
ar
X

iv
:2

41
1.

13
08

0v
1 

 [
m

at
h.

ST
] 

 2
0 

N
ov

 2
02

4

Distribution-free Measures of Association based on

Optimal Transport

Nabarun Deb1, Promit Ghosal†2 and Bodhisattva Sen∗3

1University of Chicago, e-mail: nabarun.deb@chicagobooth.edu

2University of Chicago, e-mail: promit@uchicago.edu

3Columbia University, e-mail: bodhi@stat.columbia.edu

In this paper we propose and study a class of nonparametric, yet interpretable mea-
sures of association between two random vectors X and Y taking values in R

d1 and R
d2

respectively (d1, d2 ≥ 1). These nonparametric measures — defined using the theory of
reproducing kernel Hilbert spaces coupled with optimal transport — capture the strength
of dependence between X and Y and have the property that they are 0 if and only if the
variables are independent and 1 if and only if one variable is a measurable function of the
other. Further, these population measures can be consistently estimated using the general
framework of geometric graphs which include k-nearest neighbor graphs and minimum
spanning trees. Additionally, these measures can also be readily used to construct an ex-
act finite sample distribution-free test of mutual independence between X and Y . In fact,
as far as we are aware, these are the only procedures that possess all the above mentioned
desirable properties. The correlation coefficient proposed in Dette et al. [25], Chatterjee
[16] and Azadkia and Chatterjee [4], at the population level, can be seen as a special case
of this general class of measures.
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1. Introduction

Suppose that Z = (X,Y ) ∼ µ where µ is an absolutely continuous distribution (with respect
to the Lebesgue measure) supported on some subset of Rd1+d2 (d1, d2 ≥ 1) with marginal
distributions µX and µY on X ⊂ R

d1 and Y ⊂ R
d2 respectively. Assume that we have

i.i.d. data {Zi ≡ (Xi, Yi)}ni=1 from µ. Our goal is to construct a real-valued measure to
quantify the degree of association or dependence between X and Y , both in the population
and sample settings.

Pearson’s correlation coefficient (see e.g., [53]) is perhaps the simplest measure of associa-
tion between X and Y when d1 = d2 = 1. However, the classical correlation has the following
drawback: It is not effective for detecting associations that are nonlinear in nature, even in the
complete absence of noise. Recently, Chatterjee [16] (also see [25]) proposed a nonparametric
measure of association between X and Y when d1 = d2 = 1 which is 0 if and only if X and
Y are independent and 1 if and only if Y is a measurable function of X. Moreover, any value
between 0 and 1 of the coefficient conveys an idea of the strength of the relationship between
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X and Y . In Azadkia and Chatterjee [4] the authors extend this measure to the case when
d1 ≥ 1 and d2 = 1. Deb et al. [22] propose a class of simple, nonparametric, yet interpretable
measures of association between X and Y when they take values in general metric spaces. The
above papers also propose and study consistent estimators of these population measures of
dependence using ideas based on geometric graphs (e.g., k-nearest neighbor graph, minimum
spanning tree, etc.).

To motivate our contribution in this paper consider the Spearman’s correlation between X
and Y (see [64]) which is another simple and useful measure of dependence when d1 = d2 = 1.
An important property of the sample Spearman’s correlation coefficient (not possessed by
Pearson’s correlation coefficient) is that it is distribution-free, i.e., its distribution does not
depend on µ whenX and Y are independent (also see Kendall’s τ [43, 44]). This, in particular,
implies that the sample Spearman’s correlation coefficient can not only be used as a measure
of dependence but can also be readily used to construct an exact distribution-free procedure
to test the hypothesis of mutual independence between X and Y (when d1 = d2 = 1).

This leads to the following question: Can we construct a nonparametric measure of asso-
ciation between Y and X such that its sample analogue is distribution-free when d1, d2 ≥ 1?

In this paper, we answer this question in the affirmative and propose and study a class of
distribution-free empirical measures Tn ≡ Tn(Z1, . . . , Zn) and their population counterparts
when d1, d2 ≥ 1, that yield a family of nonparametric measures of association between Y
and X. Our work extends the framework of Deb et al. [22]. In particular, these measures are
defined using the theory of reproducing kernel Hilbert spaces (RKHS); see Section 2.1 for a
brief review.

A plethora of nonparametric procedures have been proposed that can detect nonlinear
dependencies between the variables X and Y over the last 60 years; see e.g., [6, 11, 12, 29, 31,
33, 37, 42, 46, 52, 54, 55, 56, 57, 67, 69] and the references therein. While these coefficients
are useful in practice, they have one common problem: They are all designed primarily for
testing independence, and not for measuring the strength of the relationship between the
variables. Moreover, as far as we are aware, when d1, d2 > 1 none of above sample measures
are distribution-free when X and Y are independent.

To construct our distribution-free measures of association we borrow ideas from three
seemingly disparate fields: (i) The theory of RKHS which is needed to define the class of
nonparametric measures of association; (ii) the notion of geometric graphs (see Section 2.3
for a review) which are used to develop consistent estimators of these nonparametric mea-
sures; and (iii) the theory of optimal transport (OT) which yields distribution-free empirical
measures.

Our starting point is the class of kernel based measures of association defined in Deb
et al. [22] (see Section 2.2 for a brief review). Although the proposed empirical measure
there (denoted there by η̂n) is nonparametric, it is not distribution-free. A key observation
in this regard is that the distribution-free measures discussed above when d1 = d2 = 1 (e.g.,
Spearman’s correlation coefficient) are based on the (univariate) “ranks” of Yi’s. Hence, one
could imagine that a ‘proper’ distribution-free notion of multivariate ranks can be employed
to construct distribution-free notions of dependence when d1, d2 > 1. Indeed this is our
approach: We use the recently developed idea of multivariate ranks based on the theory of
OT (see Sections 2.4 and 2.5 for a brief review on this topic; also see [19, 23, 59]) to develop
measures of association that are finite-sample distribution-free when µ = µX ⊗ µY .

Having defined the multivariate ranks (via OT) we construct our family of distribution-
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free measures of association based on a very simple and classical analogy between Pearson’s
correlation and Spearman’s correlation. Note that when d1 = d2 = 1, Spearman’s correlation
is equivalent to the classical Pearson’s correlation coefficient computed between the one-
dimensional ranks of the Xi’s and the Yi’s, instead of using the observations themselves. We
mimic the same approach here, i.e., instead of computing η̂n (as in [22]) using the Xi’s and
Yi’s themselves, we instead use their empirical multivariate ranks.

We propose the “rank” version of η̂n, namely η̂rankn , in (3.1). In Theorem 3.1, we show
that η̂rankn consistently estimates a population measure of dependency ηrankK between X and
Y , and is distribution-free when µ = µX ⊗µY . In Theorem 3.2 we show that this population
measure ηrankK satisfies many desirable properties that justifies it as a population measure of
association between X and Y . In particular, we show that:

(P1) ηrankK ∈ [0, 1];

(P2) ηrankK = 0 if and only if µ = µX ⊗ µY (i.e., X and Y are independent);

(P3) ηrankK = 1 if and only if Y = g(X), µ almost everywhere (a.e.), for some measurable
function g : Rd1 → R

d2 .

As η̂rankn is based on multivariate ranks, a test for independence of X and Y based on
η̂rankn will generally be more powerful against heavy-tailed alternatives and more robust to
outliers and contamination (see [23, 41, 52] for related discussions). Further, the corresponding
test, being distribution-free, also avoids asymptotic approximations or permutation ideas for
determining rejection thresholds.

In Proposition 3.1, we prove that the limit of η̂rankn , i.e., ηrankK exactly coincides with the
limit of the coefficient in Azadkia and Chatterjee [4] (denoted by Tn(Y,Z) in their paper)
when d2 = 1 for an appropriate choice of a kernel. Note that, unlike η̂rankn , the empirical
measure in [4] does not have the finite sample distribution-free property.

Finally, Theorem 3.3 proves a central limit theorem for η̂rankn which is uniform over a
large class of (geometric) graphs. We would like to point out that unlike Xi’s and Yi’s,
their multivariate ranks are no longer independent among themselves which makes the CLT
challenging to prove.

The paper is organized as follows: In Section 2 we briefly review the RKHS framework,
the notion of geometric graphs, and multivariate ranks via OT. Our distribution-free non-
parametric measure of association is introduced in Section 3 along with the main results of
this paper. We conclude with some remarks and open questions in Section 4. Section 5 gives
the proofs of all the main results in this paper.

1.1. Related works

In Dette et al. [25], the authors use the term “measure of regression dependence” for the three
properties mentioned above and show that it is possible to define such a measure satisfying
(P1)-(P3) when X = Y = R. The same population measure was rediscovered in Chatterjee
[16] where the author also proposed a tuning parameter-free estimator of the same measure
that can be computed in near linear time. Since then, the estimator in [16] has attracted
a lot of attention (see e.g., [14, 60]). Further, in Azadkia and Chatterjee [4], the authors
propose a similar measure when X = R and Y = R

d2 , d2 ≥ 1. However, all these measures
crucially use the canonical ordering of R and hence do not extend to the multivariate setting
(where X = R

d1 and Y = R
d2 with d1, d2 ≥ 2). Some multivariate measures of association

satisfying (P1)-(P3) have been proposed in [13, 62, 68], following similar copula-based ideas
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as in [25]; however, to the best of our knowledge, neither of these papers provide a consistent
empirical estimate of their proposed measures of association, nor do the associated tests for
independence have the distribution-free property.

In a number of other papers, e.g., [3, 24, 45, 51, 60, 72], the authors analyze different
properties of the estimator in Chatterjee [16]. In [2], the authors provide an extension of
the measure in [4] to a vector of endogenous variables whereas [30] connects copula based
measures of association to dimension reduction principles. In another line of work [66], the
authors provide a recipe to modify a given measure of dependence to yield a measure of
association satisfying (P1)-(P3) above. Finally, we refer the reader to [15, 17] for a survey of
the recent papers in this topic.

2. Preliminaries

In this section we briefly introduce three topics: (i) The (nonparametric) class of kernel
measures of association as defined in Deb et al. [22] using the theory of RKHS; (ii) the
notion of geometric graphs which will be used to develop consistent estimators of these
nonparametric population measures; and (iii) the theory of OT which will be used crucially
to obtain distribution-free empirical measures.

Let X and Y be topological spaces. Let (X,Y ) ∈ X × Y with joint distribution µ and
marginals X ∼ µX and Y ∼ µY . Although we will eventually take X = R

d1 and Y = R
d2 , for

much of what we review in this section we do not actually need to make this assumption. Let
P(Y) and P(X ×Y) be the set of all Borel probability measures on Y and X ×Y respectively.
Suppose that µ admits a regular conditional distribution µY |x — the conditional distribution
of Y given X = x; existence of regular conditional distributions can be guaranteed under
mild conditions (see [28] for a survey).

2.1. RKHS: Some background

In this subsection we formally define some concepts from the theory of RKHS that will be
used repeatedly in this paper. We start with the basic definition of a RKHS.

Definition 2.1 (Reproducing kernel Hilbert space (RKHS)). Let H be a Hilbert space of
real-valued functions defined on Y with inner product 〈·, ·〉H : H × H → R. A function
K : Y × Y → R is called a reproducing kernel if the following two conditions hold:

1. For all y ∈ Y, K(·, y) ∈ H.

2. For all y ∈ Y and f ∈ H, 〈f,K(·, y)〉H = f(y).

If H admits a reproducing kernel, then it is termed as a RKHS.

By the Moore-Aronszajn Theorem (see e.g., [5, Theorem 3]) a symmetric, nonnegative
definite kernel function K(·, ·) on Y × Y can be identified uniquely with a unique RKHS
of real-valued functions on Y for which K(·, ·) is the reproducing kernel. Let us denote this
RKHS by HK . Let us also assume that HK is separable (this can be ensured under mild
conditions1, see e.g., [65, Lemma 4.33]).

The map y 7→ K(·, y) from Y to HK is often called the feature map. Further, the repro-

1For example, if Y is a separable space and K(·, ·) is continuous.
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ducing property as stated in Definition 2.1 implies that

〈K(·, y),K(·, ỹ)〉HK
= K(y, ỹ), for all y, ỹ ∈ Y. (2.1)

In the following we define three concepts that will be crucial in defining ηK — the kernel
measure of dependence as introduced in Deb et al. [22]. Suppose that Y ∼ µY has a probability
distribution on Y such that E[

√
K(Y, Y )] < ∞.

Definition 2.2 (Mean embedding). Define the following class of probability measures on Y:

Mθ
K(Y) :=

{
ν ∈ P(Y) :

∫

Y
Kθ(y, y) dν(y) < ∞

}
, for θ > 0.

Let µY ∈ M1/2
K (Y). Then the (kernel) mean embedding of µY into HK is given by mK(µY ) ∈

HK such that

〈f,mK(µY )〉HK
=

∫

Y
f(y) dµY (y), for all f ∈ HK . (2.2)

In fact, one can write mK(µY ) =
∫
K(·, y) dµY (y) = EµY

[K(·, Y )]. It is well-defined as a
consequence of the Riesz representation theorem, see [1, 63] (equivalently also by Bochner’s

theorem, see [26, 27]). The map µY 7→ mK(µY ) with domain M1/2
K (Y) can be viewed as a

natural extension of the map y 7→ K(·, y) with domain Y.
In a similar vein we can also define the (kernel) mean embeddings of conditional distribu-

tions. For X = x, the (kernel) conditional mean embedding of µY |x is defined as an element of
HK in the same way as (2.2) (also see [49, Section 4.1.1]). In other words, we can also write
mK(µY |x) =

∫
K(·, y)dµY |x(y) = EµY |x

[K(·, Y )].

Definition 2.3 (Maximum mean discrepancy). The difference between two probability dis-
tributions Q1 and Q2 in M1

K(Y) can then be conveniently measured by

MMDK(Q1, Q2) := ‖mK(Q1)−mK(Q2)‖HK

(here mK(Qi) is the mean element of Qi, for i = 1, 2) which is called the maximum mean
discrepancy (MMD) between Q1 and Q2 (see [34, Definition 10]). The following alterna-
tive representation of the squared MMD is also known (see e.g., [32, Lemma 6], or simply
use (2.1)):

MMD2
K(Q1, Q2) = E[K(S, S′)] +E[K(W,W ′)]− 2E[K(S,W )], (2.3)

where S, S′,W,W ′ are independent, S, S′ ∼ Q1 and W,W ′ ∼ Q2.

Definition 2.4 (Characteristic kernel). The kernel K(·, ·) is said to be characteristic if and
only if the map Q 7→ mK(Q) is one-to-one on the domain M1

K(Y), i.e.,

mK(Q1) = mK(Q2) =⇒ Q1 = Q2, for all Q1, Q2 ∈ M1
K(Y).

Note that the last condition is equivalent to 〈mK(Q1), f〉HK
= 〈mK(Q2), f〉HK

for all
f ∈ HK , i.e., ES∼Q1

[f(S)] = EW∼Q2
[f(W )], for all f ∈ HK . A characteristic kernel implicitly

implies that the associated RKHS is rich enough.
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2.2. A kernel measure of association

In this subsection we review the class of nonparametric kernel measures of association intro-
duced in Deb et al. [22]. Recall that µY |x is the regular conditional distribution of Y given
X = x which we assume exists for all x ∈ X . Assume that a kernel K(·, ·) — a symmetric,
nonnegative definite function on Y × Y — exists on Y × Y and let HK denote the induced
separable RKHS (see Definition 2.1). Let 〈·, ·〉HK

: HK × HK → R and ‖ · ‖HK
denote the

inner product and induced norm on HK .

Generate (X ′, Y ′, Ỹ ′) as follows: X ′ ∼ µX , Y ′|X ∼ µY |X′ , Ỹ ′|X ′ ∼ µY |X′ and Y ′ ⊥⊥ Ỹ ′|X ′.

Also let Y1, Y2 be i.i.d. from µY . Note that Y ′ and Ỹ ′ are dependent (via X ′), unlike Y1

and Y2. The measure of association of Y on X as introduced in Deb et al. [22] can now be
presented as:

ηK(µ) := 1−
E‖K(·, Y ′)−K(·, Ỹ ′)‖2HK

E‖K(·, Y1)−K(·, Y2)‖2HK

. (2.4)

In order to ensure that ηK(·) is well-defined, we need certain moment assumptions. By the
reproducing property of K(·, ·),

‖K(·, Y1)−K(·, Y2)‖2HK
= K(Y1, Y1) +K(Y2, Y2)− 2K(Y1, Y2). (2.5)

Suppose that µY ∈ M1
K(Y). Then the first two terms in (2.5) have finite moments. The third

term is also finite by an application of the Cauchy-Schwartz inequality combined with the

observation that M1
K(Y) ⊂ M1/2

K (Y). Thus, we assume that µY ∈ M1
K(Y) in the sequel. In

the following we give an alternate expression of ηK which will be crucial and can be easily
derived from (2.4) and (2.5) (also see [22]):

ηK(µ) =
E[K(Y1, Y2)]−E[K(Y ′, Ỹ ′)]

E[K(Y1, Y1)]−E[K(Y1, Y2)]
. (2.6)

The following result shows that ηK is indeed a valid measure of association with many
desirable properties.

Theorem 2.1 (Theorem 2.1 of [22]). Suppose µY ∈ M1
K(Y), Y is Hausdorff 2 and K(·, ·) is

a characteristic kernel. Then ηK(µ), as defined in (2.4), satisfies the following properties:

(P1) ηK(µ) ∈ [0, 1].

(P2) ηK(µ) = 0 if and only if µ = µX ⊗ µY (i.e., X and Y are independent).

(P3) ηK(µ) = 1 if and only if Y = g(X), µ almost everywhere (a.e.), for some measurable
function g : X → Y.

2.3. Estimation via geometric graphs

In this subsection we review estimation of ηK (as in [22]) using ideas from geometric graphs.
Note that the denominator in (2.6) can be easily estimated using empirical averages (from
standard U-statistics theory; see [70, Chapter 12]), for instance, with the following estimator:

1

n

n∑

i=1

K(Yi, Yi)−
1

n(n− 1)

∑

i 6=j

K(Yi, Yj).

2A topological space where for any two distinct points there exist neighborhoods of each which are disjoint
from each other.
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The numerator in (2.6) is trickier to estimate. The main difficulty arises because of the term

E

[
K(Y ′, Ỹ ′)

]
= E

[
E(K(Y ′, Ỹ ′) | X ′)

]
as we do not observe two Y values — Y ′ and Ỹ ′

— independently from the conditional distribution of X ′ (cf. the notation introduced just
before (2.4)). To overcome this difficulty, to estimate the above term we consider a ‘neighbor’

of X ′, say X̃ ′, and its corresponding Y value, which can be used as a surrogate to Ỹ ′. We
formalize this notion of a ‘neighbor’ using a geometric graph on X .

G is a geometric graph functional on X if, given any finite subset S ⊂ X , G(S) defines a
graph with vertex set S and corresponding edge set, say E(G(S)). Note that the graph G(S)
can be directed/undirected. In this paper, we will restrict ourselves to simple graphs (i.e.,
those without multiple edges and self loops) with no isolated vertices. Accordingly, we will
often drop the qualifier geometric and simple.

Next we define Gn := G(X1, . . . ,Xn) where G is some graph functional on X . We would
like to define graph functionals for which (i, j) ∈ E(Gn) implies Xi and Xj are “close”. Deb

et al. [22] considered the following sample analogue of E
[
K(Y ′, Ỹ ′)

]
:

1

n

n∑

i=1

1

di

∑

j:(i,j)∈E(Gn)

K(Yi, Yj), (2.7)

where E(Gn) denotes the set of (directed/undirected) edges of Gn, i.e., (i, j) ∈ E(Gn) if and
only if there is an edge from i → j or j → i in Gn, and di denotes the degree of Xi in Gn. To
be specific di :=

∑
j:(i,j)∈E(Gn)

1.

Using (2.7), Deb et al. [22] proposed the following estimator of ηK :

η̂n :=

1
n

∑n
i=1 d

−1
i

∑
j:(i,j)∈E(Gn)

K(Yi, Yj)− 1
n(n−1)

∑
i 6=j K(Yi, Yj)

1
n

∑n
i=1 K(Yi, Yi)− 1

n(n−1)

∑
i 6=j K(Yi, Yj)

. (2.8)

Under suitable conditions on the graph functional, [22] showed that indeed η̂n consistently
estimate ηK as the sample size grows to infinity.

2.4. A brief overview of OT

In this subsection we introduce the basics of OT which will be necessary to construct
distribution-free estimates of our measures of association. Let Pac(R

d) denote the space of
absolutely continuous probability measures on R

d. For a function F : Rd → R
d, we will use

F#µ to denote the push forward measure of µ under F , i.e., the distribution of F (Z) when
Z ∼ µ.

Below we present perhaps the simplest version of the OT problem (courtesy the works of
Gaspard Monge in 1781, see [48]):

inf
F

∫
‖z − F (z)‖2 dµ(z) subject to F#µ = ν. (2.9)

A minimizer of (2.9), if it exists, is referred to as an OT map. An important result in this
field, known as the Brenier-McCann theorem, takes a “geometric” approach to the problem
of OT (as opposed to the analytical approach presented in (2.9)) and will be very useful to
us in the sequel; see e.g., [71, Theorem 2.12 and Corollary 2.30].
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Proposition 2.1 (Brenier-McCann theorem [47]). Suppose that µ, ν ∈ Pac(R
d). Then there

exists functions R(·) and Q(·) (usually referred to as “OT maps”), both of which are gradients
of (extended) real-valued d-variate convex functions, such that: (i) R#µ = ν, Q#ν = µ; (ii) R
and Q are unique (µ and ν-a.e. respectively); (iii) R ◦Q(u) = u (ν-a.e. u) and Q ◦R(z) = z
(µ-a.e. z). Moreover, if µ and ν have finite second moments, R(·) is also the solution to
Monge’s problem in (2.9).

In Proposition 2.1, by “gradient of a convex function” we essentially mean a function
from R

d to R
d which is µ (or ν) a.e. equal to the gradient of some convex function. It

is instructive to note that, when d = 1, the standard 1-dimensional distribution function F
associated with a distribution µ is nondecreasing and hence the gradient of a convex function.
Therefore when d = 1, F is the OT map from µ to U [0, 1] (i.e., the Uniform([0,1]) distribution)
by Proposition 2.1.

2.5. Multivariate ranks defined via OT

Definition 2.5 (Population multivariate ranks and quantiles). Set ν := U [0, 1]d — the uni-
form distribution on [0, 1]d. Given µ ∈ Pac(R

d), the corresponding population rank and quan-
tile maps are defined as the OT maps R(·) and Q(·) respectively as in Proposition 2.1. These
maps are unique a.e. with respect to µ and ν respectively.

In standard statistical applications, the population rank map is not available to the prac-
titioner. In fact, the only accessible information about µ comes in the form of empirical

observations Z1, Z2, . . . , Zn
i.i.d.∼ µ ∈ Pac(R

d). In order to estimate the population rank map
from these observations, let us denote

Hd
n := {hd1, . . . , hdn} (2.10)

to be a set of n vectors in [0, 1]d. We would like the points in Hd
n to be “uniform-like”, i.e.,

their empirical distribution, n−1
∑n

i=1 δhd

i

should converge weakly to ν. In practice, for d = 1,

we may take Hd
n to be the usual {i/n}1≤i≤n sequence and for d ≥ 2, we may take it as a

quasi-Monte Carlo sequence (such as the d-dimensional Halton or Sobol sequence) of size n
(see [39, 40] for details) or a random draw of n i.i.d. random variables from ν. The empirical
distribution on Hd

n will serve as a discrete approximation of ν. We are now in a position to
define the empirical multivariate rank function which will proceed via a discrete analogue of
problem (2.9).

Definition 2.6 (Empirical rank map). Let Sn denote the set of all n! permutations of
{1, 2, . . . , n}. Consider the following optimization problem:

σ̂n := argmin
σ∈Sn

n∑

i=1

‖Xi − hdσ(i)‖2. (2.11)

Note that σ̂n is a.s. uniquely defined (for each n) as µ ∈ Pac(R
d). The empirical ranks are

then defined as:
R̂n(Xi) = hdσ̂n(i)

, for i = 1, . . . , n. (2.12)

The optimization problem in (2.11) is combinatorial in nature, but it can be solved exactly
in polynomial time (with worst case complexity O(n3)) using the Hungarian algorithm (see [9,
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50] for details). For a comprehensive list of faster (approximate) algorithms, see [59, Section
5]. Moreover, when d = 1, if we choose H1

n = {i/n}ni=1, then the empirical ranks, i.e., R̂n(Xi)’s
are exactly equal to the usual one-dimensional ranks.

A crucial reason behind defining empirical ranks as in Definition 2.6 is that due to the
exchangeability of the Xi’s, the vector of ranks, i.e., (R̂n(X1), . . . , R̂n(Xn)) is uniformly dis-
tributed over the following set:

{(hdσ(1), . . . , hdσ(n)) : σ ∈ Sn}.

This lends a distribution-free property to the empirical ranks (see [23, Proposition 2.2] for
a formal statement). In other words, the distribution of (R̂n(X1), . . . , R̂n(Xn)) is free of
µ ∈ Pac(R

d). Moreover, the empirical ranks are maximal ancillary (see e.g., [35]).

3. A multivariate rank based measure of association

In this section we develop a new class of measures of association and their sample analogues
which have the distribution-free property. We will restrict our attention to the case when
X = R

d1 and Y = R
d2 , for d1, d2 ≥ 1.

3.1. A distribution-free measure of association and its properties

We will construct an empirical measure of association with the distribution-free property
based on a simple and classical analogy between Pearson’s and Spearman’s correlation. Note
that when d1 = d2 = 1, Spearman’s correlation is equivalent to the classical Pearson’s cor-
relation coefficient computed between the one-dimensional ranks of the Xi’s and the Yi’s,
instead of the actual observations. It is this usage of one-dimensional ranks that lends Spear-
man’s correlation the distribution-free property when µ = µX ⊗µY . We will mimic the same
approach in this section, i.e., instead of computing η̂n (as defined in (2.8)) using the Xi’s and
Yi’s themselves, we will instead use their empirical multivariate ranks.

Let us briefly recall the setting. We have (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ µ ∈ Pac(R

d1+d2) with
marginals µX and µY , such that µX ∈ Pac(R

d1) and µY ∈ Pac(R
d2). Let Hd1

n and Hd2
n

be two sets of n “uniform-like” points in dimension d1 and d2 respectively. We can then
use Definition 2.6 to define the empirical multivariate rank vectors (R̂X

n (X1), . . . , R̂
X
n (Xn))

and (R̂Y
n (Y1), . . . , R̂

Y
n (Yn)) based on Hd1

n and Hd2
n (see (2.10)) respectively.

Next, given a graph functional G (see Section 2.3 for its definition), let

Grank

n := G(R̂X
n (X1), . . . , R̂

X
n (Xn))

and E(Grank

n ) be the set of edges of Grank

n . Also, with a slight notational abuse, we will still
use (d1, . . . , dn) to be the degree sequence of the vertices in Grank

n . The rank version of η̂n is
then defined as follows:

η̂rankn :=
n−1

∑
i d

−1
i

∑
j:(i,j)∈E(Grank

n )K(R̂Y
n (Yi), R̂

Y
n (Yj))− Fn

n−1
∑n

i=1 K(R̂Y
n (Yi), R̂Y

n (Yi))− Fn

, (3.1)

where
Fn := (n(n− 1))−1

∑

i 6=j

K(R̂Y
n (Yi), R̂

Y
n (Yj)). (3.2)
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Here (i, j) ∈ E(Grank

n ) implies that R̂Y
n (Xi) and R̂Y

n (Xj) are connected in Grank

n . Note that
η̂rankn is the same as η̂n with the observations replaced with their empirical ranks. In the
following theorems (proved in Section 5), we show that η̂rankn is a measure of association
which additionally has a pivotal distribution when µ = µX ⊗ µY .

Theorem 3.1. (a) When µ = µX ⊗µY , η̂
rank

n has a pivotal distribution, i.e., its distribution
does not depend on µX and µY .

(b) Assume that K(·, ·) : Rd2 × R
d2 → R is continuous and let RX(·) and RY (·) denote

the population rank maps (see Definition 2.5) for µX and µY respectively. Suppose that the
following assumptions hold:

(S1) For x1, x2 ∈ [0, 1]d1 , define

r(x1, x2) := E

[
K(RY (Y1), R

Y (Y2)) | RX(X1) = x1, R
X(X2) = x2

]

and assume that it is uniformly β-Hölder continuous in x1, x2 ∈ [0, 1]d1 for some
β ∈ (0, 1], i.e., given any x1, x2, x̃1, x̃2 ∈ [0, 1]d1 , there exists a constant C (free of
x1, x2, x̃1, x̃2) such that:

∣∣r(x1, x2)− r(x̃1, x̃2)
∣∣ ≤ C

(
‖x1 − x̃1‖β + ‖x2 − x̃2‖β

)
. (3.3)

(S2) Let Grank

n satisfy the following conditions:

lim sup
n→∞

maxni=1 di
minni=1 di

< ∞, (3.4)

1

nminni=1 di

∑

e∈E(Grank

n )

|e|β → 0, (3.5)

where |e| denotes the edge length of e ∈ E(Grank

n ).

(S3) The empirical distributions on Hd1
n and Hd2

n converge weakly to U [0, 1]d1 and U [0, 1]d2
respectively.

Under these assumptions,

η̂rankn
P−→ 1−

E‖K(·, RY (Y ′))−K(·, RY (Ỹ ′))‖2HK

E‖K(·, RY (Y1))−K(·, RY (Y2))‖2HK

:= ηrankK ,

where Y1, Y2 are i.i.d. from µY , and (Y ′, Ỹ ′) are defined as follows: Generate (X ′, Y ′, Ỹ ′) as

X ′ ∼ µX , Y ′|X ∼ µY |X′, Ỹ ′|X ′ ∼ µY |X′ and Y ′ ⊥⊥ Ỹ ′|X ′.3

Remark 3.1 (On condition (S1)). To better understand (3.3) let us first give an alternate
expression for

r(x1, x2) = 〈g(x1), g(x2)〉HK
, where g(x) := E

[
K(RY (Y ), ·) | RX(x) = x

]
,

i.e., r(·, ·) is the inner product between the conditional feature maps (after the rank transfor-
mations). Thus, (3.3) can be thought of as a Lipschitz assumption on the inner product. A

3Note that Y ′ and Ỹ ′ are dependent (via X ′), unlike Y1 and Y2.
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similar condition also appears in [4, 22]. This condition is needed in our proof technique but
we expect Theorem 3.1 to hold in more generality.

Let us illustrate how under reasonably practical model assumptions condition (S1) is sat-
isfied. Suppose that one assumes a model where Y = f(X) + ǫ, and f is a Borel measurable
function, with the noise variable ǫ being independent of X. Additionally, suppose that (RX)−1

(inverse function of RX), RY , f , and both arguments of the kernel K(·, ·) in Theorem 3.1
are β-Hölder continuous.4 Then we can write

∣∣∣r(x1, x2)− r(x̃1, x̃2)
∣∣∣ ≤ E

[∣∣K
(
RY (f((RX)−1(x1)) + ǫ1), f((R

X)−1(x2)) + ǫ2)
)

−K
(
RY (f((RX)−1(x̃1)) + ǫ1), R

Y (f((RX)−1(x̃2)) + ǫ2)
)∣∣
]

≤ C(‖x1 − x̃1‖β + ‖x2 − x̃2‖β)

where C is a constant that depends on the kernel K and the distributions of X and Y . The
last inequality above follows from the β-Hölder continuity of (RX)−1, RY , f and K.

Remark 3.2 (On condition (S2)). As the set Hd1
n , the set of empirical multivariate ranks,

i.e., (R̂X
n (X1), . . . , R̂

X
n (Xn)) is some permutation of Hd1

n , note that max1≤i≤n di, min1≤i≤n di,
and 1

nminn
i=1

di

∑
e∈E(Grank

n ) |e|β are all deterministic quantities appearing in condition (S2)

above. This should not be confused with the randomness inherent in the construction of Grank

n .
For example, 1((i, j) ∈ E(Grank

n )), i.e., indicator of the event that R̂X
n (Xi) and R̂X

n (Xj) are
connected in Grank

n , is still a random variable.

Theorem 3.1 (proved in Section 5) shows that η̂rankn can be used to construct a test for
independence (in addition to being a measure of association) which will be consistent and
exactly distribution-free under the null hypothesis of independence.

The above result shows that not only is our measure of association η̂rankn distribution-free
when X and Y are independent, it converges to a population limit ηrankK as n grows large,
under suitable assumptions. We call ηrankK as the population measure of association. Indeed,
as the following result shows, ηrankK satisfies many desirable properties that justifies it as a
population measure of association between X and Y .

Theorem 3.2. If K(·, ·) is characteristic and continuous, then ηrankK satisfies the following
properties:

(P1) ηrankK ∈ [0, 1].

(P2) ηrankK = 0 if and only if µ = µX ⊗ µY (i.e., X and Y are independent).

(P3) ηrankK = 1 if and only if Y = g(X), µ almost everywhere (a.e.), for some measurable
function g : Rd1 → R

d2.

Remark 3.3 (Asymmetric nature of η̂rankn and ηrankK ). Note that η̂rankn , as defined in (3.1),
is not symmetric in the Xis and Yjs. This is by design: The goal of η̂rankn is to measure
how well Y can be predicted from X, which can be very different from how well X can be
predicted from Y . For example, if Y = f(X) + ǫ for ǫ independent of X, X ∈ R

d1, d1 > 1,
and f : Rd1 → R, then it is conceivable that it is easier to predict Y from X than to predict

4The stated assumptions on RX and RY are valid when the distributions of X and Y are supported on
closed bounded sets, and their marginal density functions are bounded above and below in their support sets
and are β-Hölder continuous [20, Corollary 5].
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X from Y . Hence it is natural to construct η̂rankn in an asymmetric fashion. Of course, it
is possible to symmetrize η̂rankn by switching the role of X, Y , and then taking a maximum.
It is clear from Theorems 3.1 and 3.2 that this symmetrized version will also converge to a
measure of association satisfying (P1), (P2), and a symmetric variant of (P3).

Next we show that ηrankK (which arises naturally as the limit of η̂rankn in Theorem 3.1) is
exactly the same as the following population correlation coefficient proposed in Chatterjee
[16, Equation 1.2] and Azadkia and Chatterjee [4, Equation 2.1] where the authors only
consider the case d2 = 1 (also see Dette et al. [25]):

ξ(µ) :=

∫
Var(P(Y ≥ t|X)) dµY (t)∫
Var(1(Y ≥ t)) dµY (t)

for a particular choice of a characteristic kernel. The choice turns out to be the kernel:

K(y1, y2) = |y1|+ |y2| − |y1 − y2|. (3.6)

Incidentally this is also the kernel used in the construction of distance covariance (see [67]).
We state the result formally in the proposition below.

Proposition 3.1. When d2 = 1 and K(·, ·) is the kernel in (3.6), then ηrankK = ξ(µ).

The above proposition shows that the family of measures of association proposed in this
paper includes that of Chatterjee [16] and extends it significantly to general d1, d2 ≥ 1 and
also a large class of kernel functions.

3.2. A rank CLT under null

We present a CLT for η̂rankn when µ = µX ⊗ µY . Note that η̂rankn is a function of R̂n(Yi)’s
(respectively R̂n(Xi)’s) which are no longer independent among themselves. As a result,
proving a CLT for η̂rankn is not trivial. Informally speaking, the technique used in this paper
is that of a Hájek representation (as in [60]), where we show that the empirical multivariate
ranks can be replaced by their population counterparts in η̂rankn at a oP(1/

√
n) cost. As η̂rankn

does not have a standard U -statistic representation, we do not use the explicit form of Hájek
projections as in [60], but opt for a more hands-on method of moments based approach.

Note that √
n η̂rankn =

Nrank

n

Dn
(3.7)

where

Dn :=
1

n

n∑

i=1

K(R̂Y
n (Yi), R̂

Y
n (Yi))− Fn

and

Nrank

n :=
√
n


 1

n

n∑

i=1

1

di

−1 ∑

j:(i,j)∈E(Grank

n )

K
(
R̂Y

n (Yi), R̂
Y
n (Yj)

)
− Fn


 (3.8)

with Fn defined in (3.2). Now, Dn does not involve the Xi’s and converges to
E[K(RY (Y1), R

Y (Y1))]−E[K(RY (Y1), R
Y (Y2))] by the continuous mapping theorem. There-

fore, by Slutsky’s theorem, it suffices to establish a pivotal limit distribution for Nrank

n after
a suitable scaling. This is the subject of the following theorem.
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Theorem 3.3. If (3.4) holds, K(·, ·) is continuous, µ = µX ⊗ µY , µX ∈ Pac(R
d1) and

µY ∈ Pac(R
d2), then Var(Nrank

n ) = O(1). Further, with θ := (D, γ, ǫ) ∈ (0,∞)3 consider the
following subclass of graph functionals and measures on X × Y given by:

Jθ :=
{
G̃ : lim sup

n→∞

(
max
1≤i≤n

d̃i
(logn)γ

+
maxni=1

d̃i

minn
i=1

d̃i

)
≤ D, Var(Nrank

n ) ≥ ǫ ∀n ≥ D,

where (d̃1, . . . , d̃n) denotes the degree sequence of G̃rank

n := G̃(R̂X
n (X1), . . . , R̂

X
n (Xn))

}
.

Then, under assumption (S3) from Theorem 3.1, the following result holds for every fixed
θ ∈ (0,∞)3:

lim
n→∞

sup
G̃∈Jθ

sup
z∈R

∣∣∣∣∣P
(
Nrank

n

S̃n

≤ z

)
− Φ(z)

∣∣∣∣∣ = 0, (3.9)

where

S̃2
n := ã

(
g̃1 + g̃3 −

2

n− 1

)
+ b̃

(
g̃2 − 2g̃1 − 2g̃3 −

n− 5

n− 1

)
+ c̃

(
g̃1 + g̃3 − g̃2 +

n− 3

n− 1

)

with

ã := E
[
K2
(
RY (Y1), R

Y (Y2)
)]

,

b̃ := E
[
K
(
RY (Y1), R

Y (Y2)
)
K
(
RY (Y1), R

Y (Y3)
)]

,

c̃ :=
(
E

[
K
(
RY (Y1), R

Y (Y2)
)])2

,

and

g̃1 :=
1

n

n∑

i=1

1

d̃i
, g̃2 :=

1

n

∑

i,j

T G̃rank

n (i, j)

d̃id̃j
, g̃3 :=

1

n

∑

(i,j)∈E(G̃rank

n )

1

d̃id̃j
.

Here
T G̃rank

n (i, j) :=
∑

k

1((i, k) ∈ E(G̃rank

n ))1((k, j) ∈ E(G̃rank

n ))

denotes the number of common neighbors of R̂X
n (Xi) and R̂X

n (Xj).

Remark 3.4 (S̃2
n is distribution-free). It is worth noting that although S̃2

n has a complicated
expression, it does not depend on the underlying distributions µX and µY . In particular,

ã, b̃, c̃ are fixed constants as RY (Y1), R
Y (Y2), R

Y (Y3)
i.i.d.∼ U [0, 1]d2 . Moreover, g̃1, g̃2, g̃3 are

deterministic quantities based on a graph computed from a fixed set of points.

Remark 3.5 (Uniformity over G̃ in Theorem 3.3). One of the strengths of Theorem 3.3 is
that it is uniform over a large class of graphs (see (3.9)). This implies that the convergence
to normality will hold for data dependent choices of graphs; e.g., when using a k-nearest
neighbor graph with k chosen as a function of the observed data, provided the choice only
grows logarithmically in n with probability converging to 1 (see the definition of Jθ).

4. Discussion and open questions

To summarize, in the current manuscript, we have provided a measure of association between
two random variables X ∈ X ⊂ R

d1 and Y ∈ Y ⊂ R
d2 which equals 0 or 1 depending on
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whether Y is independent of X or Y is a noiseless measurable function of X. We propose a
class of tuning-free estimators of this measure which has the added benefit of being exactly
distribution-free under the null hypothesis of independence between X and Y . Further, we
prove a uniform central limit theorem under the null. At a broader conceptual level, our work
brings together three different disciplines — RKHSs, geometric graphs, and OT, in order
to achieve the aforementioned set of properties. Our work opens up a number of potential
directions to explore in the future. We outline some of them below.

(a) CLT under alternative: When µ 6= µX⊗µY , the question of proving a limit theorem
for η̂rankn or Nrank

n remains open. The main source of difficulty lies in the fact that Nrank

n no
longer has mean 0 and in fact, the resulting bias decays slower than n−1/2. This suggests the
need of debiasing η̂rankn appropriately. We believe that the works of [7, 8] could be relevant
in this direction.

(b) Monotonicity: As ηrankK = 0 and 1 capture independence and perfect dependence
between Y and X, it is natural to expect that the relationship between Y and X should get
stronger continuously and monotonically as ηrankK increases from 0 to 1. For a variant of ηrankK

in the univariate d1 = d2 = 1 setting, this monotonicity was demonstrated for certain natural
examples in [3, Proposition 4.1]. It would be interesting to establish such monotonicity for
general kernels and for d1, d2 > 1.

(c) Local power analysis: The question of finding the detection boundary for testing
independence using Nrank

n is of considerable interest. To put it informally, the questions we
ask here is: What is the minimum “distance” between µ and µX ⊗ µY , such that the test
for independence using η̂rankn has asymptotic power 1? Based on the works of [3, 45, 60], it
is evident that the answer should depend heavily on the choice of the graph functional used
in the construction of η̂rankn , e.g., the choice of k in a k-nearest neighbor graph. As in (a)
above, the hardness arises again in tightly quantifying the bias in Nrank

n . Here we expect a
“blessing of dimensionality” in the detection boundary beyond d2 = 8 (see Bhattacharya [10]
for a related result).

(d) Numerical performance: We do not pursue a thorough simulation study comparing
the power of the distribution-free test of independence based on η̂rankn with other competing
methods here. However, based on recent experimental observations made for other graph-
based and rank-based tests, there are a number of interesting practical questions one may
ask. For instance, graph-based tests usually outperform competitors when the relationship
between Y and X is sinusoidal (see [6, 16]) while multivariate rank-based tests are known for
their robustness against outliers and heavy-tailed data (see [23, 61]). As η̂rankn uses both, one
may ask: Does it inherit the best of both worlds? Also, in [21, Section D.5], the authors show
that certain multivariate rank-based tests have competitive performance in high-dimensional
problems as well. It would be interesting to explore if η̂rankn exhibits similar behavior.

(e) Extension beyond uniform reference distribution: Throughout this paper we
have assumed that the reference distributions needed for defining the multivariate ranks
are uniform on the d1 and d2-dimensional unit hypercube. This choice is made mostly for
simplicity and from a methodological perspective any absolutely continuous reference distri-
bution would have sufficed (see e.g., [21, 36, 58] for some alternate choices of the reference
distribution). Our proofs would work verbatim for any other compactly supported reference
distribution. However, for reference distributions with unbounded supports (e.g., multivariate
normal) some truncation arguments would be needed. The benefits of using other reference
distributions have a rich literature dating back to [18, 38] and more recently in [21, 58]. It re-
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mains open to explore whether such gains can be had by choosing other reference distributions
for constructing η̂rankn .

5. Proofs of our main results

5.1. Proof of Theorem 3.1

First we state an important result about the consistency of the empirical multivariate ranks
(as in Definition 2.6), i.e., R̂n(·) yields a consistent estimate of R(·) (see [23] for a proof).

Proposition 5.1. Suppose µ ∈ Pac(R
d) and n−1

∑n
i=1 δhd

i

w−→ ν. Then n−1
∑n

i=1‖R̂n(Xi)−
R(Xi)‖2 a.s.−→ 0.

Proof of (i): By [23, Proposition 2.2 (ii)], (R̂X
n (X1), . . . , R̂

X
n (Xn)) (or

(R̂Y
n (Y1), . . . , R̂

Y
n (Yn))) is distributed uniformly over all n! permutations of the set Hd1

n (or
Hd2

n ). When µ = µX ⊗ µY , clearly (R̂X
n (X1), . . . , R̂

X
n (Xn)) and (R̂Y

n (Y1), . . . , R̂
Y
n (Yn))

are independent and the joint distribution is pivotal. As η̂rankn is a function of
(R̂X

n (X1), . . . , R̂
X
n (Xn), R̂

Y
n (Y1), . . . , R̂

Y
n (Yn)), it also has a pivotal distribution.

Proof of (ii): As n−1
∑n

i=1 δhd2

i

converges weakly to U [0, 1]d2 , the following conclusions are

easy consequences of the Portmanteau Theorem:

1

n

n∑

i=1

K(R̂Y
n (Yi), R̂

Y
n (Yi))

n→∞−→ EK(RY (Y1), R
Y (Y1)),

1

n(n− 1)

∑

i 6=j

K(R̂Y
n (Yi), R̂

Y
n (Yj))

n→∞−→ EK(RY (Y1), R
Y (Y2)). (5.1)

In the above displays, both terms on the right hand side are deterministic because both of
them are permutation-invariant and (R̂n(Y1), . . . , R̂n(Yn)) is some permutation of the fixed
set Hd2

n . Consequently the above convergence is a deterministic result. By an application
of Proposition 5.1 and (3.4), it further suffices to show that:

Zn :=
1

n

∑

i

d−1
i

∑

j:(i,j)∈E(Grank

n )

K(RY (Yi), R
Y (Yj))

P−→ EK(RY (Y ′), RY (Ỹ ′)).

In order to establish the above, by an application of Chebyshev’s inequality, it suffices to
show that:

(a) EZ2
n

n→∞−→
[
EK(RY (Y ′), RY (Ỹ ′))

]2
.

(b) EZn
n→∞−→ EK(RY (Y ′), RY (Ỹ ′)).

We first prove (a). For the sake of simplicity, we write

EZ2
n = (I) + (II) + (III)

where

(I) :=
1

n2
E

[
∑

i

∑

j:(i,j)∈E(Grank

n )

1

di

(
1

di
+

1

dj

)
E

[
K2(RY (Yi), R

Y (Yj)) | RX(Xi), R
X(Xj)

]]
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(II) :=
1

n2
E

[
∑

i

∑

j 6=k:(i,j),(i,k)∈E(Grank

n )

(
1

di
+

1

dj

)(
1

di
+

1

dk

)

× E

[
K(RY (Yi), R

Y (Yj))K(RY (Yi), R
Y (Yk)) | RX(Xi), R

X(Xj), R
X(Xk)

]]

(III) :=
1

n2
E

[
∑

i 6=j

∑

k 6=ℓ:(k,i),(ℓ,j)∈E(Grank

n )

1

didj
E

[
K(RY (Yi), R

Y (Yk))

×K(RY (Yj), R
Y (Yℓ)) | RX(Xi), R

X(Xj), R
X(Xk), R

X(Xl)
]]

.

We now claim and prove that

(III) →
(
E

(
E

[
K
(
RY (Ỹ1), R

Y (Ỹ2)
)
| X
]))2

(5.2)

as n → ∞, where Ỹ1 and Ỹ2 are independent samples from the conditional distribution Y | X.
For this, we define

(ĨII) :=
1

n2

∑

i 6=j

∑

k 6=ℓ:(k,i),(ℓ,j)∈E(Grank

n )

1

di

1

dj
E

[
E

[
K
(
RY (Yi), R

Y (Y ′
i )
)
| RX(Xi)

]

× E

[
K
(
RY (Yj), R

Y (Y ′
j )
)
| RX(Xj)

]]

where Y ′
i (resp. Y ′

j ) is a sample from the conditional distribution Y | Xi (resp. Y | Xj)
independent of Yi and Yj . A simple application of the fact that K(·, ·) is continuous a.e.,
RY (·) is bounded coordinate-wise, shows that:

|(III)− (ĨII)|

. C
maxnj=1 dj

nminnj=1 dj

∑

i

1

di
E

[ ∑

k:(k,i)∈E(Grank

n )

∣∣E
[
K(RY (Yi), R

Y (Yk)) | RX(Xi), R
X(Xk)

]

− E
[
K(RY (Yi), R

Y (Y ′
i )) | RX(Xi)

]∣∣
]
. (5.3)

We show that the right hand side of the above inequality converges to 0 as n → ∞. By
the assumption (3.3), E

[
K
(
RY (Y1), R

Y (Y2)
)
| RX(X1) = x1, R

X(X2) = x2
]
is uniformly

β-Hölder continuous w.r.t. x1, x2. Applying this to (5.3) shows

lim sup
n→∞

r.h.s. of (5.3)

. lim sup
n→∞

maxnj=1 dj

nminnj=1 dj

n∑

i=1

1

di
E

[ ∑

k:(k,i)∈E(Grank

n )

∥∥RX(Xi)−RX(Xk)
∥∥β
]

≤ lim sup
n→∞

maxnj=1 dj

nminnj=1 dj
E

[∑

i=1

1

di

∑

k:(k,i)∈E(Grank

n )

∥∥R̂X
n (Xi)− R̂X

n (Xk)
∥∥β
]
. (5.4)

where the last inequality follows once again from Proposition 5.1. Notice that∑
i=1

∑
k:(k,i)∈E(Grank

n )

∥∥R̂X
n (Xi) − R̂X

n (Xk)
∥∥β =

∑
e∈E(Grank

n ) |e|β where |e| denotes the length
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of the edge e. The right hand side of the above display converge to 0 by (3.5). This shows

|(III)− (ĨII)| converges to 0 as n tends to ∞. On other hand, we define

(Ĩ) :=
1

n2
E

[
n∑

i=1

∑

j:(j,i)∈E(Grank

n )

(
1

d2i

[(
K(RY (Yi), R

Y (Y ′
i ))
)2]

+
1

didj
E

[
K(RY (Yi), R

Y (Y ′
i ))K(RY (Yj), R

Y (Y ′
j ))
])]

,

and

(ĨI) :=
1

n2
E

[
n∑

i=1

∑

(j,i),(k,i)∈E(Grank

n )

[
1

djdk
K(RY (Yk), R

Y (Y ′
k))K(RY (Yj), R

Y (Y ′
j ))

+
1

d2i
K2(RY (Yi), R

Y (Y ′
i )) +

2

didj
K(RY (Yi), R

Y (Y ′
i ))K(RY (Yj), R

Y (Y ′
j ))

]]
.

Note that

(Ĩ) + (ĨI) + (ĨII) =
1

n2
E

[( n∑

i=1

K(RY (Yi), R
Y (Y ′

i ))
)2]

→
(
E
[
K(RY (Y1), R

Y (Y ′
1))
])2

(5.5)

where the last convergence follows from the strong law of large numbers and the dominated
convergence theorem. Owing to the fact that (3.4) holds and K(·, ·) is continuous a.e., it is
easy to check that (I), (II), (Ĩ), (ĨI) are converging to 0 as n → ∞. Combining this with (5.2)
and (5.5) completes the proof of (a).

Now we move on to (b). By the towering property of the conditional expectation, we have

EZn = E

[ 1
n

∑

i

d−1
i

∑

j:(i,j)∈E(Gn)

K(RY (Yi), R
Y (Yj))

]

= E

[ 1
n

∑

i

d−1
i

∑

j:(i,j)∈E(Gn)

E
[
K(RY (Yi), R

Y (Yj)) | RX(Xi), R
X(Xj)

]]
. (5.6)

By the β-Hölder continuity of E
[
K(RY (Yi), R

Y (Yj)) | RX(Xi) = x,RX(Xj) = y
]
as a func-

tion of x and y (see (3.3)), there exists C > 0 such that

∣∣∣E
[
K(RY (Yi), R

Y (Yj)) | RX(Xi), R
X(Xj)

]

− E
[
K(RY (Yi), R

Y (Y ′
j )) | RX(Xi)

] ∣∣∣ . ‖RX(Xi)−RX(Xj)‖β

where Yi, Y
′
i are two independent samples from the conditional distribution of Y given Xi.

Applying the above inequality, we get

∣∣∣r.h.s. of (5.6)− 1

n
E
[ n∑

i=1

K(RY (Yi), R
Y (Y ′

i ))
]∣∣∣
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. E

[ 1
n

n∑

i=1

∑

j:(i,j)∈E(Gn)

1

di
‖RX(Xi)−RX(Xj)‖β

]
.

The proof of (b) can now be completed using the same steps as those in the proof of (a)
starting from (5.4).

5.2. Proof of Theorem 3.2

Proof of (P1): This follows from [22, Theorem 2.1].

Proof of (P2): By Proposition 2.1, there exists QY (·) such that QY (RY (y)) = y a.e. µY . By
[22, Theorem 2.1], it follows that ηrankK = 0 if and only if RY (Y ) and X are independent. As
QY (RY (Y )) = Y , we further have that RY (Y ) and X are independent if and only if Y and
X are independent. The conclusion then follows.

Proof of (P3): By [22, Theorem 2.1], it follows that ηrankK = 1 if and only if there exists a
measurable function h(cot) such that RY (Y ) = h(X) a.e. µ. Now RY (Y ) = h(X) ⇔ Y =
QY (h(X)). The conclusion then follows by choosing g ≡ QY ◦ h.

5.3. Proof of Proposition 3.1

The crucial observation in this proof is that K(y1, y2) = |y1|+ |y2| − |y1 − y2| = min{y1, y2}
for y1, y2 ∈ [0,∞). Now, when d2 = 1, RY (·) is simply the cumulative distribution function
of Y ; we will call it FY to stick with conventional notation. Next note that, ηrankK (µ) can be
simplified as:

ηrankK (µ) =
Emin{FY (Y

′), FY (Ỹ ′)} −Emin{FY (Y1), FY (Y2)}
1/2 −Emin{FY (Y1), FY (Y2)}

. (5.7)

As min{a, b} =
∫∞
0 1(t ≤ a)1(t ≤ b) dt for a, b ∈ R, an application of the dominated conver-

gence theorem yields:

Emin{FY (Y
′), FY (Ỹ ′)} =

∫
E[(P(FY (Y ) ≥ t|X))2] dt =

∫
E[(P(Y ≥ t|X))2] dµY (t)

and similarly,

Emin{FY (Y1), FY (Y2)} =

∫
(P(Y ≥ t))2 dµY (t).

Plugging the above expressions into the expression of ηrankK (µ) in (5.7) gives:

ηrankK (µ) =

∫ (
E[(P(Y ≥ t|X))2]− (P(Y ≥ t))2

)
dµY (t)

∫ (
P(Y ≥ t)− (P(Y ≥ t))2

)
dµY (t)

= ξ(µ).

This completes the proof.

5.4. Proof of Theorem 3.3

Note the definitions of ã, b̃, c̃, g̃1, g̃2, g̃3 from the statement of Theorem 3.3. For this proof, we
will also borrow some elements used in the proof of [22, Theorem 4.1]. Define Cn := (n(n −
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1))−1
∑

i 6=j K(R̂Y
n (Yi), R̂

Y
n (Yj)) and recall that Cn is a deterministic quantity as was explained

in the comment after (5.1). Also EK(R̂Y
n (Y1), R̂

Y
n (Y2)) = Cn. Let Fn := σ(X1, . . . ,Xn), i.e.,

the σ-field generated by (X1, . . . ,Xn). Consequently, note that:

E[Nrank

n |Fn] =
√
n


 1

n

n∑

i=1

1

d̃i

∑

j:(j,i)∈E(Grank

n )

E[K(R̂Y
n (Yi), R̂

Y
n (Yj))]− Cn




=
√
nCn


 1

n

n∑

i=1

1

d̃i

∑

j:(j,i)∈E(Grank

n )

1− 1


 = 0. (5.8)

By the same calculation as in [22, Equation (C.12)], we get:

Var(Nrank

n |Fn) =

(
g̃1 + g̃3 −

2

n− 1

)
(â− 2b̂+ ĉ) + (g̃2 − 1)(̂b − ĉ), (5.9)

where

â :=
1

n(n− 1)

∑

(i,j) distinct

K2(R̂Y
n (Yi), R̂

Y
n (Yj))

b̂ :=
1

n(n− 1)(n − 2)

∑

(i,j,l) distinct

K(R̂Y
n (Yi), R̂

Y
n (Yj))K(R̂Y

n (Yi), R̂
Y
n (Yl))

ĉ :=
1

n(n− 1)(n − 2)(n − 3)

∑

(i,j,l,m) distinct

K(R̂Y
n (Yi), R̂

Y
n (Yj))K(R̂Y

n (Yl), R̂
Y
n (Ym)).

Now â, b̂, ĉ are clearly O(1) and g̃1, g̃2, g̃3 are O(1) by using [22, Equation (C.13)]. Next
observe that the right hand side of (5.9) is a deterministic quantity. Therefore by combin-
ing (5.8) and (5.9), we get Var(Nrank

n ) = O(1).

In order to establish the CLT, define

Npop

n :=
√
n




1

n

n∑

i=1

1

d̃i

∑

j:(j,i)
∈E(Grank

n )

K(RY (Yi), R
Y (Yj))−

∑
i 6=j K(RY (Yi), R

Y (Yj))

n(n− 1)


 . (5.10)

It then suffices to show the following:

sup
G̃∈Jθ

∣∣∣∣∣
Var(Npop

n )

Var(Nrank

n )
− 1

∣∣∣∣∣
n→∞−→ 0, (5.11)

sup
G̃∈Jθ

E

[
(Npop

n −Nrank

n )2
]

n→∞−→ 0, (5.12)

sup
G̃∈Jθ

sup
x∈R

∣∣∣∣P
(

Npop

n√
Var(Npop

n )
≤ x

)
− Φ(x)

∣∣∣∣
n→∞−→ 0. (5.13)
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Proof of (5.11). As in [22, Equation (C.12)], we have:

Var(Npop

n ) = E(Npop

n )2 =

(
g̃1 + g̃3 −

2

n− 1

)
(ã− 2b̃+ c̃) + (g̃2 − 1)(̃b− c̃). (5.14)

Therefore,

sup
G̃∈Jθ

∣∣∣∣∣
Var(Npop

n )

Var(Nrank

n )
− 1

∣∣∣∣∣ . sup
G̃∈Jθ

[(
g̃1 + g̃3 −

2

n− 1

)
(ã− â− 2b̃+ 2b̂+ c̃− ĉ)

+ (g̃2 − 1)(̃b− b̂− c̃+ ĉ)

]
n→∞−→ 0.

The conclusion above follows by noting that â → ã, b̂ → b̃, and ĉ → c̃, as n → ∞, by
assumption (S3).

Proof of (5.12). Let us first introduce the notion of the resampling distribution. Note
that when µ̃ = µ̃X ⊗ µ̃Y , the joint distribution of (X1, Y1), . . . , (Xn, Yn) is the same as the
joint distribution of (X1, Yσ(1)), . . . , (Xn, Yσ(n)) where σ is a random permutation of the set
{1, 2, . . . , n} which is drawn independent of the Xi’s and Yi’s.

The expressions for E(Nrank

n )2 and E(Npop

n )2 has already been presented
in (5.9) and (5.14) respectively. Therefore, in the sequel, we will only focus on the
term E[Nrank

n Npop

n ] where we will use the resampling distribution as discussed above.
Towards this direction, let us define:

a :=
1

n(n− 1)

∑

(i,j) distinct

K(R̂Y
n (Yi), R̂

Y
n (Yj))K(RY (Yi), R

Y (Yj))

b :=
1

n(n− 1)(n − 2)

∑

(i,j,l) distinct

K(R̂Y
n (Yi), R̂

Y
n (Yj))K(RY (Yi), R

Y (Yl))

c :=
1

n(n− 1)(n − 2)(n − 3)

∑

(i,j,l,m) distinct

K(R̂Y
n (Yi), R̂

Y
n (Yj))K(RY (Yl), R

Y (Ym)).

Also to simplify notation, we will use the symbol j ∼ i for (j, i) ∈ E(Grank

n ) and let Ẑi :=
R̂Y

n (Yi) and Zi := RY (Yi). With the above notation, observe that E[Nrank

n Npop

n ] can be
simplified as follows:

E

[
 1

n

n∑

i=1

1

d̃i

∑

j∼i

K(R̂Y
n (Yσ(i)), R̂

Y
n (Yσ(j)))




 1

n

n∑

i=1

1

d̃i

∑

j∼i

K(RY (Yσ(i)), R
Y (Yσ(j)))




−


 1

n

n∑

i=1

1

d̃i

∑

j∼i

K(R̂Y
n (Yσ(i)), R̂

Y
n (Yσ(j)))




 1

n(n− 1)

∑

i 6=j

K(RY (Yi), R
Y (Yj))




−


 1

n

n∑

i=1

1

d̃i

∑

j∼i

K(RY (Yσ(i)), R
Y (Yσ(j)))




 1

n(n− 1)

∑

i 6=j

K(R̂Y
n (Yi), R̂

Y
n (Yj))




+


 1

n(n− 1)

∑

i 6=j

K(R̂Y
n (Yσ(i)), R̂

Y
n (Yσ(j)))




 1

n(n− 1)

∑

i 6=j

K(RY (Yσ(i)), R
Y (Yσ(j)))



]
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(∗)
= (g̃1 + g̃3)E

[
K(Ẑσ(1), Ẑσ(2))K(Zσ(1), Zσ(2))

]
+ (3 + g̃2 − 2g̃1 − 2g̃3)E

[
K(Ẑσ(1), Ẑσ(2))

K(Zσ(1), Zσ(3))
]
+ (n− 3 + g̃1 + g̃2 + g̃3)E

[
K(Ẑσ(1), Ẑσ(2))K(Zσ(3), Zσ(4))

]

− 2

n− 1
·E
[
K(Ẑσ(1), Ẑσ(2))K(Zσ(1), Zσ(2))

]
− 4(n − 2)

n− 1
·E
[
K(Ẑσ(1), Ẑσ(2))K(Zσ(1), Zσ(3))

]

− (n− 2)(n − 3)

n− 1
·E
[
K(Ẑσ(1), Ẑσ(2))K(Zσ(3), Zσ(4))

]

=

(
g̃1 + g̃3 −

2

n− 1

)
(a− 2b+ c) + (g̃2 − 1)(b − c).

Here (∗) follows from [22, Equations (C.9), (C.10), and (C.11)]. By Assumption (S3), â, a
converge to ã in L1; same holds for b̂, b, b̃ and ĉ, c, c̃. Also â, a, ã, b̂, b, b̃, ĉ, c, c̃ do not depend
on the graph functional G. Therefore, the following holds:

sup
G̃∈Jθ

E [(Nrank

n −Npop

n )]
2
= sup

G̃∈Jθ

[(
g̃1 + g̃3 −

2

n− 1

)
{â− 2a+ ã+ 4b− 2b̃

− 2b̂+ ĉ− 2c+ c̃}+ (g̃2 − 1)(̂b − 2b+ b̃− ĉ+ 2c− c̃)

]
n→∞−→ 0.

This completes the proof of (5.12).

Proof of (5.13). The conclusion follows directly from [22, Theorem 4.1].
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[54] Rényi, A. (1959). On measures of dependence. Acta Math. Acad. Sci. Hungar. 10,

441–451.
[55] Reshef, D. N., Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turn-

baugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti (2011). Detecting novel associa-
tions in large data sets. Science 334 (6062), 1518–1524.



Deb, Ghosal, and Sen/Distribution-free Measures of Association 24

[56] Rosenblatt, M. (1975). A quadratic measure of deviation of two-dimensional density
estimates and a test of independence. Ann. Statist. 3, 1–14.

[57] Sen, A. and B. Sen (2014). Testing independence and goodness-of-fit in linear models.
Biometrika 101 (4), 927–942.

[58] Shi, H., M. Drton, M. Hallin, and F. Han (2025). Distribution-free tests of multivariate
independence based on center-outward quadrant, Spearman, Kendall, and van der Waerden
statistics. Bernoulli 31 (1), 106 – 129.

[59] Shi, H., M. Drton, and F. Han (2022a). Distribution-free consistent independence tests
via center-outward ranks and signs. J. Amer. Statist. Assoc. 117 (537), 395–410.

[60] Shi, H., M. Drton, and F. Han (2022b). On the power of Chatterjee’s rank correlation.
Biometrika 109 (2), 317–333.

[61] Shi, H., M. Hallin, M. Drton, and F. Han (2022). On universally consistent and fully
distribution-free rank tests of vector independence. Ann. Statist. 50 (4), 1933–1959.

[62] Siburg, K. F. and P. A. Stoimenov (2010). A measure of mutual complete dependence.
Metrika 71 (2), 239–251.

[63] Smola, A., A. Gretton, L. Song, and B. Schölkopf (2007). A Hilbert space embedding
for distributions. In International Conference on Algorithmic Learning Theory, pp. 13–31.
Springer.

[64] Spearman, C. (1904). The proof and measurement of association between two things.
American journal of Psychology 15 (1), 72–101.

[65] Steinwart, I. and A. Christmann (2008). Support vector machines. Information Science
and Statistics. Springer, New York.

[66] Strothmann, C., H. Dette, and K. F. Siburg (2024). Rearranged dependence measures.
Bernoulli 30 (2), 1055–1078.
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