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Light is known to exhibit quantum uncertainty in terms of its amplitude, phase, and polarization.
However, quantum uncertainty related to coherence, which is also a fundamental physical property
of light, has not been considered to date. Here, we formulate and explore the concept of quantum
optical coherence uncertainty. We focus on the first-order coherence of the simplest possible light
field, a purely monochromatic plane wave, which is classically completely stable. Starting from a
scalar treatment, we show that the field displays zero coherence uncertainty only for a number state.
We then proceed to the vectorial regime and establish that any state leads to coherence fluctuations,
governed by a set of uncertainty relations depending on the polarization state and space-time points.
Our work thus provides fundamental insights into the quantum character of optical coherence, with
potential benefits in applications using highly sensitive interferometric and polarimetric techniques.

I. INTRODUCTION

The uncertainty principle is a primary concept in quan-
tum physics and a major manifestation of quantum com-
plementarity [1, 2]. It states that quantum objects ad-
mit complementary observables whose values cannot be
known simultaneously with arbitrary precision. For light,
this uncertainty arises as quantum fluctuations in ampli-
tude and phase [3], whose nonclassical features are uti-
lized in quantum-enhanced sensing and metrology includ-
ing gravitational wave detection [4, 5], biological mea-
surements [6, 7], and even dark-matter probing [8]. When
the vector nature of light is taken into account, the un-
certainty is manifested in the form of quantum polariza-
tion fluctuations that exist for any state of light [9, 10].
This fact imposes fundamental boundaries for optical po-
larimetry but opens up also opportunities for quantum-
polarimetric techniques [11] that can outperform classical
methods [12].

Coherence is likewise a central notion in optical physics
and a fundamental property of light, whose understand-
ing and exploitation is crucial in many different contexts,
e.g., interference, diffraction, propagation, spectral dis-
tribution, and interactions [13]. Especially the quantum
aspects of optical coherence [14] have been in the spot-
light in various branches of physics. Besides its wide
interest in quantum optics, such as interferometry [15],
imaging [16], metrology [17], information processing [18],
and testing quantum foundations [19], it is met in op-
tomechanics [20], molecular physics [21], quantum elec-
tronics [22], and cosmological studies [23]. Moreover, the
interplay of coherence and polarization has been an ac-
tive research subject in classical optics [24], triggering
also related quantum investigations [25, 26]. Neverthe-
less, to the best of our knowledge, the role of quantum
uncertainty affiliated with coherence has not been exam-
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ined before.
In this work, we introduce and study the concept of

first-order coherence uncertainty of quantized light fields.
We particularly focus on a purely monochromatic plane
wave, which is classically totally coherent and displays no
fluctuations either in amplitude, phase, or polarization.
Firstly, we show in the scalar context that such field ex-
hibits zero coherence uncertainty only for a number state.
We then elucidate how for any other state the coherence
fluctuations change when the space-time points are var-
ied in terms of a coherence phase space. Secondly, we
extend our analysis to the vector-light regime and show
that for any state the coherence uncertainty is nonzero
due to the inevitable quantum polarization fluctuations.
We further establish a set of uncertainty relations for the
coherence fluctuations, which depend not only on the po-
larization state but also on the space-time coordinates.
Similarly to the scalar-light treatment, we visualize the
space-time dependent coherence fluctuations within the
vectorial regime through a phase-space representation.
The exact assessment of coherence is thereby generally
and fundamentally prohibited by quantum uncertainty.
Hence, besides amplitude, phase, and polarization, our
work reveals previously uncharted and complementary
facets of quantum light uncertainty via optical coherence.

II. COHERENCE UNCERTAINTY OF SCALAR
LIGHT

The first-order correlations of a quantized scalar light
field are, at two space-time points x1 = (r1, t1) and x2 =
(r2, t2), fully characterized by the coherence function [14]

G(x1, x2) = tr[ρ̂Ê†(x1)Ê(x2)]. (1)

Here, Ê(x) is the positive frequency part of the elec-
tric field operator, ρ̂ is the density operator specifying
the quantum state, † denotes the Hermitian adjoint,
and tr stands for the trace in Fock space. When the
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two points coincide, G(x, x) is the local intensity at x
and proportional to the photodetection rate [14]. Thus

the respective Hermitian operator Ĝ(x, x) = Ê†(x)Ê(x)
represents a physical observable. On the other hand,
when x1 ̸= x2, the coherence function G(x1, x2) is gen-
erally a complex number and not directly measurable,
whereupon the corresponding coherence function oper-
ator Ĝ(x1, x2) = Ê†(x1)Ê(x2) is non-Hermitian. How-
ever, the coherence function can be determined piecewise
by interferometric means. In two-path interferometry,
its magnitude and phase are experimentally ascertained
from the visibility and the locations, respectively, of the
intensity fringes [13]. Alternatively, the coherence func-
tion can be characterized by its real and imaginary parts,
i.e. G(x1, x2) = G′(x1, x2) + iG′′(x1, x2). The operators
associated with these two parts,

Ĝ′(x1, x2) =
1

2
[Ĝ(x1, x2) + Ĝ†(x1, x2)], (2a)

Ĝ′′(x1, x2) =
1

2i
[Ĝ(x1, x2) − Ĝ†(x1, x2)], (2b)

are clearly Hermitian, with their expectations yielding
the complete information on the whole coherence func-
tion G(x1, x2).

Let us consider a monochromatic plane-wave mode

Ê(x) = Câei(k·r−ωt), (3)

in which C is a constant, â is the annihilation operator, k
is the wave vector, and ω is the angular frequency. Now
the two Hermitian operators in Eqs. (2a) and (2b) read

Ĝ′(x1, x2) = |C|2n̂ cos Θ, (4a)

Ĝ′′(x1, x2) = |C|2n̂ sin Θ, (4b)

where n̂ is the number operator and Θ = k · (r2 − r1) −
ω(t2−t1). We immediately observe that the expectations
G′(x1, x2) = |C|2n̄ cos Θ and G′′(x1, x2) = |C|2n̄ sin Θ,
with n̄ being the mean photon number, are exactly π/2
out of phase. More importantly, from Eqs. (4a) and (4b)
we find the coherence uncertainties (standard deviations)

∆G′(x1, x2) = |C|2∆n| cos Θ|, (5a)

∆G′′(x1, x2) = |C|2∆n| sin Θ|, (5b)

where ∆n is the uncertainty in the photon number.
Equations (5a) and (5b) show that the uncertainties

in the real and imaginary parts of the coherence func-
tion can simultaneously vanish only when ∆n = 0, i.e.,
for number states, which are the eigenstates of Ĝ′(x1, x2)

and Ĝ′′(x1, x2). As these states represent the purest form
of sub-Poissonian light, the vanishing of both ∆G′(x1, x2)
and ∆G′′(x1, x2) has no classical correspondence. Any
other state (∆n > 0) exhibits coherence uncertainty at
all space-time points due to the π/2 phase difference be-
tween ∆G′(x1, x2) and ∆G′′(x1, x2), even if the field is

FIG. 1. Schematic of the coherence phase space for a quan-
tized monochromatic plane wave in the scalar-light domain.
The real part G′(x1, x2) and the imaginary part G′′(x1, x2)
of the coherence function (white circle) exhibit respective un-
certainties ∆G′(x1, x2) and ∆G′′(x1, x2) (red-blue ring). The
distribution of the uncertainties is specified by the space-time
dependent angle Θ and highlighted with the color coding.

a perfectly monochromatic plane wave. Accordingly, ex-
cept the case of a number state, the complete determi-
nation of the coherence properties of the field cannot be
achieved, not even in principle, with arbitrary precision.
The distribution of the uncertainty between the real and
imaginary parts of the coherence function is specified
through Θ by the space-time points x1 and x2. On the
other hand, whereas the coherence uncertainty alternates
between ∆G′(x1, x2) and ∆G′′(x1, x2) when changing the
space-time points, the squared sum of these fluctuations
is independent of space and time:

[∆G′(x1, x2)]2 + [∆G′′(x1, x2)]2 = |C|4(∆n)2. (6)

This behavior is somewhat similar to the energy swinging
back and forth between a harmonic oscillator’s potential
and kinetic energies, while the total energy remains con-
stant.

The above findings can be visualized by introducing
the coherence phase space illustrated in Fig. 1, where
the horizontal and vertical axes correspond to G′(x1, x2)
and G′′(x1, x2), respectively. In this representation, the
coherence function G(x1, x2) is located at a distance of
|G(x1, x2)| = |C|2n̄ from the origin and at an angle of
Θ with respect to the horizontal axis. As the space-time
separation is varied, the coherence function evolves along
a circle, surrounded by an uncertainty ring specified by
∆G′(x1, x2) and ∆G′′(x1, x2). We stress that Θ is com-
pletely deterministic and, thus, the uncertainty in Fig. 1
appears only in the radial direction, corresponding to the
magnitude |G(x1, x2)|. According to Eq. (6), the uncer-
tainty of the coherence magnitude is dictated exclusively
by the photon-number fluctuations.

Moreover, and more generally, the real and imagi-
nary parts of the coherence function in Eq. (1) are di-
rectly linked to the magnitude |G(x1, x2)| and phase
arg[G(x1, x2)]. As explained below Eq. (1), these quan-
tities and thus also G′(x1, x2) and G′′(x1, x2) can be
obtained experimentally from interferometric measure-
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ments. By the same token, since ∆G′(x1, x2) and
∆G′′(x1, x2) may in general lead to fluctuations both in
the magnitude and phase of G(x1, x2), the coherence un-
certainty is expected to occur as quantum fluctuations in
the visibility and the locations of the interference fringes.
This in turn prevents the characterization of the coher-
ence properties with zero uncertainty. Hence, from an op-
erational point of view, such quantum fluctuations may
limit high-precision control and measurement of optical
coherence [27–29] as well as the image resolution and sig-
nal estimation in coherence-based metrology [30–36].

III. POLARIZATION UNCERTAINTY

In a moment we will generalize the above framework to
the vectorial regime, i.e., light whose polarization prop-
erties must be taken into account. But first we briefly
review some necessary background concepts related to
the quantum polarization uncertainty of such vectorial
light fields.

Let the column vector Ê(x) = [Êh(x), Êv(x)]T denote
a two-component electric field operator (the superscript

T stands for the transpose), with Êh(x) and Êv(x) be-
ing the two orthogonal components along some arbitrary
horizontal and vertical axes, respectively. The quantum
polarization properties of such a light field can be char-
acterized by the four Stokes operators [26]

Ŝn(x) = Ê†(x)σnÊ(x), n ∈ {0, 1, 2, 3}, (7)

where σ0 is the 2 × 2 identity matrix and σ1,σ2,σ3 are
the Pauli matrices. Contrary to the coherence function
operator, the Stokes operators in Eq. (7) are Hermitian.
The expectation values of Eq. (7),

Sn(x) = tr[ρ̂Ŝn(x)], n ∈ {0, 1, 2, 3}, (8)

correspond to the classical Stokes parameters [37]. These
four parameters satisfy the constraint |S(x)| ≤ S0(x),
with S(x) = [S1(x), S2(x), S3(x)]T, and have the follow-
ing physical interpretations: S0(x) is proportional to the
(average) total photon number, while S1(x), S2(x), and
S3(x) describe the (average) differences between h- and v-
polarized, +π/4- and −π/4-linearly polarized, and right-
and left-circularly-polarized photons, respectively.

Considering a vectorial monochromatic plane wave

Ê(x) = C[âh, âv]Tei(k·r−ωt), (9)

in which âs is the annihilation operator of the s ∈ {h, v}
polarization mode, we obtain from Eq. (7) the (space-
time independent) Stokes operators [9, 10]

Ŝ0 = |C|2(â†hâh + â†vâv), Ŝ1 = |C|2(â†hâh − â†vâv),

Ŝ2 = |C|2(â†hâv + â†vâh), Ŝ3 = i|C|2(â†vâh − â†hâv).
(10)

Due to the commutator [âs, â
†
s′ ] = δss′ , with δ being the

Kronecker delta, the Stokes operators in Eq. (10) obey

the commutation relations [9, 10]

[Ŝ0, Ŝ] = 0, [Ŝj , Ŝk] = 2i|C|2ϵjklŜl, (11)

where Ŝ = [Ŝ1, Ŝ2, Ŝ3]T and ϵjkl is the Levi–Civita tensor.
The first relation in Eq. (11) concurs with the classical

perception that polarization (Ŝ) and intensity (Ŝ0) are
separate physical entities: the form of the ellipse (polar-
ization) is independent of its size (intensity). However, in
contrast to the classical framework, the second relation in
Eq. (11) implies that not even a perfectly monochromatic
plane wave can have a definite, nonfluctuating polariza-
tion state due to the noncommutative components of Ŝ.
In particular, the latter commutator in Eq. (11) leads to
the polarization uncertainty relations [9, 10]

∆Sj∆Sk ≥ |C|2|ϵjkl||Sl|, (12)

which set the fundamental precision boundaries for the
simultaneous assessment of the Stokes parameters S1, S2,
and S3.

IV. COHERENCE UNCERTAINTY OF
VECTOR LIGHT

We now turn to examine coherence uncertainty in the
vector-light regime. We start by introducing the coher-
ence matrix operator

Ĝ(x1, x2) = Ê†(x1) ⊗ Ê(x2), (13)

where ⊗ denotes the outer product and the field operator
is generally a three-component vector. The expectation

G(x1, x2) = tr[ρ̂Ĝ(x1, x2)] (14)

corresponds to the classical 3 × 3 coherence matrix [24]
and contains all the information on the first-order space-
time coherence of a general three-component field.

Here we focus on a two-component field, characterized
by Ê(x) = [Êh(x), Êv(x)]T. In this scenario Ĝ(x1, x2)
is a 2× 2 matrix, formed by the non-Hermitian elements
Ĝαβ(x1, x2) = Ê†

α(x1)Êβ(x2) with α, β ∈ {h, v}. Akin to
the scalar coherence function in Eq. (1), each coherence-

matrix element Gαβ(x1, x2) = tr[ρ̂Ĝαβ(x1, x2)] is hence
a complex quantity with a real part G′

αβ(x1, x2) and an

imaginary part G′′
αβ(x1, x2). As with Eqs. (2a) and (2b),

we could then define the respective Hermitian operators
Ĝ′

αβ(x1, x2) and Ĝ′′
αβ(x1, x2), which would allow us to

assess the coherence uncertainty of the field.
However, it is more instructive to employ the coherence

Stokes operators [26]

Ŝn(x1, x2) = Ê†(x1)σnÊ(x2), n ∈ {0, 1, 2, 3}, (15)

offering an alternative yet equivalent way to represent the
first-order coherence of two-component quantized light.
The coherence Stokes operators are two-point extensions
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of the standard polarization (one-point) Stokes operators
in Eq. (7), and it is readily verified that they are related
to the 2 × 2 coherence matrix operator in Eq. (13) as

Ĝ(x1, x2) =
1

2

3∑
n=0

Ŝn(x1, x2)σn, (16)

Ŝn(x1, x2) = Tr[Ĝ(x1, x2)σn], (17)

where Tr stands for the matrix trace. Furthermore, their
expectation values

Sn(x1, x2) = tr[ρ̂Ŝn(x1, x2)], n ∈ {0, 1, 2, 3}, (18)

are the quantum analogs of the classical coherence Stokes
parameters [38, 39]. Physically, S0(x1, x2) describes the
sum of correlations of the h and v components of the elec-
tric field at the two space-time points, while S1(x1, x2),
S2(x1, x2), and S3(x1, x2) characterize the correlation
differences between the h- and v-polarized, +π/4- and
−π/4-linearly polarized, and right- and left-circularly-
polarized components, respectively [40].

When x1 = x2 = x, the coherence Stokes operators
(parameters) in Eq. (15) [Eq. (18)] reduce to their Hermi-
tian (real) polarization counterparts in Eq. (7) [Eq. (8)].
But, when x1 ̸= x2, the coherence Stokes operators are
non-Hermitian, meaning that the generally complex co-
herence Stokes parameters are not physical observables.
Given this fact and motivated by Eqs. (2a) and (2b), we
therefore introduce the Hermitian operators

Ŝ′
n(x1, x2) =

1

2
[Ŝn(x1, x2) + Ŝ†

n(x1, x2)], (19a)

Ŝ′′
n(x1, x2) =

1

2i
[Ŝn(x1, x2) − Ŝ†

n(x1, x2)], (19b)

corresponding to the real part S′
n(x1, x2) and imaginary

part S′′
n(x1, x2), respectively, of the complex coherence

Stokes parameter Sn(x1, x2) = S′
n(x1, x2) + iS′′

n(x1, x2).
Altogether, these eight two-point quantities contain the
complete information on the first-order coherence of a
two-component field. This contrasts with the full po-
larization characterization of the field, which instead re-
quires the knowledge of only four one-point Stokes pa-
rameters.

We further remark that the real and imaginary parts of
the complex coherence Stokes parameters in Eq. (18) can
equally well be described by the magnitudes |Sn(x1, x2)|
and phases arg[Sn(x1, x2)]. In vector-light interferom-
etry, these magnitudes and phases can be experimen-
tally inferred from the intensity and polarization-state
fringes of the corresponding one-point Stokes parame-
ters [24, 41]. This technique then also allows to deter-
mine S′

n(x1, x2) and S′′
n(x1, x2). Akin to the scalar-light

case, any possible uncertainty related to S′
n(x1, x2) and

S′′
n(x1, x2) should subsequently show up as quantum fluc-

tuations in the fringes of the one-point Stokes param-
eters. We anticipate such fluctuations to set quantum
constraints in both conventional [42–45] and more recent

nanoscattering [46–48] and polarimetric [49] schemes for
probing vector-light coherence.

Considering the monochromatic plane wave in Eq. (9),
from Eqs. (15), (19a), and (19b) we then readily obtain

Ŝ′
n(x1, x2) = Ŝn cos Θ, (20a)

Ŝ′′
n(x1, x2) = Ŝn sin Θ. (20b)

Equations (20a) and (20b) are the vector-light extensions
of Eqs. (4a) and (4b), which connect the Hermitian coher-

ence Stokes operators Ŝ′
n(x1, x2) and Ŝ′′

n(x1, x2) to their

associated polarization Stokes operators Ŝn in Eq. (10).
This link offers interesting insights into the commutation
relations of Ŝ′

n(x1, x2) and Ŝ′′
n(x1, x2).

Firstly, as regards Ŝ′
0(x1, x2) and Ŝ′′

0 (x1, x2), we find
from Eqs. (20a), (20b), and the first relation in (11) that

[Ŝ′
0(x1, x2), Ŝ′′

0 (x1, x2)] = 0. (21a)

Likewise, the commutators of Ŝ′
0(x1, x2) and Ŝ′′

0 (x1, x2)

with Ŝ′
n(x1, x2) and Ŝ′′

n(x1, x2) for n ∈ {1, 2, 3} fulfill

[Ŝµ
0 (x1, x2), Ŝν

n(x1, x2)] = 0, µ, ν ∈ {′, ′′}. (21b)

Accordingly, the operators Ŝ′
0(x1, x2) and Ŝ′′

0 (x1, x2) do
not only commute mutually, but also with any of the two
Hermitian parts of the other coherence Stokes operators.
The latter property shares formal similarity to the first
relation in Eq. (11) of the polarization Stokes operators.
Physically it means that the simultaneous precise assess-
ment of the correlation sums encoded in S′

0(x1, x2) and
S′′
0 (x1, x2), and the correlation differences embedded in

the real and imaginary parts of the remaining coherence
Stokes parameters, is in principle possible.

However, and secondly, in view of Eqs. (20a) and (20b)
as well as the latter relation in Eq. (11) the commutators

of Ŝ′
n(x1, x2) and Ŝ′′

n(x1, x2) for n ∈ {1, 2, 3} obey

[Ŝ′
j(x1, x2), Ŝ′

k(x1, x2)] = 2i|C|2ϵjklŜl cos2 Θ, (22a)

[Ŝ′′
j (x1, x2), Ŝ′′

k (x1, x2)] = 2i|C|2ϵjklŜl sin2 Θ, (22b)

[Ŝ′
j(x1, x2), Ŝ′′

k (x1, x2)] = i|C|2ϵjklŜl sin(2Θ). (22c)

We infer that these coherence Stokes operators are gov-
erned by three cyclic commutation relations, contrary to
the single cyclic commutator in Eq. (11) for the polar-
ization Stokes operators. Furthermore, the commutators
of the coherence Stokes operators depend both on the
polarization Stokes operators and the space-time points
via the phase Θ. The different trigonometric functions
in Eqs. (22a)–(22c) especially signify that the coherence
Stokes parameters S′

n(x1, x2) and S′′
n(x1, x2) cannot be

determined simultaneously for all n ∈ {1, 2, 3} with an
arbitrary accuracy. For example, considering j ̸= k ̸= l,
the commutator in Eq. (22a) [Eq. (22b)] tends to zero
merely when cos Θ = 0 (sin Θ = 0). In this case also the
commutator in Eq. (22c) vanishes but the commutator in
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FIG. 2. Illustration of the coherence Stokes parameters
and their uncertainties (arguments omitted for brevity) for a
monochromatic plane wave [Eq. (9)] in state |ψ⟩ = |1⟩h |0⟩v.

The parameters S0(x1, x2) = S1(x1, x2) = |C|2eiΘ showing
no uncertainties follow the sharp red circle when the phase Θ
evolves. However, the parameters S2(x1, x2) = S3(x1, x2) = 0
(red dot at the origin) display the fluctuations ∆S′

2(x1, x2) =
∆S′

3(x1, x2) = |C|2| cos Θ| and ∆S′′
2 (x1, x2) = ∆S′′

3 (x1, x2) =
|C|2| sin Θ| (blue circle) in their real and imaginary parts.

Eq. (22b) [Eq. (22a)] is nonzero and reduces to the latter
polarization commutation relation in Eq. (11).

Such coherence uncertainty can be formulated in terms
of the standard deviations ∆S′

n(x1, x2) and ∆S′′
n(x1, x2).

Because any two Hermitian operators Â and B̂ satisfy
∆A∆B ≥ | ⟨[Â, B̂]⟩ |/2 [50], we immediately obtain from
Eqs. (22a)–(22c) the uncertainty relations

∆S′
j(x1, x2)∆S′

k(x1, x2) ≥ |C|2|ϵjkl||Sl| cos2 Θ, (23a)

∆S′′
j (x1, x2)∆S′′

k (x1, x2) ≥ |C|2|ϵjkl||Sl| sin2 Θ, (23b)

∆S′
j(x1, x2)∆S′′

k (x1, x2) ≥ |C|2

2
|ϵjkl||Sl|| sin(2Θ)|. (23c)

On the other hand, when S = 0 the right-hand sides of
Eqs. (23a)–(23c) automatically disappear and the uncer-
tainty relations become trivial. To bypass this triviality,
we examine ∆S′

n(x1, x2) and ∆S′′
n(x1, x2) individually.

From Eqs. (20a) and (20b) we find for any n ∈ {0, 1, 2, 3}

∆S′
n(x1, x2) = ∆Sn| cos Θ|, (24a)

∆S′′
n(x1, x2) = ∆Sn| sin Θ|, (24b)

where ∆Sn is the standard deviation of the associated po-
larization Stokes parameter. Equations (24a) and (24b),
which together with Eqs. (21a)–(23c) form the central
result of this work, are the vector-light generalizations of
the scalar-light relations in Eqs. (5a) and (5b). However,
while for scalar light the coherence uncertainty becomes
strictly zero for a number state, in the vectorial regime
this is never possible. The reason for such unavoidable
coherence uncertainty for vector light is that the fluctua-
tions of all polarization Stokes parameters cannot vanish
for any state [9, 10] and because of the π/2 phase differ-
ence between ∆S′

n(x1, x2) and ∆S′′
n(x1, x2). Accordingly,

in the vector-light framework, even a perfectly monochro-

matic plane-wave field displays intrinsic coherence uncer-
tainty regardless of the quantum state. Moreover, while
the coherence uncertainty oscillates between ∆S′

n(x1, x2)
and ∆S′′

n(x1, x2) when the space-time separation is var-
ied, their squared sum is space-time independent:

[∆S′
n(x1, x2)]2 + [∆S′′

n(x1, x2)]2 = (∆Sn)2. (25)

Equation (25) extends the scalar-light relation in Eq. (6)
to the vector domain and highlights how the total coher-
ence uncertainty of a vectorial light field is specified by
the polarization uncertainty.

As an example, Fig. 2 provides a phase-space repre-
sentation of such vector-coherence uncertainty for the
state |ψ⟩ = |1⟩h|0⟩v. In this situation, the parameters
S0(x1, x2) = S1(x1, x2) = |C|2eiΘ have no uncertainties,
but S2(x1, x2) = S3(x1, x2) = 0 show the Θ-dependent
fluctuations ∆S′

2(x1, x2) = ∆S′
3(x1, x2) = |C|2| cos Θ|

and ∆S′′
2 (x1, x2) = ∆S′′

3 (x1, x2) = |C|2| sin Θ|. Hence,
even a monochromatic plane wave containing only a sin-
gle horizontally polarized photon possesses vectorial co-
herence fluctuations.

V. CONCLUSIONS

In summary, we have established and examined the
notion of quantum coherence uncertainty for scalar light
and vectorial light. After introducing general Hermitian
operators to characterize the first-order coherence for
both light types, we studied in detail the coherence un-
certainty of a monochromatic plane-wave field. We first
showed that in the scalar framework the quantum fluctu-
ations of the coherence function vanish only in the case of
a number state. We also illustrated how for other states
the uncertainty alternates between the real and imag-
inary parts of the coherence function when the space-
time points change via a coherence phase space. For
vector light, however, we found that no state can lead
to zero uncertainty of all coherence Stokes parameters
owing to the intrinsic quantum polarization fluctuations.
The quantum fluctuations of the real and imaginary parts
of the coherence Stokes parameters were further shown
to obey a set of uncertainty relations, depending both on
the polarization state and on the space-time coordinates.
By using a coherence phase-space representation, an ex-
ample of the space-time dependent quantum fluctuations
of the coherence Stokes parameters was also provided.
Hence, our work establishes a theoretical foundation for
quantum uncertainty of optical coherence and provides a
platform for further exploration and exploitation of quan-
tum light correlations in interferometry and polarimetry.
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Setälä, Measurement of the degree of temporal coherence

of unpolarized light beams, Photonics Res. 5, 156 (2017).
[45] H. Partanen, B. J. Hoenders, A. T. Friberg, and T.
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