given any r ∈ [0, 1],
let p = ming:ℓrecall(g)≤r ℓ

precision(g) be the optimal precision loss among all graphs with recall loss at
most r. What is the smallest p′ such that we achieve ℓrecall(goutput) ≤ r and ℓprecision(goutput) ≤ p′?

Theorem 3. There exists a class H = {g1, g2} of two graphs, such that for any (possibly randomized
improper) algorithm given the knowledge of (p, r) = (7

16 ,
1
4), there exists a target graph gtarget with

bounded degree and a data distribution D for which there exists a graph g† ∈ H with ℓrecall(g†) = 1
4

and ℓprecision(g†) = 7
16 s.t. for any sample size m > 0, with probability 1 over the training set, the

expected (over the randomness of the algorithm) precision and recall losses of the output goutput satisfy

E
[
ℓrecall(goutput)

]
+

12

5
E
[
ℓprecision(goutput)

]
≥ 7

5
.

Recall that in the realizable case, the maximum likelihood method selects the consistent graph with
the smallest empirical log degree, i.e., goutput = argming:g is consistent

∑m
i=1 log(ng(xi)). Basically, the

consistency guarantees small recall loss and the empirical log degree is used as a regulation term to
bound precision loss. In the agnostic setting, the maximum likelihood method fails as there may
be no consistent graph. We present a modified version of the maximum likelihood method, which
still has the “consistency” component and adopts log degree as a regulation term. The algorithm
operates as follows.

Algorithm:

1. Finding a set of plausible graphs which make at most m · (r + ε) mistakes: For
any graph g, let Ig = {i|vi /∈ Ng(xi)} denote the indices of training points that the graph g

is inconsistent with. Then let Ĥ = {g ∈ H||Ig| ≤ m · (r + ε)} be the set of graphs making
at most m · (r + ε) mistakes.

2. Returning the graph with low empirical log truncated degree: Return

goutput = argmin
g′∈Ĥ

max
g∈Ĥ

1

m

∑
i∈[m]

log
ng′(xi) ∧ 4ng(xi)

ng(xi) ∧ 4ng′(xi)
. (4)

15

Theorem 7. Given any r ∈ [0, 1] and m ≥ O(log(|H|)+log(1/δ)
ε2

) IID training data, the modified
maximum likelihood method can return a graph satisfying

ℓrecall(goutput) ≤ r + ε, ℓprecision(goutput) ≤ 28r + 15p+ ε ,

where p = ming:ℓrecall(g)≤r ℓ
precision(g).

Proof Sketch Let g† to be the graph with recall loss at most r and precision loss p. Let r = r+2ε
and p = p+ 2ε. Similar to the realizable setting, we build connection between precision and recall
with empirical log degree (Lemma 2), i.e., for any constant c ∈ (0, 1],

ℓ̂precision(g) ≤ 1 + c

m

∑
i∈[m]:

ng(xi)

n
gtarget (xi)

≥1

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)
+

1 + c

c
ℓ̂recall(g) .

It suffices to upper bound
∑

i∈[m]:
ng(xi)

n
gtarget (xi)

≥1
log

ng(xi)∧2ngtarget (xi)

ngtarget (xi)
. We first decompose it into

∑
i∈[m]:

ng(xi)

n
gtarget (xi)

≥1

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)

=
∑
i∈B

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)︸ ︷︷ ︸
(a)

−
∑

i∈B:
ng(xi)

n
gtarget (xi)

<1

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)

︸ ︷︷ ︸
(b)

,

where B = {i| ng(xi)
ngtarget (xi)

≥ 1
2}. The term (b) is lower bounded by the recall loss in Lemma 4.

Intuitively, if
ng(xi)∧2ngtarget (xi)

ngtarget (xi)
is small, the recall loss must be large while any graph in Ĥ has a

small empirical recall loss.
For term (a), since ℓ̂recall(g†) ≤ r and ℓ̂precision(g†) ≤ p, at most training points,

n
g† (xi)

ngtarget (xi)
is in [12 , 2]

(if it’s too large at xi, precision loss is large; if it’s too small, recall loss is large). Also, for any graph
in Ĥ, the empirical recall loss is small and thus, at most training points, ng(xi)

ngtarget (xi)
≥ 1

2 . At these

training points satisfying
n
g† (xi)

ngtarget (xi)
is in [12 , 2] and

ngoutput (xi)

ngtarget (xi)
≥ 1

2 , we have

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)
≤ log

ng(xi) ∧ 4ng†(xi)

ngtarget(xi)
= log

ng(xi) ∧ 4ng†(xi)

ng†(xi) ∧ 4ng(xi)
+ log

ng†(xi) ∧ 4ng(xi)

ngtarget(xi)

≤ log
ng(xi) ∧ 4ng†(xi)

ng†(xi) ∧ 4ng(xi)
+ log

ng†(xi)

ngtarget(xi)
.

The first term is bounded due to our algorithm while the second term is bounded by the empir-
ical precision (in Lemma 5). Intuitively, if

n
g† (xi)

ngtarget (xi)
is large, the empirical precision of g† is large.

16

5.2.1 Proof of Theorem 3

Proof of Theorem 3 Suppose there are infinite users and D be the uniform distribution. For each
user x, there is an individual set of 12 nodes, denoted as N(x) = {vx,1, vx,2, . . . , vx,12}. The graph
g1’s neighborhood is the first 8 nodes Ng1(x) = {vx,1, vx,2, . . . , vx,8} and the graph g2’s neighborhood
is the last 8 nodes Ng2(x) = {vx,5, vx,6, . . . , vx,12}. There are two worlds in which the target graph
gtarget is generated differently:

• World I: W.p. 1
2 , Ngtarget(x) = Ng1(x); w.p. 1

2 , Ngtarget(x) = {u1, u2} where u1 is sampled
uniformly from {vx,5, vx,6, . . . , vx,8} and u2 is sampled uniformly from {vx,9, vx,10, . . . , vx,12}.

• World II: W.p. 1
2 , Ngtarget(x) = Ng2(x); w.p. 1

2 , Ngtarget(x) = {u1, u2} where u1 is sampled
uniformly from {vx,5, vx,6, . . . , vx,8} and u2 is sampled uniformly from {vx,1, vx,2, . . . , vx,4}.

These two worlds are symmetric. In world I,

recall(g1) =
1

2
· 1 + 1

2
· 1
2
=

3

4
, precision(g1) =

1

2
· 1 + 1

2
· 1
8
=

9

16
,

recall(g2) =
1

2
· 1
2
+

1

2
· 1 =

3

4
, precision(g2) =

1

2
· 1
2
+

1

2
· 1
4
=

3

8
.

Both g1 and g2 have the same recall and g1 has a better precision in the world I. In world II, g1 and
g2 switch their losses. Hence, in either world, we have

min
g∈H

ℓrecall(g) =
1

4
, min

g∈H
ℓprecision(g) =

7

16
.

In both worlds, the distribution of v is identical, i.e., w.p. 1
2 , v is sampled from Unif(Ng1(x)) and

w.p. 1
2 , v is sampled from Unif(Ng2(x)). Hence, if no x has been sampled twice, no algorithm can

distinguish the two worlds. Since there are infinite users, we will not sample the same user twice
almost surely. For any output graph goutput, we let

n1 = |Ngoutput(x) ∩ {vx,1, vx,2, . . . , vx,4}| ∈ {0, 1, . . . , 4} ,
n2 = |Ngoutput(x) ∩ {vx,5, vx,6, . . . , vx,8}| ∈ {0, 1, . . . , 4} ,
n3 = |Ngoutput(x) ∩ {vx,9, vx,10, . . . , vx,12}| ∈ {0, 1, . . . , 4} .

Then in world I, the expected recall and precision of goutput is

Egtarget
[
recall(goutput, x)

]
=

1

2

(
n1 + n2

8
+

n2 + n3

8

)
=

n1 + 2n2 + n3

16
,

Egtarget
[
precision(goutput, x)

]
=

1

2

(
n1 + n2

n1 + n2 + n3
+

n2 + n3

4(n1 + n2 + n3)

)
=

4n1 + 5n2 + n3

8(n1 + n2 + n3)
.

Then suppose we randomly choose one of the two world. By taking expectation over the world, x,
and the randomness of the algorithm, we have

E
[
(recall(goutput), precision(goutput))

]
=E

[(
n1 + 2n2 + n3

16
,
5(n1 + 2n2 + n3)

16(n1 + n2 + n3)

)]
=E

[(
n1 + 2n2 + n3

16
,
5

16
+

5

16
· n2

n1 + n2 + n3

)]

17

Let’s denote by r(n1, n2, n3) = n1+2n2+n3
16 and p(n1, n2, n3) = 5

16 + 5
16 · n2

n1+n2+n3
. Then for any

(n1, n2, n3) ∈ {0, . . . , 4}3, we have

r(n1, n2, n3) +
12

5
p(n1, n2, n3)

=
n1 + 2n2 + n3

16
+

3

4
+

3

4
· n2

n1 + n2 + n3

≤n1 + 8 + n3

16
+

3

4
+

3

n1 + 4 + n3
(maximized at n2 = 4)

≤2 . (maximized at n1 + n3 = 0 or 8)

Hence, we have

E
[
recall(goutput)

]
+

12

5
E
[
precision(goutput)

]
≤ 2 .

This is equivalent to

E
[
ℓrecall(goutput)

]
+

12

5
E
[
ℓprecision(goutput)

]
≥ 7

5
.

5.2.2 Proof of Theorem 7

Proof of Theorem 7 Let ∆ =

√
log(|H|/δ)

m , r = r + 2∆ and p = p+ 2∆. Let g† denote the graph
with precision and recall losses (p, r). We know that with probability at least 1− δ, all graphs in
Ĥ have empirical recall loss no greater than r and g† also has ℓ̂precision(g†) ≤ p. Then the proof is
divided into two parts:

(i) graph g† satisfies that

max
g∈Ĥ

1

m

∑
i∈[m]

log
ng†(xi) ∧ 4ng(xi)

ng(xi) ∧ 4ng†(xi)
≤ 6r + 4p+

2

m
.

Therefore, we have max
g∈Ĥ

1
m

∑
i∈[m] log

ngoutput (xi)∧4ng(xi)

ng(xi)∧4ngoutput (xi)
≤ 6r + 4p+ 2

m .

(ii) any graph g′ satisfying max
g∈Ĥ

∑
i∈[m] log

ng′ (xi)∧4ng(xi)

ng(xi)∧4ng′ (xi)
≤ 6mr + 4mp+ 2 has ℓ̂precision(g′) ≤

28r + 15p+ o(1). Hence, goutput can achieve good precision.

We prove part (i) by Lemma 1 and part (ii) by combining Lemma 2 and 3.

Lemma 1. For any x1, . . . , xm and graph g with ℓ̂recall(g) ≤ r, we have

1

m

∑
i∈[m]

log
ng†(xi) ∧ 4ng(xi)

ng(xi) ∧ 4ng†(xi)
≤ 6r + 4p+

2

m
.

18

Proof Let E = {i| ng(xi)
ngtarget (xi)

≥ 1
2 ,

1
2 ≤

n
g† (xi)

ngtarget (xi)
≤ 2}. According to Lemma 6, we know

|¬E| ≤ 4mr + 2mp.

∑
i∈[m]

log
ng†(xi) ∧ 4ng(xi)

ng(xi) ∧ 4ng†(xi)
≤
∑
i∈E

log
ng†(xi) ∧ 4ng(xi)

ng(xi) ∧ 4ng†(xi)
+ |¬E|

≤
∑
i∈E

log
ng†(xi)

ng(xi) ∧ ngtarget(xi)
+ 4mr + 2mp

=
∑
i∈E

log
ng†(xi)

ngtarget(xi)
−
∑
i∈E

log
ng(xi) ∧ ngtarget(xi)

ngtarget(xi)
+ 4mr + 2mp

≤6mr + 4mp+ 2 . (Applying Lemmas 4 and 5)

Lemma 2. For any x1, . . . , xm, any graph g, and any positive constant c ∈ (0, 1], the empirical loss
for precision ℓ̂precision(g) satisfies

ℓ̂precision(g) ≤ 1 + c

m

∑
i∈[m]:

ng(xi)

n
gtarget (xi)

≥1

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)
+

1 + c

c
ℓ̂recall(g) .

Proof of Lemma 2 Let Ag = {i ∈ [m]|ngtarget(xi) ≤ (1 + c)ng(xi)}. Then we have

ℓ̂precision(g)

=
1

m

m∑
i=1

|Ng(xi) \Ngtarget(xi)|
ng(xi)

≤ 1

m

∑
i∈Ag

|Ng(xi) \Ngtarget(xi)|
ng(xi)

+
1

m

m∑
i=1

1(i /∈ Ag)

≤ 1

m

∑
i∈Ag

min

(
(1 + c)|Ng(xi) \Ngtarget(xi)|

ngtarget(xi)
, 1

)
+

1 + c

c ·m
∑
i/∈Ag

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

≤1 + c

m

∑
i∈Ag

min

(
ng(xi) + |Ngtarget(xi) \Ng(xi)| − ngtarget(xi)

ngtarget(xi)
, 1

)
+

1 + c

c ·m
∑
i/∈Ag

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

≤1 + c

m

∑
i∈Ag

min

(
ng(xi)

ngtarget(xi)
− 1, 1

)
+

1 + c

m

∑
i∈Ag

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

+
1 + c

c ·m
∑
i/∈Ag

|Ngtarget(xi) \Ng(xi)|
ngtarget(xi)

≤1 + c

m

∑
i∈Ag

min

(
ng(xi)

ngtarget(xi)
− 1, 1

)
+

1 + c

c
ℓ̂recall(g) .

19

Now we upper bound the first term.∑
i∈Ag

min

(
ng(xi)

ngtarget(xi)
− 1, 1

)

=
∑

i∈[m]:
ng(xi)

n
gtarget (xi)

≥ 1
1+c

min

(
ng(xi)

ngtarget(xi)
− 1, 1

)

≤
∑

i∈[m]:
ng(xi)

n
gtarget (xi)

≥1

min

(
ng(xi)

ngtarget(xi)
− 1, 1

)

≤
∑

i∈[m]:
ng(xi)

n
gtarget (xi)

≥1

min

(
log

ng(xi)

ngtarget(xi)
, 1

)

=
∑

i∈[m]:
ng(xi)

n
gtarget (xi)

≥1

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)
,

where the last inequality adopts the fact: for all z ≥ 1, min(z − 1, 1) ≤ log z.

Lemma 3. For any g satisfying ℓ̂recall(g) ≤ r and 1
m

∑
i∈[m] log

ng(xi)∧4ng† (xi)

n
g† (xi)∧4ng(xi)

≤ 6r + 4p + 2
m , we

have 1
m

∑
i∈[m]:

ng(xi)

n
gtarget (xi)

≥1
log

ng(xi)∧2ngtarget (xi)

ngtarget (xi)
≤ 18r + 12p+ 4

m .

Proof of Lemma 3 Let B = {i| ng(xi)
ngtarget (xi)

≥ 1
2} and C = {i|12 ≤

n
g† (xi)

ngtarget (xi)
≤ 2}. For any i ∈ B,

the value of log
ng(xi)∧2ngtarget (xi)

ngtarget (xi)
is in [−1, 1]. Then we have

∑
i∈[m]:

ng(xi)

n
gtarget (xi)

≥1

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)

=
∑
i∈B

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)
−

∑
i∈B:

ng(xi)

n
gtarget (xi)

<1

log
ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)

≤
∑

i∈C∩B
log

ng(xi) ∧ 2ngtarget(xi)

ngtarget(xi)
+ |¬C| −

∑
i∈B

log
ng(xi) ∧ ngtarget(xi)

ngtarget(xi)

≤
∑

i∈C∩B
log

ng(xi) ∧ 4ng†(xi)

ngtarget(xi)
+ |¬C| −

∑
i∈B

log
ng(xi) ∧ ngtarget(xi)

ngtarget(xi)

=
∑

i∈C∩B
log

ng(xi) ∧ 4ng†(xi)

ng†(xi) ∧ 4ng(xi)
+
∑

i∈C∩B
log

ng†(xi) ∧ 4ng(xi)

ngtarget(xi)
+ |¬C| −

∑
i∈B

log
ng(xi) ∧ ngtarget(xi)

ngtarget(xi)

≤
m∑
i=1

log
ng(xi) ∧ 4ng†(xi)

ng†(xi) ∧ 4ng(xi)
+ 2|¬C|+ 2|¬B|+

∑
i∈C∩B

log
ng†(xi)

ngtarget(xi)
+ |¬C| −

∑
i∈B

log
ng(xi) ∧ ngtarget(xi)

ngtarget(xi)

≤18mr + 12mp+ 4 . (Applying Lemmas 4, 5 and 6)

20

Note that in the second last inequality, we adopt the fact that x∧4y
y∧4x ∈ [14 , 4] for all x, y > 0.

Lemma 4. For any graph g with ℓ̂recall(g) ≤ r and any subset S ⊂ [m], we have∑
i∈S∩B

log
ng(xi) ∧ ngtarget

ngtarget(xi)
≥ −2mr − 1 .

where B = {i| ng(xi)
ngtarget (xi)

≥ 1
2}.

Proof of Lemma 4 Now let’s focus on the rounds in S ∩B. We have∑
i∈S∩B

(
1−

ng(xi) ∧ ngtarget(xi)

ngtarget(xi)

)
≤
∑

i∈S∩B
ℓrecall(g, xi) ≤ mr .

Our problem becomes computing

min
∑

i∈S∩B
log

ng(xi) ∧ ngtarget

ngtarget(xi)

s.t.
∑

i∈S∩B

ng(xi) ∧ ngtarget(xi)

ngtarget(xi)
≥ |S ∩B| −mr .

By applying Lemma 7, we know

min
∑

i∈S∩B
log

ng(xi) ∧ ngtarget

ngtarget(xi)
≥ −2mr − 1 .

Thus, we have∑
i∈S

log
ng(xi) ∧ ngtarget

ngtarget(xi)
≥ min

∑
i∈S∩B

log
ng(xi) ∧ ngtarget

ngtarget(xi)
− |¬B| ≥ −4mr − 1 .

Lemma 5. For any graph g with ℓ̂precision(g) ≤ p and any subset S ⊂ [m], we have∑
i∈S∩A

log
ng(xi)

ngtarget(xi)
≤ 2mp+ 1 .

where A = {i| ng(xi)
ngtarget (xi)

≤ 2}.

Proof of Lemma 5 Since the empirical precision loss is bounded by p, we have∑
i∈S∩A

(
1−

ngtarget(xi) ∧ ng(xi)

ng(xi)

)
≤
∑

i∈S∩A
ℓprecision(g, xi) ≤ mp .

By re-arranging terms, we have∑
i∈S∩A

ngtarget(xi) ∧ ng(xi)

ng(xi)
≥ |S ∩A| −mp .

21

By applying Lemma 7, we have

min
∑

i∈S∩A
log

ngtarget(xi) ∧ ng(xi)

ng(xi)
≥ −2mp− 1 .

Hence, we have ∑
i∈S∩A

log
ng(xi)

ngtarget(xi)
≤
∑

i∈S∩A
log

ng(xi)

ngtarget(xi) ∧ ng(xi)
≤ 2mp+ 1 .

Lemma 6. For any g withe ℓ̂recall(g) ≤ r, we have∑
i

1(
ng(xi)

ngtarget(xi)
<

1

2
) < 2mr .

For any g withe ℓ̂precision(g) ≤ p, we have∑
i

1(
ng(xi)

ngtarget(xi)
> 2) < 2mp .

Proof When ng(xi)
ngtarget (xi)

< 1
2 , we have

ℓrecall(g, xi) ≥ 1−
ng(xi) ∧ ngtarget(xi)

ngtarget(xi)
>

1

2
.

Thus, we have
∑

i 1(
ng(xi)

ngtarget (xi)
< 1

2) < 2mr. Similarly, when ng(xi)
ngtarget (xi)

> 2, we have

ℓprecision(g, xi) ≥ 1−
ng(xi) ∧ ngtarget(xi)

ng(xi)
>

1

2
.

Thus, we have
∑

i 1(
ng(xi)

ngtarget (xi)
> 2) < 2mp.

Lemma 7. For any k ∈ N+, c ≥ 0, let OPT denote the optimal value to the following constrained
optimization problem:

min
a1:k

k∑
i=1

log ai

s.t.

k∑
i=1

ai ≥ k − c,

1

2
≤ ai ≤ 1,∀i ∈ [k] .

We have OPT ≥ −2c− 1.

22

Proof of Lemma 7 We prove the lemma by showing that in the optimal solution, there will be at
most one entry of a1:k not in {1

2 , 1}. In this case, there are ⌊2c⌋ many 1
2 ’s and one c− ⌊2c⌋

2 . Then,
we have

k∑
i=1

log ai ≥ −2c− 1 .

Hence, it suffices to prove that in the optimal solution, there will be at most one entry of a1:k not in
{1
2 , 1}. Suppose that there are two entries a1 < a2 ∈ (12 , 1). For any ∆ > 0 s.t. a1−∆, a2+∆ ∈ [12 , 1],

we have

log(
a2 +∆

a2
) < log(

a1
a1 −∆

) ,

which is due to x+∆
x is monotonically decreasing in x. By re-arranging terms, we have

log(a1 −∆) + log(a2 +∆) < log(a1) + log(a2) .

Hence, we can always decrease the function value by changing a1, a2 to a1 −∆, a2 +∆. By setting
∆ = (1− a2) ∧ (a1 − 1

2), either a1 is changed to 1
2 or a2 is changed to 1. We reduce the number of

entries not being 1
2 or 1. We are done with the proof.

5.3 Surrogate Loss Method in Both Realizable and Agnostic Cases

Again we focus empirical precision and recall losses minimization. Let x1, . . . , xm ∈ X denote a
sequence of users. For each graph g, let Ug

i denote the uniform distribution over the neighbors
Ng(xi). for any set S ⊂ Ng(xi). For any pair of graphs g′, g′′, define the following:

precision.loss(g′ | g′′) = recall.loss(g′′ | g′) = 1

m

m∑
i=1

Ug′

i (Ng′(xi) \Ng′′(xi)) .

Here precision.loss(g′ | g′′) is the precision loss of graph g′ when the target graph is g′′ and
recall.loss(g′′ | g′) is the recall loss of graph g′′ when the target graph is g′. Thus, the goal is to
output a graph g with small precision.loss(g | gtarget) and recall.loss(g | gtarget).
Our learning rule is based on two simple principles for discarding sub-optimal hypotheses. We
illustrate these principles with the following intuitive example: consider a music recommendation
system, and assume we are considering two candidate hypotheses, g1 and g2. Both hypotheses
recommend classical music; however, g1 recommends pieces by Bach 20% of the time and pieces by
Mozart 10% of the time, while g2 never recommends any pieces by Mozart.
Now, suppose that in the training set, users frequently choose to listen to pieces by Mozart. This
observation suggests that g2 should be discarded, as it never recommends Mozart. This leads to our
first rule: if a hypothesis exhibits a high recall loss, it can be discarded. The second rule addresses
precision loss, which is more challenging because it cannot be directly estimated from the data. To
illustrate the second rule, imagine that in the training set, users tend to pick Bach pieces only 5% of
the time. This suggests that g1 is over-recommending Bach pieces, and therefore, g1 might also be
discarded based on its likely precision loss.
We formally capture this using the following metric.

23

Definition 1. For a graph g define a vector vg : H×H → [0, 1] by

vg(g
′, g′′) =

1

m

m∑
i=1

Ug
i (Ng′(xi) \Ng′′(xi)).

Define a metric dH between graphs by dH(h, k) = ∥vh − vk∥∞.

Let ĝ be the observed (empirical) graph; i.e. the graph in which every xi is connected to the random
number vi which is observed in the training set. A standard union bound argument yields:

Lemma 8. Let gtarget denote the true graph (i.e. the data is generated from gtarget). Then, with
probability at least 1− δ:

dH(ĝ, g
target) ≤ O

(√ log|H|+ log(1/δ)

m

)
.

We now present our algorithm. We present two variants, one in the realizable setting (when
gtarget ∈ H) and one in the general (agnostic) setting.

Algorithm (realizable case): Let ε denote the desired error. Output a graph goutput ∈ H
such that

1. For all g ∈ H, vĝ(g, goutput) = 0.

2. For all g ∈ H, vgoutput(goutput, g) ≥ ε =⇒ vĝ(g
output, g) > 0,

Notice that Item 1 corresponds to the first principle for discarding suboptimal graphs described
earlier in this section, while Item 2 corresponds to the second principle.

Algorithm (agnostic case): output a graph goutput ∈ H such that

dH(ĝ, g
output) = min

g∈H
dH(ĝ, g).

We prove that

Theorem 8. Let gtarget denote the target graph. Then, for

m = O
(log|H|+ log(1/δ)

ε2

)
,

the agnostic-case algorithm outputs a graph goutput such that with probability at least 1− δ,

ℓscalar(goutput) ≤ 5min
g∈H

ℓscalar(g) + ε .

Remark 2. In the realizable setting, our algorithm achieves a quadratic improvement in sample
complexity: learning with recall and precision losses at most ε can be achieved with O

(
log|H|+log(1/δ)

ε

)
examples.

24

5.3.1 Proof of Theorem 2

Proof of Theorem 2 For simplicity, we adopt payoffs instead of losses here. The payoff of graph g
at x is

u(g, x) =
|Ngtarget(x) ∩Ng(x)|

2|Ng(x)|
+

|Ngtarget(x) ∩Ng(x)|
2|Ngtarget(x)|

.

If Ng(x) = ∅ and Ngtarget(x) ̸= ∅, u(g, x) = 1
2 ; if both are empty set u(g, x) = 1. The expected payoff

is u(g) = Ex∼D [u(g, x)] = 1− ℓscalar(g).

Construction of gtarget and D Let’s start by focusing on one single point x and its neighborhood.
There are n nodes N1(x) = [n2] and N2(x) = {n

2 + 1, . . . , n}. Consider two graphs—g1 with
Ng1(x) = N1(x) and g2 with Ng2(x) = N1(x) ∪ N2(x). So Ng1(x) contains half of the nodes in
Ng2(x).
In a world characterized by β ∈ [18 ,

2
3], Ngtarget(x) is generated in the following random way: Randomly

select 3
4 · βn nodes from N1(x) and 1

4 · βn nodes from N2(x). We denote this distribution by Pβ . No
matter what β is, w.p. 3

4 , v is sampled uniformly at random from N1(x) and w.p. 1
4 , v is sampled

uniformly at random from N2(x). That is, every node in N1(x) has probability 3
2n of being sampled

and every node in N2(x) has probability 1
2n of being sampled.

For any gtarget generated from the above process, the payoff of g1 at x is

u(g1, x) =
|Ngtarget(x) ∩Ng1(x)|

2|Ng1(x)|
+

|Ngtarget(x) ∩Ng1(x)|
2|Ngtarget(x)|

=
3/4 · βn

n
+

3/4 · βn
2βn

=
3

4
β +

3

8
,

and the payoff of g2 at x is

u(g2, x) =
|Ngtarget(x) ∩Ng2(x)|

2|Ng2(x)|
+

|Ngtarget(x) ∩Ng2(x)|
2|Ngtarget(x)|

=
βn

2n
+

βn

2βn
=

1

2
β +

1

2
.

We make infinite copies of {x,N1(x), N2(x)}. In each of the copy, Ng1(x) = N1(x) and Ng2(x) =
N1(x) ∪N2(x). For each x, we independently sample Ngtarget(x) from Pβ . Let the data distribution
over all of such copies of x. Then almost surely, there is no repentance in the training data, i.e.,
there does not exist i ̸= j such that xi = xj . And for any random sampled test point, w.p. 1, it has
not been sampled in the training set.
Analysis For any unobserved x /∈ {xi|i ∈ [m]}, let α1 =

|Ngoutput (x)∩N1(x)|
n and α2 =

|Ngoutput (x)∩N2(x)|
n .

Note that α1, α2 are in [0, 12] and are possibly random variables if A is randomized. Then the expected
(over the randomness of gtarget) payoff of goutput at x is

Egtarget
[
u(goutput, x)

]
=Egtarget

[|Ngtarget(x) ∩Ngoutput(x)|
2|Ngoutput(x)|

+
|Ngtarget(x) ∩Ngoutput(x)|

2|Ngtarget(x)|

]
=
α1n · 3

2β + α2n · 1
2β

2(α1 + α2)n
+

α1n · 3
2β + α2n · 1

2β

2βn

=
α1β

2(α1 + α2)
+

β

4
+

3

4
α1 +

1

4
α2 , (5)

which is monotonically increasing in α1. Hence Egtarget
[
u(goutput, x)

]
is maximized at α1 = 1

2 . Then

Egtarget
[
u(goutput, x)

]
≤ β

4
· (1

1
2 + α2

+ 1) +
3

8
+

1

4
α2 .

Note that β is not observable if we never sample the same x more than once (and thus the distribution
of v conditional on β is identical for any β). Hence goutput is independent of β.

25

• If Px∼D(α2(x) ≤ 1
4) ≥ 1

2 : when β = 1
8 , Egtarget

[
u(goutput, x)

]
≤ 1

4(
1

4+8α2
+ α2) +

13
32 is

monotonically increasing in α2. Hence,

u(g2)− Egtarget
[
u(goutput)

]
≥ 1

2
(
9

16
− 49

96
) =

5

192
=

5

84
ℓscalar(g2) .

• If Px∼D(α2(x) >
1
4) ≥

1
2 : when β = 2

3 , Egtarget
[
u(goutput, x)

]
= 1

3+6α2
+ 1

4α2 +
13
24 is maximized

at α2 =
1
2 for α ∈ [14 ,

1
2]. Hence,

u(g1)− Egtarget
[
u(goutput)

]
≥ 1

2
(
7

8
− 5

6
) =

1

48
=

1

6
ℓscalar(g1) .

Therefore, for any algorithm A, for any x1:m, v1:m, Egtarget
[
ℓscalar(goutput)

]
is worse than 1.05 ·

min{ℓscalar(g1), ℓ
scalar(g2)} at either β = 1

8 or β = 2
3 . So there exists a target graph such that

ℓscalar(goutput) ≥ 1.05 ·min{ℓscalar(g1), ℓ
scalar(g2)}.

5.3.2 Proof of Theorem 8

We use the following auxiliary metric between graphs:

Definition 2. For two graphs g′, g′′ define

dp,r(g
′, g′′) = precision.loss(g′|g′′) + recall.loss(g′|g′′)

= precision.loss(g′′|g′) + recall.loss(g′′|g′).

For any graph g, the scaler loss ℓscalar(g) = 1
2dp,r(g

output, gtarget). In the remainder of this section,
we focus on proving Theorem 8. The basic idea is to show that dH can be used as a surrogate for
dp,r. The following lemma plays a crucial role in our proof.

Lemma 9. For every pair of graphs h, k:

dH(h, k) ≤ dp,r(h, k).

If in addition h, k ∈ H, we have:
dp,r(h, k) ≤ 2dH(h, k).

We first use Lemma 9 to prove Theorem 8, and later prove the Lemma.
Proof of Theorem 8 Assume m = O(log|H|+log(1/δ)

ε2
) is such that dH(g

output, gtarget) ≤ ε/4 with
probability at least 1− δ, and assume the latter event holds. Let g ∈ H, by the triangle inequality:

dp,r(g
output, gtarget) ≤ dp,r(g

output, g) + dp,r(g, g
target).

We upper bound the first term on the right-hand side as follows:

dp,r(g
output, g) ≤ 2dH(g

output, g) (Lemma 9)
≤ 2dH(g

output, gtarget) + 2dH(g
target, g)

≤ 4dH(g
target, g) + ε (see below)

≤ 4dp,r(g
target, g) + ε. (Lemma 9)

26

Altogether,
dp,r(g

output, gtarget) ≤ 5dp,r(g, g
target) + ε.

It remains to explain the second to last inequality above. It follows by two applications of the
triangle inequality:

dH(g
output, gtarget) ≤ dH(g

output, ĝ) + ε/4 (dH(gtarget, ĝ) ≤ ε/4)
≤ dH(g, ĝ) + ε/4 (goutput ∈ argming∈H dH(g, ĝ))
≤ dH(g, g

target) + ε/2. (dH(gtarget, ĝ) ≤ ε/4)

Proof of Lemma 9 For the first inequality, note that both of the distributions Uh
i and Uk

i are
uniform over their supports and hence TV(Uh

i , U
k
i) = max{Uh

i (Nh(xi)\Nk(xi)), U
k
i (Nk(xi)\Nh(xi))}.

Thus, for every g′, g′′ ∈ H:

|Uh
i (Ng′(xi) \Ng′′(xi))− Uk

i (Ng′(xi) \Ng′′(xi))|
≤TV(Uh

i , U
k
i)

≤Uh
i (Nh(xi) \Nk(xi)) + Uk

i (Nk(xi) \Nh(xi)).

Hence, by averaging the above inequalities over i = 1, . . . , n:

dH(h, k) ≤
1

m

m∑
i=1

TV(Uh
i , U

k
i) ≤ dp,r(h, k),

which yields the first inequality.
For the second inequality, assume h, k ∈ H. Thus,

dH(h, k) ≥ max
{ 1

m

m∑
i=1

Uh
i (Nh(xi) \Nk(xi)),

1

m

m∑
i=1

Uk
i (Nk(xi) \Nh(xi))

}
≥ 1

m

m∑
i=1

Uh
i (Nh(xi) \Nk(xi)) + Uk

i (Nk(xi) \Nh(xi))

2

=
1

2
dp,r(h, k).

5.4 Algorithm and Proofs in the Semi-Realizable Case

In the semi-realizable case, there exists a hypothesis in the class with zero precision loss. The
question is whether we achieve zero precision loss while allowing for the worst recall loss in the class.

Theorem 5. There exists an algorithm such that if there exists a graph g′ ∈ H with ℓprecision(g′) = 0

and ℓrecall(g′) = r, then given an IID training set of size O(log(|H|/δ)
∆2

D
), with probability 1−δ, it outputs

a graph with ℓprecision(goutput) = 0 and ℓrecall(goutput) = r.

The algorithm works as follows.

27

Algorithm: output

goutput = argmin
g∈H

m∑
i=1

1(vi ∈ Ng(xi))

ng(xi)
.

If there are multiple solutions, we break ties by picking the graph with smallest empirical recall
loss.

Proof For any graph g, 1(vi ∈ Ng(xi)) is an unbiased estimate of the recall
|Ng(xi)∩Ngtarget (xi)|

ngtarget (xi)
.

Thus, 1(vi∈Ng(xi))
ng(xi)

is an unbiased estimate of
|Ng(xi)∩Ngtarget (xi)|
ng(xi)·ngtarget (xi)

. Since g′ has zero precision loss,
|Ng(xi)∩Ngtarget (xi)|

ng(xi)
= 1 almost everywhere. Thus, we have∣∣∣∣∣ 1m

m∑
i=1

1(vi ∈ Ng(xi))

ng(xi)
− E

[
1

ngtarget(x)

]∣∣∣∣∣ ≤
√

log(|H|) + log(1/δ)

m
,

for all g ∈ H. Then if ∆D > 0, we need 1
∆2

D
samples to separate g′ from other graphs in the

hypothesis class.

Theorem 6. There exists a class H = {g1, g2} of two graphs, for any m > 0 and any (possibly
randomized improper) algorithm A, there exists a target graph gtarget and a data distribution D for
which there exists a graph g† ∈ H with ℓprecision(g†) = 0 s.t. with probability 1− δ over the training
set, the expected (over the randomness of the algorithm) precision and recall losses of the output
goutput satisfy either E

[
ℓrecall(goutput)

]
≥ ming∈H ℓrecall(g) + Ω(1) or E

[
ℓprecision(goutput)

]
= Ω(1).

Proof Let’s start by focusing on one single point x. Let N = {v1, . . . , vn} for some n ≫ m. Let
Ng1(x) = {v1} and Ng2(x) = {v2}. In world I, Ngtarget(x) is generated in the following way.

• w.p. 1
2 , Ngtarget(x) = N \ {v2}.

• w.p. 1
2 , Ngtarget(x) = {v1, v2}.

We construct a symmetric world II by switching v1 and v2, i.e.,

• w.p. 1
2 , Ngtarget(x) = N \ {v1}.

• w.p. 1
2 , Ngtarget(x) = {v1, v2}.

We make infinite independent copies of (x,N) and let D to be the uniform distribution over such
x’s. Hence, in world I, ℓprecision(g1) = 0 and ℓrecall(g1) =

3
4 −

1
2n ; ℓprecision(g2) =

1
2 and ℓrecall(g2) =

3
4 .

When n → ∞, we can’t distinguish between two worlds. In order to achieve ℓprecision(goutput) = 0 in
both worlds, we need to make Ngoutput(x) = ∅ for almost every x. Then the recall loss would be 1.

28

6 Discussion

In this work, we study PAC learning guarantees for precision and recall. There are two natural open
questions.
First, there is a gap between the upper and lower bounds. For the scalar-loss objective, we
demonstrate that an α = 5 approximate optimal scalar loss is achievable, while α = 1.05 is not,
leaving it unclear what the optimal α is. For the Pareto-loss objective, we establish an upper bound
of (p, r) ⇒ (5(p+ r), r) and a lower bound of (p, r) ̸⇒ (p+ 0.01, r + 0.01), again suggesting a gap
that we do not yet know how to close.
Second, it remains an open question whether there exists a combinatorial measure, similar to the
VC dimension in standard PAC learning, that characterizes the learnability of precision and recall.
Each graph implicitly defines a distribution at each node—specifically, a uniform distribution over
its neighborhood. In Section 5.3, we also link the scalar loss to the total variation distance, thus
reducing the scalar loss learning problem to a special case of distribution learning. However, as
shown in [LB24], there is no such a dimension characterizing the sample complexity of learning
certain distribution classes (in their case, a mixture of point mass and uniform distributions). This
result suggests a potential limitation in identifying a combinatorial measure for our learning problem.

Acknowledgements

Lee Cohen is supported by the Simons Foundation Collaboration on the Theory of Algorithmic
Fairness, the Sloan Foundation Grant 2020-13941, and the Simons Foundation investigators award
689988.
Yishay Mansour was supported by funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 882396), by
the Israel Science Foundation, the Yandex Initiative for Machine Learning at Tel Aviv University
and a grant from the Tel Aviv University Center for AI and Data Science (TAD).
Shay Moran is a Robert J. Shillman Fellow; he acknowledges support by ISF grant 1225/20, by BSF
grant 2018385, by Israel PBC-VATAT, by the Technion Center for Machine Learning and Intelligent
Systems (MLIS), and by the the European Union (ERC, GENERALIZATION, 101039692). Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them.
Han Shao was supported by Harvard CMSA.

References

[AGHHR05] Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled, and Dan Roth.
Generalization bounds for the area under the ROC curve. J. Mach. Learn. Res.,
6:393–425, 2005 (cited on page 4).

[AHHM22] Noga Alon, Steve Hanneke, Ron Holzman, and Shay Moran. A theory of pac learnability
of partial concept classes. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 658–671. IEEE, 2022 (cited on page 3).

[AKV16] Monika Arora, Uma Kanjilal, and Dinesh Varshney. Evaluation of information retrieval:
precision and recall. International Journal of Indian Culture and Business Management,
12(2):224–236, 2016 (cited on page 4).

29

[BD20] Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: a survey.
Machine Learning, 109(4):719–760, 2020 (cited on page 4).

[BTDK22] Jasmin Bogatinovski, Ljupčo Todorovski, Sašo Džeroski, and Dragi Kocev. Compre-
hensive comparative study of multi-label classification methods. Expert Systems with
Applications, 2022 (cited on page 4).

[BKM19] Olivier Bousquet, Daniel Kane, and Shay Moran. The optimal approximation factor
in density estimation. In Conference on Learning Theory, pages 318–341. PMLR, 2019
(cited on page 3).

[CM03] Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimization. In
Advances in Neural Information Processing Systems 16 [Neural Information Processing
Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia,
Canada], pages 313–320. MIT Press, 2003 (cited on page 4).

[CM04] Corinna Cortes and Mehryar Mohri. Confidence intervals for the area under the ROC
curve. In Advances in Neural Information Processing Systems 17 [Neural Information
Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia,
Canada], pages 305–312, 2004 (cited on page 4).

[DSBS15] Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass
learnability and the erm principle. J. Mach. Learn. Res., 16(1):2377–2404, 2015 (cited
on page 3).

[DDGL99] Francesco De Comité, François Denis, Rémi Gilleron, and Fabien Letouzey. Positive and
unlabeled examples help learning. In Algorithmic Learning Theory: 10th International
Conference, ALT’99 Tokyo, Japan, December 6–8, 1999 Proceedings 10, pages 219–230.
Springer, 1999 (cited on page 4).

[Den98] François Denis. PAC learning from positive statistical queries. In International confer-
ence on algorithmic learning theory, pages 112–126. Springer, 1998 (cited on page 4).

[DL01] Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation. Springer
Science & Business Media, 2001 (cited on page 3).

[EW01] André Elisseeff and Jason Weston. A kernel method for multi-labelled classification.
In Advances in Neural Information Processing Systems, 2001 (cited on page 4).

[GZ11] Wei Gao and Zhi-Hua Zhou. On the consistency of multi-label learning. In Proceedings
of the 24th Annual Conference on Learning Theory, Proceedings of Machine Learning
Research, 2011 (cited on page 4).

[GBV20] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for multi-class classi-
fication: an overview. arXiv preprint arXiv:2008.05756, 2020 (cited on page 4).

[JL19] Brendan Juba and Hai S Le. Precision-recall versus accuracy and the role of large
data sets. In Proceedings of the AAAI conference on artificial intelligence, volume 33
of number 01, pages 4039–4048, 2019 (cited on page 4).

[KVJ12] Ashish Kapoor, Raajay Viswanathan, and Prateek Jain. Multilabel classification using
bayesian compressed sensing. In Advances in Neural Information Processing Systems,
2012 (cited on page 4).

[KSWA15] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits:
learning to rank in the cascade model. In International conference on machine learning,
pages 767–776. PMLR, 2015 (cited on page 4).

30

[LB24] Tosca Lechner and Shai Ben-David. Inherent limitations of dimensions for characteriz-
ing learnability of distribution classes. In The Thirty Seventh Annual Conference on
Learning Theory, pages 3353–3374. PMLR, 2024 (cited on pages 3, 29).

[LDG00] Fabien Letouzey, François Denis, and Rémi Gilleron. Learning from positive and
unlabeled examples. In International Conference on Algorithmic Learning Theory,
pages 71–85. Springer, 2000 (cited on page 4).

[MMZ24] Anqi Mao, Mehryar Mohri, and Yutao Zhong. Multi-label learning with stronger
consistency guarantees, 2024 (cited on page 4).

[McC99] Andrew Kachites McCallum. Multi-label text classification with a mixture model
trained by em. AAAI’99 workshop on text learning, 1999 (cited on page 4).

[MRRK19] Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Multilabel
reductions: what is my loss optimising? In Advances in Neural Information Processing
Systems, 2019 (cited on page 4).

[PC11] James Petterson and Tibério Caetano. Submodular multi-label learning. In Advances
in Neural Information Processing Systems, 2011 (cited on page 4).

[Ros04] Saharon Rosset. Model selection via the AUC. In Carla E. Brodley, editor, Machine
Learning, Proceedings of the Twenty-first International Conference (ICML 2004),
Banff, Alberta, Canada, July 4-8, 2004, volume 69 of ACM International Conference
Proceeding Series. ACM, 2004 (cited on page 4).

[SBLBG18] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly.
Assessing generative models via precision and recall. Advances in neural information
processing systems, 31, 2018 (cited on page 4).

[SS00] Robert E. Schapire and Yoram Singer. Boostexter: a boosting-based system for text
categorization. Machine Learning, 2000 (cited on page 4).

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014 (cited on page 3).

[TLZAG18] Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich.
Precision and recall for time series. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 1924–1934, 2018 (cited
on page 4).

[TR09] Luis Torgo and Rita Ribeiro. Precision and recall for regression. In Discovery Science:
12th International Conference, DS 2009, Porto, Portugal, October 3-5, 2009 12,
pages 332–346. Springer, 2009 (cited on page 4).

[Val84] L. G. Valiant. A theory of the learnable, 1984 (cited on page 1).

[ZZ14] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, 2014 (cited on page 4).

31

	Introduction
	Model
	Main Results
	Proof Overview
	Algorithms and Proofs
	Maximum Likelihood Method in the Realizable Case
	Modified Maximum Likelihood Method in the Agnostic Case
	Proof of Theorem 3
	Proof of Theorem 7

	Surrogate Loss Method in Both Realizable and Agnostic Cases
	Proof of Theorem 2
	Proof of Theorem 8

	Algorithm and Proofs in the Semi-Realizable Case

	Discussion

