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HILBERT MEASURES ON ORBIT SPACES OF COREGULAR Om-MODULES

HANS-CHRISTIAN HERBIG , CHRISTOPHER W. SEATON, , AND LILLIAN WHITESELL

Abstract. We construct canonical measures, referred to as Hilbert measures, on orbit spaces of classical
coregular representations of the orthogonal groups Om. We observe that the measures have singularities
along non-principal strata of the orbit space if and only if the number of copies of the defining representation

of Om is equal to m.
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1. Introduction

When using the change of variables for multidimensional integrals, the coordinate functions must be alge-
braically independent. In the presence of a symmetry group acting on the integration domain it is natural to
use fundamental invariants for the change of variables. This type of consideration can be found in textbooks
on multivariable calculus in the context of spherical coordinates. For example, letting Om = Om(R) denote
the m×m real orthogonal group, one might want to integrate a smooth O3-invariant function f : D → R de-
fined on an O3-invariant domain D ⊆ R3. By the Theorem of Gerald W. Schwarz on differentiable invariants
[13, Theorem 1], see also [7, Theorem 1], one can write f(x1, x2, x3) = F (u(x1, x2, x3)) for some function
F : I→ R defined on the interval u(D) ⊂ [0,∞) where u(x1, x2, x3) = x21 + x22 + x23. One easily derives

∫

D

f(x1, x2, x3) dx1dx2dx3 = 2π

∫

I

F (u)
√
u du.

We refer to 2π
√
u du as the Hilbert measure on [0,∞) corresponding to the Hilbert basis {u = x21+x

2
2+x

2
3}. A

more conventional way to write this is 4πr2 dr, where r =
√
u is the radius function. The interval [0,∞) can

be interpreted as the diffeomorphic image of the orbit space R3/O3 via the Hilbert embedding u:R3 → R.
In general, when G is a compact Lie group acting linearly on a domain D ⊆ Rm, a Hilbert embedding
u = (u1, . . . , uk) : D 7→ Rk comprised of a complete set of polynomial invariants u1, . . . , uk, induces a map
which embeds the orbit space D/G of a G-invariant subset D ⊆ R

m into Euclidean space (see [2, p. 18]).
In this paper we deduce similar coordinate change formulas for the classical representations Vk := Rmk

of the orthogonal groups Om, where Om acts diagonally on (v1,v2, . . . ,vk) ∈ Vk with vi ∈ Rm for each
i ∈ [k] = {1, . . . , k} (see, for example, [3]). The condition that the fundamental invariants are algebraically
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independent is referred to as coregularity of the representation Vk. It is well-known that Vk is a coregular
representation of Om(C) if and only if k ≤ m, see [16, Theorem 11.18], and the same holds for Om =
Om(R) by [15, Proposition 5.8(1)]. The fundamental polynomial invariants of the classical representation
Vk are given by the mutual inner products of the coordinate vectors. That is, the invariants are given by
ui,j = uj,i = 〈vi,vj〉 =

∑m
ℓ=1 vi,ℓvj,ℓ, see [10, Section 9.3]. The Hilbert embedding is then the vector-valued

map

u = (ui,j)1≤j≤i≤k :Vk → R(
k+1
2 )

whose components are given by the invariants. The image X = u(Vk) of u is a semialgebraic subset of

R(
k+1
2 ), see [11, Theorem (0.10)]. In the coregular case when k ≤ m, the Zariski closure of X is R(

k+1
2 ), i.e.,

X can be described by polynomial inequalities only. By general principles, u descends to a diffeomorphism of
the differential spaces

(
Vk/Om, C∞(Vk)

Om
)
and (X, C∞(X)). In particular, it restricts to a diffeomorphism

between the isotropy type strata of Vk/Om and the minimal semialgebraic strata of X , see [2, Theorem 2.5].

Abusing notation, we use also u = (ui,j) with ui,j = uj,i for the coordinates on U := R(
k+1
2 ) and use the

notation R[U ] = R[ui,j : 1 ≤ j ≤ i ≤ k] for the coordinate ring on U . The restriction (〈vi,vj〉)i,j∈[k] of the

symmetric matrix Gk = (ui,j)i,j∈[k] to u(Vk) is often referred to as the Gram matrix. The Hilbert measure

λk,m(u) du on u(Vk) is uniquely determined by the condition that
∫

Vk

f(v1,v2, . . . ,vk) dv1dv2 · · · dvk =

∫

u(Vk)

F (u)λk,m(u)du

for each Om-invariant function with compact support f ∈ C∞
c (Vk)

Om . Here dvi, i = 1, . . . , k is the Lebesgue

measure for the ith copy of Rm and f(v1,v2, . . . ,vm) = F (u) for some F ∈ C∞
c (R(

m+1
2 )).

Now recall that the volume of the (m− 1)-dimensional unit sphere Sm−1 is Vol(Sm−1) = 2πm/2

Γ(m/2) and that

m∏

j=1

Vol(Sj) =
m∏

j=1

2πj/2

Γ(j/2)
=

2m
√
π(

m+1
2 )

∏m
j=1 Γ(j/2)

= Vol(Om),(1.1)

see [18, Theorem 2.24]. The purpose of this paper is to prove the following result.

Theorem 1.1. For k ≤ m the Hilbert measure on u(Vk) ≃ Vk/Om is

λk,m(u) du =
|Gk|(m−k−1)/2

2k

k∏

j=1

Vol(Sm−j) du

=
1

2k
Vol(Om/Om−k) |Gk|(m−k−1)/2 du,

(1.2)

where Vol(Om/Om−k) is the volume of the Stiefel manifold Om/Om−k [18, Proposition 2.23] and Gk =
(ui,j)i,j∈[k] is the Gram matrix.

Note that if we consider Vk as an SOm-module, then Vk is coregular if and only if k ≤ m − 1, see [16,
Theorem 11.18]. In this case, the SOm- and Om-invariants coincide, see [10, Section 9.3], and each point in
Vk is fixed by a reflection so that Vk/SOm = Vk/Om. Hence we have following.

Corollary 1.2. For k ≤ m − 1 the Hilbert measure on u(Vk) ≃ Vk/SOm coincides with λk,m(u) du in

Equation (1.2).

It is interesting to note that λk,m is a smooth function on R(
k+1
2 ) in every case except k = m, in which case it

has singularities at points where |Gk|= 0. In terms of the stratification of Vk by Om-orbit types, the principal
stratum consists of points such that {v1, . . . ,vk} is linearly independent, i.e., such that |Gk|6= 0. Hence, the
singularities occur on lower-dimensional strata. Note that these lower-dimensional strata constitute a set of
measure zero in Vk so that the integral of a smooth invariant function, and hence the measure λk,m du, is
determined by the principal stratum.

Using Om-invariant bump functions localized near the orbits, see [9, Theorem 4.3.1] and [8, Section 4.2],
one deduces the following well-known result.

Corollary 1.3 ([11, Example 0.8]). If k ≤ m, then u(Vk) is the subset of R(
k+1
2 ) where Gk is positive

semidefinite.
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Proof. Let us use induction on m to show that the matrix (〈vi,vj〉)i,j∈[k] is positive semidefinite. The

statement is obvious for m = 1. For ℓ < m we view Rℓ as the subspace

{v = (v1, . . . , vm) = R
m | vµ = 0 for µ > ℓ} ⊂ R

m.

From the theorem we can show, using invariant bump functions for points with principal isotropy type, that
when k ≤ m and k 6= m− 1 we have |Gk||(Vk)princ≥ 0. But

(Vk)princ = {(v1, . . . ,vk) ∈ Vk | det(〈vi,vj〉)i,j∈[k] 6= 0}
= {(v1, . . . ,vk) ∈ Vk | dimSpan{v1, . . . ,vk} = k} .

If dim SpanR{v1, . . . ,vm−1} = m−1 we can find an A ∈ Om such that (Av1, . . . , Avm−1) ∈
(
Rk(m−1)

)

princ
.

Hence we can show using the theorem for Rk(m−1) that the upper left principal (m− 1)× (m− 1)-minor of
(〈vi,vj〉)i,j∈[k] is ≥ 0. So we can drop the assumption k 6= m− 1 above.

Now for k ≤ m we have (v1, . . . ,vk) ∈ Vk\(Vk)princ if and only if det(〈vi,vj〉)i,j∈[k] = 0, or equivalently,

if ℓ = dimSpan{v1, . . . ,vk} < k. If ℓ < k we can find an A ∈ Om such that (Av1, . . . , Avk) ∈
(
Rkℓ
)

princ
and

hence by the induction hypothesis the upper left ℓ× ℓ-submatrix of (〈vi,vj〉)i,j∈[k] is positive semidefinite.

To argue that u reaches each point where Gk is positive semidefinite, take a Cholesky decomposition R⊤R
of such a point (ui,j)i,j∈[k]. Then

(v1, . . . ,vk) =




1k

0m−k



R

is in the preimage. �

Let us elaborate on why Hilbert measures on orbit spaces may be of scientific interest. In Feynman’s
approach to quantum theory, one studies path integrals

Ih̄ =

∫

e
√
−1S/h̄Dϕ,

where S is a local action functional (i.e., a space-time integral of a function on the infinite jet space in the
fields ϕα = ϕα

(
x1, . . . , xn

)
, α = 1, . . . , k, depending on the spacetime coordinates x1, . . . , xn). To date, only

in low spacetime dimensions has it been possible to interpret the formal expression Dϕ as a well-defined
measure. In gauge theories, the actions S and Dϕ are invariant with respect to the action of the infinite-
dimensional gauge group G. Then the formally ill-defined integral Ih̄ can be regularized by passing to an
integral over the orbit space, that is, by integrating over the coordinates perpendicular to the orbits and
dividing out the (typically infinite) volume of the group. More specifically, it can be shown [12, Section 6]
that when the spacetime is 0-dimensional and the G-action has trivial principal isotropy type and admits
a cross-section (also known as gauge fixing), the Faddeev-Popov trick [4] provides a means to calculate the
asymptotic expansion in the Planck constant h̄ of the regularized Ih̄. The success of the Faddeev-Popov
trick suggests that it might be valid in much greater generality.

The construction of the Hilbert measure that we carry out here for the coregular classical representations
of the orthogonal groups can, in principle, be performed in a similar and routine manner for other coregular
representations of compact Lie groups. Coregular representations in turn have been classified by Gerald W.
Schwarz [14]. In fact, coregular actions admit generically local cross-sections so that the invariants can be
complemented to local coordinate systems, and one has simply to work out the change of variables. In the
non-coregular case things are more challenging and we are examining several ideas. Besides, some of the
authors have recently found symplectic forms ω on orbifolds of unitary representations V of finite groups [5].
It seems to be a natural and important question whether their Liouville forms ω∪ dimC V can be related to the
Hilbert measure. Similar questions arise for the singular symplectic quotients considered by Sjamaar-Lerman
[17].
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2. Generalized Euler Angles

In this section, we recall the parametrization of SOm by generalized Euler angles given in [6]. This
parametrization will be used implicitly in Section 3.1. According to this parametrization, any v ∈ Rm with
‖v‖= 1 can be written as

v = sin θ1e1 + cos θ1(sin θ2e2 + cos θ2(. . . (sin θm−1em−1 + cos θm−1em) . . .))(2.1)

for

θj ∈
[

−π
2
,
π

2

]

, j = 1, . . . ,m− 2 and θm−1 ∈ [−π, π].
Here ej ∈ Rm is the jth canonical basis vector, i.e., its kth component is δj,k = 0 if j 6= k and 1 if j = k.
The angle θm−1 is referred to as the azimuthal angle and the θ1, . . . , θm−2 as the generalized polar angles.
We write θ = (θ1, . . . , θm−1) for the (m−1)-tuple of Euler angles, which are generically uniquely determined
by v.

Example 2.1. If m = 3 we have v = sin θ1e1 + cos θ1(sin θ2e2 + cos θ2e3). This is can be understood in
terms of the conventional spherical coordinates (φ, θ) for the unit sphere S2 ⊂ R3 by setting φ = θ2 and
θ = π/2− θ1 and applying the coordinate permutation (13).

The vectors in the iterated brackets above, denoted fk, can be defined by recursive rotations, starting
with fm = em and setting

fk−1 = sin θk−1ek−1 + cos θk−1fk, k = m, . . . , 2,

so that v = f1. In fact, by construction 〈ek−1,fk〉 = 0 for k = 2, . . . ,m, θk−1 = ∡(fk−1,fk) for k =

1, . . . ,m− 1, and ‖fk‖= 1 for k = 1, . . . ,m. We can write fk =
∑k

j=1 tan(θj) (
∏m
l=k cos(θl)) ej .

Proposition 2.2. [6] The vectors aj(θ) :=
(
∏j−1
ℓ=1 cos(θℓ)

)−1
∂v
∂θj

= cos(θj)ej − sin(θj)f j+1 with j =

1, . . . ,m− 1 and am := v form an orthonormal basis of Rm. For θ = (0, . . . , 0) we have aj(0, . . . , 0) = ej.

Proof. From (2.1) it follows that

∂v

∂θj
=

(
j−1
∏

ℓ=1

cos(θℓ)

)

∂(sin θjej + cos(θj)f j+1)

∂θj
=

(
j−1
∏

ℓ=1

cos(θℓ)

)

(cos θjej − sin(θj)f j+1),

so that aj = cos θjej − sin(θj)f j+1 is of magnitude 1. Moreover, for ℓ < j we have

∂2v

∂θi∂θj
=
∂
(
∏j−1
ℓ=1 cos(θℓ)

)

∂θi

∂(sin θjej + cos(θj)ej+1)

∂θj
= − tan θi

∂v

∂θj
.(2.2)

Since ‖v‖= 1 we have 〈v, ∂v/∂θj〉 = 0, so that aj ⊥ am. But
〈
∂v

∂θi
,
∂v

∂θj

〉

=
∂

∂θi

〈

v,
∂v

∂θj

〉

︸ ︷︷ ︸

=0

−
〈

v,
∂2v

∂θi∂θj

〉

︸ ︷︷ ︸

=0 by (2.2)

= 0,

so that ai ⊥ aj for i, j = 1, . . . ,m− 1. �

Let Aθ := (ai,j(θ))i,j∈[m] ∈ SOm be the matrix whose columns are a1(θ), . . . ,am(θ). It turns out that

ai,j(θ) =







cos θi if i = j ≤ m− 1,

tan θi
∏i
ℓ=1 cos θℓ if i ≤ m = j,

− tan θi tan θj
∏i
ℓ=j cos θℓ if i > j,

0 else,

with the convention that θm = π/2 and tan(θm) cos(θm) = 1.

Theorem 2.3. [6] Every matrix in SOm can be written as an Aθ for some generically unique θ = (θ1, . . . , θm−1).
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3. Computation of the measure

In this section, we compute the measure λk,m(u) du and hence prove Theorem 1.1. We divide the proof
into two changes of variables. The first finds a representative (w1, . . . ,wk) of the Om-orbit of a point
(v1, . . . ,vk) ∈ Vk in a specific fundamental domain P . The second transforms from (w1, . . . ,wk) to the
invariants ui,j .

3.1. First change of variables. Let v1, . . . ,vk ∈ Rm with coordinates vi = (vi,1, vi,2, . . . , vi,m) for each
i. As noted in the introduction, the measure λk,m(u) du is determined by the principal stratum in terms
of the stratification of Vk by orbit types. Hence, we may restrict our attention to the principal stratum
and therefore assume {v1, . . . ,vk} is linearly independent. We first describe a change of variables to a
representative (w1, . . . ,wk) ∈ R

km of the Om-orbit Om(v1, . . . ,vk) ∈ R
km contained in the fundamental

domain P where, using coordinates wi = (wi,1, . . . , wi,m) for the wi, points in P satisfy wi,j = 0 for j > i
and wi,i ≥ 0 for each i; see Equation (3.6). Because the resulting wi will form a linearly independent set,
we will have wi,i > 0 for each i.

Let R
(j)
θ ∈ SOm denote the element that acts on coordinates j and j + 1 as a rotation through the angle

θ and acts trivially on all other coordinates. That is, R
(j)
θ acts on each (vi,j , vi,j+1) as

R
(j)
θ =




cos θ − sin θ

sin θ cos θ



 .

We will define the wi by successively applying rotations R
(j)
θ to make specific coordinates vanish following

the approach of [6] recalled in Section 2.
Let us illustrate the procedure with the case m = k = 2, which involves a single rotation and indicates

the change of variables at each step of the general case. Let v′1,1 =
√

v21,1 + v21,2, choose θ ∈ (−π, π] so that

R
(1)
θ (v′1,1, 0) = (v1,1, v1,2) with v′1,1 > 0,

and define (v′2,1, v
′
2,2) = R

(1)
−θ(v2,1, v2,2). Then (v1,1, v1,2, v2,1, v2,2) is given by

(v′1,1 cos θ, v
′
1,1 sin θ, v

′
2,1 cos θ − v′2,2 sin θ, v

′
2,1 sin θ + v′2,2 cos θ),

and the Jacobian of the change of variables is given by

∂(v1,1, v1,2, v2,1, v2,2)

∂(v′1,1, θ, v
′
2,1, v

′
2,2)

=











cos θ −v′1,1 sin θ 0 0

sin θ v′1,1 cos θ 0 0

0 −v′2,1 sin θ − v′2,2 cos θ cos θ − sin θ

0 v′2,1 cos θ − v′2,2 sin θ sin θ cos θ











.

Then we have

dv1,1 ∧ dv1,2 ∧ dv2,1 ∧ dv2,2 = v′1,1dv
′
1,1 ∧ dθ ∧ dv′2,1 ∧ dv′2,2.

Now, we consider the general case of arbitrary k ≤ m. Let us first explain our indexing convention.
Subscripts will continue to index coordinates of the k vectors vi as above. We will apply a sequence of
rotations, each targeting a specific vector vi to make a specific coordinate vanish, and superscripts will index
this sequence. The angle θ(i,j) is the jth rotation targeting the ith vector; after its application, the (m−j+1)st
coordinate of the ith vector will vanish. The coordinates after the application the rotation through θ(i,j) will

be denoted v
(i,j)
k,ℓ . Note that we order the variables lexicographically, i.e., v1,1, v1,2, . . . , v1,m, v2,1, . . . , vk,m,

and similarly for the v
(i,j)
k,ℓ .

In the first step, we define a change of variables (vi,j) 7→ (v
(1,1)
i,j ) such that v

(1,1)
1,m = 0 and v

(1,1)
1,m−1 > 0. This

is accomplished as in the case of k = m = 2 with a rotation R
(m−1)

θ(1,1)
with θ(1,1) ∈ (−π, π], so that v

(1,1)
i,j = vi,j

for all i, j with j < m − 1. The resulting change of variables is computed similarly to the case k = m = 2
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and is given by
∧

1≤i≤k
1≤j≤m

dvi,j = v
(1,1)
1,m−1

m−1∧

j=1

dv
(1,1)
1,j ∧ dθ(1,1) ∧

∧

2≤i≤k
1≤j≤m

dv
(1,1)
i,j .

For the next step, we define (v
(1,1)
i,j ) 7→ (v

(1,2)
i,j ) such that v

(1,2)
1,m = v

(1,2)
1,m−1 = 0 and v

(1,2)
1,m−2 > 0, with

v
(1,2)
i,j = v

(1,1)
i,j for j < m−2. Here, we apply a rotation R

(m−2)

θ(1,2)
chosen so that R

(m−2)

−θ(1,2) rotates (v
(1,1)
1,m−2, v

(1,1)
1,m−1)

to the positive vm−2-axis; as v
(1,1)
1,m−1 > 0, we have θ(1,2) ∈ (0, π). Then

m−1∧

j=1

dv
(1,1)
1,j ∧ dθ(1,1) ∧

∧

2≤i≤k
1≤j≤m

dv
(1,1)
i,j = v

(1,2)
1,m−2

m−2∧

j=1

dv
(1,2)
1,j ∧ dθ(1,2) ∧ dθ(1,1) ∧

∧

2≤i≤k
1≤j≤m

dv
(1,2)
i,j

so that

(3.1)
∧

1≤i≤k
1≤j≤m

dvi,j = v
(1,1)
1,m−1v

(1,2)
1,m−2

m−2∧

j=1

dv
(1,2)
1,j ∧ dθ(1,2) ∧ dθ(1,1) ∧

∧

2≤i≤k
1≤j≤m

dv
(1,2)
i,j .

However, note that

v
(1,2)
1,m−2 =

√

(v
(1,1)
1,m−2)

2 + (v
(1,1)
1,m−1)

2,

hence

v
(1,1)
1,m−1 =

√

(v
(1,2)
1,m−2)

2 − (v
(1,1)
1,m−2)

2

=

√

(v
(1,2)
1,m−2)

2 − (v
(1,2)
1,m−2 cos θ

(1,2))2

= v
(1,2)
1,m−2 sin θ

(1,2).

Applying this substitution to Equation (3.1) yields

(3.2)
∧

1≤i≤k
1≤j≤m

dvi,j = (v
(1,2)
1,m−2)

2 sin θ(1,2)
m−2∧

j=1

dv
(1,2)
1,j ∧ dθ(1,2) ∧ dθ(1,1) ∧

∧

2≤i≤k
1≤j≤m

dv
(1,2)
i,j .

To consider one more step in detail, define (v
(1,2)
i,j ) 7→ (v

(1,3)
i,j ) such that v

(1,3)
1,m = v

(1,3)
1,m−1 = v

(1,3)
1,m−2 = 0 and

v
(1,3)
1,m−3 > 0. We choose θ(1,3) ∈ (0, π) so that R

(m−3)

−θ(1,3) rotates (v
(1,2)
1,m−3, v

(1,2)
1,m−2) to the positive vm−3-axis,

yielding the following change of variables from Equation (3.2):

(v
(1,2)
1,m−2)

2 sin θ(1,2)
m−2∧

j=1

dv
(1,2)
1,j ∧ dθ(1,2) ∧ dθ(1,1) ∧

∧

2≤i≤k
1≤j≤m

dv
(1,2)
i,j

= (v
(1,2)
1,m−2)

2v
(1,3)
1,m−3 sin θ

(1,2)
m−3∧

j=1

dv
(1,3)
1,j ∧ dθ(1,3) ∧ dθ(1,2) ∧ dθ(1,1) ∧

∧

2≤i≤k
1≤j≤m

dv
(1,3)
i,j .(3.3)

Once again,

v
(1,3)
1,m−3 =

√

(v
(1,2)
1,m−3)

2 + (v
(1,2)
1,m−2)

2,

and v
(1,2)
1,m−3 = v

(1,3)
1,m−3 cos θ

(1,3) so that

v
(1,2)
1,m−2 = v

(1,3)
1,m−3 sin θ

(1,3),

and Equation (3.3) becomes

∧

1≤i≤k
1≤j≤m

dvi,j = (v
(1,3)
1,m−3)

3 sin θ(1,2) sin2 θ(1,3)
m−3∧

j=1

dv
(1,3)
1,j ∧ dθ(1,3) ∧ dθ(1,2) ∧ dθ(1,1) ∧

∧

2≤i≤k
1≤j≤m

dv
(1,3)
i,j .
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Continuing in this way, we apply R
(m−j)
θ(1,j)

for j = 4, 5, . . . ,m− 1 to obtain coordinates v
(1,m−1)
i,j such that

v
(1,m−1)
1,1 > 0 and v

(1,m−1)
1,j = 0 for j > 1. Identical computations to those above at each step yield

∧

1≤i≤k
1≤j≤m

dvi,j = (v
(1,m−1)
1,1 )m−1

m−1∏

j=2

sinj−1 θ(1,j) dv
(1,m−1)
1,1 ∧

m−1∧

j=1

dθ(1,m−j) ∧
∧

2≤i≤k
1≤j≤m

dv
(1,m−1)
i,j .

We then apply the same process to target v2. The first rotation R
(m−1)

θ(2,1)
yields coordinates v

(2,1)
i,j such

that v
(2,1)
2,m = 0 and v

(2,1)
2,m−1 > 0, the second R

(m−2)

θ(2,2)
yields v

(2,2)
i,j where the last two coordinates of v2 vanish,

etc., ending with R
(2)

θ(2,m−2) , yielding v
(2,m−2)
i,j such that v

(2,m−2)
2,2 > 0 and v

(2,m−2)
2,j = 0 for j ≥ 3, with the

v
(1,m−1)
1,i = v

(2,m−2)
1,i unchanged. Targeting v3, we apply m − 3 rotations so that the first three resulting

coordinates are nonzero, etc., finally ending with coordinates v
(k,m−k)
i,j such that v

(k,m−k)
i,j = 0 whenever

j > i and v
(k,m−k)
i,i > 0 for each i. If k < m, then the vectors (v1, . . . ,vk) are fixed by a reflection so

that their SOm- and Om-orbits coincide; if k = m, then in the final step, we apply a reflection to ensure

that v
(k,m−k)
k,k > 0, introducing a factor of 2 = δk,m + 1. Identical computations to those above and a little

book-keeping yields

(3.4)
∧

1≤i≤k
1≤j≤m

dvi,j = (δk,m + 1)

k∏

i=1

(v
(k,m−k)
i,i )m−i

k∏

i=1

m−i∏

j=2

sinj−1 θ(i,j)
k∧

i=1





i∧

j=1

dv
(k,m−k)
i,j ∧

m−1∧

ℓ=i

dθ(i,m−ℓ)



 .

Set wi,j = v
(k,m−k)
i,j for 1 ≤ j ≤ i ≤ k, let

W = {wi,j ∈ R | 1 ≤ j ≤ i ≤ k, wi,i > 0}
denote the interior of the fundamental domain P consisting of linearly independent sets of vectors, and let

Θ = {θ(ℓ,p) ∈ (−π, π) | 1 ≤ ℓ ≤ k, 1 ≤ p ≤ m− ℓ, θℓ,p ∈ (0, π) for p > 1}.
Now observe that, for a smooth invariant integrable function f on Vk, we have that f(v) = f(w), so we can
express

∫

Vk

f(v)
∧

1≤i≤k
1≤j≤m

dvi,j = (δk,m + 1)

∫

W×Θ

f(v)

k∏

i=1

wm−i
i,i

k∏

i=1

m−i∏

j=2

sinj−1 θ(i,j)
k∧

i=1





i∧

j=1

dwi,j ∧
m−1∧

ℓ=i

dθ(i,m−ℓ)





= (δk,m + 1)

∫

W

f(w)

k∏

i=1

wm−i
i,i

k∧

i=1

i∧

j=1

dwi,j

∫

Θ

k∏

i=1

m−i∏

j=2

sinj−1 θ(i,j)
k∧

i=1

m−1∧

ℓ=i

dθ(i,m−ℓ).(3.5)

The integral over Θ can be computed using

π∫

0

sinℓ θ dθ =

√
π Γ

(
ℓ+1
2

)

Γ
(
ℓ+2
2

) ,

see [1, 6.2.1 and 6.2.2], and we obtain

∫

Θ

k∏

i=1

m−i∏

j=2

sinj−1 θ(i,j)
k∧

i=1

m−1∧

ℓ=i

dθ(i,m−ℓ) =

min{k,m−1}
∏

i=1

2π

m−i∏

j=2

√
π Γ

(
j
2

)

Γ
(
j+1
2

)

=

min{k,m−1}
∏

i=1

2π(m−i+1)/2

Γ
(
m−i+1

2

)

=

min{k,m−1}
∏

i=1

Vol(Sm−i).
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Noting that in the case k = m, the factor δk,m + 1 = Vol(S0), Equation (3.5) becomes

(3.6)

∫

Vk

f(v)
∧

1≤i≤k
1≤j≤m

dvi,j =
k∏

i=1

Vol
(
Sm−i)

∫

W

f(w)
k∏

i=1

wm−i
i,i

k∧

i=1

i∧

j=1

dwi,j .

3.2. Second change of variables. Our final task is to express the integral

(3.7)

∫

W

f(w)

k∏

i=1

wm−i
i,i

k∧

i=1

i∧

j=1

dwi,j

from Equation (3.6) in terms of the invariants (ui,j)1≤j≤i≤k. Recall that

w1 = (w1,1, 0, . . . , 0),

w2 = (w2,1, w2,2, 0, . . . , 0),

...

wk = (wk,1, wk,2, . . . , wk,k, 0, . . . , 0),

and wi,i > 0 for each i = 1, . . . , k. We continue to use lexicographic ordering of the variables, i.e.,
w1,1, w2,1, w2,2, . . . , wk,k and similarly for the ui,j . As in Section 1, let Gℓ = (〈wi,wj〉)i,j∈[ℓ] denote the
Gram matrix of the set {w1, . . . ,wℓ} of the first ℓ vectors. As usual, we use |Gℓ| to denote the determinant
of the Gram matrix and set |G0|= 1. We begin by computing the diagonal coordinates wi,i in terms of the
invariants.

Lemma 3.1. With the wi and Gℓ as above, we have

wi,i =

√

|Gi|
|Gi−1|

for i = 1, 2, . . . , k.

Proof. We argue by induction on i. If i = 1, then

w2
1,1 = 〈w1,w1〉 = |G1|

so that

w1,1 =

√

|G1|
|G0|

.

So assume there is an i > 1 such that

wj,j =

√

|Gj |
|Gj−1|

for 1 ≤ j < i. Let

W i =











w1,1 0 · · · 0

w2,1 w2,2 · · · 0
...

. . .
...

wk,1 wk,2 · · · wk,k











,

and then as the wj are the columns of W i extended by 0, we have Gi = W iW
T
i so that |Gi|= |W i|2. Then

detW i =

i∏

j=1

wj,j

= wi,i

i−1∏

j=1

√

|Gj |
|Gj−1|

= wi,i
√

|Gi−1|.
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and then |Gi|= |detW i|2= w2
i,i|Gi−1|, completing the proof. �

Using Lemma 3.1, the product in Equation (3.7) is telescoping,

k∏

i=1

wm−i
i,i =

k∏

i=1

|Gi|(m−i)/2

|Gi−1|(m−i)/2 = |Gk|(m−k)/2
k−1∏

i=1

√

|Gi|,

so we can rewrite Equation (3.7) as

(3.8)

∫

W

f(w)|Gk|(m−k)/2
k−1∏

i=1

√

|Gi|
k∧

i=1

i∧

j=1

dwi,j .

We now consider the change of variables expressing the dwi,j in terms of the invariants.

Lemma 3.2. Ordering the variables lexicographically as above and choosing the representative ui,j such that

j ≤ i, the Jacobian ∂w
∂u is lower-triangular with determinant given by

∣
∣
∣
∣

∂w

∂u

∣
∣
∣
∣
=

1

2k
√

|G1||G2|· · · |Gk|
.

Proof. Because ui,j for j ≤ i depends only on wr,s with r ≤ i and s ≤ j, we have that ∂u
∂w and hence its

inverse ∂w
∂u is lower-triangular. The diagonal entries of ∂u

∂w are

∂ui,j
∂wi,j

= (1 + δi,j)wj,j ,

so that, applying Lemma 3.1,
∣
∣
∣
∣

∂u

∂w

∣
∣
∣
∣
= 2k

k∏

i=1

i∏

j=1

wj,j

= 2k
k∏

i=1

i∏

j=1

√

|Gj |
|Gj−1|

= 2k
√

G1G2 · · ·Gk. �

Letting F (u) be a smooth function on X such that F (u) = f(v) and applying Lemma 3.2, Equation (3.8)
becomes

(3.9)
1

2k

∫

W

F (u)|Gk|(m−k−1)/2
k∧

i=1

i∧

j=1

dui,j.

Recalling that X = u(Vk) denotes the image of the Hilbert embedding, Equation (3.6) can now be expressed
as

(3.10)

∫

Vk

f(v)
∧

1≤i≤k
1≤j≤m

dvi,j =
1

2k

k∏

i=1

Vol
(
Sm−i)

∫

X

F (u)|Gk|(m−k−1)/2
k∧

i=1

i∧

j=1

dui,j ,

which completes the proof of Theorem 1.1.

4. Examples

4.1. Two particles in R3. As a concrete illustration, let us consider the example of two particles in R3,
i.e., k = 2 and m = 3. Let v1 = (v11, v12, v13) and v2 = (v21, v22, v23) with {v1,v2} linearly independent.
Define

ρi =
√

v2i,1 + v2i,2 + v2i,3

to be the length of vi for i = 1, 2 and let µ ∈ [0, π) denote the angle between v1 and v2,

cosµ =
〈v1,v2〉
ρ1ρ2

.
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To describe the change of basis in Section 3.1, let us for brevity use the simplified notation

(v11, v12, v13, v21, v22, v23) 7→ (w11, θ, φ, w21, w22, ψ),

where, in the notation in Section 3.1, θ = θ(1,1) ∈ (−π, π], φ = θ(1,2) ∈ (0, π), and ψ = θ(2,1) ∈ (−π, π]. The
above transformation is given by three rotations,

Rθ =








1 0 0

0 cos θ − sin θ

0 sin θ cos θ







, Rφ =








cosφ − sinφ 0

sinφ cosφ 0

0 0 1







, Rψ =








1 0 0

0 cosψ − sinψ

0 sinψ cosψ







,

chosen such that the third coordinate of R−θv1 is zero and the second coordinate is positive, the second
coordinate of R−φR−θv1 is zero and the first is positive, and the third coordinate of R−ψR−φR−θv2 is
zero and the second is positive. Then, letting R = RθRφRψ, we have R−1v1 = w1 = (w1,1, 0, 0) and
R−1v2 = w2 = (w2,1, w2,2, 0), where

w1,1 = ρ1, w2,1 = ρ2 cosµ, w2,2 = ρ2 sinµ.

From

R =








cosφ − sinφ cosψ sinφ sinψ

cos θ sinφ cos θ cosφ cosψ − sin θ sinψ − sin θ cosψ − cos θ cosφ sinψ

sin θ sinφ sin θ cosφ cosψ + cos θ sinψ cos θ cosψ − sin θ cosφ sinψ







,

one computes that

dv1,1 ∧ dv1,2 ∧ dv1,3 ∧ dv2,1 ∧ dv2,2 ∧ dv2,3 = w2
1,1w2,2 sinφ dw1,1 ∧ dφ ∧ dθ ∧ dw2,1 ∧ dw2,2 ∧ dψ.

The integral over the O3-coordinates (θ, φ, ψ), corresponding to the integral over Θ in Equation (3.5), is
∫ π

−π

∫ π

0

∫ π

−π
sinφ dθdφdψ = 8π2.

That is, if f is an integrable O3-invariant smooth function in the vi,j , then
∫

R6

f(v) dv1,1 ∧ dv1,2 ∧ dv1,3 ∧ dv2,1 ∧ dv2,2 ∧ dv2,3 = 8π2

∫

W

f(w)w2
1,1w2,2 dw1,1 ∧ dw2,1 ∧ dw2,2,

where W = {(w1,1, w2,1, w2,2) ∈ R
3 | w1,1, w2,2 > 0}.

For the second change of variables transforming the wi,j into the invariants ui,j , note that

u1,1 = w2
1,1, u2,1 = w1,1w2,1, u2,2 = w2

2,1 + w2
2,2

i.e.,

w1,1 =
√
u1,1, w2,1 =

u2,1√
u1,1

, w2,2 =

√

u1,1u2,2 − u22,1
√
u1,1

.

Then
∂w1,1

∂u1,1
=

1

2
√
u1,1

,
∂w2,1

∂u2,1
=

1
√
u1,1

,
∂w2,2

∂u2,2
=

√
u1,1

2
√

u1,1u2,2 − u22,1

,

so that ∣
∣
∣
∣

∂w

∂u

∣
∣
∣
∣
=

1

4
√

u1,1(u1,1u2,2 − u22,1)
.

Then we have
8π2w2

1,1w2,2 dw1,1 ∧ dw2,1 ∧ dw2,2 = 2π2 du1,1 ∧ du2,1 ∧ du2,2,
i.e., λ2,3 = 2π2 is constant. With f as above and F such that F (u) = f(v),

∫

R6

f(v) dv1,1 ∧ dv1,2 ∧ dv1,3 ∧ dv2,1 ∧ dv2,2 ∧ dv2,3 = 2π2

∫

X

F (u) du1,1 ∧ du2,1 ∧ du2,2.

Using Corollary 1.3, one computes that the image X of the Hilbert embedding is given by u1,1 ≥ 0, u2,2 ≥ 0,
and u22,1 ≤ u1,1u2,2.
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4.2. Two particles in R2. The case of two particles in R2, i.e., k = m = 2, is similar to the previous
example but illustrates the behavior when k = n. Let v1 = (v11, v12) and v2 = (v21, v22) with {v1,v2}
linearly independent. We once again define the length

ρi =
√

v2i,1 + v2i,2

for i = 1, 2 and let µ ∈ [0, π) be the angle between v1 and v2,

cosµ =
〈v1,v2〉
ρ1ρ2

.

Then the change of basis in Section 3.1 is of the form

(v11, v12, v21, v22) 7→ (w11, θ, w21, w22).

This transformation is given by a single rotation

Rθ =




cos θ − sin θ

sin θ cos θ



 ,

chosen such that the second coordinate of R−θv1 = w1 is zero and the first coordinate is positive. Then
the second coordinate of R−θv2 = w2 can be assumed positive via the reflection fixing the first coordinate,
introducing a factor of 2. We again have

w1,1 = ρ1, w2,1 = ρ2 cosµ, w2,3 = ρ2 sinµ.

One computes that

dv1,1 ∧ dv1,2 ∧ dv2,1 ∧ dv2,2 = 2w1,1dw1,1 ∧ dθ ∧ dw2,1 ∧ dw2,2,

and the integral over the O2-coordinate θ, that over Θ in Equation 3.5, is simply
∫ π

−π
dθ = 2π.

Then if f is an integrable O2-invariant smooth function in the vi,j ,
∫

R4

f(v) dv1,1 ∧ dv1,2 ∧ dv2,1 ∧ dv2,2 = 4π

∫

W

f(w)w1,1 dw1,1 ∧ dw2,1 ∧ dw2,2,

where W = {(w1,1, w2,1, w2,2) ∈ R3 | w1,1, w2,2 > 0}.
The second change of variables transforming the wi,j into the invariants ui,j is identical to that in Sec-

tion 4.1 so that

4πw1,1 dw1,1 ∧ dw2,1 ∧ dw2,2 =
π

√

u1,1u2,2 − u22,1

du1,1 ∧ du2,1 ∧ du2,2,

i.e.,

λ2,2 =
π

√

u1,1u2,2 − u22,1

.

Note that λ2,2 is singular when |G2|= u1,1u2,2 − u22,1 = 0, i.e., off the principal orbit type. With f as above
and F such that F (u) = f(v),

∫

R4

f(v) dv1,1 ∧ dv1,2 ∧ dv2,1 ∧ dv2,2 = π

∫

X

F (u)
√

u1,1u2,2 − u22,1

du1,1 ∧ du2,1 ∧ du2,2.

By Corollary 1.3, we again have that X is given by u1,1 ≥ 0, u2,2 ≥ 0, and u22,1 ≤ u1,1u2,2.
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