
An Expressive Trace Logic for Recursive Programs
Dilian Gurov #�

KTH Royal Institute of Technology, Stockholm, Sweden

Reiner Hähnle # �

Technical University of Darmstadt, Germany

Abstract
We present an expressive logic over trace formulas, based on binary state predicates, chop, and least
fixed-points, for precise specification of programs with recursive procedures. Both, programs and
trace formulas, are equipped with a direct-style, fully compositional, denotational semantics that
on programs coincides with the standard SOS of recursive programs. We design a compositional
proof calculus for proving finite-trace program properties, and prove soundness as well as (relative)
completeness. We show that each program can be mapped to a semantics-preserving trace formula
and, vice versa, each trace formula can be mapped to a canonical program over slightly extended
programs, resulting in a Galois connection between programs and formulas. Our results shed light
on the correspondence between programming constructs and logical connectives.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Operational semantics; Theory of computation → Program specifications; Theory
of computation → Program verification; Theory of computation → Logic and verification; Theory of
computation → Modal and temporal logics

Keywords and phrases Denotational semantics, compositional semantics, program specification,
compositional verification, fixed point logic, trace logic

1 Introduction

It is uncommon that specification languages used in program verification are as expressive
as the programs they are intended to specify: In model checking [7] one typically abstracts
away from data and unwinds unbounded control structures. Specification of unbounded
computations is achieved by recursively defined temporal operators. In deductive verification
[14], first-order Hoare-style contracts [17] are the basis of widely used specification languages
[3, 22]. The latter specify computation by taking symbolic memory snapshots in terms
of first-order formulas, typically at the beginning and at the end of unbounded control
structures, such as procedure call and return, or upon loop entry and exit. Contracts permit
to approximate the effect of unbounded computation as a finite number of first-order formulas
against which a program’s behavior can be verified.

Imagine, in contrast, a logic for program specification that is at least as expressive as
the programs it is supposed to describe. Formulas ϕ of such a logic characterize a generally
infinite set of program computation traces σ. One can then form judgments of program
statements S of the form S : ϕ with the natural semantics that any possible trace σ of S is
one of the traces described by ϕ.

Two arguments against such a trace logic are easily raised: first, one expects a specification
language to be capable of abstraction from implementation details; second, its computational
complexity. Regarding the first, we note that any desired degree of abstraction can be achieved
by definable constructs, i.e. syntactic sugar, in a sufficiently rich trace logic. Regarding the
second, it is far from obvious whether the computational worst-case tends to manifest itself
in practical verification [14]. First experiments seem to indicate this is not the case. On the
other hand, a rich, trace-based specification logic bears many advantages:
1. On the practical side, trace-based specification permits to express, for example, that an

event or a call happened (exactly once, at least once) or that did not happen. Likewise,

ar
X

iv
:2

41
1.

13
12

5v
1

 [
cs

.L
O

]
 2

0
N

ov
 2

02
4

mailto:dilian@kth.se
mailto:haehnle@cs.tu-darmstadt.de

2 An Expressive Trace Logic for Recursive Programs

one can specify without reference to the target code (via assertions) that a condition holds
at some point which is not necessarily an endpoint of a procedure call. It is also possible
to specify inter-procedural properties, such as call sequences, absence of callbacks, etc.
Such properties are important in security analysis and they are difficult or impossible to
express with Hoare-style contracts or in temporal logic.

2. The semantics of trace formulas in terms of trace sets can be closely aligned with a
suitable program semantics, which greatly simplifies soundness and completeness proofs.

3. An expressive trace logic makes for simple and natural completeness proofs for judgments
S : ϕ, because it is unnecessary to encode the program semantics in order to construct
sufficiently strong first-order conditions.

4. In a calculus for judgments of the form S : ϕ one one can design inference rules that
directly decompose judgments into simpler ones, but also algebraic rules that simplify
and transform ϕ, and one may mix both reasoning styles.

5. The semantics of programs, of trace formulas, and the rules of the calculus can be
formulated in a fully compositional manner: definitions and inference rules involve no
intermediate state or context.

6. In consequence, we are able to establish a close correspondence between programs and
formulas, which sheds light on the exact relation between each program construct and
its corresponding logical connective. We formulate and prove a Galois connection that
formalizes this fact.

Our main contribution is a trace logic for imperative programs with recursive procedures
where we formalize and prove the claims above. We restrict attention to the terminating
executions of programs, i.e. to their finite trace semantics. This is not a fundamental
limitation, but the desire not to obscure the construction with complications that may be
added later. Still, adaptating the theory to maximal traces (including infinite runs) is not
trivial, and working out the details is left as future work (see Section 8.3).

Our paper is structured as follows: In Section 2 we define the programming language Rec
used throughout this paper and we give it a standard SOS semantics [29]. In Section 3 we
define a denotational semantics for Rec in fully compositional style and prove it equivalent
to the SOS semantics. In Section 4 we introduce our trace logic and map programs to
formulas by the concept of a strongest trace formula, which is shown to fully preserve
program semantics. In Section 5 we define a proof calculus for judgments and show it to be
sound and complete. In Section 6, using the concept of a canonical program, we map trace
formulas back to programs in the slightly extended language Rec∗ with non-deterministic
guards. We prove that Rec∗ and trace formulas form a Galois connection via strongest trace
formulas and canonical programs. In Section 7 we discuss related work, in Section 8 we
sketch some extensions, including options to render specifications more abstract and how to
prove consequence among trace formulas. In Section 9 we conclude.

2 The Programming Language Rec

We define a simple programming language Rec with recursive procedures and give it a
standard SOS semantics. We follow the notation of [26], adapted to Rec syntax.

▶ Definition 2.1 (Rec Syntax). A Rec program is a pair ⟨S, T ⟩, where S is a statement
with the abstract syntax defined by the grammar:

S ::= skip | x := a | S1;S2 | if b then S1 else S2 | m()

D. Gurov and R. Hähnle 3

Skip −
⟨skip, s⟩ ⇒ s

Assign −
⟨x := a, s⟩ ⇒ s[x 7→ A[[a]] (s)]

Seq-1 ⟨S1, s⟩ ⇒ s′

⟨S1;S2, s⟩ ⇒ ⟨S2, s
′⟩ Seq-2 ⟨S1, s⟩ ⇒ ⟨S′

1, s
′⟩

⟨S1;S2, s⟩ ⇒ ⟨S′
1;S2, s

′⟩

If-1 −
⟨if b then S1 else S2, s⟩ ⇒ ⟨S1, s⟩

if B[[b]] (s) = tt

If-2 −
⟨if b then S1 else S2, s⟩ ⇒ ⟨S2, s⟩

if B[[b]] (s) = ff

Call −
⟨m(), s⟩ ⇒ ⟨S, s⟩ if m is declared as m {S} in T

Figure 1 SOS rules for Rec.

and where T is a procedure table given by T ::= M∗ with declarations of parameter-less
procedures M ::= m {S}.

In the grammar, a ranges over arithmetic expressions AExp, and b over Boolean
expressions BExp. Both are assumed to be side-effect free and are not specified further. All
variables are global and range over the set of integers Z. We assume programs are well-formed,
i.e., only declared procedures are called, and procedure names are unique.

▶ Example 2.2. Consider the Rec program p0
def= ⟨S, T ⟩ with statement S def= x := 3; even()

and procedure table:

T
def= even {if x = 0 then y := 1 else x := x− 1; odd()}

odd {if x = 0 then y := 0 else x := x− 1; even()}

The intended semantics is that even terminates in a state where y = 1 if and only if it is
started in a state where x is even and non-negative, and it terminates in a state where y = 0
if and only if it is started in a state where x is odd and non-negative.

▶ Example 2.3. Consider the Rec program p1
def= ⟨S, T ⟩ with S

def= down() and procedure
table:

T
def= down {if x > 0 then x := x− 2; down() else skip}

The intended semantics is that p1 terminates in a state where x = 0 if and only if it is started
in state where x is even and non-negative.

▶ Remark 2.4. Loops can be defined with the help of (tail-)recursive programs. For example,
a loop of the form “while b do S” can be simulated with a procedure declared in T as:

m {if b then S;m() else skip}

using a unique name m and replacing the occurrence of the loop with a call to m().

A standard, structural operational semantics (SOS) for Rec is defined in Figure 1
(sometimes referred to as small-step semantics). We use it as a base line when defining the
denotational finite-trace semantics in Section 3.

Let Var be the set of program variables, and State the set of program states s : Var → Z.
Let A[[a]] (s) ∈ Z denote the integer value of the arithmetic expression a when evaluated in
state s, and B[[b]] (s) ∈ T denote the truth value of the Boolean expression b when evaluated
in state s, both defined as expected.

4 An Expressive Trace Logic for Recursive Programs

S0
tr [[skip]]ρ

def= {s · s | s ∈ State} S0
tr [[x := a]]ρ

def= {s · s[x 7→ A[[a]] (s)] | s ∈ State}
S0

tr [[S1;S2]]ρ
def= S0

tr [[S1]]ρ
⌢S0

tr [[S2]]ρ S0
tr [[mi()]]ρ

def= ρ(mi)
S0

tr [[if b then S1 else S2]]ρ
def= (♯S0

tr [[S1]]ρ)|b ∪ (♯S0
tr [[S2]]ρ)|¬b

Figure 2 Finite-trace semantic equations for Rec.

A configuration is either a pair ⟨S, s⟩ consisting of a statement and a state, designating
an initial or intermediate configuration; or a state s, designating a final configuration. To
simplify notation we assume that S is evaluated relative to a Rec program with a procedure
table T which is not explicitly specified.

The transitions of the SOS either relate two intermediate configurations, or an intermediate
with a final one, and thus have the shape ⟨S, s⟩ ⇒ ⟨S′, s′⟩ or ⟨S, s⟩ ⇒ s′, respectively.

▶ Definition 2.5 (Rec SOS). The structural operational semantics (SOS) of Rec is defined
by the rules given in Figure 1.

The structural operational semantics of Rec induces a finite-trace semantics in terms
of the sequences of states that are traversed from an initial to a final configuration when
executing a given statement in the SOS. Let State+ denote the set of all non-empty, finite
sequences of states. Formally, we define a function Ssos[[S]] : Stm → 2State+

, i.e., a function
such that Ssos[[S]] ⊆ State+ for any statement S.

▶ Definition 2.6 (Induced Finite-Trace Semantics). Let S be a statement. Then, Ssos[[S]] is
defined as the set of (finite) sequences s0 · s1 · . . . · sn of states for which there are statements
S0, S1, . . . , Sn−1 such that S0 = S, ⟨Si, si⟩ ⇒ ⟨Si+1, si+1⟩ for all 0 ≤ i ≤ n − 2, and
⟨Sn−1, sn−1⟩ ⇒ sn.

Observe that in Definition 2.6 any state s0 ∈ State can serve as the initial state of a finite
trace. Next we design a “direct-style”, denotational finite-trace semantics that conforms with
the SOS, in the sense that it is equal to the finite-trace semantics induced by the SOS.

3 A Denotational Finite-Trace Semantics for Rec

We define the semantic function Str : Stm → 2State+
with the intention that Str [[S]] =

Ssos[[S]]. Unlike Ssos, however, Str is defined directly, without referring to other semantic rules
as SOS does (hence the term “direct-style”). We define Str [[S]] in the style of denotational
semantics, compositionally, by induction on the structure of S, and through defining equations.

Let us define a unary restriction operator on trace sets, for any trace set A and Boolean
expression b ∈ BExp, as follows: A|b

def= {s · σ ∈ A | B[[b]] (s) = tt}. It filters out all traces
in A whose first state does not satisfy b. Another unary operator on trace sets is defined as
♯A

def= {s · s · σ | s · σ ∈ A} which duplicates the first state in each trace in A. Finally, let us
define the binary operator on trace sets: A⌢B

def= {σA · s · σB | σA · s ∈ A ∧ s · σB ∈ B}
which concatenates traces from A with traces from B that agree on the last and first state,
respectively, but without duplicating that state, see also [15].

▶ Definition 3.1 (Denotational Finite-Trace Semantics of Rec). Let M = {m1, . . . ,mn} be the
set of procedure names in Rec program ⟨S, T ⟩, where every mi is declared as mi {Si} in T .
We define a helper function S0

tr [[S]]ρ that is relativized on an interpretation ρ : M → 2State+

of the procedure names, inductively, by the equations given in Figure 2. The duplication

D. Gurov and R. Hähnle 5

||p||V
def= {s · σ | s |= p} ||R||V

def= {s · s′ |R(s, s′)}
||X||V

def= V(X) ||ϕ1 ∧ ϕ2||V
def= ||ϕ1||V ∩ ||ϕ2||V

||ϕ1 ∨ ϕ2||V
def= ||ϕ1||V ∪ ||ϕ2||V ||ϕ1

⌢ϕ2||V
def= ||ϕ1||V

⌢ ||ϕ2||V
||µX.ϕ||V

def=
⋂ {

γ ⊆ State+
∣∣∣ ||ϕ||V[X 7→γ] ⊆ γ

}
Figure 3 Finite-trace semantic equations for formulas.

of the initial states in the equation for the if statement is needed to remain faithful to the
SOS of Rec, which allocates a small step for evaluation of the guard b. We then introduce a
semantic function H :

(
2State+)n →

(
2State+)n defined as:

H(ρ) def= (♯S0
tr [[S1]]ρ , . . . , ♯S

0
tr [[Sn]]ρ) .

Function H is monotonic and continuous in the CPO with bottom
((

2State+)n
,⊑,∅n

)
,

where ⊑ denotes point-wise set inclusion. Hence, by the Knaster-Tarski Theorem, it has a
least fixed-point. Let ρ0 denote this least fixed-point. The denotational finite-trace semantics
of statements S of Rec is defined relative to this interpretation as: Str [[S]] def= S0

tr [[S]]ρ0
.

The finite-trace semantics agrees with the SOS of Rec, in the sense that Str [[S]] coincides
with the finite-trace semantics Ssos[[S]] induced by the SOS, as defined in Definition 2.6.

▶ Theorem 3.2 (Correctness of Trace Semantics). For all statements S of Rec, we have:
Str [[S]] = Ssos[[S]]

4 A Logic over Finite Traces

Our trace logic can be seen as an Interval Temporal Logic [15] with µ-recursion [28], or
alternatively, as a temporal µ-calculus with a binary temporal operator corresponding to the
chop operation over sets of traces (see, e.g., [31] for a general introduction to µ-calculus).

4.1 Syntax and Semantics of the Logic
The philosophy behind our logic is to have logical counterparts to the statements of the
programming language in terms of their finite-trace semantics. For instance, we use binary
relation symbols that correspond to the atomic statements, and a chop operator corresponding
to sequential composition. This design choice helps to simplify proofs of the properties of
the logic and the calculus.

▶ Definition 4.1 (Logic Syntax). The syntax of the logic of trace formulas is defined by the
following grammar:

ϕ ::= p | R | X | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1
⌢ϕ2 | µX.ϕ

where p ranges over state formulas not further specified here, but assumed to contain at least
the Boolean expressions BExp, R ranges over binary relation symbols over states, and X

over a set RVar of recursion variables.

▶ Definition 4.2 (Logic Semantics). The finite-trace semantics of a formula ϕ is defined as its
denotation ||ϕ||V ⊆ State+, relativized on a valuation V : RVar → 2State+

of the recursion
variables, inductively by the equations given in Figure 3, where in the last clause V[X 7→ γ]
denotes the updated valuation.

6 An Expressive Trace Logic for Recursive Programs

stf(X, skip) def= Id stf(X,x := a) def= Sbax stf(X,S1; S2) def= stf(X,S1)⌢stf(X,S2)

stf(X, if b then S1 else S2) def= (b ∧ Id⌢stf(X,S1)) ∨ (¬b ∧ Id⌢stf(X,S2))

stf(X,m()) def=
{

Id⌢µXm. stf(X ∪ {m}, Sm) m ̸∈ X, m {Sm} ∈ T

Id⌢Xm otherwise

Figure 4 Definition of strongest trace formula.

One can show that the transformers λγ. ||ϕ||V[X 7→γ] are monotonic functions in the complete
lattice (2State+

,⊆) and hence, by Tarski’s fixed-point theorem for complete lattices [32],
they have least and greatest fixed-points. In particular, the least fixed point is simultaneously
also the least pre-fixed point, hence the defining equation for µX.ϕ. And because it is a fixed
point, we have the following result for unfolding fixed-point formulas.

▶ Proposition 4.3 (Fixed-Point Unfolding). Let µX.ϕ be a formula and V a valuation. Then:
||µX.ϕ||V = ||ϕ[µX.ϕ/X]||V .

Our calculus is based on closed formulas of the logic. Observe that fixed-point unfolding
preserves closedness. For closed formulas the valuation V is immaterial to the semantics
||ϕ||V . In this case, we often omit the subscript and simply write ||ϕ||.

4.2 Binary Relations
We instantiate the set Rel of binary relation symbols with two specific relations:

Id(s, s′) def⇐⇒ s′ = s

Sbax(s, s′) def⇐⇒ s′ = s[x 7→ A[[a]] (s)]

These two relations are used to model skip and assignment statements, respectively. The
transitive closure R+ of a binary relation R over states is easily defined as a recursive formula
in our logic as R+ def⇐⇒ µX. (R ∨R⌢X).

▶ Example 4.4. For any arithmetic expression a let Deca be a binary relation symbol
interpreted as follows: Deca(s, s′) def⇐⇒ A[[a]] (s′) ≤ A[[a]] (s). That is, the value of a does not
increase between two consecutive states. With this symbol, the formula Dec+

a expresses the
property that the value of a does not increase throughout the whole execution of a program.

▶ Remark 4.5. It is conceivable to define arbitrary binary relations (p, q) over state formulas
p, q, i.e., a pair of pre- and post-condition. Alternatively, one can view a binary relation as
a TLA action [20], and use primed versions of the variables to refer to their values in the
second state of a pair. We do not require this generality in our examples.

4.3 Strongest Trace Formulas
Since our program logic is able to characterize program traces, and not merely pre- and
postconditions or intermediate assertions, it is possible to establish a close correspondence
between programs and trace formulas. This correspondence is captured by the following—
constructive—definition of the strongest trace formula stf(S) for a given program S, which
characterizes all terminating traces of S.

D. Gurov and R. Hähnle 7

For each procedure declaration m {Sm} in T , we create a fixed-point formula, whenever
m is called the first time. Subsequent calls to m result in a recursion variable. To achieve
this, we parameterize the strongest trace formula function with the already created recursion
variables X. This parameter is initialized to ∅ and is ignored by all case definitions except
the one for a recursive call.

▶ Definition 4.6 (Strongest Trace Formula). Let ⟨S, T ⟩ be a Rec program. The strongest
trace formula for S, denoted stf(S), is defined as stf(S) def= stf(∅, S), where stf(X,S) is
defined inductively in Figure 4.

▶ Example 4.7. For the program even() with the procedure table of Example 2.2, the
strongest trace formula is:
Id⌢µXeven.

((
x = 0 ∧ Id⌢Sb1

y

)
∨(

x ̸= 0 ∧ Id⌢Sbx−1
x

⌢Id⌢µXodd .((x = 0 ∧ Id⌢Sb0
y) ∨ (x ̸= 0 ∧ Id⌢Sbx−1

x
⌢Id⌢Xeven))

))
The binder for Xodd can be removed without changing the semantics.

▶ Example 4.8. For the program in Example 2.3, the strongest trace formula is:
stf(S) = Id⌢µXdown.

(
(x > 0 ∧ Id⌢Sbx−2

x
⌢Id⌢Xdown) ∨ (x ≤ 0 ∧ Id⌢Id)

)
▶ Theorem 4.9 (Characterisation of Strongest Trace Formula). Let ⟨S, T ⟩ be a program of
Rec. Then the following holds: ||stf(∅, S)|| = Str [[S]]

5 A Proof Calculus

We present a proof calculus for our logic in the form of a Gentzen-style deductive proof
system, which is compositional both in the statement and the formula.

5.1 Definition of the Calculus
To obtain a compositional proof rule for procedure calls, its shape will essentially embody the
principle of fixed-point induction explained in the Appendix. For this we need to represent
recursion variables in the Rec language, whose syntax is extended with a set SVar of statement
variables, ranged over by Y . We add these as a new category of atomic statements to Rec.

To define the semantics of programs in the presence of statement variables, we relativize
the finite-trace semantics Str [[S]]I of statements S on interpretations I : SVar → 2State+

of
the statement variables, lifted from Str [[S]] in the canonical manner.

▶ Definition 5.1 (Calculus Syntax). Judgments are of the form S : ϕ, where S is a Rec
statement, possibly containing statement variables, and ϕ is a closed trace formula. The
sequents of the calculus are of the shape Γ ⊢ S : ϕ, where Γ is a possibly empty set of
judgments.

5.1.1 Rules
The calculus has exactly one rule for each kind of Rec statement, except for statement
variables which do not occur in initial judgments to be proven, but are only created
intermittently in proofs by the (Call) rule. All statement rules are compositional in
the sense that only the statement S in focus without any context appears in the conclusion.

8 An Expressive Trace Logic for Recursive Programs

Skip −
Γ ⊢ skip : Id Assign −

Γ ⊢ x := a : Sba
x

Seq
Γ ⊢ S1 : ϕ1 Γ ⊢ S2 : ϕ2

Γ ⊢ S1;S2 : ϕ1
⌢ϕ2

If Γ ⊢ skip;S1 : ¬b ∨ ϕ Γ ⊢ skip;S2 : b ∨ ϕ

Γ ⊢ if b then S1 else S2 : ϕ

Unfold Γ ⊢ S : ϕ[µX.ϕ/X]
Γ ⊢ S : µX.ϕ Cons Γ ⊢ S : ϕ′

Γ ⊢ S : ϕ ϕ′ |= ϕ

Call
Ym : ϕm ̸∈ Γ m {Sm} ∈ T

Γ, Ym : ϕm ⊢ Sm[skip;Ym/m(), skip;Ym1/m1(), . . . , skip;Ymn/mn()] : ϕm

Γ ⊢ m() : Id⌢ϕm

Figure 5 The rules of the proof calculus.

The statement rules and two selected logical rules of the calculus are shown in Figure 5.
The remaining logical rules, in particular the axioms, are the standard Gentzen-style ones
and are omitted.

To prove the judgment S : ϕ for a program ⟨S, T ⟩, we prove the sequent ⊢ S : ϕ. All
rules, except the (Call) rule, leave the antecedent Γ invariant.

We first explain the two logical rules. The (Unfold) rule is based on Proposition 4.3 and
is used to unfold fixed-point formulas. The consequence rule (Cons) permits to strengthen
the trace formula ϕ in the succedent, i.e., the specification of the program under verification.
This is typically required to achieve a suitable syntactic form of ϕ, or to strengthen an
inductive claim. The rule assumes the existence of an oracle for proving the logical entailment
between trace formulas.

The (Skip) and (Assign) rules handle the atomic statements, using the two binary
relation symbols defined in Section 4.2. The (Seq) rule is a rule for sequential composition.
Observe that it is compositional in the sense that no intermediate state between S1 and S2
needs to be considered.

The (If) rule is a compositional rule for conditional statements. The trace formulas
¬b ∨ ϕ in the left premise (and b ∨ ϕ in the right one) might at first appear counter-intuitive.
Formula ¬b ∨ ϕ is read as follows: We need not consider program S1 for any trace, where ¬b
holds in the beginning, because these traces relate to S2; otherwise, ϕ must hold. A more
intuitive notation would be b → ϕ, but we refrain from introducing implication in our logic.

Unsurprisingly, the (Call) rule is the most complex. We associate with each declaration
of a method m in T a unique statement variable Ym. The antecedent Γ contains judgments
of the form Ym : ϕm. One can think of the Ym as a generic continuation of any recursive call
to m of which we know that it must conform to its contract ϕm. Once this conformance has
been established, the fact is memorized in the antecedent Γ. Therefore, the (Call) rule is
triggered only when a call to procedure m() is encountered the first time. This is ensured by
the condition Ym : ϕm ̸∈ Γ. To avoid having to apply the call rule again to recursive calls
of m(), all such calls in the body Sm are replaced with skip;Ym, where the skip models
unfolding and Ym is justified by the assumption in Γ. Likewise, any other Ymi

: ϕmi
∈ Γ

triggers an analogous substitution. Now the procedure body Sm[. . .] in the premise contains
at most procedure calls to m′ that do not occur in Γ.

If a different judgment than Id⌢ϕm is to be proven, then rule (Cons) must be applied
before (Call) to achieve the required shape.

▶ Example 5.2. We prove the judgment even() : stf(even()) for the program from Example 2.2
in Figure 6. We abbreviate the fixed-point formula in stf(even()) from Example 4.7 with
ϕeven , so that stf(even()) = Id⌢ϕeven , the body of even() with Seven , and similarly for odd().

D. Gurov and R. Hähnle 9

· · · ⊢ skip : Id
Yeven : ϕeven, Yodd : ϕodd ⊢ Yeven : ϕevenCons

Yeven : ϕeven, Yodd : ϕodd ⊢ Yeven : µXeven.(· · ·⌢ϕodd)
Seq

Yeven : ϕeven, Yodd : ϕodd ⊢ skip;Yeven : Id⌢µXeven.(· · ·⌢ϕodd)
...

Yeven : ϕeven, Yodd : ϕodd ⊢ Sodd [skip;Yeven/even()] : ϕoddCall
Yeven : ϕeven ⊢ odd() : stf(odd())

Cons
Yeven : ϕeven ⊢ odd() : Id⌢µXodd .((x = 0 ∧ Id⌢Sb0

y) ∨ (x ̸= 0 ∧ Id⌢Sbx−1
x

⌢Id⌢ϕeven)
...

Yeven : ϕeven ⊢ Seven : ϕ′
even[ϕeven/Xeven]

Unfold
Yeven : ϕeven ⊢ Seven : ϕevenCall ⊢ even() : stf(even())

Figure 6 Proof of even() : stf(even()).

Moreover, we abbreviate

ϕ′
even =

(
x = 0 ∧ Id⌢Sb1

y

)
∨

(
x ̸= 0 ∧

Id⌢Sbx−1
x

⌢Id⌢µXodd .((x = 0 ∧ Id⌢Sb0
y) ∨ (x ̸= 0 ∧ Id⌢Sbx−1

x
⌢Id⌢Xeven)

))
The proof starts with the call rule, followed by an unfold of the fixed point formula ϕeven .

We now proceed with the other statement rules simultaneously on Seven and the formula
on the right until we encounter the call of odd() in Seven. Here we would like to apply the
call rule to odd(), but we do not have ϕodd on the right, because the unfolding of ϕeven went
“too deep”. To avoid a lengthy derivation at this point, we use the fact that trace formula on
the right is equivalent to ϕodd , and use the consequence rule to obtain it.

Now we descend into odd(), similarly as before; however, because the judgment Yeven :
ϕeven is present on the left, the call rule replaces even() in Seven with skip;Yeven : ϕeven.
Finally, we encounter the statement variable Yeven , but again the fixed point formula on the
right is “too deep”. After a second transformation we close the proof with an axiom.

▶ Remark 5.3. It is easy to derive a rule for loops from the (Call) rule using the encoding
m {if b then S;m() else skip} given in Remark 2.4. In a pure loop program no unprocessed
recursive call except m() ever occurs in the body, so the Call) rule is applicable with
Γ = ∅. Rule (Call) instantiated to m and a suitable ϕm gives Sm[skip;Ym/m()] =
if b then S; skip;Ym else skip in the premise on the right, so its single premise becomes:
Ym : ϕm ⊢ if b then S; skip;Ym else skip : ϕm. Subsequent application of rule (If) yields
the two premises Ym : ϕm ⊢ skip;S; skip;Ym : ¬b∨ϕm and Ym : ϕm ⊢ skip; skip : b∨ϕm..
In each premise is a spurious skip resulting from evaluating the method call which is only
due to the encoding. In addition, the antecedent is not needed to prove the second premise
and can be removed. After reordering and simplification, rule (While) is obtained as:

While Γ ⊢ skip : b ∨ ϕ Γ, Y : ϕ ⊢ skip;S;Y : ¬b ∨ ϕ

Γ ⊢ while b do S : ϕ

where Γ contains judgments of the form Y : ϕ originating from while loops encountered
previously. These are only needed in a proof in the presence of nested loops.

10 An Expressive Trace Logic for Recursive Programs

5.1.2 Semantics
▶ Definition 5.4 (Calculus Semantics). A judgment S : ϕ is termed valid in I, denoted
|=I S : ϕ, whenever Str [[S]]I ⊆ ||ϕ||. A sequent Γ ⊢ S : ϕ is termed valid, denoted Γ |= S : ϕ,
if for every interpretation I, S : ϕ is valid in I, whenever all judgments in Γ are valid in I.

It is not possible to prove a judgment for m() (or any other statement) that is stronger
than its strongest trace formula. In this sense, stf(m()) can be seen as a contract for m, in
fact the strongest possible contract. This is captured in the following result:

▶ Corollary 5.5 (Strongest Trace Formula). Let S be a statement not involving any statement
variables. Then the strongest trace formula stf(S) of S entails any valid formula for S. That
is, if |= S : ϕ, then stf(S) |= ϕ.

Proof. The result follows directly from Theorem 4.9 in the Appendix and Definition 5.4. ◀

5.2 Soundness and Relative Completeness of the Calculus
Our proof system is sound, in the sense that it can only derive valid sequents.

▶ Theorem 5.6 (Soundness). The proof system is sound: every derivable sequent is valid.

Our proof system is complete, in the sense that every valid sequent can be derived, relative
to an oracle, used by rule (Cons), that provides logical entailment between trace formulas.

By Theorem 4.9 and Definition 5.4 we know that every judgment of the shape S :
stf(S) is valid. We next show that all such judgments are derivable in our proof system.
Together with Corollary 5.5, we obtain completeness, with the help of the rule (Cons). By
definition: stf(m()) = Id⌢µXm. stf({m}, Sm), where Sm is the body of m. We abbreviate
ϕm = µXm. stf({m}, Sm) and in the following use stf(m()) = Id⌢ϕm without mentioning it
explicitly.

▶ Theorem 5.7 (Existence of Canonical Proof). Let ⟨S, T ⟩ be a Rec program with n many
method declarations in T , and let Γ = {Ym1 : ϕm1 , . . . , Ymn : ϕmn}. Then, the judgment
Γ ⊢ S[skip;Ym1/m1(), . . . , skip;Ymn

/mn()] : stf(S) is derivable in our calculus.

▶ Corollary 5.8 (Relative Completeness). The proof system is relatively complete: for every
Rec program S without statement variables and every closed formula ϕ, any valid judgment
of the form S : ϕ is derivable in the proof system.

Proof. By Theorem 4.9 we know that stf(S) |= ϕ, so we can use rule (Cons) to obtain
S : stf(S), which is derivable by Theorem 5.7. ◀

Compared to a typical completeness proof of first-order Dynamic Logic, where the
invariant is constructed as equations over the Gödelized program in the loop, the argument is
much simpler, because the inductive specification logic is sufficiently expressive to characterize
recursive programs (and loops as a special case). First-order quantifiers are not even necessary,
so our logic is not first-order, even though it is obviously Turing-hard and thus undecidable.

6 From Trace Formulas to Programs

In Section 4.3 we showed that any Rec program S can be translated into a trace formula
stf(S) that has the same semantics in terms of traces. Now we look at the other direction:
Given a trace formula ϕ, can we construct a canonical program can(ϕ) that has the same
semantics in terms of traces? In general, this is not possible, as the following example shows:

D. Gurov and R. Hähnle 11

▶ Example 6.1. Consider the trace formula: Sb0
y
⌢µX.

(
Id ∨ Sby+1

y
⌢X

)
. Its semantics are

the traces that count y up from 0 to any finite number. It is not possible to model the
non-deterministic choice in the fixed point formula directly in Rec, because the number of
calls is unbounded.

There is a Rec program that produces exactly the same traces as the formula above, up to
auxiliary variables, for example, y := 0;m(), wherem is declared as: m() {if (y ≤ x) then y :=
y + 1;m() else skip}. However, to transform an arbitrary formula with unbounded non-
determinism in the number of calls to an equivalent one with non-deterministic initialization,
is difficult and not natural.

6.1 Rec Programs with Non-deterministic Choice

To achieve a natural translation from the trace logic to canonical programs, it is easiest to
introduce non-deterministic choice in the form of a statement if ∗ then S1 else S2. The
extension of language Rec with the corresponding grammar rule is called Rec∗.

The SOS rules for non-deterministic choice are:

∗-i −
⟨if ∗ then S1 else S2, s⟩ ⇒ ⟨Si, s⟩

i ∈ {1, 2}

The finite-trace semantics of non-deterministic choice is:

Str [[if ∗ then S1 else S2]] def= ♯Str [[S1]] ∪ ♯Str [[S2]]

The extension of Theorem 3.2 for non-deterministic choice is completely straightforward.
Likewise, the theory of strongest trace formulas is easy to extend:

stf(if ∗ then S1 else S2) def= Id⌢stf(S1) ∨ Id⌢stf(S2)

It is easy to adapt the proof of Theorem 4.9. The corresponding calculus rule is:

If-∗ Γ ⊢ skip;S1 : ϕ Γ ⊢ skip;S2 : ϕ
Γ ⊢ if ∗ then S1 else S2 : ϕ

It is also easy to extend the proofs of Theorem 5.6 and Theorem 5.7. A more problematic
aspect of the translation to canonical programs concerns formulas of the form ϕ1 ∧ϕ2, because
there is no natural programming construct that computes the intersection of traces. But in
Definition 4.6 general conjunction is not required, so without affecting the results in previous
sections we can restrict the syntax of trace formulas in Definition 4.1 to p ∧ ϕ.

A final issue are the programs that characterize a trace formula of the form p with
semantics ||p|| = State+|p. A program that produces such traces requires a havoc statement
that resets all variables to an arbitrary value. This goes beyond non-deterministic choice
quite a bit, but luckily, it is not required: As seen above, trace formulas of the form p occur
only as subformulas of p ∧ ϕ. Further, formulas of the form p ∨ ϕ occur only as intermediate
formulas in derivations, and nowhere else. Altogether, for the purpose of mapping formulas
to programs, we can leave out the production for p. The grammar in Definition 4.1 is thus
simplified to:

ϕ ::= Id | Sbax | X | p ∧ ϕ | ϕ ∨ ψ | ϕ⌢ψ | µX.ϕ

In addition, we assume without loss of generality that all recursion variables in a trace
formula have unique names.

12 An Expressive Trace Logic for Recursive Programs

6.2 Canonical Programs
▶ Definition 6.2 (Canonical Program). Let ϕ be trace formula. The canonical program for ϕ,
denoted can(ϕ) = ⟨Sϕ, Tϕ⟩, is inductively defined as follows:

can(Id) def= ⟨skip, ϵ⟩ can(p ∧ ϕ) def= ⟨if p then Sϕ else diverge, Tϕ⟩

can(Sbax) def= ⟨x := a, ϵ⟩ can(ϕ ∨ ψ) def= ⟨if ∗ then Sϕ else Sψ, Tϕ Tψ⟩

can(ϕ⌢ψ) def= ⟨Sϕ;Sψ, Tϕ Tψ⟩ can(µX.ϕ) def= ⟨mX(), Tϕ {mX{Sϕ}}⟩

can(X) def= ⟨mX(), ϵ⟩

The definition contains the statement diverge. It is definable in the Rec language as
diverge def= abort(), with the declaration abort {abort()}. We assume that any table Tϕ
contains the declaration of procedure abort() when needed.

▶ Example 6.3. We translate the formula in Example 6.1:

can(Sb0
y
⌢µX.(Id ∨ Sby+1

y
⌢X)) = ⟨y := 0;mX(), T ⟩

where T = mX {if ∗ then skip else y := y + 1;mX()}.

▶ Proposition 6.4. We have Str [[diverge]] = ∅.

▶ Proposition 6.5. Let ϕ be an open trace formula, let T ′
ϕ be declarations of its unbound

recursion variables, and let can(ϕ) = ⟨Sϕ, Tϕ⟩. Then ⟨Sϕ, Tϕ T ′
ϕ⟩ is a well-defined Rec∗

program.

Evaluation of procedure calls and Boolean guards introduce stuttering steps as compared to
the corresponding logical operators of least fixed-point recursion and disjunction, respectively.
Hence, canonical programs obtained from a formula ϕ are statements, whose trace semantics
is equal to the one of ϕ, but modulo stuttering: The two trace sets are equal when abstracting
away the stuttering steps. Further, we say that statement S1 refines statement S2, written
S1 ⪯ S2, when Str [[S1]] ⊆ Str [[S2]].

▶ Definition 6.6 (Stuttering Equivalence). Let σ̃ be the stutter-free version of a trace σ, i.e.,
where any subtrace of the form s · s · · · s has been replaced with s. Define Ã = {σ̃ | σ ∈ A}.
We say two trace sets A, B are stutter-equivalent, written A =̃B, if Ã = B̃.

It is easy to see that A = B implies A =̃B. Let |̃= and ⪯̃ denote entailment between
formulas and refinement between statements, respectively, both modulo stuttering equivalence.

Unsurprisingly, the characterization of canonical programs resembles the one of strongest
trace formulas, however, modulo stuttering equivalence.

▶ Theorem 6.7 (Characterisation of Canonical Program). Let ϕ be a closed trace formula, and
let can(ϕ) = ⟨Sϕ, Tϕ⟩. Then Str [[Sϕ]] =̃ ||ϕ||.

Finally, we can establish that stf(·) and can(·) form a Galois connection w.r.t. the partial
orders |̃= on formulas and ⪯̃ on statements.

▶ Corollary 6.8. Let ϕ be a closed trace formula, and let can(ϕ) = ⟨Sϕ, Tϕ⟩. Then, for every
statement S, we have: stf(S) |̃=ϕ iff S ⪯̃Sϕ.

Proof. By using Theorem 4.9 and Theorem 6.7. ◀

D. Gurov and R. Hähnle 13

7 Related Work

We do not discuss higher-order logical frameworks [5, 27]. Even though these are expressive,
in program verification they are not used to specify trace-based properties of programs, but
rather to mechanize conventional contract-based deductive verification [33].

Stirling [31, p. 528, footnote 2] suggests that the µ-calculus can be generalized to non-
unary predicates, but does not develop this possibility further. In [24], Müller-Olm proposes
a modal fixed-point logic with chop, which can characterize any context-free process up to
bisimulation or simulation. The logic is shown to be strictly more expressive than the modal
µ-calculus. Lange & Somla [21] relate propositional dynamic logic over context-free programs
with Müller-Olm’s logic and show the former to be equi-expressive with a fragment of the
latter. Fredlund et al. [13] presented a verification tool for the Erlang language based on
first-order µ-calculus with actions [9].

In contrast to these papers, we separate programs from fixed-point formulas and relate
them in the form of judgments. Our logic has only a single binary operator Sbax over
arithmetic expressions a and program variables x, together with the chop operator ⌢. The
latter models composition of binary relations in the denotational semantics. Our logic is
sufficient to characterize any Rec program. Specifically, µ-formulas can serve as contracts
of recursive procedures. More importantly, our approach leads to a compositional calculus,
where all rules but the consequence rule are analytic.

Kleene algebra with tests (KAT) [18] are an equational algebraic theory that has been
shown to be as expressive as propositional while programs. They have been mechanized in
an interactive theorem prover [30] and are able to express at least Hoare-style judgments [19].
The research around focuses around propositional while programs: we are not aware of results
that relate KAT with recursive stateful programs. Specifically, our result that procedure
contracts can expressed purely in terms of trace formulas (Theorem 4.9) has not been obtained
by algebraic approaches.

Expressive trace-based specification languages are relatively rare in program verification.
The trace logic of Barthe et al. [2] actually is a many-sorted first-order logic, equipped with
an arithmetic theory of explicit trace positions to define program semantics. It is intended
to model program verification in first-order logic for processing in automated theorem
provers. Like Str [[]], their program semantics is compositional; however, it uses explicit time
points instead of algebraic operators. An extension of Hoare logic with trace specifications
is presented by Ernst et al. [11]. The standard Hoare-style pre- and postcondition for a
statement is extended with regular expressions recording events emitted before the execution
of the command and the events emitted by its execution. Our trace logic is more expressive.
Also the first-order temporal logic of nested words (NWTL) of Alur et al. [1] permits to
specify certain execution patterns within symbolic traces. It is orthogonal to our approach,
being based on nested event pairs and temporal operators, instead of least fixed points and
chop. NWTL is equally expressive over nested words as first-order logic. The intended
computational model is not Rec, but the more abstract non-deterministic Büchi automata
over nested words for which it is complete. The temporal stream logic of Finkbeiner et al. [12],
like our trace logic, has state updates Sbtx (with a different syntax) and state predicates, but
it is based on linear temporal logic and has no least fixed point or chop operator. Again, the
intended computational model is an extension of Büchi automata, the verification target are
FPGA programs.

Cousot & Cousot [8] define a trace-based semantics for modal logics where (infinite) traces
are equipped with past, present, and future. Their main focus is to relate model checking

14 An Expressive Trace Logic for Recursive Programs

and static analysis to abstract interpretation—the trace-based semantics is the basis for it.
In contrast, our paper relates a computation model to a logic. Like our semantics, theirs is
compositional and the operators mentioned in their paper could inspire abstractions of our
trace logic, cf. Section 8.1 below.

Nakata & Uustalu [25] present a trace-based co-inductive operational semantics with chop
for an imperative programming language with loops. Following up on this work, [10] extended
the approach to an asynchronous concurrent language, but neither of these uses fixed-points,
so that the specification language is incomplete. Also the calculus is not compositional.

Closest to our work is trace-based deductive verification [6], using a similar trace logic as
in the present paper, but neither their semantics nor the calculus are compositional. Also
they prove soundness, but not completeness which is left as an open question.

8 Future Work

8.1 Abstract Specifications and Extension of Recursive Programs
It is desirable to formulate specifications in a more abstract manner than the programs whose
behavior they are intended to capture. For example, if we reinstate the atomic trace formula
p in our logic, we can easily express the set of all finite traces as ||true|| = State+. Then
we can define a binary connective as ϕ · ·ψ def= ϕ⌢true⌢ψ as “any finite (possibly, empty)
computation may occur between ϕ and ψ”. For example, the trace formula µX.(X · ·X)
expresses that a procedure mX calls itself at least twice recursively, at the beginning and at
the end of its body, respectively.

A more general approach to introduce non-determinism to the logic is to define for a
Boolean expression b a binary relation Rb with semantics Rb(s, s′) def⇐⇒ B[[b]] (s) = tt. The
atomic formula p is then definable as: p def= Rp

⌢R+
true. The advantage of basing p on a binary

relation is that it is more easily represented as a canonical program. To this end, we introduce
an atomic statement havoc with the trace semantics Str [[havoc]] = {s · s′ | s, s′ ∈ State},
i.e. in any given state s, executing havoc results in an arbitrary successor state. The proof
rule for havoc is the axiom Γ ⊢ havoc : Rtrue and obviously stf(havoc) def= Rtrue. Then
p is characterized by can(p) def= ⟨if p then havoc() else diverge, T ⟩, where T contains the
declaration havoc {if ∗ then havoc else skip; havoc()}.

Interestingly, Rtrue (and, therefore, havoc on the side of programs) permits to define
concatenation of trace formulas ϕ · ψ with the obvious semantics:

||ϕ · ψ|| def= {s0 · · · sn · s′
0 · · · s′

m | s0 · · · sn ∈ ||ϕ|| , s′
0, · · · s′

m ∈ ||ψ||} = ||ϕ⌢Rtrue
⌢ψ||

8.2 Proving Consequence of Trace Formulas
In general this is a difficult problem that requires fixed-point induction, but the derivations
needed in practice might be relatively simple, as the following example shows.

▶ Example 8.1. Consider the two trace formulas:

stf(down()) = Id⌢µXdown.
(
(x > 0 ∧ Id⌢Sbx−2

x
⌢Id⌢Xdown) ∨ (x ≤ 0 ∧ Id⌢Id)

)
Dec+

x = µXdec.(Decx⌢Xdec ∨ Decx)

from Examples 2.3 and 4.8, respectively. We expect the trace formula implication stf(down()) ⇒
Id⌢Dec+

x to be provable, because of Theorem 4.9.

D. Gurov and R. Hähnle 15

It turns out that the following fixed-point induction rule and consequence rule, combined
with straightforward first-order consequence and logic rules, are sufficient to prove the claim:

FP-Ind Γ ⊢ ϕ ⇒ ψ

Γ ⊢ µX.ϕ ⇒ µX.ψ
Cons-Left Γ, ϕ ⊢ ψ Γ, ϕ′ ⊢ ψ′

Γ, ϕ⌢ϕ′ ⊢ ψ⌢ψ′

In fact, the proof is considerably shorter than proving the judgment down() : Id⌢Dec+
x

in the calculus of Section 5, which is as well possible.
A proof system for trace formula implication that can prove the above as well as many

other non-trivial examples is given in [16].

8.3 Non-terminating Programs
Our results so far are limited to terminating programs, i.e. to sets of finite traces. To extend
the calculus with a termination measure, such that a proof of S : ϕ not only shows correctness
of S relative to ϕ, but also ensures it produces only finite traces, is easy.

However, the trace-based setup permits, in principle, also to prove properties of non-
terminating programs. To this end, it is necessary to extend the logic with operators whose
semantics contains infinite traces. One obvious candidate are greatest fixed-points [31]. The
downside to this approach is that nested fixed points of opposite polarity are difficult to
understand, as is well known from µ-calculus. Is there a restriction of mixed fixed-point
formulas that naturally corresponds to a certain class of programs? The theory of strongest
trace formulas and canonical programs might guide the search for such fragments.

9 Conclusion

We presented a fixed-point logic that characterizes recursive programs with non-deterministic
guards. Both, programs and formulas have the same kind of trace semantics, which, like the
calculus for proving judgments, is fully compositional in the sense that the definitions and
rules embody no context. The faithful embedding of programs into a logic seems to suggest
that we merely replace one execution model (programs) with another (trace formulas). So
why is it worth having such an expressive specification logic? We can see four reasons:

First, the logic renders itself naturally to extension and abstraction that cannot be easily
mimicked by programs or that are much less natural for programs. This is corroborated
by the discussion in Section 8.1, but also by the case of conjunction: It is trivial to add
conjunction ϕ ∧ ψ to the trace logic and to a calculus for trace formulas, but conjunction
has no natural program counter-part. Yet it permits to specify certain hyper-properties, i.e.,
properties relating sets of traces.

Second, the logic offers reasoning patterns that are easily justified algebraically, such as
projection, replacement of equivalents, strengthening, distribution, etc., that are not obvious
in the realm of programs.

Third, the concept of strongest trace formula leads to a characterization of valid judgments
and, thereby, enables a simple completeness proof.

And finally, the duality between programs and formulas permits to prove judgments
by freely mixing two styles of reasoning: with the rules of the calculus in Figure 5, or
using a calculus for the consequence of trace formulas. For example, a judgment such as
down() : Id⌢Dec+

x can be proved as in Example 8.1 or directly with the rules in Figure 5,
but also by mixing both styles.

A perhaps surprising feature of our trace logic is the fact that no explicit notion of
procedure contract is required to achieve procedure-modular verification: Instead, strongest

16 An Expressive Trace Logic for Recursive Programs

trace formulas and statement variables are employed. This results in a novel (Call) rule
that works with symbolic continuations realized by statement variables.

References
1 Rajeev Alur, Marcelo Arenas, Pablo Barceló, Kousha Etessami, Neil Immerman, and Leonid

Libkin. First-order and temporal logics for nested words. Log. Methods Comput. Sci., 4(11):1–
44, 2008. doi:10.2168/LMCS-4(4:11)2008.

2 Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura Kovács, and Matteo
Maffei. Verifying relational properties using trace logic. In Clark W. Barrett and Jin Yang,
editors, Formal Methods in Computer Aided Design, FMCAD, pages 170–178, San Jose, CA,
USA, 2019. IEEE. doi:10.23919/FMCAD.2019.8894277.

3 Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy,
and Virgile Prevosto. ACSL: ANSI/ISO C Specification. Technical Report Version 1.17, CEA
and INRIA, 2021. URL: https://frama-c.com/download/frama-c-acsl-implementation.
pdf.

4 Hans Bekič. Definable operation in general algebras, and the theory of automata and flowcharts.
In Cliff B. Jones, editor, Programming Languages and Their Definition: Hans Bekic (1936–
1982), volume 177 of LNCS, pages 30–55. Springer, 1984. doi:10.1007/BFb0048939.

5 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development—
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, Berlin Heidelberg, 2004.

6 Richard Bubel, Dilian Gurov, Reiner Hähnle, and Marco Scaletta. Trace-based deductive
verification. In Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2023),
volume 94 of EPiC Series in Computing, pages 73–95. EasyChair, 2023. doi:10.29007/VDFD.

7 Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

8 Patrick Cousot and Radhia Cousot. Temporal abstract interpretation. In Mark N. Wegman
and Thomas W. Reps, editors, Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Boston, Massachusetts, USA, pages 12–25. ACM, 2000. doi:
10.1145/325694.325699.

9 Mads Dam and Dilian Gurov. µ-calculus with explicit points and approximations. J. of Logic
and Computation, 12(2):255–269, April 2002.

10 Crystal Chang Din, Reiner Hähnle, Einar Broch Johnsen, Violet Ka I Pun, and Silvia Lizeth
Tapia Tarifa. Locally abstract, globally concrete semantics of concurrent programming
languages. In Cláudia Nalon and Renate Schmidt, editors, Proc. 26th Intl. Conf. on Automated
Reasoning with Tableaux and Related Methods, volume 10501 of LNCS, pages 22–43, Cham,
September 2017. Springer. Invited Paper.

11 Gidon Ernst, Alexander Knapp, and Toby Murray. A Hoare logic with regular behavioral
specifications. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation, 11th Intl. Symp., ISoLA, Rhodes, Greece,
Proc. Part I, volume 13701 of LNCS, pages 45–64. Springer, 2022. doi:10.1007/
978-3-031-19849-6_4.

12 Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. Temporal stream
logic: Synthesis beyond the bools. In Isil Dillig and Serdar Tasiran, editors, Computer Aided
Verification: 31st Intl. Conf., CAV, Part I, volume 11561 of LNCS, pages 609–629, New York
City, NY, USA, 2019. Springer. doi:10.1007/978-3-030-25540-4_35.

13 Lars-Åke Fredlund, Dilian Gurov, Thomas Noll, Mads Dam, Thomas Arts, and Gennady
Chugunov. A verification tool for Erlang. Journal of Software Tools for Technology
Transfer, 4(4):405–420, August 2003. URL: http://www.springerlink.com/link.asp?id=
yy6ub3rfup6ymfut.

https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.23919/FMCAD.2019.8894277
https://frama-c.com/download/frama-c-acsl-implementation.pdf
https://frama-c.com/download/frama-c-acsl-implementation.pdf
https://doi.org/10.1007/BFb0048939
https://doi.org/10.29007/VDFD
https://doi.org/10.1145/325694.325699
https://doi.org/10.1145/325694.325699
https://doi.org/10.1007/978-3-031-19849-6_4
https://doi.org/10.1007/978-3-031-19849-6_4
https://doi.org/10.1007/978-3-030-25540-4_35
http://www.springerlink.com/link.asp?id=yy6ub3rfup6ymfut
http://www.springerlink.com/link.asp?id=yy6ub3rfup6ymfut

D. Gurov and R. Hähnle 17

14 Reiner Hähnle and Marieke Huisman. Deductive verification: from pen-and-paper proofs to
industrial tools. In Bernhard Steffen and Gerhard Woeginger, editors, Computing and Software
Science: State of the Art and Perspectives, volume 10000 of LNCS, pages 345–373. Springer,
Cham, Switzerland, 2019.

15 Joseph Y. Halpern and Yoav Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935–962, 1991.

16 Niklas Heidler. A calculus for trace formula implication. Master’s thesis, Department of
Computer Science, Technical University of Darmstadt, 2024.

17 C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In Erwin Engeler,
editor, Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in
Mathematics, pages 102–116. Springer, Berlin, Heidelberg, 1971. doi:10.1007/BFb0059696.

18 Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and
Systems, 19(3):427–443, 1997. doi:10.1145/256167.256195.

19 Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic, 1(1):60–76, 2000. doi:10.1145/343369.343378.

20 Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, May 1994. URL: https://doi.org/10.1145/177492.177726.

21 Martin Lange and Rafał Somla. Propositional dynamic logic of context-free programs and
fixpoint logic with chop. Information Processing Letters, 100(2):72–75, 2006. doi:10.1016/J.
IPL.2006.04.019.

22 Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok, Peter
Müller, Joseph Kiniry, Patrice Chalin, Daniel M. Zimmerman, and Werner Dietl. JML Reference
Manual, May 2013. Draft revision 2344. URL: http://www.eecs.ucf.edu/~leavens/JML/
/OldReleases/jmlrefman.pdf.

23 Angelika Mader. Verification of modal properties using Boolean equation systems. PhD thesis,
Technical University Munich, 1997.

24 Markus Müller-Olm. A modal fixpoint logic with chop. In Theoretical Aspects of Computer
Science (STACS 1999), volume 1563 of LNCS, pages 510–520, Berlin Heidelberg, 1999. Springer.
doi:10.1007/3-540-49116-3_48.

25 Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics for While.
In Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of LNCS, pages 375–390,
Berlin Heidelberg, 2009. Springer. doi:10.1007/978-3-642-03359-9_26.

26 Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.
Undergraduate Topics in Computer Science. Springer, London, 2007. doi:10.1007/
978-1-84628-692-6.

27 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, Berlin Heidelberg, 2002.

28 David Michael Ritchie Park. Finiteness is mu-ineffable. Theoretical Computer Science,
3(2):173–181, 1976. doi:10.1016/0304-3975(76)90022-0.

29 Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,
60–61:17–139, 2004.

30 Damien Pous. Kleene algebra with tests and Coq tools for while programs. In Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving,
4th Intl. Conf. ITP, Rennes, France, volume 7998 of LNCS, pages 180–196. Springer, 2013.
doi:10.1007/978-3-642-39634-2_15.

31 Colin Stirling. Modal and temporal logics. In Handbook of Logic in Computer Science (Vol.
2): Background: Computational Structures, pages 477–563, USA, 1993. Oxford University
Press, Inc.

32 Alfred Tarski. A lattice-theoretical fixedpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285–309, 1955.

33 David von Oheimb. Hoare logic for java in isabelle/HOL. Concurrency and Computation:
Practice and Experience, 13(13):1173–1214, 2001.

https://doi.org/10.1007/BFb0059696
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/343369.343378
https://doi.org/10.1145/177492.177726
https://doi.org/10.1016/J.IPL.2006.04.019
https://doi.org/10.1016/J.IPL.2006.04.019
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
https://doi.org/10.1007/3-540-49116-3_48
https://doi.org/10.1007/978-3-642-03359-9_26
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1016/0304-3975(76)90022-0
https://doi.org/10.1007/978-3-642-39634-2_15

18 An Expressive Trace Logic for Recursive Programs

A Proofs and More Examples

A.1 Semantics
▶ Example A.1. Let us execute the statement skip;x := x− 1 (with empty procedure table)
from some arbitrary initial state s in the above SOS. That is, let us apply the rules to derive all
configurations reachable from the initial one, which is ⟨skip;x := x− 1, s⟩. First, by means
of the rules Skip and Seq-1, we derive the transition ⟨skip;x := x− 1, s⟩ ⇒ ⟨x := x− 1, s⟩.
Then, by applying the Assign rule, we derive the transition ⟨x := x− 1, s⟩ ⇒ s[x 7→ s(x)−1].
We reached a final configuration, and thus execution terminates. The program execution (or
run) we obtain is: ⟨skip;x := x− 1, s⟩ ⇒ ⟨x := x− 1, s⟩ ⇒ s[x 7→ s(x) − 1]

▶ Example A.2. We execute the statement x := 2; down() with the procedure table from
Example 2.3. The program execution (or run) we obtain from an arbitrary state s is:

⟨x := 2; down(), s⟩ ⇒ ⟨down(), s[x 7→ 2]⟩ ⇒
⟨if x > 0 then x := x− 2; down() else skip, s[x 7→ 2]⟩ ⇒
⟨x := x− 2; down(), s[x 7→ 2]⟩ ⇒ ⟨down(), s[x 7→ 0]⟩ ⇒
⟨if x > 0 then x := x− 2; down() else skip, s[x 7→ 0]⟩ ⇒ ⟨skip, s[x 7→ 0]⟩ ⇒ s[x 7→ 0]

▶ Example A.3. Building on Example A.1, the induced finite-trace semantics of the statement
skip;x := x − 1 is the set {s · s · s[x 7→ s(x) − 1] | s ∈ State} of finite traces, all of which
are of length 3.

We state some useful algebraic laws for finite-trace sets which we use later in our proofs:

A⌢(B ∪ C) = A⌢B ∪ A⌢C (A ∪B)⌢C = A⌢C ∪ B⌢C

A ⊆ B ⇒ A⌢C ⊆ B⌢C (A⌢B)|b = A|b
⌢B ♯(A⌢B) = ♯A⌢B

The following “unfolding” equivalence for procedure calls holds:

▶ Proposition A.4. Let m {S} be a method declaration. Then the following semantic equality
holds: Str [[m()]] = ♯Str [[S]]

Proof. We have:

Str [[m()]] = S0
tr [[m()]]ρ0

{By the definition of Str [[S]]}
= ρ0(m) {By the definition of S0

tr [[S]]ρ}
= ♯S0

tr [[S]]ρ0
{Since ρ0 is a fixed-point of H}

= ♯Str [[S]] {By the definition of Str [[S]]}

◀

Fixed-Point Induction and Bekič’s Principle. It can be shown that ρ0 =
⊔
k≥0 H

k(∅n),
where ⊔ is point-wise set union, a result originally due to Kleene, but popularly known as
the Knaster-Tarski Fixed-Point Theorem. The interpretations ρk def= Hk(∅n) are referred to
as fixed-point approximants of H.

Then, for a given transformer H and set A, a result of the type LFP H ⊑ A can
be established by proving Hk(∅) ⊑ A for all k, by mathematical induction on k. Since⊔
k≥0 H

k(∅n) is the least upper bound of the set of approximants, we obtain LFP H ⊑ A.
But sometimes one can prove a stronger result, namely that γ ⊑ A implies H(γ) ⊑ A for
all γ. This immediately entails the above proof by mathematical induction—a proof schema
commonly referred to as Fixed-Point Induction. We make use of these proof principles below.

D. Gurov and R. Hähnle 19

We will also make use of another principle, known as Bekič’s Principle, which allows a
simultaneous fixed-point, such as ρ0, to be expressed as a series of individual least fixed-
points [4]. Using this principle, we can apply the above Fixed-Point Induction Principle, but
on one procedure name at a time.

Presentation of Proofs. While the following inductive proofs over the statement structure
were done for all cases, for sake of conciseness, we reproduce only the cases for conditional
and method call: All other cases are straightforward and carry no additional information.

Proof of Theorem 3.2. Typically, such results are proved separately in the two directions,
utilizing different induction principles.
(1) Proof of Str [[S]] ⊆ Ssos[[S]].

For σ ∈ State+, σ ∈ Str [[S]] is equivalent by definition to σ ∈ S0
tr [[S]]ρ0

, which in turn is
equivalent to ∃k ≥ 0. σ ∈ S0

tr [[S]]ρk . Hence, what we want to show is logically equivalent to
showing that S0

tr [[S]]ρk ⊆ Ssos[[S]] for all k ≥ 0. We show this by mathematical induction
on k.

The base case of k = 0 holds vacuously. For the induction case, assume S0
tr [[S]]ρk ⊆ Ssos[[S]]

for an arbitrary k ≥ 0. We proceed by (an inner) induction on the structure of S. We proved
all cases, but for lack of space, for this and all results that follow, we reproduce only the most
interesting cases.
Case S = if b then S1 else S2. Assume the result holds for S1 and S2. Let s0 · s1 · . . . · sn ∈
Str [[if b then S1 else S2]]. Then, by Definition 3.1, s0 = s1, and either B[[b]] (s0) = tt and
s1 · . . . · sn ∈ Str [[S1]], or else B[[b]] (s0) = ff and s1 · . . . · sn ∈ Str [[S2]]. By the induction
hypothesis, then either B[[b]] (s0) = tt and s1 · . . . · sn ∈ Ssos[[S1]], or else B[[b]] (s0) = ff and
s1 · . . . · sn ∈ Ssos[[S2]]. By Definition 2.6, and by applying rule If-1 or If-2, respectively, we
obtain that s0 · s1 · . . . · sn ∈ Ssos[[if b then S1 else S2]].
Case S = m() Let m be declared as m {S′}. Let s0 · s1 · . . . · sn ∈ S0

tr [[m()]]ρk+1 . Then, by
the definition of Str [[S]], we have s0 · s1 · . . . · sn ∈ ρk+1(m). But ρk+1 = H(ρk), and therefore
s0 · s1 · . . . · sn ∈ ♯S0

tr [[S′]]ρk , by definition of H. Hence, s0 = s1 and s1 · s2 · . . . · sn ∈ S0
tr [[S′]]ρk .

By the outer induction hypothesis, s1 · s2 · . . . · sn ∈ Ssos[[S′]], hence s0 · s1 · . . . · sn ∈ ♯Ssos[[S′]].
By Rule Call and Definition 2.6, we finally obtain that s0 · s1 · . . . · sn ∈ Ssos[[m()]].
(2) Proof of Ssos[[S]] ⊆ Str [[S]].

The proof proceeds by (strong) induction on the length of traces. Assume the result
holds for all traces of length up to n, for all statements S. Let S be a statement and
s0 · . . . · sn ∈ Ssos[[S]] be a trace of length n+ 1. Then, by Definition 2.6, there are statements
S0, S1, . . . , Sn−1 such that S0 = S, ⟨Si, si⟩ ⇒ ⟨Si+1, si+1⟩ for all 0 ≤ i ≤ n − 2, and
⟨Sn−1, sn−1⟩ ⇒ sn. The proof that s0 · . . . · sn ∈ Str [[S]] proceeds by case analysis on the
SOS rule applied to obtain the first transition of the SOS trace. Again, we only show the
most interesting cases.
Rule If-1. Then S = if b then S1 else S2, s0 = s1 and B[[b]] (s0) = tt. By Definition 2.6,
s1 · . . . · sn ∈ Ssos[[S1]], and by the induction hypothesis, s1 · . . . · sn ∈ Str [[S1]]. Since
s0 = s1 and B[[b]] (s0) = tt, we have s0 · s1 · . . . · sn ∈ (♯Str [[S1]])|b. Then, by Definition 3.1,
s0 · s1 · . . . · sn ∈ Str [[if b then S1 else S2]] = Str [[S]].
Rule Call. Then S = m() for a procedure m declared as m {S′} for some statement S′,
and s0 = s1. By Definition 2.6, s1 · . . . · sn ∈ Ssos[[S′]], and then, by the induction hypothesis,
s1·. . .·sn ∈ Str [[S′]]. Now, since s0 = s1, s0·s1·. . .·sn ∈ ♯Str [[S′]] and hence, by Proposition A.4,
s0 · s1 · . . . · sn ∈ Str [[m()]] = Str [[S]].

◀

20 An Expressive Trace Logic for Recursive Programs

Fixed-Point Induction. As in the domain of finite traces, one can also apply fixed-point
induction in proofs about recursive formulas. In particular, a result of shape ||µX.ϕ||V ⊆ A

can be established by proving that γ ⊆ A entails ||ϕ||V[X 7→γ] ⊆ A.

▶ Proposition A.5 (Restricted Traces and State Formulas). Let b be a Boolean expression,
and ϕ a trace formula. Then (♯ ||ϕ||)|b = ||b ∧ Id⌢ϕ||.

Proof. We have:

(♯ ||ϕ||)|b
= {s · σ ∈ ♯ ||ϕ|| | B[[b]] (s) = tt}
= {s · σ | B[[b]] (s) = tt} ∩ {s · s · σ | s · σ ∈ ||ϕ||}
= {s · σ | s |= b} ∩ {s · s | s ∈ State}⌢ {s · σ | s · σ ∈ ||ϕ||}
= ||b|| ∩ (||Id||⌢ ||ϕ||)
= ||b ∧ Id⌢ϕ||

◀

A.2 Strongest Trace Formula
The proof of Theorem 4.9—the semantics of the strongest trace formula of a program turns
is identical to its trace semantics—requires an inner fixed-point induction for which it is
advantageous to break down stf into a modal equation system mes [23] that preserves the
structure of procedure declarations.

▶ Definition A.6 (Modal Equation System). Given a closed trace formula ϕ, the modal
equation system mes(ϕ) is an open trace formula together with a set of modal equations of
the form Xi = ϕi, inductively defined over ϕ as follows: mes(ϕ) is just the homomorphism
over the abstract syntax, except when ϕ = µX.ϕ′: In this case, mes(ϕ) def= X, and a new
equation X = mes(ϕ′) is added.

The semantics of modal equation systems is defined as in the literature [23], from where
we also take the semantic equivalence between ϕ and mes(ϕ).

▶ Example A.7. The modal equation system corresponding to the strongest trace formula
in Example 4.7 is: mes(stf(even())) = Id⌢Xeven, where

Xeven =
(
(x = 0 ∧ Id⌢Sb1

y) ∨ (x ̸= 0 ∧ Id⌢Sbx−1
x

⌢Id⌢Xodd)
)

Xodd =
(
(x = 0 ∧ Id⌢Sb0

y) ∨ (x ̸= 0 ∧ Id⌢Sbx−1
x

⌢Id⌢Xeven)
)

Observe the structural similarity between the formula Id⌢Xeven in the context of the defining
equations for Xeven and Xodd, and the statement even() in the context of the procedure
table T of Example 2.2.

To use the decomposition of a trace formula into a modal equation system, we need
to define for each program S an open trace formula corresponding to mes(stf(S)). This
transformation, called stf ′(S), is defined exactly as stf(X,S) in Definition 4.6 (ignoring the
parameter X), except for the case S = m(), which is defined as stf ′(m()) = Xm.

▶ Lemma A.8. Let ⟨S, T ⟩ be a Rec program and M the procedures declared in T . Let ρ : M →
2State+

be an arbitrary interpretation of the procedures m ∈ M , and let Vρ : RVar → 2State+

be the (induced) valuation of the recursion variables defined by Vρ(Xm) def= ρ(m). We have,
for all statements S of Rec:

∣∣∣∣stf ′(S)
∣∣∣∣

Vρ
= S0

tr [[S]]ρ

D. Gurov and R. Hähnle 21

Proof. The proof proceeds by induction on the structure of S.
Case S = if b then S1 else S2. By the induction hypothesis, ||stf(Si)||Vρ

= S0
tr [[Si]]ρ for

i = 1, 2. Using the obvious generalization of Proposition A.5 to open formulas, we have:∣∣∣∣stf ′(if b then S1 else S2)
∣∣∣∣

Vρ

=
∣∣∣∣(b ∧ Id⌢stf ′(S1)) ∨ (¬b ∧ Id⌢stf ′(S2))

∣∣∣∣
Vρ

=
∣∣∣∣(b ∧ Id⌢stf ′(S1))

∣∣∣∣
Vρ

∪
∣∣∣∣(¬b ∧ Id⌢stf ′(S2))

∣∣∣∣
Vρ

= (♯
∣∣∣∣stf ′(S1)

∣∣∣∣
Vρ

)|b ∪ (♯
∣∣∣∣stf ′(S2)

∣∣∣∣
Vρ

)|¬b
= (♯S0

tr [[S1]]ρ)|b ∪ (♯S0
tr [[S2]]ρ)|¬b

= S0
tr [[if b then S1 else S2]]ρ

Case S = m(). We have:∣∣∣∣stf ′(m())
∣∣∣∣

Vρ

= ||Xm||Vρ

= Vρ(Xm)
= ρ(m)
= S0

tr [[m()]]ρ

◀

Proof of Theorem 4.9. Since stf ′(S) and stf(X,S) are defined identically, except for the
case S = m(), the proof is the same as for Lemma A.8, except for that case:
Case S = m(). We only sketch the proof here. We translate the formula stf(∅,m()) into
a modal equation system mes(stf(∅,m())). This results in the formula Xm, defined in the
context of a system of modal equations: for each fixed-point operator µXi in stf(∅,m()),
there is an equation Xi = Id⌢stf ′(Si), whenever mi is declared as mi {Si} in T . Next, from
the standard semantics of modal equation systems, and by Lemma A.8, it follows that the
least solution V0 of the modal equation system is equal (on the names of the procedures
called recursively by m) to the valuation Vρ0 induced by the interpretation ρ0 defined by the
procedure table T . Finally, by Proposition A.4 and Lemma A.8, we have:

||stf(∅,m())||
= ||Xm||V0

= ||Xm||Vρ0

= Vρ0(Xm)
= ρ0(m)
= S0

tr [[m()]]ρ0

= Str [[m()]]

◀

A.3 Soundness of the Calculus
For the proof we need to relate traces restricted by a condition b to trace formulas. In the
following proposition, the intuition for ||¬b ∨ ϕ|| is that it ignores any trace, that is, it is
trivially true for any trace, where b does not hold in the beginning.

▶ Proposition A.9 (State formulas in judgments). Let b be a Boolean expression, ϕ a trace
formula. Then (Str [[S]])|b ⊆ ||ϕ|| iff Str [[S]] ⊆ ||¬b ∨ ϕ|| .

22 An Expressive Trace Logic for Recursive Programs

Proof. “Only If” direction: Assume (Str [[S]])|b ⊆ ||ϕ|| and there is a trace s · σ ∈ Str [[S]] that
is not in ||¬b ∨ ϕ|| = ||¬b|| ∪ ||ϕ||, hence, s · σ ̸∈ ||¬b|| and s · σ ̸∈ ||ϕ||. But s · σ ̸∈ ||¬b|| implies
s · σ ∈ (Str [[S]])|b ⊆ ||ϕ||: contradiction.

“If” direction: Assume Str [[S]] ⊆ ||¬b ∨ ϕ|| and there is a trace s · σ ∈ (Str [[S]])|b that is not
in ||ϕ||. From the assumption and (Str [[S]])|b⊆ Str [[S]] we obtain s · σ ∈ ||¬b ∨ ϕ||. However,
since B[[b]] (s) = tt we must have in fact s · σ ∈ ||ϕ||: contradiction. ◀

Proof of Theorem 5.6. The proof system is sound, since every rule of the system is locally
sound, in the sense that its conclusion is valid whenever all its premises are valid. We shall
prove local soundness of each rule. Without loss of generality, we ignore Γ in most cases.
Rule If.

Let I be an arbitrary interpretation. Using Proposition A.9, we have:

|=I skip;S1 : ¬b ∨ ϕ and |=I skip;S2 : b ∨ ϕ

⇔ Str [[skip;S1]]I ⊆ ||¬b ∨ ϕ|| and
Str [[skip;S2]]I ⊆ ||b ∨ ϕ||

⇔ ♯Str [[S1]]I ⊆ ||¬b ∨ ϕ|| and ♯Str [[S2]]I ⊆ ||b ∨ ϕ||
⇔ (♯Str [[S1]]I)|b ⊆ ||ϕ|| and (♯Str [[S2]]I)|¬b ⊆ ||ϕ||
⇔ ((♯Str [[S1]]I)|b ∪ (♯Str [[S2]]I)|¬b) ⊆ ||ϕ||
⇔ Str [[if b then S1 else S2]]I ⊆ ||ϕ||
⇔ |=I if b then S1 else S2 : ϕ

where we use that Str [[skip;S]]I = ♯Str [[S]]I , and therefore:

|=I skip;S1 : ¬b ∨ ϕ and |=I skip;S2 : b ∨ ϕ

⇔ |=I if b then S1 else S2 : ϕ

Rule Call. For the proof of the rule we employ the principle of Fixed-Point Induction. To
simplify the presentation, we assume there is only one procedure m(), declared as m {Sm}
in T . The general case follows from Bekič’s Principle. The notation ρ[m 7→ γ] specifies the
interpretation that is identical to ρ, except for ρ(m) = γ.

Ym : ϕm |= Sm[skip;Ym/m()] : ϕm
⇔ ∀I. (Str [[Ym]]I ⊆ ||ϕm||

⇒ Str [[Sm[skip;Ym/m()]]]I ⊆ ||ϕm||)
⇔ ∀γ. (γ ⊆ ||ϕm|| ⇒ S0

tr [[Sm]]ρ[m 7→♯γ] ⊆ ||ϕm||)
⇔ ∀γ. (♯γ ⊆ ||Id⌢ϕm|| ⇒ ♯S0

tr [[Sm]]ρ[m7→♯γ] ⊆ ||Id⌢ϕm||)
⇔ ∀γ. (γ ⊆ ||Id⌢ϕm|| ⇒ ♯S0

tr [[Sm]]ρ[m 7→γ] ⊆ ||Id⌢ϕm||)
⇒ ρ0(m) ⊆ ||Id⌢ϕm||
⇔ S0

tr [[m()]]ρ0
⊆ ||Id⌢ϕm||

⇔ Str [[m()]] ⊆ ||Id⌢ϕm||
⇔ |= m() : Id⌢ϕm

◀

A.4 Completeness of the Calculus
Proof of Theorem 5.7. The proof proceeds by induction on the structure of S. However, In
the case of a call the statement does not necessarily get smaller, because the body of m is
expanded. So we need to argue that the induction is well-founded. Indeed, the lexicographic

D. Gurov and R. Hähnle 23

order on ⟨N − |Γ| , |S|⟩ (obviously, the first component is never negative) always decreases.
Since Γ is irrelevant for all cases except S = m(), we simplify the claim accordingly for these.
Case S = if b then S1 else S2. Assume by the induction hypothesis that ⊢ S1 : stf(S1)
and ⊢ S2 : stf(S2) can be proven. We also use that ϕ |= (p∨ (¬p∧ϕ)) is a valid consequence.
We have:

⊢ if b then S1 else S2 : stf(if b then S1 else S2)
⇔ ⊢ if b then S1 else S2 : (b ∧ Id⌢stf(S1))∨

(¬b ∧ Id⌢stf(S2))
⇐ {By rule (If) combined with rule (Or)}

⊢ skip;S1 : ¬b ∨ (b ∧ Id⌢stf(S1)) and
⊢ skip;S2 : b ∨ (¬b ∧ Id⌢stf(S2))

⇐ {By rule (Cons)}
⊢ skip;S1 : Id⌢stf(S1) and ⊢ skip;S2 : Id⌢stf(S2)

⇔ {By rule (Seq) combined with rule (Skip) and
the induction hypothesis}
true

Case S = m(). There are two subcases: either m ∈ {m1, . . . ,mn} or not. In the first case,
S[skip;Ym1/m1(), . . . , skip;Ymn

/mn()] = skip;Ym
In the second case, S[skip;Ym1/m1(), . . . , skip;Ymn/mn()] = m(). In both cases, we

have stf(m()) = Id⌢ϕm.
Subcase skip;Ym

We have to prove the judgment Γ ⊢ skip;Ym : Id⌢ϕm. Using rules (Seq) and (Skip),
this reduces to Γ ⊢ Ym : ϕm. Because of the assumption m ∈ {m1, . . . ,mn} we have
Ym : ϕm ∈ Γ, so the proof is finished.
Subcase m()

We have to prove the judgment Γ ⊢ m() : Id⌢ϕm. Rule (Call) is applicable due to
assumption m ̸∈ {m1, . . . ,mn}. Let

S′
m

def= Sm[skip;Ym/m(), skip;Ym1/m1(), . . . , skip;Ymn
/mn()]

The obtained premise yields the new claim to prove:

Γ ∪ {Ym : ϕm} ⊢ S′
m : µXm. stf({m}, Sm)

We apply rule (Unfold) on the right and obtain:

Γ ∪ {Ym : ϕm} ⊢ S′
m : stf({m}, Sm)[ϕm/Xm]

By induction and by the definition of stf(S) we finish the proof up to subgoals of the
form (for some m′ ̸= m):

Γ ∪ {Ym : ϕm} ⊢ m′() : stf({m},m′)[ϕm/Xm]

Unfortunately, the structure of the formula on the right does not conform to stf(m′) as
required. But, observing that ||stf(S)|| =

∣∣∣∣stf(X,S)
∣∣∣∣, as well as soundness of unfolding, we

can use Cons to obtain:

Γ ∪ {Ym : ϕm} ⊢ m′() : stf(m′)

This follows from the induction hypothesis, because of N − |Γ| > N − |Γ ∪ {Ym : ϕm}|.
◀

24 An Expressive Trace Logic for Recursive Programs

A.5 Canonical Programs
Proof of Proposition 6.5. We need to show that for any call mX() in can(ϕ) there is exactly
one declaration of mX in Tϕ. This is a straightforward structural induction. ◀

▶ Lemma A.10. Let ϕ be an open trace formula not containing fixed-point binders (µX.),
and let can(ϕ) = ⟨Sϕ, Tϕ⟩. Then, we have: S0

tr [[Sϕ]]ρ =̃ ||ϕ||Vρ
for all interpretations ρ : M →

2State+
of the procedures M declared in Tϕ, and (induced) valuations Vρ : RVar → 2State+

defined by Vρ(Xm) def= ρ(m).

Proof. We proceed by structural induction on ϕ.
Case ϕ = p ∧ ψ

By the induction hypothesis, S0
tr [[Sψ]]ρ =̃ ||ψ||Vρ

.

S0
tr [[if p then Sψ else diverge]]ρ

= (♯S0
tr [[Sψ]]ρ)|p ∪ (♯S0

tr [[diverge]]ρ)|¬p
= (♯S0

tr [[Sψ]]ρ)|p (Proposition 6.4)

= State+|p ∩ ♯S0
tr [[Sψ]]ρ =̃ State+|p ∩ S0

tr [[Sψ]]ρ
=̃ State+|p ∩ ||ψ||Vρ

(Induction hypothesis)

= ||p ∧ ψ||Vρ

Case ϕ = ϕ1 ∨ ϕ2
By the induction hypothesis, we have that S0

tr [[Sϕ1]]ρ =̃ ||ϕ1||Vρ
and S0

tr [[Sϕ2]]ρ =̃ ||ϕ2||Vρ
.

Therefore,

S0
tr [[if ∗ then Sϕ1 else Sϕ2]]ρ = ♯S0

tr [[Sϕ1]]ρ ∪ ♯S0
tr [[Sϕ2]]ρ

=̃ S0
tr [[Sϕ1]]ρ ∪ S0

tr [[Sϕ2]]ρ =̃ ||ϕ1||Vρ
∪ ||ϕ2||Vρ

(Ind. hyp.)

= ||ϕ1 ∨ ϕ2||Vρ

Case ϕ = X

We have:

S0
tr [[mX()]]ρ = ρ(mX) = Vρ(X) = ||X||Vρ

◀

Proof of Theorem 6.7. By structural induction on ϕ. We only sketch the proof idea here.
An argument can be made similar to the one in the last case of the proof of Theorem 4.9,
by referring to the modal equation system corresponding to ϕ, and using Lemma A.10 to
generalise the treatment to open formulas ϕ and statements that contain calls to procedures
not declared in Tϕ. Proposition 6.5 ensures that the program on the left is well-defined.
Compositionality of the proof is justified by Bekič’s Principle. ◀

	1 Introduction
	2 The Programming Language Rec
	3 A Denotational Finite-Trace Semantics for Rec
	4 A Logic over Finite Traces
	4.1 Syntax and Semantics of the Logic
	4.2 Binary Relations
	4.3 Strongest Trace Formulas

	5 A Proof Calculus
	5.1 Definition of the Calculus
	5.1.1 Rules
	5.1.2 Semantics

	5.2 Soundness and Relative Completeness of the Calculus

	6 From Trace Formulas to Programs
	6.1 Rec Programs with Non-deterministic Choice
	6.2 Canonical Programs

	7 Related Work
	8 Future Work
	8.1 Abstract Specifications and Extension of Recursive Programs
	8.2 Proving Consequence of Trace Formulas
	8.3 Non-terminating Programs

	9 Conclusion
	A Proofs and More Examples
	A.1 Semantics
	A.2 Strongest Trace Formula
	A.3 Soundness of the Calculus
	A.4 Completeness of the Calculus
	A.5 Canonical Programs

