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We construct a minimal lattice model to provide an orbital description of lowest and first Landau
levels. With the maximally localized Wannier functions with s, p−, p+ orbital characteristics, a
three-orbital model is developed, where the lowest two Chern bands are flat with C = 1. This
model can be viewed as consecutive band inversions between these Wannier states at Γ and K in
momentum space, which adiabatically connects the atomic insulator limit to Landau level physics.
Interestingly, many-body exact diagonalization and entanglement spectrum analysis suggest that
the Abelian states can appear in the 1/3-filled lowest Chern band, while the signatures of the
non-Abelian states are found in the half-filled first Chern band. This construction can be further
extended to realize flat Chern bands resembling the higher Landau levels. Our results offer a new
perspective to understand the lattice analogue of Landau levels, potentially enabling the realization
of the fascinating topological phenomena at higher temperatures.

Introduction.— The recent discovery of the Abelian
fractional Chern insulators (FCI) at zero magnetic field,
dubbed fractional quantum anomalous Hall state in
moiré MoTe2 and pentalayer graphene [1–5] has gen-
erated intense interest in this new state of matter [6–
19]. The emergence of the fractional topological states
is attributed to the existence of flat Chern bands [20–
25] with nearly ideal quantum geometry in moiré super-
lattice, which resembles the lowest Landau level (LLL).
The exotic non-Abelian topological orders [26], such as
Moore-Read states [27–30] or Read-Rezayi state [31] are
predicted to exist in the partially filled first Landau level
(1LL). These states support non-Abelian quasiparticle
excitations [28] and could be utilized as a platform for
fault-tolerant quantum computation [32, 33]. This raises
an interesting question [34–39]: Is it possible and how
to construct a flat Chern band on the lattice which re-
sembles the 1LL physics with non-Abelian statistics? A
positive answer to this question could offer opportunity
to realize non-Abelian fractionalization at elevated tem-
peratures without magnetic field.

Here we construct a minimal lattice model with maxi-
mally localized Wannier functions (MLWFs) with s, p−,
p+ orbital characteristics. The lowest two bands are flat
with Chern number equal to 1, where they have band in-
version at Γ, while the second lowest and highest bands
invert at K. Interestingly, many-body exact diagonaliza-
tion calculations are carried out with the Wannier func-
tions, which suggests that 1/3-filled lowest Chern band
(LCB) supports the Abelian states, while half-filled first
Chern band (1CB) supports the non-Abelian states. The
quantum geometry of the combined lowest two Chern
bands is close to the ideal value of the combined lowest
two LLs. Thus, the lowest two Chern bands constitute
the lattice analogue of the LLL and 1LL. Our method
can be further extended to realize flat Chern bands re-
sembling the higher LLs, as well as cold atom systems.

Intuition.— As a starting point, to construct the Chern
bands in lattice model, we should know the characteris-
tics of the Wannier states. Previously, Qi constructed the
one-dimensional MLWF in Chern bands that have a one-
to-one mapping to the LLL wave functions in quantum
Hall [23] of the form ψ0,Ky (x, y) ∼ eiKyyH0(x

′)e−x′2/2l2B ,
where x′ ≡ x − Kyℓ

2
B . H0

(
x−Kyℓ

2
B

)
is the Her-

mite polynomial for n = 0 LLL, and H0(x
′)e−x′2/2l2B =

e−x′2/2l2B is related to MLWF of Chern band and is s
orbital like in one dimension. Intuitively, when the con-
struction of more generic wave functions of Chern bands
generalizes to 1LL, the MLWF of Chern bands maps to
H1(x

′)e−x′2/2l2B = 2x′e−x′2/2l2B , which resembles p or-
bital. Intuitively, at least the Wannier states with orbital
characteristics s and p are needed to construct the Chern
band that resembles 1LL physics.
Model and adiabatic connection.— We begin with

a minimal continuum model in which itinerant elec-
trons couple to a layer pseudospin skyrmion lattice.
This model could well describe the consecutive topologi-
cally nontrivial flat bands in twisted homobilayer MoTe2
around twist angle 2◦ [39–45],

H0 =
p2

2m
+ Jσ · S(r). (1)

Here σ is the pseudospin operator representing the de-
gree of freedom of the layer, S(r) = S(r+a1,2) represents
the periodic moiré potential and is naturally coupled to
the pseudospin of the layer with strength J . When
the twist angle is small, the moiré potential dominates
J ≫ ℏ2/ma2 and enforces local electron layer polariza-
tion align with S(r), which in turn induces a pseudospin
Berry phase. This can be seen explicitly by a position-
dependent SU(2) unitary transformation U(r) that ro-
tates the pseudo-spin texture S(r) into S(r)ẑ and intro-
duces a gauge field Aj = (iℏ/e)U†∂jU. For large J , we
can further project the Hamiltonian onto the low energy
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manifold of local layer polarized electrons and obtain the
effective Hamiltonian for the low energy band as

Heff =
(p− eA(r))

2

2m
+

∑
j=x,y

ℏ2

8m
(∂jŜ)

2 − J S(r), (2)

where A(r) is the ⇊ component of the emergent SU(2)

gauge field, with ∇ ×A(r) ≡ Be(r) = (ℏ/2e)Ŝ · (∂xŜ ×
∂yŜ) be spatially non-uniform. Heff describes a pseudo-
spinless electron in a magnetic field when the last term in
Eq. (2) is a constant, where the energy bands form dis-
persive LL. However, the potential S(r) fluctuates (some-
times wildly) according to the different local layer struc-
tures in the moiré system, so S(r) is no longer generically
constant. For large J , the last term in Eq. (2) may dom-
inate and its minimum forms a potential trap. Each trap
has the form as −JS(r) ∼ (r − rmin)

2 + O(r − rmin)
3,

which respects the rotational symmetry around the min-
imum, thus s, p, d type orbitals emerge in the low-energy
bands [46–48]. Thus, in this limit, Heff describes the or-
bital hopping with effective magnetic flux.

From such observations, we see that Heff actually links
effective atomic orbital and LL physics in the low energy
manifold. This is made clearly by calculating the band
structure of H0 when we take S(r) = N(r)/Nλ(r) with

N(r) =
1√
2

6∑
j=1

eiqj ·rêj +N0ẑ, (3)

where êj = (iα sin θj ,−iα cos θj ,−1) /
√
2, qj =

(4π/
√
3a) (cos θj , sin θj), and the angles satisfy θ2 =

θ1 + 2π/3, θ3 = θ1 + 4π/3, and θj+3 = θj + π. This
pseudospin texture can be viewed as a sum of three pseu-
dospin spirals forming a triangular skyrmion lattice [49–
52], and the normalization is controlled by λ. When
λ = 1, S(r) becomes spatially uniform, and the low en-
ergy bands of H0 are flat Chern bands with C = 1, as
shown in Fig. 1(e). The lowest two Chern bands are dis-
persive LL, where their wave functions overlap with the
corresponding flat LL exceed 99% [53]. For simplicity,
we label them as LLL and 1LL, respectively. Conversely,
when λ→ 0, the minimum of −JS(r) forms a moiré tri-
angular lattice (see Fig. 1(g)), and three lowest bands in
Fig. 1(a) are topologically trivial flat bands resembling
the atomic insulator limit, which emerge from s, p−, p+
orbital hopping on a triangular lattice.

Fig. 1 display the evolution of the band structures from
flat topologically trivial bands to flat Chern bands. As λ
changes from 0 to 1, the lowest three bands invert while
their s, p−, p+ orbital characteristics remain. To see the
band inversion clearly, we graphically depict the overlap
of the Bloch states with trial Wannier functions of s,
p−, and p+ orbitals, symbolized by blue, green, and red,
respectively. The lowest three bands first invert with the
upper band at M and their Chern numbers become C =
[0, 0, 3] as shown in Fig. 1(b), then the second and third

FIG. 1. Band structures and adiabatic connection from
atomic insulator to LL. (a)-(e) The lowest few bands of H0

with different normalization parameter λ, where the over-
lap between Bloch state and Wannier function is labeled as
different colors, and C denotes the Chern number of lowest
three bands. The inset in (c) shows the Brillouin zone (BZ).
(f) Band structure of the minimal three-orbital tight-binding
model. (g) Real space distribution of −N(r). The parameters
are J/(ℏ2/ma2) = 52π2, α = 1 and N0 = 0.28.

lowest bands invert at K and switch Chern numbers to
C = [0, 2, 1] as in Fig. 1(c), finally the lowest and second
lowest bands invert at Γ and Chern numbers becomes
C = [1, 1, 1] as in Fig. 1(d,e). The lowest three Chern
bands are isolated in Fig. 1(e). The orbital characteristics
of the LLL and 1LL here are consistent with the mapping
from the hybrid Wannier functions of Chern band to LL
wave functions in quantum Hall [23].

Wannier projection.— Now we demonstrate that s, p−,
p+ orbitals constitute a complete subspace to describe
LLL and 1LL. By constructing the MLWFs [54–57] from
the continuum model, a three-orbital model is developed
to describe the lowest two Chern bands in Fig. 1(e), with
the Wannier orbitals forming a triangular lattice. The
minimal model includes hopping up to the fifteenth near-
est neighbors, where its explicit form is in Supplemental
Materials [53]. The band structure in Fig. 1(e) does not
possess a local gap below which the total Chern num-
ber is zero. A set of frozen states is chosen to preserve
the topology of the focused Chern bands and the band
disentanglement [58] process is then performed to avoid
the Wannier obstruction [59]. We choose the lowest two
Chern bands as frozen states, and get the minimal tight-
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FIG. 2. The MLWFs of the lowest few bands in Fig. 1(e) with
s, p−, p+ orbital characteristics, and the while hexagon labels
Wigner-Seitz cell.

binding model where only MLWFs with s, p−, p+ or-
bitals characteristics are included. The corresponding
band structure is calculated in Fig. 1(f). The MLWFs
of s, p−, p+ orbitals are shown in Fig. 2. The lowest
two bands projected from the LLL and 1LL are well re-
constructed in Fig. 1(f), which are labeled the LCB and
1CB, respectively.

Two band geometry indicators are employed to eval-
uate the different between Chern bands and LL [60–67],
namely Berry curvature fluctuation δB and average trace
condition T (non-negative) defined as

(δB)2 ≡ ΩBZ

4π2

∫
BZ

dk

(
B(k)− 2πC

ΩBZ

)2

, (4)

T ≡
∫
BZ

dk [Tr(g(k))] , (5)

where B(k) ≡ −2Im(ηxy) is the Berry curvature, g(k) ≡
Re(ηµν) is the Fubini-Study metric, and ηµν(k) ≡
⟨∂µuk| (1− |uk⟩⟨uk|) |∂νuk⟩ is the quantum geometric
tensor, C ≡ (1/2π)

∫
d2kB(k), ΩBZ is area of BZ. We

plot the distribution of B(k) and Tr[g(k)] of the BZ in
Fig. 3. For LLL and 1LL, B(k) remain positive through-
out the whole BZ and the distribution is quite homoge-
nous with relatively small fluctuation δB, and T is al-
most ideal (T = 2n+ 1 for nth flat LL). However, in the
tight-binding model, B(k) is no longer homogenous but
concentrates around the band inversion points, and their
sign is not always positive (such as in 1CB) throughout
the BZ, leading to relatively large fluctuation δB and de-
viation of T from the ideal value in LL.
These differences between Chern bands of the tight-

binding model and dispersive LL of the continuum model
are inevitable, since we project out the higher energy de-
gree of freedom in the continuum model and keep only s,
p−, p+ Wannier states. Then the band inversion among
them naturally lead to Berry curvature concentration.
Especially for the 1CB, the band inversion between p−
and s contribute the negative B(k) around Γ point and
the inversion between p− and p+ contribute the positive
B(k) around K and K ′ points. Remarkably, we will see

FIG. 3. The distribution of Berry curvature B(k) and trace
of Fubini-Study metric Tr[g(k)] for the lowest two bands of
continuum model and tight-binding model in the BZ. BZ is
labelled by dashed hexagon. The fluctuation of Berry curva-
ture δB are relatively larger in Chern bands compared LL,
and thus T deviate more in Chern bands from the ideal LL.

that a non-Abelian state can occur even when the Berry
curvature fluctuates strongly.
Exact diagonalization.— To explore whether the non-

Abelian state can appear in 1CB, we now study many-
body physics at fractional filling in these Chern bands
via numerical diagonalization. To make the many-body
calculation tractable, we restrict our variational Hilbert
space to that in which Nuc electrons fill the LCB and
Ne − Nuc electrons remain in the 1CB where Ne is
the number of electrons. The electron-electron interac-
tion Hamiltonian is obtained by projecting the realistic
Coulomb interaction into the MLWFs and keeping the
leading terms [53], which is defined as

Hint =
U

2

∑
i,a̸=b

ni,ani,b + V
∑

⟨ij⟩,a,b

ni,anj,b, (6)

where a,b = (s, p−, p+), ⟨ij⟩ means nearest-neighbor,
U and V are the strength of onsite and nearest-neighbor
interaction which is independent of orbital degree of free-
dom. We ignore the kinetic energy since these two lowest
Chern bands are quite flat.
Fig. 4(a) display the many-body spectra at filling

ν = 1/3 (namely, 1/3 filling of LCB) as a function of
crystal momentum k = k1T1 + k1T2, which is labeled
as k = k1 + N1k2. Here ki = 0, ..., Ni − 1 (i = 1, 2) for
system size Nuc = N1 × N2 with filled particle number
Ne = νNuc and Ti are basis vectors of crystal momen-
tum. The cluster size is chosen as Nuc = 4 × 6, and
U = 1 and V = 0. There are 3 nearly degenerate ground
states well separated by a sizable energy gap from ex-
cited states. The approximate ground state degeneracy
matches with the expected topological degeneracy of a
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FIG. 4. Exact diagonalization and PES for fractional filled
CB. (a) Low energy many-body energy spectrum for 1/3 filled
LCB with Nuc = 24. (b) PES with NA = 3 for the three

degenerate ground states in (a), where ρ = (1/d)
∑d

i |Ψi⟩ ⟨Ψi|.
d is the degeneracy of ground states. (c), (d) Energy spectrum
for 1/2 filled 1CB with Nuc = 26 and Nuc = 28. (e), (f) PES
with NA = 3 for the six degenerate ground states in Nuc = 20
and Nuc = 28. Here we only show the lowest energy per
momentum sectors in addition to the degenerate ground state.

fractional QH state on a torus. We further calculated
different cluster sizes with all other parameters fixed and
find the gap remains indicating its existence in the ther-
modynamic limit [53]. The lattice momenta of the de-
generate ground states have linear indices (0, 8, 16) and
are in precise agreement with the generalized Pauli prin-
ciple, which is the hallmark of FCI at 1/3 filling [25]. To
further confirm and distinguish FCI and other competing
phases, we subsequently calculated the particle entangle-
ment spectrum (PES) which encodes the information of
the quasihole excitations [68, 69], by dividing the whole
system into NA = 3 and Ne − NA particles. As shown
in Fig. 4(b), we find that there is a clear entanglement
gap separating the low-lying PES levels from higher ones
for degenerate many body ground states. The number
of PES levels below the gap exactly matches the typical
counting of quasiparticle excitations resulting from the
generalized Pauli principle of 1/3 Laughlin state. These
numerical results suggest that LCB resembles LLL.

Fig. 4(c,d) show the many-body spectra at filling
ν = 3/2 (that is, 1/2 filling of 1CB assuming full spin

polarization). The exact diagonalization is performed
on finite-size torus with U = 1.3 and V = 1. For
Nuc = 2×13, the number of electrons occupying the 1CB
is odd (13), while for Nuc = 2 × 14, it is even (14). In
these two cases, we observe two-fold and sixfold ground
state quasi-degeneracies in Fig. 4(c) and 4(d), respec-
tively. These are precisely the degeneracies expected for
a Moore-Read state on the torus due to an even-odd ef-
fect [28, 70, 71], and the enhancement of gap indicates its
existence in the thermodynamic limit. The lattice mo-
menta at which these ground states occur also match the
momenta of non-Abelian ν = 1/2 FCI based on the frac-
tional quantum Hall-FCI folding scheme [25, 72]. We also
calculate spectrum under the twist boundary condition
to check the finite-size effect [53], where the momentum
of single particle shifts to ki → ki + (θi/2π)Ti providing
an effective way to scan all momenta in the BZ near con-
tinuously. We find the quasi-degenerate ground states
remain well separated from the other low-energy excita-
tion spectrum, indicating the robustness of the excitation
gap [53].
To exclude other competing phases in the half-filled

1CB, we further calculate PES with NA = 3 for Nuc =
4 × 5 and Nuc = 2 × 14 in Fig. 4(e,f), respectively. A
clear entanglement gap separating the low-lying PES lev-
els from higher ones is identified. The number of PES
levels below this gap exactly matches the typical count-
ing of quasiparticle excitations resulting from the gener-
alized Pauli principle of the non-Abelian Pfaffian or anti-
Pfaffian state [25] (at most 2 particles in 4 consecutive
orbitals). The particle-hole symmetry is explicitly bro-
ken by the non-uniform quantum geometries here, thus
the particle-hole Pfaffian state [73] is less likely to be a
competing phase compared to Pfaffian and anti-Pfaffian
states [74]. The concrete nature of the non-Abelian state
need more detailed examination by wave function over-
lap. From the correspondence between the PES and the
quasiparticle excitations, the numerical results further
suggest the non-Abelian nature of this half-filled state.

Discussions.— The method studied here can be further
generalized to Chern bands with band inversion resem-
bling higher LL. Concretely, an ideal local band inversion
is introduced with a simple k · p model [75]

Hlocal(k) =

(
αk2 +∆ vF k+
vF k− −βk2 −∆

)
, (7)

where k± = kx ± iky. When ∆ = −v2F /2(α + β), both
bands satisfy the trace and determinant conditions at
any k with gµν(k) = (1/2) |B(k)| δµν . Such an ideal lo-
cal band inversion always lead to local Chern number
Clocal = 1 and local average trace condition Tlocal = 1
when the integration is applied around the band inver-
sion point. This well explains that the orbitals s, p−, p+
constitute a complete subspace to describe the LLL and
1LL shown in Fig. 1 and Fig. 3. For the LCB, there is
only an inversion of the band between s and p− at Γ,
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thus B(k) and Tr[g(k)] concentrate around Γ, and the
integral of them around Γ gives the Chern number of the
band C = 1 and T ≈ 1. For the 1CB, there are p− and s
band inversion at Γ, as well as p− and p+ band inversion
at K, the integral of B(k) around Γ and K is −1 and
+1, respectively, while local T around Γ and K are both
nearly 1, then the sum of them finally leads to the band
Chern number C = 2 − 1 = 1 and T = |2| + |−1| = 3.
Such processes could be applied to higher Chern bands.
As shown in Fig. 1(b,e), the band inversion happened at
M between p+ and higher d orbital provide local Chern
number Clocal = 1 and local Tlocal = 1 at each M , com-
bined with the p+ and p− band inversion at K, we get
Chern number C = 3 − 2 = 1 and T = |3| + |−2| = 5
for second Chern bands (namely, the third band count-
ing from below), which is the ideal number for second
LL. The quantum geometry of these constructed Chern
bands matches with that of the generalized LL [76]. It is
worth mentioning that the Chern bands from such con-
struction only have perfect quantum weight at the cost
of Berry curvature flatness, since B(k) always concen-
trates at the local band inversion point. To obtain the
FCI state in the partially filled Chern bands, a delicate
balance between B(k) flatness and ideal T should be con-
sidered. The construction of the projected Hamiltonian
within the triangular lattice here can be directly general-
ized to the square lattice, provided that S(r) exhibits C4

symmetry. Furthermore, our results could be applied to
cold atom systems [77], since only short-range density-
density interactions are required.

We point out that the orbital construction of LL here
is consistent with the higher vortexability for 1LL pro-
posed in Ref. [34]. The 1CB here is not self-vortexable
because of its large value of T. When we combine LCB
and 1CB together, we can see a nearly ideal T = 2.2 for
the lowest two Chern bands, since they originate from
band inversion between p− and p+ at K point.
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