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Abstract. Suppose that h is an instance of the Gaussian free field (GFF) on a simply connected

domain D ⊆ C and x, y ∈ ∂D are distinct. Fix κ ∈ (0, 4) and for each θ ∈ R let ηθ be the flow

line of h from x to y. Recall that for θ1 < θ2 the fan F(θ1, θ2) of flow lines of h from x to y is the

closure of the union of ηθ as θ varies in any fixed countable dense subset of [θ1, θ2]. We show that

the adjacency graph of components of D \ F(θ1, θ2) is a.s. connected, meaning it a.s. holds that for

every pair U, V of components there exist components U1, . . . , Un so that U1 = U , Un = V , and

∂Ui ∩ ∂Ui+1 ̸= ∅ for each 1 ≤ i ≤ n − 1. We further show that F(θ1, θ2) a.s. determines the flow

lines used in its construction. That is, for each θ ∈ [θ1, θ2] we prove that ηθ is a.s. determined by

F(θ1, θ2) as a set.
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1. Introduction

The Schramm-Loewner evolution (SLEκ, κ > 0) is a one parameter family of curves which connect

two boundary points of a simply connected domain. It was introduced by Schramm in [36] as a

candidate to describe the scaling limit of the interfaces of various two-dimensional discrete models

from statistical mechanics at criticality. A number of such convergence results have been proved

in the case of planar lattices [21, 44, 45, 37] and random planar maps [43, 18, 22, 10, 12, 11]. The

parameter κ ≥ 0 determines the roughness of an SLEκ curve. An SLE0 is a smooth curve and SLEκ

curves become more fractal as κ increases. There are three regimes of κ values which exhibit rather

different behavior: for κ ∈ [0, 4] an SLEκ is a.s. simple, for κ ≥ 8 it is a.s. space-filling, and for

κ ∈ (4, 8) it is a.s. self-intersecting but not space-filling [35]. Furthermore, the a.s. dimension of the

range of an SLEκ curve is given by min(1 + κ/8, 2) [35, 2].

Schramm’s original definition of SLEκ is in terms of the chordal Loewner equation driven by
√
κB

where B is a standard Brownian motion and in the intervening years since its introduction several

other representations of SLEκ have been discovered. In this work, its coupling with the Gaussian free
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field (GFF) will be particularly important. Recall that the GFF h on a simply connected domain

D ⊆ C is the Gaussian field with covariance given by the Green’s function G for ∆ on D. Since

G(x, y) ∼ − log |x− y| as x→ y, the GFF has infinite variance at points and so takes values in the

space of distributions on D rather than a space of functions. Nevertheless, it is very close to being

a function in the sense that h takes values in the Sobolev space H−ϵ(D) for every ϵ > 0 but not L2.

Consequently, it exhibits many of the features of a function (but with an extra complication to

reflect that it is only distribution valued). For example, it was shown in [42] (building on [38]) that

it is possible to make sense of the flow lines of the formal vector field ei(h(η(t))/χ+θ), i.e., solutions to

the ODE

η′(t) = ei(h(η(t))/χ+θ) for t > 0 where χ =
2√
κ
−

√
κ

2
for κ ∈ (0, 4)

and they are SLEκ type curves. The theory of how the GFF flow lines behave and interact with

each other was developed in [6, 25, 27].

Figure 1. Simulation of F for a GFF h on [−1, 1]2 from −i to i and κ = 1. The

boundary conditions for h are chosen so that the 0-angle flow line is an SLE1 and

the values of h are shown in grayscale. Left: Flow lines with different angles are

shown with different colors. Right: All of the flow lines are shown in white. In

Theorem 1.2, we prove that one can recover the flow lines which make up F from F

(as a closed set). That is, the colors in the left picture are determined by the right

picture.

Using the GFF, one can consider families of SLEκ-type curves in order to build various types of

random fractals. The main focus of the present work is on the so-called fan considered in [25]. More

precisely, fix κ ∈ (0, 4) and let λ = π/
√
κ. Let h be a GFF on H with boundary values given by −a

(resp. b) on R− (resp. R+) where a, b satisfy

(1.1)
a+ λ

χ
>
π

2
and

λ+ b

χ
>
π

2
.
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For θ ∈ R, we let ηθ be the flow line of h of angle θ from 0 to ∞. The boundary conditions of h

ensure that ηθ is a.s. well-defined for −π/2 ≤ θ ≤ π/2. Let Θ be any countable dense subset of

[−π/2, π/2]. The fan F of h is defined to be the closure of ∪θ∈Θηθ; the definition turns out not to

depend on the choice of Θ (see Proposition 3.1). It was shown in [25] that the Lebesgue measure of

F is a.s. equal to 0 and in [23] that the a.s. Hausdorff dimension of F is 1 + κ/8, the same as that of

ordinary SLEκ. More generally, if we fix θ1 < θ2 and assume that

(1.2)
a+ λ

χ
≥ θ2 and

λ+ b

χ
≥ −θ1

then we define F(θ1, θ2) to be the closure of ∪θ∈Θηθ where Θ is any fixed countable dense subset of

[θ1, θ2] (or of (θ1, θ2) if we have equality in (1.2), see Section 2.5). As in the case of F, we have that

F(θ1, θ2) does not depend on the choice of Θ and has a.s. Hausdorff dimension 1 + κ/8.

The main focus of this work is on the so-called adjacency graph of complementary components

of F(θ1, θ2). That is, we consider the graph whose vertices are the components of H \ F(θ1, θ2) and
we say that components U, V are connected by an edge if ∂U ∩ ∂V ≠ ∅. We say that the adjacency

graph of such components is connected if every pair of such components can be connected by a

finite length path. Our main result is the following theorem.

Theorem 1.1. Fix κ ∈ (0, 4) and assume that we have the setup described above. Then a.s. we

have that the adjacency graph of components of H \ F(θ1, θ2) is connected.

Let us give some further context and background to motivate Theorem 1.1. First, the corresponding

result with an SLEκ′ process for κ′ ∈ (4, 8) in place of F(θ1, θ2) was posed in [7, Question 11.2] and

partially solved in [13]. Namely, in [13] it was shown that there exists κ′0 ∈ (4, 8) such that for all

κ′ ∈ (4, κ′0) the graph of components of H \ η′ for η′ ∼ SLEκ′ is connected. Determining whether

the adjacency graph of complementary components of an SLEκ′ is connected for all κ′ ∈ (4, 8)

remains an open question. This is in contrast with Theorem 1.1, which gives the connectivity of the

adjacency graph of complementary components of F(θ1, θ2) for all κ ∈ (0, 4). Another long-standing

open problem is to determine whether the adjacency graph of complementary components (in C) of

the range of a planar Brownian motion run for one unit of time is a.s. connected (see [31, Open

Problem 4] or [4, Problem 2]).

The connectivity of the adjacency graph of complementary components is a useful topological

property which has many other applications in the study of such random fractals. Let us describe

one such motivation, which comes from the relationship between SLEκ-type curves and Liouville

quantum gravity (LQG) surfaces. Recall that an LQG surface is a random two-dimensional

Riemannian manifold which is formally described by the metric tensor

(1.3) eγh(z)
(
dx2 + dy2

)
for z = x+ iy

where dx2 + dy2 is the Euclidean metric on a domain D ⊆ C, h is (some form of) the GFF on D,

and γ ∈ (0, 2] is a parameter. Since the GFF h and its variants are random variables which live

in the space of distributions rather than the space of functions, some care is required in order to

make sense of (1.3) [8]. It was shown in [42] that for γ ∈ (0, 2) if certain types of LQG surfaces

are conformally welded according to quantum boundary length (i.e., the boundary length measure

associated with (1.3)) then the conformal welding is well-defined and the welding interface is an

SLEκ curve for κ = γ2 ∈ (0, 4). The result of [42] was extended to the case γ = 2 and κ = 4 in [14]

and analogous welding results for κ′ > 4 were established in [7].
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In general, it is non-trivial to determine whether a given conformal welding is unique. The uniqueness

is known to hold if the welding interface is conformally removable. Recall that a set K ⊆ C is said

to be conformally removable if every homeomorphism φ : C → C which is conformal on C \K is

conformal on C. It is also known that the range of an SLEκ curve for κ ∈ (0, 4) is a.s. conformally

removable (see [15, 35]). The conformal removability of SLE4 was proved in [16] and for SLEκ′ with

κ′ ∈ (4, 8) when the adjacency graph of complementary components is connected in [17]. We believe

that it is possible to combine Theorem 1.1 with the methods used in [17] to show that the range of

F is a.s. conformally removable.

It is clear that F(θ1, θ2) determines ηθ1 and ηθ2 since the latter (resp. former) is simply the left (resp.

right) boundary of F(θ1, θ2). Is is therefore interesting to ask whether F(θ1, θ2) determines ηθ for

θ ∈ (θ1, θ2) or if additional information is required in order to recover ηθ from F(θ1, θ2). Concretely,

the question is whether the colors in the left hand side of Figure 1 can be recovered from only

observing the right hand side of Figure 1. We note that the analog of this question has been analyzed

in the case of a SLEκ′ process with κ′ ∈ (4, 8) in [28], in which it is shown that is not possible to

recover the curve by only observing its range. The following theorem gives that, in contrast to [28],

it is possible to recover the flow lines which make up F(θ1, θ2) when only observing F(θ1, θ2).

Theorem 1.2. Fix κ ∈ (0, 4) and assume that we have the setup described above. For each

θ ∈ [θ1, θ2] we have that F(θ1, θ2) a.s. determines ηθ.

Outline. The remainder of this article is structured as follows. In Section 2 we give brief intro-

ductions to SLE, the GFF, and the flow line coupling. In Section 3 we will study the continuity

properties of SLEκ(ρ) processes as ρ varies and these results will be important for the proof of

Theorem 1.1, which we will complete in Section 4. We prove Theorem 1.2 in Section 5.

Acknowledgements. C.D. was supported by EPSRC grant EP/W524633/1 and a studentship

from Peterhouse, Cambridge. K.K. and J.M. were supported by ERC starting grant 804116 (SPRS).

2. Preliminaries

We will first review the basics of Bessel processes in Section 2.1. We will next review the SLEκ

and SLEκ(ρ) processes in Section 2.2. The purpose of Section 2.3 is to review the GFF and in

Section 2.4 the theory of the flow lines of the GFF. Finally, in Section 2.5 we will recall some basic

facts about the fan.

2.1. Bessel processes. We are now going to review some basic facts about Bessel processes. We

refer the reader to [34] for more details. Fix δ ∈ R. The starting point for the construction of the

law of a Bessel process of dimension δ (BESδ) is the construction of the law of the so-called square

Bessel process of dimension δ (BESQδ). The law of a BESQδ is described by the SDE

(2.1) dYt = δdt+ 2
√
YtdBt, Y0 = y0 > 0,

where B is a standard Brownian motion. Standard results for SDEs imply that there is a unique

strong solution to (2.1), at least up until the first time that the process hits 0. In the case that

δ > 0, there is a unique strong solution to (2.1) for all t ≥ 0 and the solution remains non-negative

for all times a.s.
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A process X has the law of a BESδ process if it can be expressed as X =
√
Y where Y is a BESQδ.

By applying Itô’s formula, we obtain that X solves the SDE

(2.2) dXt =
a

Xt
dt+ dBt, X0 = x ≥ 0 where a =

δ − 1

2
,

at least up until it hits 0. If δ ∈ (0, 2), then Xt will a.s. hit and be instantaneously reflected

at 0; if δ = 2, then Xt will a.s. not hit 0 but will get arbitrarily close to 0; and if δ > 2, then a.s.

limt→∞Xt = ∞. An important property of BESδ processes is that they satisfy Brownian scaling,

i.e., if X is a BESδ then so is the process t 7→ r−1Xr2t for each r > 0 fixed.

When δ ∈ (1, 2), the process solves (2.2) in integrated form for all t ≥ 0 hence is a semimartingale.

When δ = 1, the process is equal in distribution to |B| where B is a standard Brownian motion and

solves (2.2) with an extra correction coming from the local time of X at 0 so is also a semimartingale.

When δ ∈ (0, 1), the process does not solve (2.2) when hitting 0 in integrated form and is not a

semimartingale. In order to make sense of it as a solution to (2.2), we need to make a so-called

principal value correction (see [41] for more details). Let

ν =
δ

2
− 1

and let Iν be the Bessel function of parameter ν. Then the transition kernel of a BESδ process is

given by

pt(x, y) = t−1
(y
x

)ν
y exp(−(x2 + y2)/2t)Iν

(xy
t

)
and

pt(0, y) = 2−νt−(ν+1)Γ(ν + 1)−1y2ν+1 exp(−y2/2t) for each x, y, t > 0.

Fix δ ∈ (0, 2) and suppose that X is a BESδ starting from 0. Then we recall from the Itô excursion

decomposition of X that we can sample from the law of X in the following way:

• Pick a Poisson point process Λ from the measure cδdu ⊗ tδ/2−2dt where both du and dt

denote Lebesgue measure on R+ and cδ = δ/2.

• For each (u, t) ∈ Λ, we sample a Bessel excursion eu,t of length t from 0 to 0.

• We concatenate together the eu,t ordered according to the associated u value.

In this construction, we have that u gives the local time for X at 0 at which e occurs. Also,

we recall that a BESδ excursion with δ ∈ (0, 2) and length t from 0 to 0 can be sampled as

follows. First, we start with a BES4−δ process Y starting from 0 and then we weight it locally by

Js = exp(−Y 2
t /(2(t− s))). Itô’s formula implies that if Y satisfies

dYs =
1− a

Ys
ds+ dBs with a =

δ − 1

2
,

then

dJs = Js

(
a− 3

2

t− s
ds− Ys

t− s
dBs

)
,

which shows that

Ms =

(
t

t− s

) 3
2
−a

Js

is a local martingale for s < t satisfying

dMs = − Ys
t− s

MsdBs.
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Then, Girsanov’s theorem implies that if we weight by the local martingale Ms, we obtain that Y

solves the SDE

(2.3) dYs =

(
1− a

Ys
− Ys
t− s

)
ds+ dWs,

where W is a standard Brownian motion under the new measure. Altogether, if we consider the

paths up to time t − ϵ, then the Radon-Nikodym derivative of the excursion with respect to a

BES4−δ process is proportional to exp(−Y 2
t−ϵ/(2(t− ϵ))).

2.2. Schramm–Loewner Evolution. SLEκ is a one-parameter family of random curves indexed

by κ > 0 and introduced by Schramm in [36] as a candidate to describe the scaling limit of the

interfaces in discrete models in two dimensions at criticality. SLEκ is defined using the so-called

Loewner equation. More precisely, let W : R+ → R be a continuous function and for each z ∈ H

we let gt(z) be the unique solution to the ODE

(2.4) ∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z

up to time τz = sup{t ≥ 0: Im(gt(z)) > 0} and Kt = {z ∈ H : τz ≤ t}. We let Ht = H \Kt. The

map gt is then the unique conformal transformation Ht → H satisfying gt(z)− z → 0 as z → ∞.

To define SLEκ, we fix κ ≥ 0 and then take W =
√
κB where B is a standard Brownian motion.

It was proved in [35, 21] (see also [1]) that there a.s. exists a random curve η in H from 0 to ∞
such that for each t ≥ 0 we have that Ht is the unbounded component of H \ η([0, t]). Then we say

that η has the law of an SLEκ curve.

Almost surely, η is a simple curve for κ ∈ [0, 4], is self-intersecting but not space-filling when

κ ∈ (4, 8), and is space-filling when κ ≥ 8 [35]. Given a simply connected domain D and two distinct

prime ends x, y ∈ ∂D let φ : D → H be a conformal map sending x to 0 and y to ∞. SLEκ in D

started at x and targeted at y is the random curve φ−1(η) where η is an SLEκ in H (started at 0

and targeted at ∞) as defined above.

We will also need to consider the SLEκ(ρ) processes, which are a variant of SLE where the driving

function W in (2.4) can be more general than a multiple of Brownian motion. In that case, we

need to keep track of extra marked points called force points. More precisely, we define vectors

of force points xL = (xL1 , . . . , x
L
ℓ ) and x

R = (xR1 , . . . , x
R
r ) in ∂H where −∞ < xLℓ < · · · < xL1 ≤ 0

and 0 ≤ xR1 < · · · < xRr < ∞ and associated real-valued vectors of weights ρL = (ρL1 , . . . , ρ
L
ℓ ) and

ρR = (ρR1 , . . . , ρ
R
r ) in R. In this case, we let W be the solution to the SDE

dWt =
√
κdBt +

∑
q∈{L,R}

∑
i

ρqi
Wt − V i,q

t

dt, dV i,q
t =

2

V i,q
t −Wt

dt, V i,q
0 = xqi .(2.5)

As shown in [25], there exists a unique solution to (2.5) up until the continuation threshold is hit;

this is the first time that either∑
i:V i,L

t =Wt

ρi,L ≤ −2 or
∑

i:V i,R
t =Wt

ρi,R ≤ −2.

Note that V i,q
t encodes the evolution of the force points under the Loewner flow. Similarly to the

previous case, the hulls Kt up until the continuation threshold is hit are generated by a continuous

random curve η starting at 0 [25]. We say that a random curve η generated in this way has the

law of an SLEκ(ρ). We refer to [25] for a more detailed description of SLEκ(ρ) processes. SLEκ(ρ)
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processes can also be defined in domains other than H as in the case of standard SLEκ. In this case

force points are located at prime ends of ∂D and are mapped to R by a conformal map D → H.

In the special case where we have a single force point located at 0+ (resp. 0−) of weight ρ > −2,

the process can be defined continuously for all times a.s. Also, if ρ ∈ (−2, κ/2 − 2) then it hits

(0,∞) (resp. (−∞, 0)) a.s. while if ρ ≥ κ/2− 2, then the process intersects ∂H only at the origin

a.s. Moreover we have the following absolute continuity results for SLEκ(ρ) processes. Suppose that

z1, . . . , zn ∈ ∂H and ρ1, . . . , ρn ∈ R. We also let zjt = xjt + iyjt = gt(z
j) where (gt) is the Loewner

flow associated with an SLEκ process. We recall from [39, Theorem 6] that the process

(2.6) Mt =

n∏
j=1

(
|g′t(zj)|(8−2κ+ρj)ρj/(8κ)(yjt )

ρ2j/8κ|Wt − zjt |ρj/κ
) ∏

1≤j<j′≤n

(|zjt − zj
′

t ||z
j
t − zj

′

t |)
ρjρj′/(4κ)

is a continuous local martingale for an SLEκ process and that if we weight the law of an SLEκ

process by Mt stopped at the first time that it disconnects (or hits) from ∞ one of the points

z1, . . . , zn then we get an SLEκ(ρ1, . . . , ρn) process with force points at z1, . . . , zn and stopped at

the corresponding time.

2.3. The Gaussian free field. Let D ⊆ C be a simply connected domain with harmonically

non-trivial boundary (that is, a Brownian motion started at any point in D a.s. exits D). Let

C∞
0 (D) be the space of smooth functions on D with compact support and let H0(D) be the closure

of this space with respect to the Dirichlet inner product

⟨f, g⟩∇ =
1

2π

∫
D
∇f(x) · ∇g(x)dx.

Let (fn)n≥1 be an orthonormal basis for H0(D) with respect to this norm and let (αn)n≥1 be a

sequence of i.i.d. standard normal random variables. We define the zero-boundary GFF on D to be

the formal sum

h =
∞∑
n=1

αnfn.

This sum a.s. does not converge in H0(D) but does converge a.s. in the space of distributions on D.

More precisely, it converges a.s. in the space H−1(D) (at least when D is bounded) which is the

dual space of H0(D) when the latter is endowed with the norm induced by the Dirichlet inner

product. The law of h does not depend on the choice of orthonormal basis. The GFF with non-zero

boundary conditions is defined to be the sum of a zero-boundary GFF and a harmonic function with

these boundary conditions. For a more detailed introduction to the GFF we refer the reader to [40].

We can also define the whole-plane GFF on C. To do so, let Hs(C) be the set of functions f ∈ C∞
0 (C)

where
∫
C f(x)dx = 0. We let H(C) be the Hilbert space closure of Hs(C) with respect to the

Dirichlet inner product, let (fn)n≥1 be an orthonormal basis for this space, and let (αn)n≥1 be

defined as before. As above, we define the whole-plane GFF as

h =

∞∑
n=1

αnfn,

which is a.s. a well-defined distribution on C but is defined only up to an additive constant. We

can fix this constant by requiring, for instance, that (h, g0) = 0 for some fixed function g0 ∈ C∞
0 (C)

with
∫
C g(x)dx = 1. See [27] for more details.



8 CILLIAN DOHERTY, KONSTANTINOS KAVVADIAS, AND JASON MILLER

2.4. Imaginary geometry. Now we focus on the coupling between SLE and the GFF [25, 27]. We

fix κ ∈ (0, 4) and let

λ =
π√
κ
, χ =

2√
κ
−

√
κ

2
, and κ′ =

16

κ
.

We fix weights ρL, ρR and force points xL, xR in ∂H such that |ρL| = |xL| = ℓ, |ρR| = |xR| = r and

the xL (resp. xR) are to the left (resp. right) of 0 and given in decreasing (resp. increasing) order.

We also set xL0 = 0−, xR0 = 0+, xLℓ+1 = −∞, xRr+1 = ∞, and ρL0 = ρR0 = 0. Let h be a GFF on H

with boundary conditions given by

−λ

(
1 +

j∑
i=1

ρLi

)
in (xLj+1, x

L
j ] for each 0 ≤ j ≤ ℓ and

λ

(
1 +

j∑
i=1

ρRi

)
in (xRj , x

R
j+1] for each 0 ≤ j ≤ r.

Then it is shown in [25, Theorem 1.1] that there exists a coupling between h and an SLEκ(ρ
L; ρR)

process η in H from 0 to ∞ so that the following is true. Let (Kt) be the increasing family of hulls

associated with η and let ft = gt −Wt be its centered Loewner flow. Then for each stopping time τ

that a.s. occurs before the continuation threshold is hit, Kτ is a local set of h in the sense of [38]

and conditionally on Kτ , the field h ◦ f−1
τ − χ arg(f−1

τ )′ has the law of a GFF on H with boundary

conditions given by

−λ in (fτ (x
L
0 ), 0

−] and λ in (0+, fτ (x
R
0 )]

−λ

(
1 +

j∑
i=1

ρLi

)
in (fτ (x

L
j+1), fτ (x

L
j )] for each 0 ≤ j ≤ ℓ and

λ

(
1 +

j∑
i=1

ρRi

)
in (fτ (x

R
j ), fτ (x

R
j+1)] for each 0 ≤ j ≤ r.

Moreover, under this coupling, η is a.s. determined by h and is referred to as a flow line of the field.

For a given angle θ ∈ R, we define the flow line of angle θ of h to be the flow line (as defined above)

of the GFF h+ θχ. Thus the original definition of a flow line corresponds to a flow line of angle 0.

Flow lines of the GFF defined on domains other than H can be defined via conformal mapping,

although we refer to [25] for further details.

The results of [25] were extended in [27] to the case of a whole-plane GFF h. More precisely, it

is shown in [27, Theorem 1.1] that we can generate flow lines of h starting from different points

and with different angles and that adding 2πχ to the field does not change its flow lines. Also, the

marginal law of such a flow line is that of a whole-plane SLEκ(2 − κ) process from 0 to ∞ (see

[27, Section 2] for the whole-plane version of SLE) and [27, Theorem 1.2] implies that these flow

lines are a.s. determined by the field. Moreover, if h is a GFF on a domain D ⊆ C viewed as a

distribution modulo 2πχ, then the law of h is locally absolutely continuous with respect to the law

of a whole-plane GFF modulo 2πχ. Therefore, we can make sense of the flow lines of h starting

from interior points of D and stopped at the first time that they hit ∂D. The interaction between

flow lines started from different points and with different angles is characterized in [25, Theorem

1.5, Proposition 7.4] and [27, Theorems 1.7, 1.11].
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We note that we can view the collection of flow lines in the whole-plane case as a type of a planar

space filling tree in the following sense. We fix a countable dense subset (zn) of C. Then it is shown

in [27] that the collection of flow lines starting at these points with the same angle has the property

that a.s. each pair of the above flow lines eventually merges and no two flow lines ever cross each

other. Moreover, it is shown in [27] that there exists a space-filling path that traces through the

above tree of flow lines which is the so-called space-filling SLEκ′ . Furthermore, the path traces the

tree in a natural order in the sense that zn is hit before zm for n ̸= m when the flow line with angle

π/2 starting from zn merges into the right side of the flow line with angle π/2 starting from zm.

2.5. The SLE fan. Fix κ ∈ (0, 4) and let h be a GFF on H with boundary conditions given by

−a on R− and b on R+ satisfying (1.1). This hypothesis on the boundary conditions of h ensures

that for every θ ∈ [−π/2, π/2], if we start the θ-angle flow line ηθ of h from 0 to ∞, then the values

of the weights of the force points associated with ηθ exceed −2. The SLE fan F was introduced

in [25] and defined to be the closure of ∪θ∈Θηθ where Θ is any countable dense subset of [−π
2 ,

π
2 ].

Proposition 3.1 shows that the resulting object does not depend on the choice of Θ. It is also shown

in [25] that F has Lebesgue measure 0 a.s. and in [23] that its dimension is 1 + κ/8. The same

results hold if we fix θ1 < θ2, a, b satisfy (1.2) and we take F(θ1, θ2) to be the closure of ∪θ∈Θηθ
where Θ is any fixed countable dense subset of [θ1, θ2]. If θ2 = (a+ λ)/χ (resp. θ1 = −(b+ λ)/χ)

note that the flow line of angle θ2 (resp. θ1) hits the continuation threshold immediately, since this

case corresponds to ρR = −2 (resp. ρL = −2). We solve this issue either by defining ηθ1 = R+ (resp.

ηθ2 = R−) or simply by choosing Θ ⊆ (θ1, θ2). Proposition 3.1 ensures these two approaches are

equivalent. We remark that choosing θ1, θ2 so that we have equality in (1.2) corresponds to the

largest fan F(θ1, θ2) we can define for a field h with these boundary conditions.

3. Continuity of SLEκ(ρ) in ρ in the Hausdorff topology

3.1. Main statements. The purpose of this section is to prove Propositions 3.1 and 3.3, which

are formally stated just below. The former gives that a flow line of a GFF on H with boundary

conditions given by −a (resp. b) on R− (resp. R+) from 0 to ∞ whose angle is sufficiently close to

−(λ+ b)/χ is likely to be very close to R+ and the latter gives that two flow lines of a whole-plane

GFF from 0 to ∞ whose angles are close are likely to be close to each other. On a first reading, the

proofs in this section can be skipped when reading the rest of this paper.

Let φ : H → D be the conformal map given by z 7→ (z − i)/(z + i). The bounded metric on H is

defined by d(z, w) = |φ(z)− φ(w)|. The bounded Hausdorff metric is the Hausdorff metric on the

compact subsets of H with respect to the bounded metric.

Proposition 3.1. Fix κ ∈ (0, 4) and a, b ∈ R with a + b > −2λ. Suppose that h is a GFF on

H with boundary conditions given by −a on R− and b on R+. For each θ ∈ R we let ηθ be the

flow line of h from 0 to ∞ with angle θ. Then ηθ converges to R+ in probability in the bounded

Hausdorff metric as θ ↓ −(λ + b)/χ. Furthermore, for any δ0, p ∈ (0, 1) and R > 0, there exists

θ0 > −(λ+ b)/χ (depending only on κ, R, δ0, p, a, and b) such that for any θ ∈ (−(λ+ b)/χ, θ0)

the following holds with probability at least 1− p: for each x ∈ [0, R], there exists y ∈ ηθ ∩ [0, R] such

that |x− y| ≤ δ0.

We note that the condition a+ b > −2λ in the statement of Proposition 3.1 is so that there exists

θ ∈ R so that ηθ is non-trivial, meaning that ηθ ∼ SLEκ(ρ1; ρ2) with ρ1, ρ2 > −2. In the limit
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θ ↓ −(λ+ b)/χ, we have that ρ2 ↓ −2. The second statement in the proposition arises naturally in

the proof of the first, and we will make use of both to prove the main results of the paper. To state

our result for flow lines of a whole-plane GFF we first introduce a definition.

Definition 3.2. Fix κ ∈ (0, 4) and let h be a whole-plane GFF with values modulo a global multiple

of 2πχ. Let D be a bounded open set containing 0, let δ > 0 and define Dδ = {z ∈ C : d(z,D) < δ}.
For θ ∈ R let ηθ be the flow line of h starting from 0 with angle θ and for any set A let τθ(A) =

inf{t ≥ 0: ηθ(t) /∈ A}. For θ ̸= 0, η0 and ηθ are said to be δ-close until η0 exits D if the following

conditions hold. For all t ∈ (0, τ0(D)] there exist t1, t2, t
′
1, t

′
2 where 0 < t1 < t < t2 < τ0(Dδ) and

0 < t′1 < t′2 < τθ(Dδ) such that for each j = 1, 2, η0(tj) = ηθ(t
′
j) and at this point ηθ hits η0 on the

left side of η0 (if θ > 0) with angle gap θ (as defined in [27]). Furthermore, for any s ∈ [t1, t2] and

s′ ∈ [t′1, t
′
2], we have |η0(s)− ηθ(s

′)| < δ. If θ < 0, we replace ‘left side’ by ‘right side’ above.

Proposition 3.3. Fix κ ∈ (0, 4), let h be a whole-plane GFF with values modulo a global multiple

of 2πχ and let D be a bounded open set containing 0. Fix δ, p ∈ (0, 1). Then, there exists θ0 ∈ (0, 1),

depending only on κ, δ, p and D, such that the following holds with probability at least 1− p. For

any fixed θ ∈ (0, θ0), η0 and ηθ are δ-close until η0 exits D.

We remark that Definition 3.2 makes sense in the setting when h̃ is instead a GFF on a domain

D0 ⊆ C, Dδ ⊆ D0, and where the flow lines are started from any point z ∈ D and have angles θ1
and θ2. Proposition 3.3 also holds in this case since the laws of h and h̃, both restricted to Dδ are

mutually absolutely continuous by [24, Lemma 4.1] and conformal invariance. We will in particular

often apply this proposition in the case that h̃ is a GFF on the unit disk.

In order to prove Proposition 3.1, we will first work in the setting of a single force point SLEκ(ρ)

process in Section 3.2 and then extend to the setting of Proposition 3.1 in Section 3.3 using an

absolute continuity argument. In Section 3.4 we will use Proposition 3.1 to prove Proposition 3.3.

3.2. The case of a single force point.

Proposition 3.4. Fix ρ > −2, κ ∈ (0, 4), and suppose that η is an SLEκ(ρ) process in H from 0

to ∞ with the force point located at 0+. Then η converges to R+ in probability as ρ ↓ −2 in the

bounded Hausdorff metric.

Fix κ ∈ (0, 4), ρ > −2, and suppose that η is an SLEκ(ρ) process in H from 0 to ∞ with the force

point located at 0+. Then we recall that we can sample from the law of the driving pair (W,V ) for

η in the following way. Let X be a BESδ process with

(3.1) δ = 1 +
2(ρ+ 2)

κ

and then set

(3.2) Vt =
2√
κ

∫ t

0

1

Xs
ds and Wt = Vt −

√
κXt.

We are going to prove Proposition 3.4 by first showing in Lemmas 3.5 and 3.6 that Vt,Wt → ∞
and inf0≤s≤tWs → 0 in probability for each fixed t > 0 as ρ ↓ −2. We will then deduce from this in

Lemma 3.7 that this implies that η is very likely to exit a thin rectangle on its right side which will

imply that at least part of η is likely to be close to a segment of R+. We will complete the proof of

Proposition 3.4 using a time-reversal argument to get that the remainder of η must be close to R+
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(since this corresponds to an initial part of the time-reversal). Lemma 3.8, which deals with points

where the flow line intersects the boundary, arises naturally in the proof of this result. Throughout,

we let

ρ0 =
κ

4
− 2

so that the value of δ from (3.1) is equal to 3/2 (the value 3/2 is not special; any fixed value in

(1, 2) would suffice for what follows).

Lemma 3.5. For each t > 0 we have that Vt → ∞ in probability as ρ ↓ −2.

Proof. Fix ϵ, t, R > 0. Let ℓ be the local time process for X at 0 and let τϵ = inf{s ≥ 0 : ℓs = ϵ}.
Then it suffices to show that we have both

P[τϵ ≥ t] → 0 as ϵ→ 0 and(3.3)

P[Vτϵ ≥ R] → 1 as ρ ↓ −2.(3.4)

The rate of convergence in (3.3) will be uniform in ρ ∈ (−2, ρ0]. We first note that the probability

that X has an excursion from 0 of length at least 1 before time τϵ is O(ϵ), where the implicit constant

is universal. Indeed, the Poissonian structure of the excursions that X makes from 0 (Section 2.1)

implies that the above probability is equal to

1− exp

(
−δ
2
ϵ

∫ ∞

1
t
δ
2
−2dt

)
≤ δ

2− δ
ϵ ≤ 2ϵ for each δ ∈ (1, 3/2).(3.5)

Moreover the expected sum of the lengths of excursions that X makes from 0 of length at most 1 by

time τϵ is equal to

E

 ∑
(u,t)∈Λ,u≤ϵ,t≤1

t

 =
δ

2
ϵ

∫ 1

0
t · t

δ
2
−2dt = ϵ.(3.6)

Combining (3.5) with (3.6) and applying Markov’s inequality we thus have that

P[τϵ ≥ t] ≤ 2ϵ+
ϵ

t
= O(ϵ),

which proves (3.3).

We now turn to the second assertion. For each k ≥ 0 we let N ϵ
k be the number of excursions that X

makes from 0 of length in [2−k−1, 2−k) and with maximum in [0, 2−k/2] by time τϵ. Then we have

that

Vτϵ =
2√
κ

∫ τϵ

0

1

Xs
ds ≥ 2√

κ

∞∑
k=0

N ϵ
k · 2−k−1 · 2k/2 = 1√

κ

∞∑
k=0

2−k/2N ϵ
k.

Let p be the transition kernel for a BES4−δ process starting from 0. We claim that the density for

the law of a Bessel excursion of dimension δ from 0 to 0 of length 1 at time 1/2 is given by

(3.7) f(x) = lim
ϵ→0

p1/2(0, x)p1/2(x, ϵ)

p1(0, ϵ)
.

Indeed, [34, Chapter XI, Exercise 3.6] implies that the law of a Bessel bridge of dimension 4− δ

from 0 to 0 of length 1 is given by Zu = (1 − u)Yu/(1−u) for 0 ≤ u < 1, where Y is a BES4−δ

process starting from 0. Then it is easy to see that (Zu)0≤u<1 is a solution to (2.3) for t = 1 by e.g.,

applying Itô’s formula. Moreover, [34, Chapter XI] also implies that the density of Z1/2 is given

by (3.7) from which the claim follows. Combining with the explicit form of the transition kernel
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of a BES4−δ process (Section 2.1), it follows that there exists a universal constant p0 ∈ (0, 1) so

that for all δ ∈ (1, 3/2) the probability that a BESδ excursion from 0 to 0 of length 1 exceeds 2 is

at least p0. By Brownian scaling, it follows that for all δ ∈ (1, 3/2) the probability that a BESδ

excursion from 0 to 0 of length t ∈ [2−k−1, 2−k] exceeds 2−k/2 is also at least p0. Note that if Z is a

Poisson random variable with mean λ, we have that

P[Z ≥ αλ] ≤ exp(λ(α− α logα− 1)] for all α > 1 and(3.8)

P[Z ≤ αλ] ≤ exp(λ(α− α logα− 1)] for all α ∈ (0, 1).(3.9)

Note also that N ϵ
k is a Poisson random variable with mean λϵ which is at least

p0
δ

2
ϵ

∫ 2−k

2−k−1

t
δ
2
−2dt.

It follows that there exists a universal constant c0 > 0 so that λϵ ≥ c0ϵ2
(1−δ/2)k for each k ∈ N and

δ ∈ (1, 3/2). By (3.9), this implies that there exist universal constants c1, c2 > 0 such that

P[N ϵ
k ≤ c1ϵ2

(1−δ/2)k] ≤ P[N ϵ
k ≤ λϵ/2] ≤ 2 exp(−c2ϵ2(1−δ/2)k)(3.10)

for each k ∈ N and δ ∈ (1, 3/2). Let Kϵ
0 be the first K so that N ϵ

k ≥ c1ϵ2
(1−δ/2)k for every k ≥ K.

By applying a union bound to (3.10), we have that

(3.11) P[Kϵ
0 ≥ k] → 0 as k → ∞

faster than any negative power of k and at a rate which is uniform in δ ∈ (1, 3/2). Since we have

that

Vτϵ ≥
c1√
κ
ϵ

∞∑
k=Kϵ

0

2(1−δ)k/2,

it follows from (3.11) that for fixed q ∈ (0, 1), there exists K ∈ N uniformly in δ ∈ (1, 3/2) such

that with probability at least 1− q we have

Vτϵ ≥
c1√
κ
ϵ

∞∑
m=K

2(1−δ)m/2.

Also, there exists ρ1 ∈ (−2, κ/2− 2) such that

c1√
κ
ϵ

∞∑
m=K

2(1−δ)m/2 ≥ R for each ρ ∈ (−2, ρ1)

(where δ and ρ are related as in (3.1)) and so (3.4) follows. This completes the proof of the

lemma. □

Lemma 3.6. We have for each fixed t > 0 that

Wt → ∞ and inf
0≤s≤t

Ws → 0

in probability as ρ ↓ −2.

Proof. First, we recall from (3.2) that Wt = Vt −
√
κXt. We start by proving the first assertion

of the lemma. Fix t,M > 0 and q ∈ (0, 1). By [34, Chapter XI, Theorem 1.2], we can couple X

in the same probability space with an independent BES4−δ process X ′ starting from 0 so that

Y =
√
X2 + (X ′)2 has the law of a BES4 starting from 0. Fix R > 0 large (to be chosen). Then,

under the above coupling, we have that P[
√
κXt ≥ R] ≤ P[

√
κYt ≥ R] and so we pick R > 0
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sufficiently large and independent of δ such that P[
√
κYt ≥ R] ≤ q/2. Then Lemma 3.5 implies that

there exists ρ1 ∈ (−2, κ/2− 2) such that P[Vt ≥M +R] ≥ 1− q/2 for every ρ ∈ (−2, ρ1) and so

P[Wt ≥M ] ≥ P[Vt ≥M +
√
κXt] ≥ 1− q

for every ρ ∈ (−2, ρ1). This proves the first assertion of the lemma.

As for the second assertion of the lemma, we fix a, t > 0 and q ∈ (0, 1). Fix also s ∈ (0, t) (its exact

value will be chosen later). Then it holds that

inf
0≤u≤t

Wu = min

(
inf

s≤u≤t
(Vu −

√
κXu), inf

0≤u≤s
(Vu −

√
κXu)

)
≥ min

(
Vs −

√
κ sup

s≤u≤t
Xu,−

√
κ sup

0≤u≤s
Xu

)
.(3.12)

We pick s ∈ (0, t) small enough that

P[
√
κ sup

0≤u≤s
Xu ≤ a] ≥ P[

√
κ sup

0≤u≤s
Yu ≤ a] ≥ 1− q

3
(3.13)

for each δ ∈ (1, 3/2). Also, there exists R > a sufficiently large such that

P[
√
κ sup

s≤u≤t
Xu ≤ R] ≥ P[

√
κ sup

s≤u≤t
Yu ≤ R] ≥ 1− q

3
(3.14)

for each δ ∈ (1, 3/2). Moreover Lemma 3.5 implies that there exists ρ1 ∈ (−2, κ/2− 2) such that

(3.15) P[Vs ≥ 2R] ≥ 1− q/3

for each ρ ∈ (−2, ρ1). Combining (3.13)–(3.15) with (3.12), we obtain that P[inf0≤u≤tWu ≥ −a] ≥
1 − q for each ρ ∈ (−2, ρ1). This proves the second assertion and completes the proof of the

lemma. □

For each ϵ > 0 we let Rϵ = [−ϵ1/2, 1/ϵ] × [0, ϵ]. Let σϵ = inf{t ≥ 0 : η(t) ∈ ∂Rϵ \ R}. We note

that η(σϵ) can either be in the left, right, or top sides of ∂Rϵ. We are now going to show that the

probability that η(σϵ) is in the right side of ∂Rϵ tends to 1 as ρ ↓ −2.

Lemma 3.7. For each ϵ > 0, the probability that η(σϵ) is in the right side of ∂Rϵ tends to 1 as

ρ ↓ −2.

Proof. Let ζϵ = inf{t ≥ 0 : Im(η(t)) = ϵ}. First we note that [19, Lemma 1] implies that

hcap(η([0, ζϵ])) ≥ ϵ2/2. It therefore follows that if η exits Rϵ through the top of ∂Rϵ then σϵ = ζϵ ≥
ϵ2/4 (recall that hcap(η([0, t])) = 2t for all t ≥ 0).

Fix t ≥ 0 and let Ht be the unbounded component of H \ η([0, t]). Let us first write down a formula

for Wt. Suppose that we are on the event that Wt ≥ 0. Let B be a Brownian motion in C which is

independent of η and let τ = inf{t ≥ 0 : Bt /∈ Ht} and τH = inf{t ≥ 0 : Bt /∈ H}. Then we have

that

Wt = lim
y→∞

πy

∫ Wt/y

0

1

π(1 + s2)
ds = lim

y→∞
πy

(
1

2
−Piy[BτH ∈ [Wt,∞)]

)
.(3.16)

Let At be the part of ∂Ht which is to the right of η(t). Let (gt) be the Loewner flow associated

with η and write gt = ut + ivt. Using the conformal invariance of Brownian motion, we have that

Piy[Bτ ∈ At] = Pgt(iy)[BτH ∈ [Wt,∞)] = Pivt(iy)[BτH ∈ [Wt − ut(iy),∞)].(3.17)
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As y → ∞, we have both

(3.18) vt(iy) ∼ y and yut(iy) → 0.

Combining (3.16) and (3.17) with (3.18) proves that

Wt = lim
y→∞

πy

(
1

2
−Piy[Bτ ∈ At]

)
.

A similar formula holds if Wt ≤ 0.

Now we fix aϵ, bϵ > 0 depending only on ϵ (to be chosen) and let ζϵ be the first time that W hits

{−aϵ, bϵ}. We claim that for an appropriate choice of aϵ and bϵ, we have that η exits Rϵ in the right

side of ∂Rϵ if ζϵ < ϵ2/4 and Wζϵ = bϵ. Note that

(3.19) P[Wζϵ = bϵ, ζϵ < ϵ2/4] → 1 as ρ ↓ −2

by Lemma 3.6 and so proving the claim would complete the proof of the lemma.

To prove the claim, suppose that ζϵ < ϵ2/4 and Wζϵ = bϵ. Suppose first that η([0, ζϵ]) ⊆ Rϵ. Let

gRϵ : H \Rϵ → H be the unique conformal map with gRϵ(z)− z → 0 as z → ∞. Then for each y > 0

sufficiently large we have that

Piy[Bτ ∈ Aζϵ ] ≥ Piy[Bτ ∈ [ϵ−1,∞)] = PgRϵ (iy)
[BτH ∈ [gRϵ(ϵ

−1),∞)]

≥ PgRϵ (iy)
[BτH ∈ [2ϵ−1,∞)] (by [20, Corollary 3.44]).(3.20)

Moreover, by (3.18) applied to gRϵ we have that vRϵ(iy) ∼ y and uRϵ(iy) → 0 as y → ∞ where

gRϵ = uRϵ + ivRϵ . It follows that

lim
y→∞

(
πy
∣∣∣PgRϵ (iy)

[BτH ∈ [2ϵ−1,∞)]−Piy[BτH ∈ [2ϵ−1,∞)]
∣∣∣) = 0

and hence (using (3.16) with Wζϵ and later 2ϵ−1 in place of Wt as well as (3.20))

Wζϵ = bϵ ≤ lim sup
y→∞

(
πy

(
1

2
−Piy[BτH ∈ [2ϵ−1,∞)]

))
= 2ϵ−1.

This leads to a contradiction if we choose bϵ so that bϵ > 2ϵ−1.

Therefore, we must have that η([0, ζϵ]) ⊈ Rϵ which implies that σϵ < ζϵ. Since ζϵ < ϵ2/4, it follows

that η(σϵ) lies either on the left or the right side of ∂Rϵ \R. If it lies on the right side, then the

claim of the lemma holds. Suppose that it lies on the left side. Note that there exists a universal

constant c1 > 0 such that for all y > 0 sufficiently large, with probability at least 1 − c1ϵ/y, a

Brownian motion in C starting from iy exits H without hitting B(−ϵ1/2, 2ϵ). It follows that

Piy[Bτ ∈ Aσϵ ] ≥ −c1ϵ
y

+Piy[BτH ∈ [−ϵ1/2,∞)]

and so

Wσϵ = lim
y→∞

(
πy

(
1

2
−Piy[Bτ ∈ Aσϵ ]

))
≤ c1πϵ+ lim

y→∞

(
πy

(
1

2
−Piy[BτH ∈ [−ϵ1/2,∞)]

))
≤ c1πϵ− ϵ1/2.

Therefore, we obtain a contradiction if aϵ < −c1πϵ+ ϵ1/2 since −aϵ ≤Wσϵ . Thus η(σϵ) lies to the

right side of ∂Rϵ \R and so this completes the proof of the lemma. □
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Lemma 3.8. For each δ, p ∈ (0, 1) and R > 0, there exists ρ1 > −2 (depending only on κ, R, δ

and p) such that for any ρ ∈ (−2, ρ1) the following holds with probability at least 1 − p: for each

x ∈ [0, R], there exists y ∈ η ∩ [0, R] with |x − y| ≤ δ and η hits y before hitting the vertical line

LR+1 = {Re(z) = R+ 1}.

Proof. Fix δ, p ∈ (0, 1) and R > 0. For any ρ ∈ (−2, κ/2− 2), the process η can be viewed the flow

line of angle θ = ρλ/χ of a GFF h on H with boundary conditions given by −λ(1+ ρ) on R− and λ

on R+. Set ξ = δ/2 and let k = R/ξ. By decreasing the value of δ if necessary, we may assume that

k ∈ N. For each j = 1, . . . , k, set xj = jξ and for ϕ ∈ R and 1 ≤ j ≤ k − 1, let ηϕj be the flow line

of h starting from xj with angle ϕ. First, we note that the law of ηϕj is that of an SLEκ(ρ
L
2 , ρ

L
1 ; ρ

R
1 )

process in H from xj to ∞ where

ρL2 = ρ+ 2, ρL1 = −2− ϕχ

λ
, and ρR1 =

ϕχ

λ
,

and the force points are located at 0, x−j , and x
+
j respectively. Fix ϕ > −2λ/χ small enough that

ρL1 ≥ κ/2− 2 and ρR1 ∈ (−2, κ/2− 2) and for brevity write ηj for each ηϕj . This implies that ηj can

be drawn up until reaching ∞, that it intersects (xj ,∞) a.s. and that it does not intersect (0, xj)

a.s. We choose ϕ in a way which does not depend on ρ so that ρL1 and ρR1 do not depend on ρ. Note

that ϕ > θ = ρλ/χ for ρ sufficiently close to −2.

Now fix ρ ∈ (−2, κ/2− 2) and q ∈ (0, 1). For r > 0 and 1 ≤ j ≤ k− 1 let Ej(r) be the event that ηj
hits the horizontal line Hr := {z : Im(z) = r} and subsequently hits R+ ∩ (xj , xj+1) before exiting

B(xj , ξ/4). Let E(r) be the event that Ej(r) holds for every 1 ≤ j ≤ k − 1. We first show that it is

possible to choose r > 0 small enough that E(r) occurs with probability at least 1− q.

Up until the first time ηj gets within some fixed positive distance of R−, its law is absolutely

continuous with respect to that of an SLE(ρL1 ; ρ
R
1 ) process started at xj and targeted at ∞. In

particular, by our choice of ϕ, ηj a.s. intersects (xj , xj + δ0) for any δ0 > 0 and does so before exiting

B(xj , 2δ0). Since ηj is a.s. a continuous curve which does not trace R, there must exist some rj > 0

such that ηj hits Hrj and then hits (xj , xj+1), all before it exits B(xj , ξ/4). By the a.s. existence of

these rj , it follows that there exists some r > 0 such that P[E(r)] ≥ 1− q.

Notice that E(r) depends only on h restricted to A = [ξ/4, R]× [0, 1]. As we vary ρ ∈ (−2, κ/2− 2),

the boundary values of h on R+ remain fixed and the boundary values of h on R− remain in

some bounded interval. Therefore, by [25, Remark 3.5], it follows that the laws of h|A as ρ varies

in (−2, κ/2− 2) are mutually absolutely continuous with a uniformly controlled Radon–Nikodym

derivative. Hence, we can choose r > 0 (not depending on ρ) in such a way that P[E(r)] ≥ 1− q/2

for all ρ ∈ (−2, κ/2− 2).

Now we complete the proof. Choose ϵ > 0 such that ϵ−1 > R and ϵ < r, which can be done

independently of any choice of ρ. Using Lemma 3.7, choose ρ1 such that for all ρ ∈ (−2, ρ1), the

probability that η exits Rϵ on the right side is at least 1− q/2. Also, ensure ρ1 is small enough that

θ < ϕ for all ρ ∈ (−2, ρ1). In this case, with probability at least 1− q, E(r) occurs and η exits Rϵ

on its right boundary, and hence exits the rectangle [−ϵ1/2, R] × [0, r] on its right boundary. In

particular, this ensures that since Ej(r) occurs, η must intersect ηj before the latter hits Hr. By

the flow line interaction rules [25], η crosses ηj (from left to right) the first time they meet and

subsequently does not cross it again. By the definition of Ej(r), ηj then hits (xj , xj+1), meaning

that η must also hit this interval.
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It follows that with probability at least 1− q, η hits every interval (xj , xj+1) for 1 ≤ j ≤ k − 1 and

does so before hitting LR+1. In this case, for any x ∈ [ξ,R], there exists y ∈ η ∩ [0, R] such that

|x − y| < ξ, from which we can conclude that for every x ∈ [0, R] there exists y ∈ η ∩ [0, R] such

that |x− y ≤ δ and where η hits y before LR+1. □

Proof of Proposition 3.4. Fix q ∈ (0, 1) and let η̃ be the image of η under the conformal map

H → H, z 7→ −1/z. Then by the time-reversal symmetry of SLEκ(ρ1; ρ2) processes for κ ∈ (0, 4)

and ρ1, ρ2 > −2 established in [26, Theorem 1.1], we have that η̃ has the law of an SLEκ(ρ) process

in H from 0 to ∞ with the force point located at 0−. Set R̃ϵ = [−ϵ−1, ϵ1/2]× [0, ϵ] for each ϵ ∈ (0, 1).

Then, Lemmas 3.7 and 3.8 together imply that we can choose ϵ0, R, and δ in such a way as to

show that there exists ϵ0 ∈ (0, 1) such that the following holds. For each ϵ ∈ (0, ϵ0), there exists

ρ1 ∈ (−2, κ/2− 2) with the property that for each ρ ∈ (−2, ρ1), with probability at least 1− q we

have that η (resp. η̃) intersects [1,∞) (resp. (−∞,−1]) before exiting Rϵ (resp. R̃ϵ) for the first

time and exits Rϵ (resp. R̃ϵ) for the first time on the right (resp. left) side of ∂Rϵ (resp. ∂R̃ϵ).

Fix ϵ and ρ as above and suppose that the above events occur. Note that η (resp. η̃) does not

hit 1 (resp. −1) a.s. Let U (resp. Ũ) be the component of H \ η (resp. H \ η̃) such that 1 ∈ ∂U

(resp. −1 ∈ ∂Ũ). Let τ (resp. τ̃) be the last (resp. first) time that η (resp. η̃) hits ∂U (resp. ∂Ũ).

Equivalently, τ (resp. η̃) is the first time that η (resp. η̃) disconnects 1 (resp. −1) from ∞. Fix

z = x+ iy ∈ η. Suppose that η hits z before time τ . Then z ∈ Rϵ and so d(x, z) ≤ 2y ≤ 2ϵ where

we recall that d is the bounded metric on H. Suppose that η hits z after time τ . Then since η̃([0, τ̃ ])

is given by the image of η([τ,∞)) under w 7→ −1/w, we have that z̃ = −1/z ∈ R̃ϵ. Also,

z̃ = −
(

x

x2 + y2

)
+

(
y

x2 + y2

)
i

and hence d(w, z) = d(w̃, z̃) ≤ 2ϵ where w̃ = −x/(x2 + y2) and w = −1/w̃. Therefore, each point

on η is within distance 2ϵ of R+ with respect to the bounded metric. The same can be shown with

the roles of η and R+ exchanged, ensuring that the Hausdorff distance between η and R+ with

respect to d is at most 2ϵ. This completes the proof of the proposition. □

3.3. The case two force points. We now want to extract Proposition 3.1 from Proposition 3.4.

We are going to make use of the absolute continuity results for SLEκ(ρ) processes. Fix x1 < 0.

By taking ratios of processes of the form (2.6), it follows that if we weight the law of an SLEκ(ρ2)

process with a single force point at 0+ (note that such a process does not disconnect x1 from ∞ for

κ ∈ (0, 4)) by

(3.21) Mt = |g′t(x1)|(8−2κ+2ρ1)ρ1/(8κ)|Wt − gt(x1)|ρ1/κ|gt(x1)− x2t |ρ1ρ2/(2κ)

where x2t the location of the force point corresponding to 0+ then we get an SLEκ(ρ1; ρ2) process

with force points at x1 and 0+.

Let us make the following observation using (3.21).

Lemma 3.9. Fix δ2 > δ1 > 0 and ϵ ∈ (0, δ21/2). Fix R > 0 and suppose that ρ1, ρ2 ∈ [−R,R]. There

exists a constant C > 0 depending only on κ, δ1, δ2, ϵ, and R so that the following is true. Suppose

that η is an SLEκ(ρ1; ρ2) process in H from 0 to ∞ with force points located at x1 = −δ ∈ (−δ2,−δ1)
and x2 = 0+. Let Rϵ, σϵ be as in Section 3.2. Then the law of η|[0,σϵ] is absolutely continuous

with respect to that of an SLEκ(ρ2) process stopped at the corresponding time with Radon-Nikodym

derivative which is at most C.
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Proof. Let η̃ be an SLEκ(ρ2) process in H from 0 to ∞ with the force point located at 0+. We also

set σ̃ϵ = inf{t ≥ 0 : η̃(t) ∈ ∂Rϵ \R} and let (gt), M , and (x2t ) be as above. Then the law of η̃|[0,σ̃ϵ]

weighted by Mσ̃ϵ
is that of an SLEκ(ρ1; ρ2) process in H from 0 to ∞ with the force points located

at −δ and 0+ respectively, and stopped at the first time that it hits ∂Rϵ \R.

To prove the claim of the lemma, it suffices to give upper and lower bounds depending only on δ1, δ2,

and ϵ on |g′σ̃ϵ
(−δ)|, |Wσ̃ϵ

− gσ̃ϵ
(−δ)|, and |gσ̃ϵ

(−δ)− x2σ̃ϵ
|. First, we note that rad(η̃([0, σ̃ϵ])) ≤ 2ϵ−1

and so [20, Corollary 3.44] implies that |gσ̃ϵ
(z)− z| ≤ 6ϵ−1 for all z in the unbounded connected

component of H \ η̃([0, σ̃ϵ]). It follows that there exists a constant c1 depending only on δ1, δ2, and

ϵ such that |gσ̃ϵ
(−δ)| , |Wσ̃ϵ

|, |x2σ̃ϵ
| and |gσ̃ϵ

(−δ)−Wσ̃ϵ
|, |gσ̃ϵ

(−δ)− x2σ̃ϵ
| are all bounded by c1.

It remains to bound |g′σ̃ϵ
(−δ)|. If τ is the first time that a Brownian motion in C exits H \ η̃([0, σ̃ϵ]),

we have that

Piy[Bτ ∈ [−δ,−ϵ1/2]] ≥ PgRϵ (iy)
[BτH ∈ [gRϵ(−δ), gRϵ(−ϵ1/2)]]

for all y > 0 sufficiently large. Also [20, Lemma 3.52] implies that there exists a universal constant

c > 0 such that for all ϵ ∈ (0, 1), we have |gRϵ(z)− z| ≤ cϵ3/4 for each z ∈ H \Rϵ which implies that

[−δ + cϵ3/4,−ϵ1/2 − cϵ3/4] ⊆ [gRϵ(−δ), gRϵ(−ϵ1/2)] and hence

Wσ̃ϵ
− gσ̃ϵ

(−δ) ≥ gσ̃ϵ
(−ϵ1/2)− gσ̃ϵ

(−δ) = lim
y→∞

(
πyPiy[Bτ ∈ [−δ,−ϵ1/2]]

)
≥ lim

y→∞

(
πyPgRϵ (iy)

[BτH ∈ [gRϵ(−δ), gRϵ(−ϵ1/2)]]
)
≥ δ − ϵ1/2 − 2cϵ3/4 > 0

for ϵ ∈ (0, 1) sufficiently small. Moreover we have that x2σ̃ϵ
− gσ̃ϵ

(−δ) ≥Wσ̃ϵ
− gσ̃ϵ

(−δ) and Koebe’s
1
4 -theorem implies that

|g′σ̃ϵ
(−δ)| ≥ |gσ̃ϵ

(−δ)− gσ̃ϵ
(−ϵ1/2)|

4δ
≳ 1 and |g′σ̃ϵ

(−δ)| ≤ 4|gσ̃ϵ
(−δ)−Wσ̃ϵ

|
δ − ϵ1/2

≲ 1

where the implicit constants depend only on δ1, δ2 and ϵ. Combining everything, we obtain that

there exists a constant C <∞ depending only on κ, δ1, δ2, ϵ, and R such that Mσ̃ϵ
≤ C a.s. This

completes the proof. □

Proof of Proposition 3.1. Fix ϵ0, δ0, q ∈ (0, 1) and R > 0. We will show that there exists θ0 >

−(λ + b)/χ such that for all θ ∈ (−(λ + b)/χ, θ0), with probability at least 1 − q, the Hausdorff

distance between η and R+ with respect to the bounded metric is at most ϵ0, and that for all

x ∈ [0, R] there exists y ∈ η ∩ [0, R] such that |x− y| ≤ δ0.

Let ηθ be the flow line of h from 0 to ∞ with angle θ. Then ηθ has the law of an SLEκ(ρ1; ρ2)

process in H from 0 to ∞ where

ρ1 = −1 +
a− θχ

λ
and ρ2 = −1 +

b+ θχ

λ

and where the force points are located at 0− and 0+. Fix ϕ ∈ R such that

−λ+ b

χ
< ϕ < min

(
λ+ a

χ
,
λ− b

χ
− π

)
and let ηϕ be the flow line of h from 0 to ∞ with angle ϕ so that in this case ρ1 > −2 and

ρ2 ∈ (−2, κ2 − 2). We note that the flow lines interaction rules [27, Theorem 1.7] imply that ηθ lies

to the right of ηϕ if θ < ϕ.
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Fix ϵ1, δ > 0 small enough (depending only on both ε0, δ0 and satisfying conditions we will mention

later) and suppose that −(λ + b)/χ < θ < ϕ. For δ ∈ (0, 1) we set xδ = inf{[δ,∞) ∩ ηϕ} and

yδ = inf{[δ,∞) ∩ ηθ}, and τδ = inf{t ≥ 0 : ηθ(t) = yδ}. We note that δ ≤ yδ ≤ xδ. We can

choose δ ∈ (0, 1) such that with probability at least 1− q/2, we have that the hull of ηϕ stopped

at the first time it hits xδ is contained in [−ϵ1, ϵ1] × [0, ϵ1]. Hence, for each θ as above we have

that with probability at least 1− q/2, the hull of ηθ stopped at the time it hits yδ is contained in

[−ϵ1, ϵ1]× [0, ϵ1]. From now on, we assume that the latter event, which we call E1, occurs.

In this case, define η̃θ = gτδ(ηθ)−Wτδ which has the law of an SLEκ(ρ1; ρ2) process in H from 0 to

∞ with the same values of ρ1, ρ2 as ηθ, and with force points located at x1 < 0 and at 0+. Let τ

be the first time that a Brownian motion in C exits the complement in H of the hull of ηθ([0, τδ]).

Then

lim
y→∞

(πyPiy[Bτ lies on the left side of ηθ([0, τδ])) ≥ lim
y→∞

(πyPiy[BτH ∈ [0, δ]]) = δ.

Therefore we can conclude that x1 ≤ −δ. Note that rad(ηθ([0, τδ])) ≤ 2ϵ1 so [20, Corollary 3.44] and

arguing as in the proof of Lemma 3.9 implies that |fτδ(z)− z| ≤ 13ϵ1 for all z in the unbounded

component of H \ ηθ([0, τδ]) where fτδ(z) = gτδ(z) − Wτδ . Hence, |fτδ(z)| ≤ 15ϵ1 for all z ∈
[−ϵ1, ϵ1]× [0, ϵ1] such that z lies in the unbounded connected component of H \ ηθ([0, τδ]) and, in
particular, the force point of η̃θ with weight ρ1 lies in [−15ϵ1,−δ].

Let M be the Radon-Nikodym derivative of the law of η̃θ stopped at the first time that it exits Rϵ1

(as defined in Section 3.2) with respect to the law of an SLEκ(ρ2) process in H from 0 to ∞ with the

force point located at 0+ and stopped at the first time that it exits Rδ2/2. Then Lemma 3.9 implies

that there exists a constant C <∞ depending only on κ, ϕ, δ, ϵ0, ϵ1, a, and b such that M ≤ C a.s.

Therefore, combining with Lemmas 3.7 and 3.8 we obtain that there exists θ0 ∈ (−(λ + b)/χ, ϕ)

such that for every θ ∈ (−(λ+ b)/χ, θ0), with probability at least 1− q/2, the following event E2

occurs. Firstly, η̃θ exits Rϵ1 through its right side, and secondly, for every x̃ ∈ [0, R− 20ϵ1], there

exists ỹ ∈ η̃θ ∩ [0, R] such that |x̃− ỹ| ≤ δ and η̃θ hits ỹ before hitting the vertical line LR−20ϵ1+1.

Therefore, for each θ ∈ (−(λ+ b)/χ, θ0), with probability at least 1− q, both E1 and E2 occur. We

can choose ϵ1, δ > 0 small enough, both depending only on both ϵ0 and δ0 such that the following

all hold. First, that η̃θ exiting Rδ2/2 on its right side guarantees that ηθ exits Rϵ0 on its right side.

Also, if ϵ1, δ are small enough then we can conclude from E1 and E2 that for every x ∈ [0, R] there

exists y ∈ ηθ ∩ [0, R] such that |x− y| ≤ δ0 and that ηθ hits y before LR+1.

It follows that for each θ ∈ (−(λ+ b)/χ, θ0), with probability at least 1− q, ηθ exits Rϵ0 on its right

side and for all x ∈ [0, R], there exists y ∈ ηθ ∩ [0, R] such that |x− y| ≤ δ0, where ηθ hits each

such y before LR+1. It follows for the correct choice of R, δ0 and ϵ0 that we can show that with

probability at least 1− q, ηθ exits Rϵ0 on its right side and hits [1,∞) before doing so.

Finally, to complete the proof, we let η̂θ be the image of ηθ under the conformal map H → H,

z 7→ −1/z and set R̃ϵ0 = [−ϵ−1
0 , ϵ

1/2
0 ]× [0, ϵ0]. Then possibly by taking θ > −(λ+ b)/χ to be smaller,

we can assume that with probability at least 1− q, the curve η̂θ exits R̃ϵ for the first time on its left

side and intersects [−ϵ−1,−1] before doing so. This follows by combining the results of the previous

paragraph with the fact that η̂θ has the law of an SLEκ(ρ2; ρ1) process in H from 0 to ∞ with the

force points located at 0− and 0+ respectively by [26, Theorem 1.1]. We then conclude the proof by

arguing as at the end of the proof of Proposition 3.4. □
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3.4. The case of the whole-plane GFF. In this section we will prove Proposition 3.3. The first

step is proving the following weaker version of the proposition. We remark that the conclusions of

following lemma, and of Proposition 3.3, are also valid when the roles of η0 and ηθ are exchanged,

or when we instead work with ηθ1 and ηθ2 provided |θ1 − θ2| < θ0. We will now use Proposition 3.1

to prove the following weaker version of lemma of Proposition 3.3.

Lemma 3.10. Fix κ ∈ (0, 4) and let h be a whole-plane GFF with values modulo a global multiple

of 2πχ. Fix δ, p ∈ (0, 1). Then, there exists θ0 ∈ (0, 1) depending only on κ, δ an p such that

the following holds with probability at least 1 − p for any fixed θ ∈ (0, θ0). For all t ∈ (0, τ0(D)]

there exist t1, t2, t
′
1, t

′
2 such that 0 < t1 < t < t2 < τ0(Dδ) and 0 < t′1 < t′2, and for each j = 1, 2,

η0(tj) = ηθ(t
′
j) and at this point ηθ hits η0 on the left side of η0 with angle gap θ. Furthermore, for

any s ∈ [t1, t2] we have |η0(s)− η0(t)| < δ.

The reason this is weaker than Proposition 3.3 is that this lemma does not show that t′2 ≤ τθ(Dδ)

or tell us anything about the flow line ηθ on the intervals [t′1, t
′
2]. To obtain this information and to

prove Proposition 3.3, we will apply this lemma twice, once as above, and the second time with the

roles of η0 and ηθ exchanged.

Proof. Case 1. κ ∈ (0, 8/3]. In this case, η0 is a.s. simple and transient. Let ϕ : C \ η0 → H be

a conformal map fixing 0 and ∞ which is σ(η0)-measurable. Then we can choose (deterministic)

constants R ∈ (0,∞) large enough and δ2 ∈ (0, 1) small enough such that with probability at least

1−p/2 we have ϕ(η0(τ0(D))) < R and |ϕ−1(x)−ϕ−1(y)| < δ for all x, y ∈ [0, R+1] with |x−y| < δ2.

We assume that these events hold.

By [27], conditional on η0, the curve ηθ has the law of an SLE(ρL(θ); ρR(θ)) in C \ η0 started from 0

and targeted at ∞, where

(3.22) ρL(θ) = −2 +
(2π − θ)χ

λ
, ρR(θ) = −2 +

θχ

λ
.

Then η̃θ := ϕ(ηθ) has the law of a flow line of angle θ of a GFF h on H with λ − 2πχ boundary

conditions on R− and −λ boundary conditions on R+. By Proposition 3.1 there exists θ0 > 0 such

that if θ ∈ (0, θ0) is fixed, then with probability at least 1− p/2, for each x ∈ [0, R+ 1] there exists

y ∈ η̃θ ∩ [0, R+ 1] such that |x− y| ≤ δ2/8. Suppose this event also holds.

In this case, fix t ∈ (0, τ0(D)], set x = ϕ(η0(t)) (when viewed as a prime end on the left side of

η0) and note that x ∈ (0, R]. It can then be shown that we can find y1, y2 ∈ η̃θ ∩ (0, R + 1) with

y1 < x < y2 and |y2 − y1| < δ2 (for x close to 0 we use the fact that η̃θ a.s. intersects R+ arbitrarily

close to 0, for other x we use the conclusion on Proposition 3.1). Define 0 < t1 < t2 and 0 < t′1 < t′2
by η0(tj) = ηθ(t

′
j) = yj for j = 1, 2. Note that by our assumption on the behavior of ϕ−1 at the

boundary, we have that s ∈ [t1, t2] implies |η0(s)− η0(t)| < δ and similarly that t2 < η0(Dδ). By

construction the angle gap at these intersection points is θ and ηθ hits η0 on the left side of η0. We

must have t′1 < t′2 since if z1, z2 are two intersections with such an angle gap, and η0 hits z1 before

z2, then ηθ must also hit z1 before z2.

Case 2. κ ∈ (8/3, 4). By [27], η0 a.s. divides C \ η0 into countably many connected components

P , which we refer to as pockets, each of which has an opening point z and a closing point w. By

[27, Theorem 1.11, Proposition 3.28], ηθ visits each of these pockets in order, and in each pocket P

has the law of an SLE(ρL(θ); ρR(θ)) process in P started from z and targeted at w, where ρL(θ)

and ρR(θ) are given as in the previous case by (3.22). In particular, a.s. in each pocket P , ηθ will
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intersect the counterclockwise boundary arc of P from the opening to the closing point, which we

denote by ∂+P , arbitrarily close to both w and z, and will necessary do so by hitting η0 on the left

side of η0 with angle gap θ.

Set δ1 = δ/8. By the almost sure continuity and transience of η0, there a.s. exists a random integer

N ∈ N such that there are at most N components P1, . . . , PN of C \ η0 that intersect D and have

diameter at least δ1, so if diam(P ) ≥ δ1 then P must be one of these Pj . For every 1 ≤ j ≤ N , we

let zj (resp. wj) be the opening (resp. closing) point of Pj and let ϕj be a conformal transformation

mapping Pj onto H such that ϕj(zj) = 0, ϕj(wj) = ∞ and such that ϕj is σ(η0)-measurable. Let

∂P+
j denote the right-hand boundary of Pj , by which we mean that part of ∂Pj with ϕj(∂P

+
j ) = R+.

Almost surely, there also exists R ∈ (0,∞) such that ϕ−1
j ([R,∞)) ⊆ B(wj , δ1) for every 1 ≤ j ≤ N .

Moreover, there exists δ2 > 0 sufficiently small such that |ϕ−1
j (x)−ϕ−1

j (y)| < δ1 for every x, y ∈ [0, R]

such that |x−y| < δ2, and every 1 ≤ j ≤ N . Let E(N,R, δ2) be the event that the above statements

hold for a fixed choice of constants N,R and δ2. We can conclude that there exist some deterministic

choice of these constants such that E1 := E(N,R, δ2) holds with probability at least 1− p/2. We

assume from now on that this event holds.

Fix t ∈ (0, τ0(D)]. There are now three cases. First, suppose η0(t) is part of ∂
+P where diam(P ) ≤ δ1.

Then by the above there will exist intersection points of η0 and ηθ arbitrarily close to the opening

and closing points of this pocket meaning we can define t1, t2, t
′
1, t

′
2 satisfying the conditions of the

lemma. A second possibility is that η0(t) is not part of ∂
+P for any pocket P . In this case, since η0

does not trace itself when it intersects itself (by [27] this a.s. does not happen simultaneously for all

parts of the curve) there will exist times t− < t < t+ arbitrarily close to t such that times η0(t
−)

(resp. η0(t
+)) is the closing (resp. opening) point of some pocket P− (resp. P+). We can again find

intersection times t1, t2, t
′
1, t

′
2 satisfying the conditions of the lemma.

The final possibility is that η0(t) is part of the clockwise boundary arc of one of the pockets Pj where

diam(Pj) ≥ δ1. Fix θ > 0 and work conditional on E1 so that if diam(P ) ≥ δ1 above then P must

be one of the components Pj . Within each component Pj , ηθ has the law of an SLE(ρL(θ); ρR(θ))

in Pj started from zj and targeted at wj , where ρ
L(θ) and ρR(θ) again by (3.22). Equivalently,

ηθj := ϕj(ηθ) has the law of a flow line of angle θ of a GFF h on H with λ − 2πχ boundary

conditions on R− and −λ boundary conditions on R+. By Proposition 3.1 there exists θ0 such that

if θ ∈ (0, θ0) is fixed, then with probability at least 1− p/2N , for each x ∈ [0, R+ 1] there exists

y ∈ ηθj ∩ [0, R+ 1] such that |x− y| ≤ δ2/8. We assume these events also hold for each component

Pj (of which we have assumed there are at most N). Set x = ϕj(η0(t)) ∈ (0,∞). We can then argue

as in Step 1 to show that there exist t1, t2, t
′
1, t

′
2 as in the lemma statement (if x > R we use that

ϕ−1([R,∞)) ⊆ B(wj , δ1) and that ηθ will intersect ∂+Pj arbitrarily close to the closing point a.s.).

We can check that t1, t2, t
′
1, t

′
2 satisfy the properties of the lemma as before. □

Proof of Proposition 3.3. Since D is bounded, by the scale invariance of the GFF and by possibly

replacing δ with a smaller value it suffices to prove the lemma in the case that D,Dδ are contained

in B(0, 1/2). Fix δ1 = δ/8. By two applications of Lemma 3.10 for this value of δ1, where in the

second application we exchange the roles of η0 and ηθ, there must exist θ0 > 0 such that if θ ∈ (0, θ0)

then with probability at least 1− p, the event described in the lemma statement holds (with δ1 in

place of δ), and similarly the same event holds with the roles of η0 and ηθ exchanged. We assume

now that these two events hold and show in this case that η0 and ηθ are δ-close until η0 exits D.

Fix t ∈ (0, τ0(D)]. Note that τ0(Dδ) < τ0(D) so by our application of Lemma 3.10 there exist

times t1, t2, t
′
1, t

′
2 such that η0, ηθ intersect at these times and where 0 < t1 < t < t2 < τ0(Dδ1) and



CONNECTIVITY OF THE ADJACENCY GRAPH OF THE SLE FAN 21

0 < t′1 < t′2, and for any t∗ ∈ [t1, t2] we have |η0(t)− η0(t∗)| < δ1. The final condition ensures that

t2 < τ0(Dδ1) < τ0(Dδ). We will show t′2 < τθ(Dδ) and for any s′ ∈ [t′1, t
′
2] that |ηθ(t′)− ηθ(t

′
1)| < δ.

In the following we will repeatedly use the fact that if η0(r1) = ηθ(r
′
1), η0(r2) = ηθ(r

′
2) and r1 < r2,

then r′1 < r′2.

We will first prove that t′2 < τθ(Dδ). Suppose this is not the case. By the continuity of ηθ and

since Dδ ⊆ B(0, 1/2) there exists some s′ ∈ (0, t′2] such that ηθ(s
′) /∈ Dδ and s′ < τθ(D). Since

the conclusions of Lemma 3.10 hold with the roles of ηθ and η0 exchanged, there must exist times

s′1, s
′
2, s1, s2 with intersections at ηθ(s

′
1), ηθ(s

′
2) such that 0 < s′1 < s′ < s′2 < τθ(Dδ1) and 0 < s1 < s2,

and for all s′∗ ∈ [s′1, s
′
2] we have |ηθ(s′) − ηθ(t

′)| < δ1. In particular, since s′1 < s′ < t′2 we must

have s1 < t2 < τ0(Dδ1). Therefore ηθ(s
′
1) = η0(s1) ∈ Dδ1 which implies that ηθ(s

′) ∈ D2δ1 ⊆ Dδ, a

contradiction.

Now fix s′ ∈ [t′1, t
′
2]. Again there must exist times s′1, s

′
2, s1, s2 with intersections at ηθ(s

′
1), ηθ(s

′
2) such

that 0 < s′1 < s′ < s′2 < τθ(Dδ1) and 0 < s1 < s2, and for all s ∈ [s′1, s
′
2] we have |ηθ(s′)−ηθ(t′)| < δ1.

Then s′1 < s′ ≤ t′2 meaning that s1 < t2, and similarly t′1 ≤ s′ < s′2 meaning t1 < s2. There are

now two possibilities. Firstly, we could have t′1 ≤ s′1 < t′. In this case, we would have t1 ≤ s1 < t2
meaning that |η0(t)− ηθ(s

′
1)| < δ1. Otherwise, s′1 < t′1 < s′2 and we have |η0(t1)− η0(s

′
1)| < δ1. In

either case we can apply the triangle inequality using the other relations we have to conclude that

|ηθ(s′)− η0(t∗)| < δ for all t∗ ∈ [t1, t2], from which we can show that η0 and ηθ are δ-close until η0
leaves D. □

4. The adjacency graph is connected

4.1. Overview. In this section, we prove Theorem 1.1. Our goal is to show that any two

connected components U, V of H \ F(θ′1, θ
′
2) can be connected by a finite chain of components

U = U0, U1, . . . , Um = V such that ∂Uj ∩ ∂Uj+1 ̸= ∅ for each j. We will first give an informal

overview which should motivate the more detailed arguments of Sections 4.2 and 4.3. First note

that the interval [θ′1, θ
′
2] can be partitioned using θ′2 = θ0 > θ1 > · · · > θn = θ′1 in such a way that

|θj+1 − θj | ≤ ϵ0 for all j, for some small ϵ0 > 0 to be chosen later. We then define the finite fan,

Ff = ∪n
j=0ηθn , which is depicted in Figure 6.

The strategy of the proof of Theorem 1.1 is to first show that such a finite chain of components exist

in the case that U and V are in the same connected component G of H \ Ff . Suppose that G lies

between θj and θj+1. Then the only flow lines in F that enter G will have angle θ ∈ (θj+1, θj), so in

particular can be represented as flow lines of angle −ϵ where ϵ ∈ (0, ϵ0) of a GFF with boundary

conditions changed by a constant. The focus of Section 4.2 is to use the results of Section 3 to

understand the behavior of these flow lines. After we have completed the proof in the case that

U, V are in G, we then prove that the adjacency graph of the finite fan is itself connected, and

finally that a finite chain of components as described above exists also in the case that U and V

are in different connected components of H \ Ff . The proof of Theorem 1.1 using the results of

Section 4.2 is carried out in Section 4.3.

4.2. Annulus events. Let h be a zero boundary GFF on D and fix κ ∈ (0, 4). The following

setup is depicted in Figure 2. Fix annuli A3 ⊊ A4 ⊆ D \B(0, 1/2) centered at 0. Fix three annuli

A1 ⊊ Aa
1 ⊊ Ab

1 ⊊ A3. Finally fix annuli A0 ⊊ Aa
0 lying between ∂inA3 (the inner boundary of A3)

and ∂inAb
1, and annuli A2 ⊊ Aa

2 lying between ∂outAb
1 (the outer boundary of Ab

1) and ∂
outA3, as

shown in Figure 2. All of the above annuli are centered at 0.
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A0

Aa
0

A1

Aa
1

Ab
1

A2

Aa
2 A4

A3
∂B(0, 1

2 ) ∂B(0, 1)

Figure 2. This figure summarizes the setup of Lemmas 4.1, 4.3 and 4.4. The

outermost annuli shown are A3 ⊊ A4 ⊊ D \B(0, 1/2). The central annuli are A1, A
a
1

and Ab
1. The components Vj and path γ as described in (i) are contained in A1. The

existence of these components and path is discussed in Lemma 4.4. In purple are the

flow lines of angle 0 started from the countable dense subset (sj) of ∂A
a
1, which are

stopped when they first exit Ab
1. The flow lines of angle −ϵ are omitted. Inside Aa

0

is the grid of points aZ2 ∩Aa
0. From each point we start flow lines of angle 0 (red)

and −π (blue). In Lemma 4.3 we show they form a chain of pockets in A0 which

disconnect A0 from ∂inA3. The situation in Aa
2 is analogous to that in Aa

1. The flow

lines η
θj
ak started from ∂A3 are not shown.

For every θ ∈ R, x ∈ D, we let ηθx be the flow line of h starting from x with angle θ. Let S = (sj)

(resp. (aj)) be a fixed, countable and dense subset of ∂Aa
1 (resp. ∂A3). Fix ϵ > 0 and let (ϕj) be a

fixed, countable and dense subset of [−ϵ, 0]. Let W−ϵ be the closure of the union of the η0sj ∪ η
−ϵ
sj ’s

when the flow lines are stopped at the first time that they exit Ab
1. Let E

h(ϵ) be the event that the

following hold.

(i) There exist connected components V1, V2, . . . , Vk of A1 \W−ϵ and a point z ∈ ∂V1 ∩ ∂Vk such

that there exist simple paths γ1, . . . , γk parameterized by [0, 1] such that γi((0, 1)) ⊆ Vi for

every 1 ≤ i ≤ k, γi−1(1) = γi(0) ∈ ∂Vi−1 ∩ ∂Vi for every 2 ≤ i ≤ k and γ1(0) = γk(1) = z.

Furthermore, if γ is the concatenation of the γj ’s, we have that γ disconnects ∂inA1 from

∂outA1.

(ii) For every ℓ,m ∈ N, we have that ηϕm
aℓ does not enter ∪k

j=1Vj before exiting A4.

Note that Eh(ϵ) is determined by h|A4 . The main result of this section is the following lemma.

Lemma 4.1. Fix p ∈ (0, 1). Then, there exists ϵ0 ∈ (0, 1) depending only on κ and p such that

P[Eh(ϵ)] ≥ 1− p for every ϵ ∈ (0, ϵ0).
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Remark 4.2. For z ∈ C, r > 0, ϵ ∈ (0, 1) and a field h on B(z, r), we let Eh
z,r(ϵ) be the event defined

in the same way as Eh(ϵ) except that in conditions (i)-(ii) we replace the annulus Ai by ϕz,r(Ai) for

every 1 ≤ i ≤ 4, and the sequences of points (sj) and (aj) by (ϕz,r(sj)) and (ϕz,r(aj)) respectively,

where ϕz,r : w 7→ z + rw. Then, the conformal invariance of the GFF implies that P[Eh
z,r(ϵ)] does

not depend on z or r if h has the law of a zero boundary GFF on B(z, r).

In a moment we will give a summary of the proof of this lemma, which will make use of Lemmas 4.3

and 4.4, but first let us outline how the event Eh(ϵ) will be used in the proof of Theorem 1.1. Let

h1 be a GFF on H, fix z ∈ H and suppose that Eh1
z,r(ϵ) holds. That is, the event described in (i)

and (ii) above (suitably translated and rescaled) holds, but where now all flow lines we consider are

flow lines of the field h1 rather than being flow lines of a zero boundary GFF on B(z, r). Suppose

ϕj ∈ [−ϵ, 0] is one of the countable dense set of angles described earlier. If ηϕj
is a flow line of h1

started from 0, upon entering ϕz,r(A3) for the first time, it will a.s. merge with one of the flow lines

of angle ϕj started from some point ϕz,r(ak). Therefore, it cannot enter the components Vj which

form a chain around z which will allow us to deduce information about the connectivity of H \ F.
This is only a vague motivation, and the details of exactly how Lemma 4.1 is used to prove the

theorem are shown in Lemma 4.5 and Section 4.3.

Next, we give an outline of the proof of Lemma 4.1. In Lemma 4.4, we will show that for a fixed

p ∈ (0, 1), we can choose ϵ > 0 small enough that (i) holds with probability at least 1− p. We want

to then show, conditional on this event, that any flow line ηϕk
aj cannot enter any of the components

Vi defined in (i) and thus can intersect the loop γ at at most finitely many points. This is not

necessarily true however without some additional information, which leads us to define the pairs

of annuli A0, A
a
0 and A2, A

a
2. We fix a small parameter a > 0 and start flow lines of angle 0 and

−π from each point z ∈ aZ2 ∩ (Aa
0 ∪Aa

2). In Lemma 4.3 we show that when a is small then with

high probability these flow lines create a “chain of pockets” which cover A0 and are contained in Aa
0

(similarly for A2 and Aa
2). This is explained in more detail below and depicted in Figure 2. If this

event occurs, every flow line ηϕk
aj started from ∂outA3 must pass through one of the pockets in Aa

2.

Then, we show that it must be trapped between flow lines of angles 0 and −ϵ started from a single

point z ∈ aZ2 ∩Aa
2 until it exits A4 (an analogous result holds for ∂inA3 and Aa

0). We can use the

results of Section 3 to ensure these flow lines stay close together, which finally allows us to show

that ηϕk
aj does not enter any of the Vi defined in (i).

Next, we set up the event we want to consider in Lemma 4.3. For every point x in (aZ)2 ∩Aa
0, we

say that the pocket with opening point x exists if there exists a distinct point z ∈ (aZ)2 ∩Aa
0 such

that η0z merges with η0x on the left side of η0x, and if η−π
z merges with η−π

0 on the right side of η−π
x ,

and if this occurs in both cases before any of these flow lines leave Aa
0. We define Ax,z to be the

closure of the union of the connected components of C \ (η0x ∪ η−π
x ) which are traced entirely by

η0x ∪ η−π
x before η0x (resp. η−π

x ) merges with η0z (resp. η−π
z ) together with the connected components

of C \ (η0z ∪ η−π
z ) which are traced entirely by η0z ∪ η−π

z before η0z (resp. η−π
z ) merges with η0x (resp.

η−π
x ), and with the connected component of C \ (η0x ∪ η0z ∪ η−π

x ∪ η−π
z ) formed at the time that the

flow lines merge. If the above event occurs for some point z ∈ (aZ)2 ∩Aa
0, then a.s. we can find such

a point z such that furthermore, Ax,z contains no other points in (aZ)2 ∩ Aa
0 in its interior (this

follows from an inductive argument and the flow line interaction rules in [27]). If there exists such a

point z, the pocket with opening point x is Ax,z. The pocket with opening point x in (aZ)2 ∩Aa
2 is

defined analogously, if it exists.
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∂inA1∂inAa
1∂inAb

1 ∂outA1 ∂outAa
1 ∂outAb

1

V1

V2

V3

V4

γ

Figure 3. The components Vi and the path γ. Flow lines of angle −ϵ are shown in

orange. We omit the additional annulus Ac
1.

Let Aa
4 be an annulus slightly bigger than A4 so that A4 ⊊ Aa

4 ⊊ D. In this section, all parameters

δ, δj will be chosen to be much smaller than the distance between the boundaries of any two of the

distinct annuli.

Lemma 4.3. For any p, δ ∈ (0, 1) there exists a > 0, ϵ0 ∈ (0, 1) (depending only on κ, δ and p) such

that for every ϵ ∈ (0, ϵ0) the following events hold with probability at least 1− p.

(i) There exist x1, . . . , xn ∈ aZ2 ∩ Aa
0 and y1, . . . , ym ∈ aZ2 ∩ Aa

2 such that A0 ⊆ ∪n
j=1Fj ⊆ Aa

0

where Fj is the pocket with opening point xj for every 1 ≤ j ≤ n, and A2 ⊆ ∪m
i=1Li ⊆ Aa

2,

where Li is the pocket with opening point yi for every 1 ≤ i ≤ m, and where all such pockets

exist.

(ii) For each z ∈ (aZ2 ∩Aa
0) ∪ (aZ2 ∩Aa

2), the flow lines η0z and η−ϵ
z are δ-close until η0z exits Aa

4,

and the flow lines η−π
z and η−π−ϵ

z are δ-close until η−π
z exits Aa

4.

Proof. To prove the this result, we will consider the analogous setup where h̃ is instead a whole-plane

GFF with values modulo a global multiple of 2πχ. In this case, two flow lines of the same angle

started from two distinct points x, z ∈ (aZ)2∩Aa
0 merge a.s. This allows us to to redefine the pocket

Ax,z as above, but we now remove the requirement that the flow lines merge before leaving Aa
0 (the

reason we included this condition above was to avoid complications when these flow lines hit ∂D,

but such issues are avoided in this case).

Let Xa be the union of all the flow lines η0x, η
−π
x (of h̃) for x ∈ (aZ)2 ∩Aa

0. Then, every connected

component of A4 \Xa whose boundary is contained in Xa has to be contained in a pocket with

opening point x for some x ∈ (aZ)2 ∩Aa
0. By [27, Proposition 4.14], we obtain that we can choose

a ∈ (0, 1) sufficiently small such that with probability at least 1 − p/4, the following holds. For

every x ∈ (aZ)2 ∩Aa
0, if the pocket with opening point x intersects A0, then it is contained in Aa

0.

In this case, there exist x1, . . . , xn ∈ (aZ)2∩Aa
0 such that A0 ⊆ ∪n

j=1Fj ⊆ Aa
0, where Fj is the pocket

with opening point xj for every 1 ≤ j ≤ n. Similarly, by possibly taking a > 0 to be smaller and
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arguing as above, we obtain that with probability at least 1−p/4, there exist y1, . . . , ym ∈ (aZ)2∩Aa
2

such that A2 ⊆ ∪m
j=1Lj ⊆ Aa

2, where Lj is the pocket with opening point yj for every 1 ≤ j ≤ m.

Therefore, we obtain that we can choose a ∈ (0, 1) sufficiently small such that with probability at

least 1− p/2, we have that the first part of the statement holds.

For this a, there are a finite number of points in aZ2∩Aa
0 and aZ

2∩Aa
2, so we can apply Proposition 3.3

to conclude the proof of this result for h̃. To convert this result to the zero-boundary GFF h,

we note that the event described in the lemma depends only on h|Aa
0
, so by the mutual absolute

continuity of the laws of h|Aa
0
and h̃|Aa

0
(see [24, Lemma 4.1]), it follows that the statement holds

for as written for h. (Note that on the event that Fj ⊆ Aa
0, then the flow lines which determine it

cannot leave Aa
0 without merging. This means that this is the pocket with opening point xj for

both h and h̃, and the possible discrepancy in our definition of the pockets for h and h̃ does not

cause any issues.) □

In the next lemma, we deal with the construction of the components Vj and the path γ as described

in (i). For technical reasons we introduce a new annulus Ac
1 slightly larger than Ab

1 but which does

not intersect Aa
0 or Aa

2. Our strategy to prove the lemma will be as follows. Let Z be the closure

of the union of the η0sj ’s when they are stopped at the first time that they exit Ac
1 and let Z−ϵ be

the union of Z and the closure of the union of the η−ϵ
sj when these flow lines are stopped at Ab

1.

Notice that the 0-angle and −ϵ-angle flow lines are stopped at different points; this is merely to fix

a technicality and is not important to the core idea of the argument. Note that W−ϵ ⊆ Z−ϵ, and

that the flow lines of angle zero in W−ϵ are stopped slightly earlier. In the following and during the

proof of the lemma, whenever we refer to a flow line of angle 0 (resp. −ϵ), it will be understood to

be stopped upon hitting Ac
1 (resp. Ab

1) unless stated otherwise.

We will show that with high probability there exist connected components U1, . . . , Uk of A1 \ Z
such that k ≥ 2, U1 = Uk and ∂Ui ∩ ∂Ui+1 ̸= ∅ for every 1 ≤ i ≤ k − 1. Furthermore, ∂Ui ∩ ∂Ui+1

contains a segment (greater than a single point) of some flow line η0sj , and ∪n
j=1U j disconnects ∂

inA1

from ∂outA1. We will then show that (with large probability) each Uj contains a unique “largest”

(in a sense we will describe shortly) connected component Vj of A1 \ Z−ϵ. We will show that these

Vj fulfill the requirements of (i) and furthermore that their diameters are large, which will be used

to verify (i) when we complete the proof of Lemma 4.1.

Lemma 4.4. Fix p ∈ (0, 1). There exist δ, ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0), with probability at

least 1− p, there exist components V1, . . . , Vk and a path γ as in (i) and such that diam(Vj) ≥ δ for

each 1 ≤ j ≤ k.

Proof. Step 1. Existence of the Uj. We set AT
1 = A1 ∩H and AB

1 = A1 ∩ (C \H) and let x (resp.

y) be the midpoint of R− ∩ ∂AT
1 (resp. R+ ∩ ∂AT

1 ). Note that a.s. there exists N ∈ N such that

for every k ∈ N, the curve η0sk merges with η0sj before exiting Ab
1 for some 1 ≤ j ≤ N . It follows

that {x, y} ∩ Z = ∅ a.s. (since flow lines do not hit fixed points a.s.) and let Ux (resp. Uy) be the

connected component of A1 \ Z containing x (resp. y). Let also Ux,q (resp. Uy,q) be the connected

component of Aq
1 \ Z such that x ∈ ∂Ux,q (resp. y ∈ ∂Uy,q) for q ∈ {T,B}. Note that Ux,q ⊆ Ux

and Uy,q ⊆ Uy for q ∈ {T,B}. Let V q be the union of the connected components of Aq
1 \ Z which

can be reached using a finite chain of connected components of Aq
1 \ Z starting from Ux,q where

each boundary between consecutive components in the chain contains a segment of one of the flow

lines η0sj .
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We claim that V q = Aq
1 \ Z a.s. Indeed, suppose that V q ̸= Aq

1 \ Z. Then, there exists a connected

component U of Aq
1 \Z such that U ∩ V q = ∅ which implies that there exists a point w ∈ Aq

1 ∩ ∂V
q
.

By combining [24, Lemma 4.1] with [7], we obtain that it is a.s. the case that finitely many flow lines

can intersect at w and there exist a leftmost and a rightmost flow line of the above flow lines. Let

Uw (resp. U ′
w) be the connected component of Aq

1 \ Z lying to the left (resp. right) of the leftmost

(resp. rightmost) flow line intersecting w. Fix ζ > 0 and suppose that dist(w, ∂Aq
1) ≥ 2ζ. Then,

[24, Lemma 4.1] combined with [17, Lemma A.3] imply that a.s. there exists N ∈ N such that

(∪N
j=1η

0
sj ) ∩B(w, ζ) = Z ∩B(w, ζ). Let I1, . . . , Im be the arcs of B(w, ζ) ∩ η0sj for 1 ≤ j ≤ N which

contain w. We assume that the arcs are ordered from left to right. Note that [24, Lemma 4.1]

combined with the tail decomposition of the flow lines of the whole-plane GFF [27, Proposition 3.6]

imply that it is a.s. the case that the following holds. For every j ∈ N, every time that η0sj
hits w, it has to make a simple loop around sj and by doing so it exits A1 and hence Aq

1. It

follows that I1, . . . , Im are simple curves a.s. By decreasing ζ > 0 if necessary, we can assume that

Z ∩B(w, ζ) = ∪m
j=1Ij . Since the arcs I1, . . . , Im are simple curves, the connected component Ũw of

B(w, ζ) \ I1 which is to the left of I1 has w on its boundary and likewise the connected component

Ũ ′
w of B(w, ζ) \ Im which is to the right of Im also has w on its boundary. This setup is depicted in

Figure 4.

Now, every connected component of B(w, ζ) \ (∪m
j=1Ij) which is between I1 and I2 is adjacent to

Ũw and the intersection of the boundaries of each component with Ũw all contain a segment of

I1. More generally, every connected component of B(w, ζ) \ (∪m
j=1Ij) which is between Ii and Ii+1

is adjacent to a connected component which is between Ii−1 and Ii (with each pair of adjacent

components again containing a segment of Ii in the intersection of their boundaries). So we obtain

that all of the connected components of B(w, ζ) \ (∪m
j=1Ij) are connected to Ũw in this way and

likewise with Ũ ′
w in place of Ũw. Thus, the graph of connected components of B(w, ζ) \ (∪m

j=1Ij) is

connected and the closure of its union is equal to B(w, ζ). Note that Ũw ⊆ Uw (resp. Ũ ′
w ⊆ U ′

w)

and B(w, ζ) ∩ ∂Ũw = B(w, ζ) ∩ ∂Uw (resp. B(w, ζ) ∩ ∂Ũ ′
w = B(w, ζ) ∩ ∂U ′

w) for ζ > 0 sufficiently

small. Note also that Uw (resp. U ′
w) can be connected to Ux,q through a finite chain of connected

components of Aq
1 \ Z. It follows that B(w, ζ) ⊆ V

q
but that is a contradiction since w ∈ ∂V

q
.

Therefore, we obtain that V q = Aq
1 \Z a.s. for q ∈ {T,B}. In particular, for every q ∈ {T,B}, there

exists nq ∈ N and connected components U q
1 , . . . , U

q
nq of Aq

1 \ Z such that Ux,q = U q
1 , U

y,q = U q
nq

and ∂U q
j ∩ ∂U q

j+1 contains a segment of some flow line η0sk for every 1 ≤ j ≤ nq − 1.

Step 2. Existence of the Vj and path γ. We will first describe a collection of “good” events that

depend on the realization of the flow lines, each of which happen with high probability. Then, we

will assume that these events all occur, and show in this case that the Vj and path γ exist.

Step 2.1. Setup. First, we fix ϵ ∈ (0, 1) sufficiently small (to be chosen later). Note that if (η−ϵ
sj )

were flow lines of angle −ϵ of the whole-plane GFF, then their joint law would be independent of ϵ.

Hence, it follows from the proof of [17, Lemma A.3] and [24, Lemma 4.1] that there exists M ∈ N

independent of ϵ such that with probability at least 1−p/10, we have that A1\Z̃−ϵ = A1\(∪M
j=1η

−ϵ
sj ),

where Z̃−ϵ is the closure of the union of the η−ϵ
sj ’s when the latter are stopped at the first time

that they exit Ab
1. Applying the same argument also to the flow lines (η0sj )sj∈S , we conclude that

there exists a possibly larger value of M such that with probability at least 1 − p/10, we have

A1 \ Z−ϵ = A1 \ ∪M
j=1(η

0
sj ∪ η

−ϵ
sj ).

For each q ∈ {T,B} and every 1 ≤ j ≤ nq − 1, ∂U q
j ∩ ∂U q

j+1 contains a segment Iqj of some flow

line η0sk , and there must exist xqj ∈ Iqj (that can be chosen in a measurable way) and δqj > 0 such
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xqj

Iqj

yqj

zqj

wqj
γqj

B(xqj ,
δ1
2 )

η0s` η−εs`

w

I1

I2 I3 I4

Ũw Ũ ′w

B(w, ζ)

Figure 4. Left: A point w ∈ Aq
1 as described in Step 1 of the proof of Lemma 4.4.

I1, . . . , Im are the segments of those flow lines which intersect w, ordered from left to

right. Every connected component of B(w, ζ) \ (∪m
j=1Ij) can be connected to both

Ũw and Ũ ′
w via a finite chain of components. Right: Part of the flow-line segment

Iqj which is contained in ∂U q
j ∩ ∂U q

j+1. We assume without loss of generality that Uj

lies to the left of Iqj and that U q
j+1 lies to the right. Here, Iqj is part of the flow line

η0sℓ . Not shown are the sets W q
j and W q

j+1, but y
q
j , z

q
j are chosen such that yqj ∈W q

j

and zqj ∈W q
j+1. We also show the simple curve γqj .

that B(xqj , δ
q
x) ∩ Z ⊆ Iqj . In particular, there exists δ1 > 0 such that with probability at least

1− p/10 each δqj can be chosen to be greater than δ1. Furthermore, there exists δ2 > 0 such that

with probability 1− p/10 there exist yqj ∈ B(xqj , δ1/2) ∩ U
q
j and zqj ∈ B(xqj , δ1/2) ∩ U

q
j+1 such that

dist(yqj , Z), dist(z
q
j , Z) > δ2 for all j, q. By possibly making δ2 smaller we can assume that with

probability at least 1− p/10 each U q
j contains a ball of radius 2δ2. We assume from now on that all

of these events also occur. The segment Iqj and points xqj , y
q
j , z

q
j are shown in Figure 4.

For each q ∈ {T,B} and 1 ≤ j ≤ nq, we can choose a setW q
j ⊊ U q

j such that {z ∈ U q
j : dist(z, ∂U

q
j ) >

δ2} ⊆ W q
j and dist(∂W q

j , ∂U
q
j ) > 0. One method of doing so in a measurable way is to pick a

conformal transformation ϕj,q : U q
j → D which is measurable with respect to U q

j and then let

W q
j = ϕ−1

j,q (B(0, r)) where r ∈ (0, 1) is the infimum over all s such that {z ∈ U q
j : dist(z, ∂U

q
j ) >

δ2} ⊆ ϕ−1
j,q (B(0, s)). We can now choose δ3 > 0 such that with probability at least 1 − p/10 we

have dist(W q
j , ∂U

q
j ) > δ3 for all j, q (this is because for any given configuration of sets U q

j , this will

hold for some random δ′3 > 0, so we can choose a deterministic value δ3 such that δ′3 > δ3 with

high probability). Perhaps by making δ2, δ3 smaller, we can similarly assume that with probability

1 − p/10 that dist(x, Z) > δ2 (recall that x is the midpoint of R− ∩ ∂AT
1 ), that there exist a set

W x ⊆ Ux such that {z ∈ Ux : dist(z, ∂U q
j ) > δ2} ⊆ W x, and that dist(W x, ∂Ux) > δ3. We do the

same for y (the midpoint of R+ ∩AT
1 ) and we assume further that these events hold.

Finally, let δ4 < min(δ1, δ2, δ3)/100 and using Proposition 3.3 and [24, Lemma 4.1] choose ϵ0 > 0

small enough that for any fixed ϵ ∈ (0, ϵ0) the following holds with probability at least 1 − p/10.

For all 1 ≤ j ≤M , η−ϵ
z and η0z are δ4-close until η−ϵ

z exits Ab
1. Note that at each intersection point,

η−ϵ
z hits η0z on the right side of η0z since −ϵ < 0. We emphasize that η−ϵ

z plays the role of η0, and is

considered until it hits Ab
1, whereas η

0
z may leave Ab

1, but not (A
b
1)δ and hence will not leave Ac

1

either until after the δ4-close condition loses validity.
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Step 2.2. Conclusion. Let us now discuss what happens when these events all occur, which with the

correct choice of parameters happens with probability at least 1− p. Suppose that for 1 ≤ ℓ ≤M a

flow line η−ϵ
sℓ

enters W q
j , so that there exists w ∈ η−ϵ

sℓ
∩W q

j . By our application of Proposition 3.3

there must exist a point z ∈ η0sℓ (which is hit before η0sℓ exits Ac
1) such that z ∈ B(w, δ4). But

then, dist(z, ∂U q
j ) ≥ dist(W q

j , ∂U
q
j )− dist(w, z) ≥ δ3 − δ4 > 0 meaning that z ∈ U q

j , a contradiction.

Therefore, none of the flow lines of angle −ϵ can enter W q
j so we can identify a unique connected

component V q
j of Aq

1 \ Z−ϵ such that {z ∈ U q
j : dist(z, ∂U

q
j ) ≥ δ2} ⊆ W q

j ⊆ V q
j ⊆ U q

j . Note that

since U q
j contains a ball of radius 2δ2, it follows that diam(V q

j ) ≥ δ2.

Fix j, q such that 1 ≤ j ≤ nq−1 and consider the segment Iqj of a flow line contained in ∂U q
j ∩∂U

q
j+1,

and assume without loss of generality that U q
j (resp. U q

j+1) is on the left (resp. right) side of Iqj
when it is viewed as a flow line (the other scenario occurring will not change the argument). Let

xqj , y
q
j , z

q
j be points as described above and shown in Figure 4. Note that any flow line η−ϵ

sℓ
with

1 ≤ ℓ ≤ M entering B(xqj , δ1/2) must at all times stay within distance δ4 of η0sℓ by our previous

application of Proposition 3.3. Since B(xqj , δ1) ∩ Z ⊆ Iqj , the only possibility is that η0sℓ is a flow

line of which Iqj is a segment. Furthermore, since η−ϵ
sℓ

must intersect η0sℓ on the right side of the

latter, −ϵ-angle flow lines can only enter B(xqj , δ1/2) ∩ U
q
j+1, not B(xqj , δ1/2) ∩ U

q
j . Note that it

could be the case that Iqj is a segment of multiple flow lines η0sk for 1 ≤ k ≤M , where these flow

lines have merged before they trace Iqj , so in particular it is possible that multiple −ϵ-angle flow

lines enter B(xqj , δ1/2). However, by Proposition 3.3, each of these flow lines must intersect Iqj at

many points in B(xqj , δ1/2), and since they cannot cross each other, they are forced to merge. After

this possible merging point, there again must be an intersection point where η−ϵ
sℓ

intersects Iqj ; call

this point wq
j . Since the flow lines, when restricted to B(xqj , δ1/2), are all simple curves, we can

draw a curve γ′ from wq
j to zqj which intersects these flow lines only at wq

j . As we have previously

observed that no flow lines of angle −ϵ enter B(xqj , δ1/2) ∩ U
q
j , we can draw γ′′ connecting yqj to

wq
j . By concatenating these two curves, we obtain a curve γqj from yqj to zqj , which intersects Z−ϵ at

exactly one point, wq
j . The point wq

j and curve γqj are shown in Figure 4. Finally, we notice that

since dist(yqj , ∂U
q
j ),dist(z

q
j , ∂U

q
j ) > δ3 we must in fact have that yqj ∈ V q

j , z
q
j ∈ V q

j+1 from which we

conclude that ∂V q
j ∩ ∂V q

j+1 ̸= ∅, and that γqj is a path starting in V q
j , ending in V q

j+1 and passing

through the intersection of their boundaries exactly once.

It remains to go from the above components V q
j and paths γqj to the components Vj and path γ

as described in (i), which is slightly technical but not difficult. First we deal with the situation in

Ux, the connected component of A1 \ Z. We have assumed that x, yT1 , y
B
1 are all distance at least

δ3 from ∂Ux, meaning we can argue as above to show that they lie in the same component V x of

A1 \W−ϵ (recall that W−ϵ ⊆ Z−ϵ and in W−ϵ the flow lines of angle 0 are stopped slightly earlier).

It follows that we can draw paths γ′ from x to yT1 such that γ′((0, 1]) is in V x ∩AT
1 and γ′′ from yB1

to x such that γ′′([0, 1)) is in V x ∩AB
1 . Note that V x must contain V T

1 , V
B
1 meaning in particular

that diam(Vx) ≥ δ2. We perform an analogous procedure in Uy. We set V1 = V x and VnT = V y.

Consider now V T
j where 2 ≤ j ≤ nT − 1. We can choose (in an arbitrary measurable way) a simple

curve γ̃Tj from zTj−1 to yTj in V T
j . let Vj be the connected component of A1 \W−ϵ containing V T

j

(this may be V T
j itself or some larger set). By concatenating these curves with the curves γTj we end

up with a curve γT in AT
1 which starts at yT1 and ends at zTnT−1. If we have Vj = Vj+k for k > 0,

we can modify the path γT accordingly to skip those components Vj+1, . . . , Vj+k−1. We can also

modify γT to be simple, if necessary. We perform a similar procedure in AB
1 , and for nT +1 ≤ j ≤ k

we let Vj be the component of A1 \W−ϵ containing V B
j−nT+1, where k = nT + nB.
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zj
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η−πzj

η−πxjη0xj

η0zj

η−εzj

Qj

P

P ′

Figure 5. Lj is the pocket with opening point xj and closing point zj , where xj
comes before zj in our ordering. If ηθ enters Lj , it can only do so by crossing η0zj to

enter Q or P , or by crossing η−π
zj to enter P . It cannot enter a pocket of the form P ′.

In any case, ηθ is trapped between η0zj and η−ϵ
zj .

In conclusion, we will have V1 = Vk, ∂Vj ∩ Vj+1 ̸= ∅ for all j, and we can form the path γ by

concatenating γT , γB and the paths γ′, γ′′ as described above. As before, we can modify γ if

necessary to ensure it is simple. Therefore, the Vj and γ satisfy the conditions described in (i). Note

finally that diam(Vj) ≥ δ2 for all j by construction, so to conclude the proof we simply identify

δ = δ2. □

Proof of Lemma 4.1. By Lemma 4.4, there exist δ, ϵ0 > 0 such that for ϵ ∈ (0, ϵ0), with probability

at least 1 − p/2 there exist components U1, . . . , Uk and V1, . . . , Vk and a path γ satisfying the

properties in (i) with diam(Vj) ≥ δ for all 1 ≤ j ≤ k. By Lemma 4.3, there exist (a possibly smaller)

ϵ0 > 0 and a > 0 such that with probability at least 1 − p/2 the conclusions of this lemma hold

with δ/100 in place of δ. Therefore, for a certain choice of the parameters ϵ0, a and δ, we have that

the above events all hold with probability at least 1− p. We will show that in the case that these

events hold, any flow line started from ∂A3 with angle in [−ϵ, 0] a.s. does not enter ∪k
j=1Vj when it

is stopped at the first time that it exits A4. This will be shown into two main steps. In the first

step, we will show that if ηθw enters either ∪n
j=1Fj or ∪m

j=1Lj , then it has to stay in the connected

components lying between a flow line of angle 0 and a flow line of angle −ϵ up until the first time

that it exits A4 after it has entered the above family of pockets. Note that ηθw has to enter one of

the above pockets in order to enter ∪k
j=1Vj . Hence, in the second step, we will show that the choice

of the V ′
j s implies that ηθw cannot enter ∪k

j=1Vj and so this will complete the proof of (ii).

Step 1. ηθw gets trapped between a flow line with angle 0 and a flow line with angle −ϵ. We can assume

that w ∈ ∂outA3 since a similar argument works when w ∈ ∂inA3. Suppose that η
θ
w intersects ∪k

j=1Vj
before exiting A4. Then, there exists 1 ≤ j ≤ m such that ηθw enters the interior of Lj . Let xj (resp.

zj) be the opening (resp. closing) point of Lj . Let also Qj be the connected component formed when

η0xj
(resp. η−π

xj
) merges with η0zj (resp. η−π

j
). The flow line interaction rules [27, Theorem 1.7] imply

that ηθw cannot enter the interior of Qj by crossing the arc of ∂Qj corresponding to η0xj
or the arc

corresponding to η−π
xj

. Also, in order to enter the interior of Qj by crossing the arc corresponding to

η−π
zj , it has to cross η−π−ϵ

zj from right to left but this does not occur due to the flow line interaction

rules. Hence, it can only enter the interior of Qj by crossing from left to right the arc corresponding
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to η0zj . By taking δ > 0 sufficiently small, we can assume that there are intersection points between

η0zj and η−ϵ
zj in the interior of Qj . Thus, the flow line interaction rules imply that after ηθw enters the

interior of Qj , it has to lie in the connected components whose boundaries consist of an arc of the

right side of η0zj and the left side of η−ϵ
zj up until exiting A4. Suppose that ηθw enters the interior

of Lj by entering a connected component P lying between η0xj
and η−π

xj
or between η0zj and η−π

zj ,

and which is traced entirely before η0xj
merges with η0zj and η−π

xj
merges with η−π

zj . Without loss of

generality, we can assume that P lies between η0zj and η−π
zj . Then, P has two marked points and

∂P consists of either one arc of the right side of η0zj and one arc of the left side of η−π
zj , or one arc of

the right side of η−π
zj and one arc of the left side of η0zj . We note that the flow line interaction rules

imply that the second case cannot hold and so necessarily we are in the first case. If ηθw enters P by

crossing the arc contained in η0zj , then the flow line interaction rules imply that after entering P ,

the curve ηθw has to lie in the connected components whose boundaries consist of an arc of the right

side of η0zj and an arc of the left side of η−ϵ
zj up until it exits A4. If η

θ
w enters P by crossing the arc

contained in η−π
zj , then it has to exit P by crossing η−ϵ

zj since it cannot cross η−π
zj again. Similarly, it

cannot cross η−ϵ
zj for a second time and so combining with the flow line interaction rules, we obtain

that after it crosses η−ϵ
zj , the curve ηθw has to lie in the connected components whose boundaries

consist of an arc of the right side of η0zj and an arc of the left side of η−ϵ
zj up until it exits A4. In

either case, note that by choosing δ small enough, we can ensure that η0zj , η
−ϵ
zj do not leave Aa

4 before

this point.

Step 2. Conclusion of the proof of (ii). Suppose that there exists 1 ≤ j ≤ k and x ∈ ηθw ∩ Vj such

that ηθw hits x before it exits A4. Then, there exists y ∈ (aZ)2 ∩ Aa
2 such that x ∈ V , where V is

a connected component with two marked points whose boundary consists of an arc of the right

side of η0y and an arc of the left side of η−ϵ
y . Since we have assumed the conclusion of Lemma 4.3

with parameter δ/100 and since δ ≪ dist(∂A4, ∂A
a
4), we have that neither η0y nor η−ϵ

y exit Aa
4 before

finishing tracing ∂V and diam(V ) ≤ δ/50. Also, a.s there exist j1, j2 ∈ N such that η0sj1
(resp. η−ϵ

sj2
)

merges with η0y (resp. η−ϵ
y ) before entering A′

1, where A
′
1 is a fixed annulus centered at 0 such that

A1 ⊊ A′
1 ⊊ Aa

1. Then, if δ > 0 is sufficiently small, we have that V is a connected component of the

complement in A′
1 of the union of η0sj1

and η−ϵ
sj2

when they are both stopped at the first time that

they exit Ab
1. Note that there exists a connected component V̂ of the above set such that Vj ⊆ V̂ .

Then, x ∈ V̂ and so we must have that Vj ⊆ V̂ = V which implies that diam(Vj) ≤ diam(V ). But

diam(Vj) ≥ δ by the construction of the Vj and diam(V ) < δ/50 so we obtain a contradiction. It

follows that ηθw does not enter ∪k
j=1Vj before exiting A4. By replacing the pockets Lj ’s with the

pockets Fj ’s and using a similar argument, we obtain that ηθw does not enter ∪k
j=1Vj before exiting

A4 when θ ∈ [−ϵ, 0] and w ∈ ∂inA3. This completes the proof of the lemma. □

Lemma 4.5. Fix κ ∈ (0, 4), b ∈ (0, 1), c,M > 0. Then, there exist a, ϵ0 ∈ (0, 1) depending only on

κ, b, c and M such that for every ϵ ∈ (0, ϵ0) the following is true. Let h0 be a zero-boundary GFF

on H and let f be a deterministic harmonic function on H whose boundary values are piecewise

constant, they change only finitely many times and ||f ||∞ ≤ M . Set h = h0 + f . Then, a.s. for

every compact set K ⊆ H, there exists n0 ∈ N such that for every n ≥ n0, z ∈ (e−cnZ)2 ∩K, we

have that Eh
z,2−m(ϵ) occurs for some bn ≤ m ≤ n.

Proof. Let K ⊆ H be a fixed compact set and set d = dist(K, ∂H) > 0. Let m0 ∈ N be such

that r = 2−m0 ∈ (0, d/2). For every z ∈ K we let h̃z,r be a zero-boundary GFF on B(z, r) and

let ã ∈ (12 , 1) be such that A4 ⊆ B(0, ã). Then, arguing as in the proof of [24, Lemma 4.1], we
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obtain that if Zz,r is the Radon-Nikodym derivative of the law of h|B(z,ãr) with respect to the law

of h̃z,r|B(z,ãr), then there exists p ∈ (1,∞) depending only on r, K and M such that E[Zp
z,r] ≲ 1,

where the implicit constant depends only on r, K and M .

Next we fix c̃ > 0 and for N ∈ N we let Nh
z,r(N, ϵ) (resp. N

h̃z,r
z,r (N, ϵ)) be the number of 1 ≤ k ≤ N

for which Eh
z,rk

(ϵ) (resp. E
h̃z,r
z,rk (ϵ)) occurs where rk = r2−k for every k ∈ N. It follows by combining

Lemma 4.1 and Remark 4.2 with the proof of [24, Proposition 4.3] that there exist constant

c0 > 0, ϵ0 ∈ (0, 1) depending only on c̃ and b such that P[N
h̃z,r
z,r (N, ϵ) ≤ bN ] ≤ c0e

−c̃N for every

z ∈ K, ϵ ∈ (0, ϵ0) and N ∈ N. Therefore, we obtain that

P[Nh
z,r(N, ϵ) ≤ bN ] ≤ E[Zp

z,r]
1/pP[N

h̃z,r
z,r (N, ϵ) ≤ bN ]1/q ≲ e−c̃N/q

for every N ∈ N, ϵ ∈ (0, ϵ0) and z ∈ K, where the implicit constant depends only on r,K,M, c̃ and

b, and q is such that q > 1 and 1/p + 1/q = 1. Hence, by taking c̃ sufficiently large, we obtain

that for every ϵ ∈ (0, ϵ0), we have a.s. that there exists n0 ∈ N such that Nh
z,r(n, ϵ) > bn for every

n ≥ n0 and z ∈ (e−cnZ)2 ∩ K. Then, the claim of the statement of the lemma follows since if

Nh
z,r(n, ϵ) > bn, then there exists bn ≤ m ≤ n such that Eh

z,2−m(ϵ) occurs. □

4.3. Completing the proof of Theorem 1.1.

Proof of Theorem 1.1. Step 1. Overview and setup. Let h be a GFF on H with boundary values

given by −a (resp. b) on R− (resp. R+) and let θ′1 < θ′2 satisfy (1.2). We will prove that the

adjacency graph of H \F(θ′1, θ′2) is connected. We pick ϵ ∈ (0, 1) sufficiently small (to be chosen and

depending only on a, b, κ, θ′1 and θ′2) and such that n = 4(θ′2 − θ′1)/ϵ ∈ N. For j ∈ {0, . . . , n}, we set

θj = θ′2 − j
ϵ

4

and hj = h + θjχ, and note that the boundary conditions of hj are given by −a + θjχ on

R− and b + θjχ on R+. Note also that the boundary conditions of hj lie in [−M,M ] where

M = max{|a|, |b|} + χmax{θ′1, θ′2} depends only on a, b, κ, θ1 and θ2. In the case that we have

equality in (1.2), if θ′1 = −(λ+ b)/χ (resp. θ′2 = (λ+ a)/χ) then we identify the flow line ηθ′1 ≡ ηθn
(resp. ηθ′2 ≡ ηθ0), which is not defined a priori, with R+ (resp. R−).

Our goal is to show that the graph of connected components of H \ F(θ′1, θ′2) is connected a.s. This

will be achieved through several steps. In Step 2, we use the events introduced in Remark 4.2 and

use Lemma 4.5 to deduce that at a sufficiently dense set of scales we have that we can find annuli

such that in every such annulus, there exists a finite chain of connected components of H \F(θ′1, θ′2)
disconnecting the inner from the outer boundary of the annulus. In Step 3, we use the above

property to deduce that a.s. the following is true. For every j ∈ {0, . . . , n − 1}, any two distinct

connected components of H \ F(θj+1, θj) lying between ηθj and ηθj+1
and in the same connected

component G of H \ (ηθj ∪ ηθj+1
), can be connected via a finite chain of connected components of

H \ F(θj+1, θj) which are all contained in G. Next, in Step 4, we show that the graph of connected

components of H \ ∪n
j=0ηθj is connected a.s. Finally, combining Steps 3 and 4, we show in Step 5

that any two distinct connected components of H\F(θ′1, θ′2) lying in different connected components

of H \ ∪n
j=0ηθj can be connected via a finite chain of connected components of H \ F(θ′1, θ′2), and

thus completing the proof of the lemma.

Step 2. Annulus events. Suppose that we have the setup of Lemma 4.1 and Remark 4.2. Since M

depends only on a, b and κ, combining with Lemma 4.5, we obtain that if we fix ã ∈ (0,∞), b̃ ∈ (0, 1)
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Figure 6. Left: The finite collection of flow lines ηθj . Right: The fan F (θj+1, θj).

and choose ϵ ∈ (0, 1) sufficiently small (depending only on a, b, ã, b̃ and κ), then for every 1 ≤ j ≤ n,

a.s. the following holds. For every compact set K ⊆ H there exists n0 ∈ N such that for every

n ≥ n0 and every z ∈ (e−ãnZ2)∩K, there exists m ≥ n0 with (1− b̃)n ≤ m ≤ n such that E
hj

z,2−m(ϵ)

occurs. Let E be the event that the above event holds for every 1 ≤ j ≤ n with the choice of

ã = 1, b̃ = 1/2 and from now on, we assume that E occurs.

Step 3. The graph of connected components of H \F(θj+1, θj) restricted to any connected component

G of H \ (ηθj ∪ ηθj+1
) is connected for every 0 ≤ j ≤ n− 1. Fix 0 ≤ j ≤ n− 1. We will show that

the following is true a.s. Let U1, U2 be two distinct connected components of H \ F(θj+1, θj) lying

between ηθj and ηθj+1
, and in the same connected component G of H \ (ηθj ∪ ηθj+1

). Then, there

exists a finite chain of connected components of H \ F(θj+1, θj) connecting U1 to U2 and contained

in G.

Note that by [25], F does not hit fixed points a.s. (see also Lemma 5.1). Now, to prove the claim, we

fix z ∈ H∩Q2 and let U be the connected component of H \F(θj+1, θj) containing z. Suppose that

we are working on the event that U is contained in a connected component G of H \ (ηθj+1
∪ ηθj )

which lies between ηθj+1
and ηθj . Let K be the closure of the union of connected components of

H \ F(θj+1, θj) which are contained in G and can be connected to U via a finite chain of connected

components of H \ F(θj+1, θj) contained in G. Suppose that G ⊈ K and let V be a connected

component of G \K. Note that ∂V \ ∂G ̸= ∅ since otherwise we would have that G ⊆ V but that is

a contradiction since z /∈ V . Thus, we fix x ∈ ∂V ∩G.

Since E occurs, there exist y ∈ H, r > 0 such that x ∈ B(y, r/2), B(y, r) ⊆ G, V \ B(y, r) ̸= ∅
and E

hj
y,r(ϵ) occurs. Let V1, . . . , Vm be the components as in (i) in the definition of E

hj
y,r(ϵ) and let

γ be the corresponding path. We claim that F(θj+1, θj) does not enter any of the Vi’s. Indeed,

first we note that a flow line of h with angle in [θj+1, θj ] corresponds to a flow line of hj with

angle in [−ϵ/4, 0]. Fix θ ∈ [θj+1, θj ] and suppose that ηθ enters ∪m
i=1Vi and let t be such that

ηθ(t) ∈ ∪m
i=1Vi. Set σ = sup{s ≤ t : ηθ(s) ∈ ∂ϕz,r(A3)}. By the continuity of ηθ, we have that

σ < ∞ a.s. Fix µ > 0 deterministic and small enough that dist(∂A3, ∂A4) > 100µ which ensures

that B(ηθ(σ), 100µr) ∩ ∂ϕz,r(A4) = ∅. Note that ηθ corresponds to a flow line of hj with angle

θ − θj ∈ [−ϵ/2, 0] ⊆ [−ϵ, 0]. Then, a.s. there exists j1 ∈ N such that ηθϕz,r(aj1 )
merges with ηθ before

it exits B(ηθ(σ), µr) and such that ϕz,r(aj1) ∈ B(ηθ(σ), µr/100), where η
θ
ϕz,r(aj1 )

is the flow line of h

with angle θ and starting from ϕz,r(aj1). Hence, ηθ(t) lies in the range of ηθϕz,r(aj1 )
when the latter

is stopped at the first time that it exits ϕz,r(A4). This implies that the latter set intersects ∪m
i=1Vi

but that is a contradiction due to (ii).
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Figure 7. Left: In the setting of Step 3, G is a connected component of H\∪n
j=0ηθj

lying between ηθj and ηθj+1
and U is the connected component of H\F containing the

reference point z ∈ H ∩Q2. K is the closure of the union of connected components

of H \ F(θj+1, θj) which are contained in G and can be connected to U via a finite

chain of connected components of H \ F(θj+1, θj) contained in G. V is a connected

component of G \ K and x ∈ ∂V . Right: V1, . . . , Vm are the components as in

(i) in the definition of E
hj
y,r(ϵ). Since x ∈ ∂V , each Vi is contained in a connected

component Wi of H \ F (θj+1, θj) which is in K (V and the components Gn are not

shown). Since γ ⊆ K and γ̃ ⊆ V , and γ and γ̃ must intersect, V ∩K ̸= ∅, which is a

contradiction.

Therefore, ηθ does not enter ∪m
i=1Vi. Since θ ∈ [θj+1, θj ] was arbitrary, we obtain that F(θj+1, θj)

does not enter ∪m
i=1Vi a.s. Therefore, for every 1 ≤ i ≤ m, there exists a unique connected component

Wi of H\F(θj+1, θj) such that Vi ⊆Wi. SinceWi∩G ̸= ∅, we have thatWi ⊆ G for every 1 ≤ i ≤ m.

Also, since x ∈ ∂V , there exists a sequence (Gn) of connected components of H \ F(θj+1, θj) such

that Gn ⊆ G and U is connected to Gn via a finite chain of connected components of H \F(θj+1, θj)

contained in G for every n ∈ N, and dist(x,Gn) → 0 as n → ∞. Thus, Wi is connected to U

via such a chain for every 1 ≤ i ≤ m and so γ ⊆ K. Fix w ∈ V \ B(y, r) and w̃ ∈ V ∩ B(y, r/2).

Then there exists a continuous path γ̃ in V connecting w to w̃ and so γ̃ ∩ γ ̸= ∅ which implies that

K ∩ V ̸= ∅. This contradicts our initial assumption and so G ⊆ K. Let Ũ be another connected

component of H \F(θj+1, θj) contained in G and fix w ∈ Ũ . Then, w ∈ K and so we must have that

Ũ is connected to U via such a finite chain. The claim then follows since z ∈ H ∩Q2 was arbitrary.

Step 4. The graph of connected components of H \ ∪n
j=0ηθj is connected. We will show that the

following is true a.s. Let U, V be two distinct connected components of H \ ∪n
j=0ηθj . Then there

exist distinct connected components of H \ ∪n
j=0ηθj , U1, . . . , Um such that U = U1, V = Um and for

every 1 ≤ j ≤ m− 1, the following holds. There exists θ ∈ {θ0, . . . , θn} such that Uj and Uj+1 both

lie on opposite sides of ηθ and ∂Uj ∩ ∂Uj+1 contains a segment of ηθ whose distance from ∂H is

positive.

We will prove the claim for H \ ∪j
i=0ηθi using induction on 0 ≤ j ≤ n. Note that the claim is true

a.s. for the set H \ η, where η is an SLEκ(ρ
L; ρR) process in H from 0 to ∞ with ρL, ρR > −2 and

the force points located at 0− and 0+. If we have equality in either equation in (1.2), note that

we can ignore the flow line ηθ0 or ηθn (or both) which corresponds to R− or R+, since this flow

line will not effect H \ ∪n
j=0ηθj , so we may assume that we do not have equality in (1.2). Hence

the j = 0 case follows since ηθ0 = ηθ′2 has the law of such a process with ρL = −1 + (a − θ′2χ)/λ

and ρR = −1 + (b+ θ′2χ)/λ, each of which is greater than −2 since we have a strict inequality in

(1.2). Next, suppose that the claim holds for j where 0 ≤ j ≤ n − 1. Note that ηθj has the law
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of an SLEκ(ρ
L; ρR) with ρL = −1 + (a − θjχ)/λ and ρR = −1 + (b + θ′2χ)/λ. Suppose first that

ρR ≥ κ/2− 2 and so ηθj does not hit (0,∞) a.s. Let U, V be two distinct connected components

of H \ ∪j+1
i=0ηθi . Suppose that both of U and V lie to the left of ηθj . Then, U and V are both

connected components of H \ ∪j
i=0ηθj . Let U1, . . . , Um be the chain of connected components of

H \ ∪j
i=0ηθj connecting U to V and satisfying the properties of the induction hypothesis. If none

of the Ui’s is the connected component of H \ ∪j
i=0ηθi lying to the right of ηθj , then all of the Ui’s

are connected components of H \ ∪j+1
i=0ηθi and so the claim holds. Otherwise, let i ∈ {1, . . . ,m} be

such that Ui is the connected component of H \ ∪j
i=0ηθi lying to the right of ηθj . Let also Ii and

Ii+1 be segments of ηθj such that dist(Ii ∪ Ii+1, ∂H) > 0, Ii ⊆ ∂Ui−1 ∩ ∂Ui and Ii+1 ⊆ ∂Ui ∩ ∂Ui+1.

Note that conditionally on ηθj , the curve ηθj+1
is an SLEκ(ρ

L
j+1, ρ

R
j+1) from 0 to ∞ in the connected

component of H \ ηθj lying to the right of ηθj , where

(4.1) ρLj+1 =
(θj − θj+1)χ

λ
− 2, ρRj+1 =

b+ θj+1χ

λ
− 1.

Note also that we can pick points xi ∈ Ii and xi+1 ∈ Ii+1 in a way which is measurable with respect to

σ(ηθ0 , . . . , ηθj ) and such that xi (resp. xi+1) lies in the interior of Ii (resp. Ii+1). Since SLEκ(ρ
L; ρR)

processes with ρL, ρR > −2 do not hit fixed points a.s., we obtain that there exist connected

components U i, V i of the complement of ηθj+1
in the connected component of H \ ηθj lying to the

right of ηθj and segments Ji and Ji+1 of ηθj such that xi ∈ Ji ⊆ Ii ∩ ∂U i, xi+1 ∈ Ji+1 ⊆ Ii+1 ∩ ∂V i

and both of U i and V i lie to the left of ηθj+1
. Then, the j = 0 case implies that there exist connected

components U i
1, . . . , U

i
ki

of the complement of ηθj+1
in the connected component of H \ ηθj lying to

the right of ηθj such that the following hold. U i = U i
1, V

i = U i
ki

and for every 1 ≤ ℓ ≤ ki − 1 the

following holds. U i
ℓ and U i

ℓ+1 lie on opposite sides of ηθj+1
and ∂U i

ℓ ∩ ∂U i
ℓ+1 contains a segment of

ηθj+1
whose distance from ηθj ∪ ∂H is positive. Note that all of the Uℓ’s are connected components

of H \ ∪j+1
i=0ηθi . Thus, by repeating the above procedure for every 1 ≤ i ≤ m such that Ui is the

connected component of H \ ∪j
ℓ=0ηθℓ lying to the right of ηθj , we obtain the claim.

Suppose now that U lies to the left of ηθj and V lies to the right of ηθj . Let G be the connected

component of H\∪j
i=0ηθi lying to the right of ηθj . Then there exist connected components U1, . . . , Um

of H \ ∪j
i=0ηθi lying to the left of ηθj with the same properties as in the induction hypothesis such

that U = U1 and Um = G. Also, ∂Um−1 ∩G contains a segment I of ηθj such that dist(I, ∂H) > 0

and choose x in the interior of I in a way which is measurable with respect to σ(ηθ0 , . . . , ηθj ). Again,

a.s. there exists a connected component F of G \ ηθj+1
lying to the left of ηθj+1

and a segment J of

ηθj such that x ∈ J ⊆ I ∩ ∂F . Note that U1, . . . , Um−1 are all connected components of H \ ∪j+1
i=0ηθi .

If F = V , then the chain U1, . . . , Um−1, F satisfies the conditions of the claim. If F ≠ V , then

the j = 0 case implies that there exist connected components V1, . . . , Vℓ of G \ ηθj+1
such that

F = V1, V = Vℓ and for every 1 ≤ i ≤ ℓ− 1, the following holds. ∂Vi ∩ ∂Vi+1 contains a segment

of ηθj+1
with positive distance from ηθj ∪ ∂H and Vi, Vi+1 lie on opposite sides of ηθj+1

. The claim

then follows since all of the Vi’s are connected components of H \ ∪j+1
i=0ηθi . Finally, if U, V both lie

to the right of ηθj , then the claim follows similarly since all of the connected components of G \ ηθj+1

are also connected components of H \ ∪j+1
i=0ηθi .

It remains to treat the case that ρR ∈ (−2, κ/2 − 2) and so ηθj hits (0,∞) a.s. This follows by

arguing as in the previous paragraphs and noting that conditionally on ηθj , the curve ηθj+1
has the

law of an SLEκ(ρ
L
j+1, ρ

R
j+1) independently in each of the connected components of H \ ηθj which lie

to the right of ηθj and between their two marked points. Here, ρLj+1 and ρRj+1 are as in (4.1).
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Step 5. Conclusion of the proof. Now we complete the proof of the theorem. Let U, V be two distinct

connected components of H \ F(θ′1, θ′2). Note that the connected components of H \ (ηθ0 ∪ ηθn)
lying to the left (resp. right) of ηθ0 (resp. ηθn) are also connected components of H \ F(θ′1, θ

′
2).

Also, for every 0 ≤ j ≤ n − 1, we have that every connected component of H \ F(θj+1, θj) lying

between ηθj and ηθj+1
is a connected component of H \ F(θ′1, θ′2) due to the flow line interaction

rules. Hence, it follows from Step 3 that if U and V are both contained in the same connected

component of H \ ∪n
i=0ηθi , then U and V can be connected via a finite chain of components as

desired. Let Ũ (resp. Ṽ ) be the connected component of H \ ∪n
i=0ηθi containing U (resp. V ), and

suppose that Ũ ̸= Ṽ . Then, there exist connected components of H \ ∪n
i=0ηθi , Ũ1, . . . , Ũm such that

Ũ = Ũ1, Ṽ = Ũm and for every 1 ≤ i ≤ m− 1 the following is true. There exist ji ∈ {0, . . . , n} and

a segment Ji of ηθji such that Ji ⊆ ∂Ũi ∩ ∂Ũi+1, dist(Ji, ∂H) > 0 and Ũi, Ũi+1 lie on opposite sides

of ηθji . Fix i ∈ {2, . . . ,m} and suppose that both of Ũi−1 and Ũi lie between ηθ0 and ηθn . Then,

we have that 2 ≤ ji−1 ≤ m− 1 and we can assume that Ũi−1 (resp. Ũi) lies to the left (resp. right)

of ηθji−1
. Note that a flow line of h with angle in [θji−1−1, θji−1+1] corresponds to a flow line of

hji−1 with angle in [−ϵ/2, 0]. Fix a point xi−1 in the interior of Ji−1 and let yi−1 ∈ H, r > 0 be

such that xi−1 ∈ B(yi−1, r/2), B(yi−1, r) ∩ ηθji−1
⊆ Ji−1 and E

hji−1
yi−1,r(ϵ) occurs. Let Ũ i

1, . . . , Ũ
i
ki

be

the connected components as in the definition of E
hji−1
yi−1,r(ϵ) and let γi be the corresponding path.

Arguing as in Step 3, we obtain that ∪ki
j=1Ũ

i
j ⊆ H \ (F(θji−1 , θji−1−1)∪F(θji−1+1, θji−1)) and since γi

crosses Ji−1, it follows that there exist i1, i2 ∈ {1, . . . , ki} such that Ũ i
i1
⊆ Ũi−1 and Ũ i

i2
⊆ Ũi, and

∂Ũ i
i1
∩ ∂Ũ i

i2
⊆ Ji−1. Let Ṽ

i
i1

(resp. Ṽ i
i2
) be the connected component of H \ F(θji−1 , θji−1−1) (resp.

H \ F(θji−1+1, θji−1)) containing Ũ i
i1

(resp. Ũ i
i2
). Then Ṽ i

i1
⊆ Ũi−1, Ṽ

i
i2

⊆ Ũi and ∂Ṽ i
i1
∩ ∂V i

i2
̸= ∅.

Moreover, by Step 3, any connected component of H \ F(θji−1 , θji−1−1) (resp. H \ F(θji−1+1, θji−1))

contained in Ũi−1 (resp. Ũi) can be connected to Ṽ i
i1

(resp. Ṽ i
i2
) via a finite chain of connected

components of H \ F(θji−1 , θji−1−1) (resp. H \ F(θji−1+1, θji−1)) contained in Ũi−1 (resp. Ũi). But

these sets are also connected components of H \ F(θ′1, θ′2) and so any two connected components of

H \F(θ′1, θ′2) contained in Ũi−1 and Ũi respectively can be connected via a finite chain of connected

components in H \ F(θ′1, θ′2). A similar argument shows that the same is true when either Ũi−1 or

Ũi does not lie between ηθ0 and ηθn . The claim then follows by fixing a connected component Ûi of

H \ F(θ′1, θ′2) contained in Ũi for every 2 ≤ i ≤ m− 1. □

5. The fan determines flow lines

In this section we will prove Theorem 1.2. As we will explain in Lemma 5.10, each connected

component U of H \ F(θ1, θ2) a.s. has an associated angle θ(U) which satisfies the property that

if ϕ > θ(U) (resp. ϕ < θ(U)) then ηϕ passes to the left (resp. right) of U . The core part of our

argument is to show that θ(U) is a.s. measurable with respect to the fan F(θ1, θ2) as a set. Let us

first explain why this suffices to prove that for each θ ∈ [θ1, θ2], the flow line ηθ is a.s. measurable

with respect to the fan. Fix θ ∈ [θ1, θ2] and define Lθ ⊆ H to be the closure of the union of all

components U with θ(U) > θ. This set is also determined by F(θ1, θ2). By Lemma 5.1, F(θ1, θ2)

has measure 0 a.s. Therefore, for any point z lying to the left of ηθ, there exist points z′ /∈ F(θ1, θ2)

arbitrarily close to z and also lying to the left of ηθ. If U = U(z′) is the connected component of

such a point, then θ(U) > θ, meaning that z′ ∈ Lθ. It follows that z ∈ Lθ. Similarly, if z is to the

right of ηθ, then z /∈ Lθ a.s. Furthermore, notice that the above holds for all points z ∈ H \ ηθ
simultaneously on the almost sure events that F(θ1, θ2) has measure 0, ηθ is a well-defined simple
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curve, and θ(U) exists as above for every component U of the complement of the fan. On this event,

it follows that Lθ is exactly that set of points lying to the left of ηθ, along with ηθ itself, meaning

that ηθ is the right boundary of this set. Therefore, ηθ is a.s. determined by F(θ1, θ2).

It remains to show that θ(U) exists and is determined by F(θ1, θ2) a.s. We will carry this out in the

following steps. Throughout, we let F be the σ-algebra generated by the flow lines of h used to

generate F(θ1, θ2).

(i) In Lemma 5.1, we will record the fact that the probability that any fixed interior point is

contained in F(θ1, θ2) is equal to zero.

(ii) In Proposition 5.5 we show that F(θ1, θ2) is locally connected as a set a.s. We will use this to

show that the boundaries of certain domains depending on the fan are (not necessarily simple)

curves.

(iii) In Lemma 5.7, we will show that for each connected component U of H \F(θ1, θ2) there exists

θ = θ(U) ∈ [θ1, θ2] and x = x(U), y = y(U) ∈ ∂U so that the boundary conditions for the

conditional law of h given F along ∂U are given by those of the right (resp. left) side of a flow

line of angle θ along the clockwise (resp. counterclockwise) arc of ∂U from x to y. We will not

rule out the possibility that one of these two sides is degenerate. Here, we view the points in

∂U as prime ends in U .

(iv) In Lemmas 5.8–5.12, we will show that the complementary component boundaries can be

represented as flow lines of a conditional GFF. This will allow us to deduce that neither

of the two boundary segments is degenerate and deduce in Lemma 5.14 the manner that

the component boundaries interact with each other is the same as for flow lines with the

corresponding angles.

(v) We will then show in Lemma 5.16 that for all connected components U of H \F(θ1, θ2) the
pair of marked boundary points {x(U), y(U)} is measurable with respect to F(θ1, θ2) and then

use this to complete the proof.

5.1. General properties of the fan.

Lemma 5.1. For each z ∈ H we have that P[z ∈ F(θ1, θ2)] = 0.

Proof. It will be more convenient to consider the setup in the real strip S = R × (0, π), where

F(θ1, θ2) is the SLE fan from 0 to iπ with angle range in [θ1, θ2] of the GFF h on S , whose boundary

conditions are given by −a (resp. −a − πχ) on R− (resp. R− + iπ) and b (resp. b + πχ) on R+

(resp. R+ + iπ). Fix z ∈ S . First, we assume that the claim of the lemma holds in the case that

θ2−θ1 ≤ π and θ1 > (−b+λ)/χ and θ2 < (a+λ)/χ. Suppose that θ2−θ1 > π and θ1 > (−b+λ)/χ
and θ2 < (a+ λ)/χ. We fix n ∈ N and θ̃1 < · · · < θ̃n such that θ1 = θ̃1, θ2 = θ̃n, and θ̃j − θ̃j−1 < π

for each 2 ≤ j ≤ n. Then we have that F(θ1, θ2) = ∪n
j=2F(θ̃j−1, θ̃j) and P[z ∈ F(θ̃j−1, θ̃j)] = 0

for all 2 ≤ j ≤ n. It follows that P[z ∈ F(θ1, θ2)] = 0. To extend the result to the case that

θ1 = (−b+ λ)/χ and θ2 = (a+ λ)/χ, let θn1 ↓ θ1 and θn2 ↑ θ2. Then for a fixed point z ∈ S there

a.s. exist a random index n such that z lies to the left of ηθn1 and to the right of ηθn2 . By the flow

line interaction rules, in this case if z /∈ F(θn1 , θ
n
2 ) then z /∈ F(θ1, θ2). Combining the above with the

fact that z /∈ F(θn1 , θ
n
2 ) a.s. for any fixed choice of n shows that z /∈ F(θ1, θ2) a.s. Hence, in order to

complete the proof, it suffices to show the claim in the case that the angle gap of the fan is at most

π and θ1 > (−b+ λ)/χ and θ2 < (a+ λ)/χ.
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Suppose that θ2 − θ1 ≤ π. Set h̃ = h+
(
θ1 +

π
2

)
χ and note that F(θ1, θ2) is the SLE fan of h̃ from

0 to iπ with angle range in [−π/2, θ2 − θ1 − π/2] ⊆ [−π/2, π/2]. Let η′ be the counterflow line of h̃

from iπ to 0. Then, η′ has the law of an SLEκ′(ρL; ρR) process in S from iπ to 0 with the force

points located at (iπ)− and (iπ)+ respectively and such that

ρL = −1 +
b+ (θ1 +

3π
2 )χ

λ′
, ρR = −1 +

a− (θ1 − π
2 )χ

λ′
.

By assumption, θ1 > (−b+λ)/χ and θ1 < θ2 < (a+λ)/χ, from which we can deduce that ρL, ρR > −2

meaning that η′ is well-defined a.s. Furthermore, every flow line of h̃ with angle in [−π
2 , θ2 − θ1 − π

2 ]

is a.s. well-defined and contained in the range of η′, which implies that F(θ1, θ2) ⊆ η′. For z ∈ H,

let τ ′ be the first time that η′ hits z. If P[τ ′ < ∞] = 0, then it follows that P[z ∈ F(θ1, θ2)] = 0.

If P[τ ′ < ∞] > 0, then by applying the same argument as in the one given in the proof of [25,

Proposition 7.33], we obtain that P[η′(τ ′) ∈ F(θ1, θ2) | τ ′ < ∞] = 0. Combining, we obtain that

P[z ∈ F(θ1, θ2)] = 0 in every case. This completes the proof of the lemma. □

First we state and prove a reversal symmetry result of the SLE fan based on the results of [26].

Lemma 5.2. Let ϕ : H → H be the conformal transformation defined by ϕ(z) = −1/z. Then we

have that ϕ(F(θ1, θ2)) when viewed as a set in H has the same law with the SLE fan with angle

range given by [θ̃1, θ̃2] of the GFF in H with boundary conditions given by 0 (resp. a+ b) in R−
(resp. R+), where θ̃1 = −b/χ− θ2 and θ̃2 = −b/χ− θ1.

Proof. Let (ϕn) be an enumeration ofQ∩[θ1, θ2] and let ηn be the flow line of h from 0 to∞ with angle

ϕn, for all n ∈ N. We order {ϕ1, · · · , ϕn} in an increasing way such that ϕi(1) < ϕi(2) < · · · < ϕi(n),

and we set η̃j = ϕ(ηi(n−j+1)), ϕ̃j = −b/χ− ϕi(n−j+1), and we view η̃j as a curve in H from 0 to ∞,

for all 1 ≤ j ≤ n. Note that ηi(n) has the law of an SLEκ(ρ1; ρ2) process in H from 0 to ∞ with

force points located at 0− and 0+ respectively, and where

ρ1 = −1 +
a− ϕi(n)χ

λ
, ρ2 = −1 +

b+ ϕi(n)χ

λ
.

It follows from [26, Theorem 1.1] that η̃1 has the law of an SLEκ(ρ2; ρ1) process in H from 0 to ∞
with the force points located at 0− and 0+ respectively. Moreover, for each 1 ≤ j ≤ n− 1, we let D̃j

be the union of the connected components of H \ ∪j
i=1η̃i lying to the left of η̃j . Then we have that

D̃j = ϕ(Dj), where Dj is the union of the connected components of H \ ∪j
k=1ηi(n−k+1) lying to the

right of ηi(n−j+1). Also, the opening (resp. closing) point of a component in Dj is mapped via ϕ to the

closing (resp. opening) point of a component in D̃j . Furthermore, it follows from [25, Proposition 7.4]

that the conditional law of ηi(n−j) restricted to Dj given σ(ηi(n), ηi(n−1), . . . , ηi(n−j+1)) (which is

equal to σ(η̃1, · · · , η̃j)) is that of an SLEκ(ρ1; ρ2) process independently in each connected component

in Dj from the opening to the closing point of the component, and with the force points located

immediately to left and right of the opening point respectively, where here

ρ1 = −2 +
(ϕi(n−j+1) − ϕi(n−j))χ

λ
, ρ2 = −1 +

b+ ϕi(n−j)χ

λ
.

Next, [25, Proposition 7.4] and [26, Theorem 1.1] together imply that the conditional law of the

restriction of η̃j+1 to D̃j given σ(η̃1, · · · , η̃j) is that of an SLEκ(ρ2; ρ1) process independently in each

of the components in D̃j from the opening to its closing point, and with the force points located

immediately to the left and right of its starting point. Therefore, we obtain that the joint law of

(η̃1, · · · , η̃n) can be sampled as follows. Let h̃ be a GFF on H with boundary conditions given by 0
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(resp. a+ b) on R− (resp. R+). Then the curve η̃j is the flow line of h̃ from 0 to ∞ of angle ϕ̃j , for

all 1 ≤ j ≤ n. The proof is then complete by taking n→ ∞. □

Next, we prove that the fan F(θ1, θ2) is locally connected (with respect to the subspace topology).

A topological space X is locally connected at x ∈ X if every neighborhood (in X) of x contains a

connected open neighborhood of x (see e.g. [30, §25] or [46, §27]). X is connected im kleinen at x

(or weakly locally connected at x) if every neighborhood of x contains a connected (not necessarily

open) neighborhood of x. The space X itself is called locally connected or connected im kleinen if it

is locally connected at every point x ∈ X or connected im kleinen at every point x ∈ X, respectively.

While local connectedness and connectedness im kleinen at a single point x are not equivalent, a

space X is locally connected if and only if it is connected im kleinen [46, Theorem 27.16]. Before

showing the fan is locally connected, we prove two auxiliary lemmas. The proof of the first is

adapted from [32].

Lemma 5.3. Let F ⊆ C be closed and let K ⊆ F be compact. If C is a connected component of K

which does not intersect ∂FK, the boundary of K in F , then C is a connected component of F .

Proof. The quasicomponent of a point x in K is the intersection of all sets D which are clopen in

K and contain x [9, §6.1]. Since K is a compact Hausdorff space, its connected components and

quasicomponents agree [9, Theorem 6.1.23]. This means that C is the intersection of all sets D

which are clopen in K and which contain C. Any point b ∈ ∂FK is not in C, so there must exist

a set Ub, which is clopen in K, contains b, and is disjoint from C. The sets Ub for b ∈ ∂FK form

an open cover of ∂FK, and since K is compact, we can find a finite subcover whose union U is

clopen (in K), contains ∂FK and is disjoint from C. Then C ⊆ K \ U ⊆ K \ ∂FK ⊆ K ⊆ F . Also,

K \ U is open in K and contained in K \ ∂FK, hence is open in F . Similarly, K \ U is closed in K

and hence closed in F . Therefore any connected superset D of C in F must be contained in K \ U
(since this set is clopen) and hence must be equal to C since C is a connected component of K. □

Lemma 5.4. Suppose A,B ⊆ C are two closed locally connected sets (with respect to the subspace

topology). Then A ∪B is locally connected.

Proof. It suffices to prove that A ∪ B is connected im kleinen at every point. If x is in A \ B or

B \ A the claim is immediate. If x ∈ A ∩ B, a given neighborhood N of x in A ∪ B contains the

ball B(x, ϵ) ∩ (A ∪B) for some ϵ > 0. Since A and B are each connected im kleinen at x, it follows

that there exist connected neighborhoods NA ⊆ B(x, ϵ) ∩A and NB ⊆ B(x, ϵ) ∩B of x in A and B

respectively. NA ∪NB is a union of connected sets with nonempty intersection, so is connected,

and is furthermore seen to be a neighborhood of x in A ∪B. It follows that A ∪B is connected im

kleinen at x, completing the proof. □

Proposition 5.5. F(θ1, θ2) is locally connected a.s.

Proof. By the proof of Theorem 1.1 there exists ϵ0 > 0 sufficiently small (depending only on a, b and

κ) such that if θ2 − θ1 < ϵ0, then a.s. for every x ∈ F(θ1, θ2) and ε > 0 there exists a simple loop γ

contained in B(x, ϵ) which disconnects x from ∞ and which intersects F(θ1, θ2) finitely many times.

If we can prove that the fan is locally connected in this case, then since the union of finitely many

closed locally connected sets is locally connected by Lemma 5.4, we see that F(θ1, θ2) is locally

connected for any choice of θ1, θ2. Therefore we may assume for the remainder of the proof that

θ2 − θ1 < ϵ0.
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We will prove that for all x ∈ F(θ1, θ2), F(θ1, θ2) is connected im kleinen at x. Let N be a

neighborhood of x in F(θ1, θ2) and choose a simple loop γ as above with the property that the

intersection of F(θ1, θ2) with E, the closure of the bounded component of H \ γ, is contained in

N (this is possible since N is a neighborhood of x and γ can be chosen to be arbitrarily small).

Let E be the closure of the bounded component of H \ γ. We claim that F(θ1, θ2) ∩E has finitely

many connected components, and call the set of these components C. Since F(θ1, θ2) intersects γ

at most finitely many times, there are at most finitely many connected components in C which

intersect γ. Next, we show that these are the only components in C. Suppose C ∈ C is a connected

component which does not intersect γ. Then by Lemma 5.3 with K = F(θ1, θ2) ∩ E, we have that

C is a connected component of F(θ1, θ2), which is a contradiction since F(θ1, θ2) is connected (and

larger than C itself). This proves the claim that the collection C is finite.

Let Cx ∈ C be the connected component containing x. Since there are only finitely many other

components in C, it must be the case that the union of these components is at a positive distance

from x, meaning that Cx itself is a neighborhood of x. Furthermore, Cx ⊆ N , meaning that Cx is

exactly the connected neighborhood of x we are looking for. It follows that F(θ1, θ2) is connected

im kleinen at x simultaneously for all points x ∈ F(θ1, θ2) a.s. As stated above, this shows that

F(θ1, θ2) is locally connected a.s. □

Remark 5.6. This remark relates to objects defined later in this section (∂U,F(t; γ),F(z)) and can be

skipped for now and read when needed. In the case that θ2 − θ1 < ϵ0, the only facts about F(θ1, θ2)

we have used to prove local connectedness are the connectedness of the fan, and the property that

for every x ∈ F(θ1, θ2) and ε > 0 there exists a simple loop γ contained in B(x, ϵ) which disconnects

x from ∞ and which intersects F(θ1, θ2) finitely many times. Therefore, assuming θ2 − θ1 < ϵ0, any

connected subset of F(θ1, θ2) will also satisfy these two properties, and thus be locally connected.

In particular, the sets ∂U,F(t; γ) and F(z) are all connected subsets of the fan and thus locally

connected. Furthermore, this still holds even if we do not require θ2 − θ1 < ϵ0, since each of the

sets ∂U,F(t; γ) and F(z) is actually a subset of a smaller fan F(θ′1, θ
′
2) where θ

′
2 − θ′1 < ϵ0 (in fact

here we can replace ϵ0 by an arbitrarily small quantity), and θ′1, θ
′
2 are random, but can be chosen

from a finite set. We will make use of the local connectedness of these sets throughout this section,

particularly in Lemma 5.12, by using [33, Theorem 2.1] to show that the boundaries of certain

domains are (not necessarily simple) curves.

5.2. Structure of subsets of the fan. Let C be a connected component of H \ (ηθ1 ∪ ηθ2)

and let φ be a conformal map from C to H that is measurable with respect to σ(ηθ1 , ηθ2) and

which sends the opening (resp. closing) point of C to 0 (resp. ∞). Then the conditional law of

h̃ := h ◦ φ−1 − χ arg(φ−1)′ given ηθ1 , ηθ2 is that of a GFF with boundary conditions λ− θ2χ on R−
and −λ− θ1χ on R+. By [25, Proposition 7.4], for θ ∈ (θ1, θ2) the pair (φC(F(θ1, θ2)), φC(ηθ)) has

the law of (F̃(θ1, θ2), η̃θ), where F̃(θ1, θ2) is the fan corresponding to the GFF h̃ and η̃θ is the flow

line of h̃ with angle θ. Suppose that η̃θ is determined by F̃(θ1, θ2). Since ηθ1 and ηθ2 are measurable

with respect to F(θ1, θ2) (as its left and right boundary in H), we obtain that ηθ|C is determined by

F(θ1, θ2). Hence, by repeating this argument in each connected component C of H \ (ηθ1 ∪ ηθ2),
and noting that each component C is itself determined by F(θ1, θ2), we find that ηθ is determined

by F(θ1, θ2).

Therefore, we only need to show that F̃(θ1, θ2) determines η̃θ where h̃ is a GFF with boundary

conditions λ− θ2χ on R− and −λ− θ1χ on R+, where F̃(θ1, θ2) is the corresponding fan, and where

η̃θ is the flow line of h̃ with angle θ. In particular, it suffices to prove Theorem 1.2 in the case that



40 CILLIAN DOHERTY, KONSTANTINOS KAVVADIAS, AND JASON MILLER

θ1 = −(b+ λ)/χ, θ2 = (a+ λ)/χ. Note that by [25], the set (θ1, θ2) is then the maximal range of

angles θ where ηθ does not a.s. immediately hit the continuation threshold, meaning that the flow

line ηθ exists. By Proposition 3.1, we have that ηθ a.s. converges in the Hausdorff sense to R+

(resp. R−) as θ ↓ θ1 (resp. θ ↑ θ2). Using this fact and Lemma 5.1, for any fixed point z ∈ H, a.s.

there exists a unique connected component U of H \ F(θ1, θ2) which contains z, and ∂U does not

contain any interval of R. If instead we considered F(θ′1, θ
′
2) with θ1 < θ′1 < θ′2 < θ2 this would not

be the case, since there would exist components U of H \ F(θ′1, θ′2) to the right of ηθ1 . This would

complicate some of our proofs, so it is easier to rule this out from the offset.

In the following, we will assume that θ1 = −(b+λ)/χ, θ2 = (a+λ)/χ, and we will fix an enumeration

(ϕn) of (Q ∩ [θ1, θ2]) ∪ {θ1, θ2}, where ϕ1 = θ1 and ϕ2 = θ2. The fan F(θ1, θ2) is a.s. unchanged by

changing the choice of countable dense subset of [θ1, θ2], but using this particular enumeration to

generate the fan simplifies our proofs. As mentioned in Section 2.5, we will define the flow line ηθ1
to be R+, and the flow line ηθ2 to be R−, which is natural from the discussion above.

Lemma 5.7. Fix a point z ∈ H with rational coordinates and let U be the connected component of

H\F(θ1, θ2) containing z. We view ∂U as a set of prime ends in U . Then there exists θ = θ(U) ∈ R

and x = x(U), y = y(U) ∈ ∂U so that the conditional law of h given F in U is that of a GFF with

boundary conditions given by those of the right (resp. left) side of a flow line of angle θ on the

clockwise (resp. counterclockwise) arc of ∂U from x to y (we define what this means more precisely

below).

What we mean by the boundary conditions of the right or left side of a flow line is as follows.

Suppose first that x(U) and y(U) are distinct prime ends of ∂U , and let g : U → H be a conformal

map sending x(U) and y(U) to 0 and ∞ respectively. The choice of g will not be important for

what we are about to do, but it can be fixed in some measurable way. Then a harmonic function

h on U is said to have boundary values given by the right (resp. left) side of a flow line of angle

θ on the clockwise (resp. counterclockwise) arc of ∂U from x to y, if h has boundary conditions

λ − θχ − χ arg g′ (resp. −λ − θχ − χ arg g′) on the clockwise (resp. counterclockwise) arc of ∂U

from x to y. Note that the branch of the argument is not fixed here, so there are many different

choices of such a function h, each differing from the others by a global multiple of 2πχ. Clearly,

arg g′ (mod 2πχ) is measurable with respect to σ(U, x, y), but the choice of branch of arg is not

measurable with respect to σ(U, x, y) since it depends on the realization of F(θ1, θ2) on H \ U .

If x = y, choose a prime end v ∈ ∂U not equal to y, and let g : U → H be a conformal map

sending v to 0 and y to ∞. Then the harmonic function h has the boundary values of the left (resp.

right) side of a flow line of angle θ if the boundary values are given by −λ − θχ − χ arg g′ (resp.

λ− θχ− χ arg g′) on all of ∂U . Note that the choice of v does not affect the boundary conditions,

and that, as before, the choice of branch of the argument means that there are many different

choices for such a function h.

Proof. Step 1. Overview and setup. Fix z ∈ H with rational coordinates and let (ϕn) be our

enumeration of (Q ∩ [θ1, θ2]) ∪ {θ1, θ2}. For each n ∈ N, let ηn be the flow line of h from 0 to ∞
with angle ϕn and work on the a.s. event that z /∈ F(θ1, θ2). Recall that η1 = R+ and η2 = R−. For

each n ∈ N, z must either be on the right side of ηn (by which we mean that z is in a connected

component of H \ ηn whose boundary contains part of R+) or on the left side. By the monotonicity

property of flow lines, if ϕn < ϕm and z lies to the right of ϕn, then it necessarily lies to the right of
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Figure 8. On the left we show the finite set of flow lines Fn(θ1, θ2) along with

the component Un defined in the proof of Lemma 5.7. We include the boundary

conditions of h2 restricted to Un. Here, fn : Un → H is a conformal map sending xn
to 0 and yn to ∞. In the central figure, we show x̃n, ỹn and the boundary conditions

of h̃n2 (up to an integer multiple of 2πχ which is constant on D but may depend on

n). The map f̃n : D → H sends x̃n to 0 and ỹn to ∞, and satisfies f̃n = fn ◦ φn.

The term χ arg(f̃ ′n) has a jump of 2πχ at ỹn. On the right, we depict the same

situation, but now we include the point w and show instead the boundary conditions

of ĥn2 := h̃n2 + χ argψ′ (up to an integer multiple of 2πχ) in the case that ỹn lies

on the clockwise arc from x̃n to w. This makes it easier to identify the jump in

boundary conditions at ỹn. In the case that ỹn lies on the counterclockwise arc from

x̃n to w, which we have not depicted, the boundary conditions of ĥn are instead given

by. In this case, the boundary conditions of ĥn are given (up to an integer multiple

of 2πχ) by λ− χϕj(n) on the (clockwise) arc from x̃n to w, by λ− χϕj(n) − 2πχ on

the arc from w to ỹn, and by −λ − χϕi(n) on the arc from ỹn to x̃n. In the proof

of Lemma 5.7 we use the local uniform convergence of h̃n2 to show that the points

x̃n, ỹn must converge, and using this identify the limit h̃2.

ϕm. It follows that we can define the following quantities,

θ = sup
n
{ϕn : z lies on the left of ηn}, θ′ = inf

n
{ϕn : z lies on the right of ηn},

and that θ ≤ θ′. If this inequality is strict, we can find ϕn ∈ (θ, θ′) and then z must lie either on the

left or right side of ηn, yielding a contradiction (to the definition of either θ or θ′) in each case. We

can conclude therefore that θ = θ′.

Let Fn = Fn(θ1, θ2) = ∪n
j=1ηj and let Un be the connected component of H \ Fn which contains z.

Let ϕi(n) be the maximal angle among (ϕk)k≤n for which z is on the left side of ηk. Let ϕj(n) be

the corresponding minimal angle with z on the right of ηj(n). Since η1 = R+ and η2 = R−, i(n)

and j(n) are both well-defined as soon as n ≥ 2, and by the Hausdorff convergence of flow lines

(Proposition 3.1), a.s. for large enough n we will have that i(n) ̸= 1, j(n) ̸= 2, so that ηi(n), ηj(n)
are actual flow lines (and not just R+ or R−). Then there exist xn, yn ∈ ∂Un distinct which are

the opening and closing points of the pocket Un respectively, so that the counterclockwise (resp.

clockwise) boundary arc of Un from xn to yn is part of the flow line ηi(n) (resp. ηj(n)). By the

monotonicity of flow lines in their angle, we note that ϕi(n) is increasing in n and therefore converges

to some value ϕ, where necessarily ϕ ≤ θ. If ϕ < θ then there exists k such that ϕ < ϕk < θ. Suppose

n ≥ k. Then z is on the left side of ηk, and by the definition of ηi(n) as the flow line of maximal angle

ϕj with j ≤ n for which z is on the left side of ηj , we must have ϕi(n) ≥ ϕk > ϕ, a contradiction.
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We can perform an analogous argument for ϕj(n) to show that limn ϕi(n) = limn ϕj(n) = θ = θ′. Our

setup is depicted in Figure 8.

For each n ∈ N, we can write h|H\Fn
as h = hn1 + hn2 where hn2 is a distribution which is harmonic

in H \ Fn and the conditional law of hn1 given Fn = σ(hn2 ,Fn) is that of a GFF with zero boundary

conditions in H \ Fn. Also, we can write h|H\F(θ1,θ2) as h = h1 + h2 where h2 is a distribution

which is harmonic in H \ F(θ1, θ2) and the conditional law of h1 given F = σ(h2,F(θ1, θ2)) is that

of a GFF with zero boundary conditions in H \ F(θ1, θ2). Then [25, Proposition 6.5] implies that

hn2 → h2 locally uniformly as n → ∞ a.s. Let hn = hn2 |Un and let h = h2|U . In the remainder of

the proof we will use the fact that hn → h locally uniformly on U and the information we have on

the boundary conditions of hn to describe the boundary conditions of h. This is a quite technical

argument and the details can be skipped on a first reading. Much of the following is depicted in

Figure 8. First, let fn : Un → H be a conformal map (chosen in a measurable way) which sends

xn to 0 and yn to ∞. By [25, Proposition 6.1], hn = hn2 |Un is the harmonic function on Un with

boundary values given by −λ−χϕi(n)−χ arg f ′n (resp. λ−χϕj(n)−χ arg f ′n) on the counterclockwise

(resp. clockwise) arc of ∂Un from xn to yn. As noted in [25], the branch of the argument must be

chosen so that the boundary values hn agree with those of the conditional law of ηϕi(n)
(equivalently

ηj(n))) on a segment of ∂Un which agrees with ηi(n). In the following argument, often the boundary

conditions we specify will be correct up to a choice of branch of arg, or equivalently up to an integer

multiple of 2πχ. We will point out whenever this is relevant, since it does have an affect on our

proof. Note that arg f ′n (mod 2πχ) is measurable with respect to σ(Un, xn, yn), but that the branch

of argument we choose is not measurable with respect to σ(Un, xn, yn), since it depends on the

behavior of the flow lines η1, . . . , ηn outside Un.

For each n ∈ N, let φn : Un → D be the unique conformal map with φn(z) = 0 and φ′
n(z) > 0

and let φ : U → D be the unique conformal map with φ(z) = 0 and φ′(z) > 0. The results of [33,

Section 1] imply that Un converges to U in the Caratheodory kernel sense as seen from z as n→ ∞
a.s. (see [33, Section 1] for the definition of Caratheodory kernel convergence). In particular, we

have that φn → φ locally uniformly as n → ∞ a.s. Define h̃n = hn ◦ φ−1
n − χ arg0(φ

−1
n )′ where

arg0 is the fixed branch of arg chosen such that arg0(φ
−1
n )′(0) = 0 (this can be done since the

derivative is positive here). Similarly, define h̃ = h ◦ φ−1 − χ arg0(φ
−1)′ where arg0 is the branch

with arg0(φ
−1)′(0) = 0. Since hn, φ

−1
n and (φ−1

n )′ converge locally uniformly to h, φ−1 and (φ−1)′,

respectively, and since we have fixed the branches of arg in the same way, we have that h̃n → h̃

locally uniformly as n→ ∞.

Define x̃n = φn(xn), ỹn = φn(yn) and let f̃n = fn ◦ φ−1
n so that f̃n : D → H and f̃n sends x̃n to 0

and ỹn to ∞. Then arg(f̃n)
′ = arg(f ′n ◦ φ−1

n ) + arg0(φ
−1
n )′, where the branch of the argument on

the left-hand side is determined by the choices of branch on the right, which we have already made

(so there is no new choice here). Then h̃n is the unique harmonic function on D with boundary

conditions (up to an integer multiple of 2πχ which is constant on D but may depend on n) given by

−λ− χϕi(n) − χ arg(f̃n)
′ on ∂DR,

+λ− χϕj(n) − χ arg(f̃n)
′ on ∂DL,

where ∂DR (resp. ∂DL) is the counterclockwise (resp. clockwise) arc of ∂D from x̃n to ỹn. These

boundary conditions are depicted in Figure 8. In Step 2 we will show that it is a.s. the case that

both of the sequences (x̃n) and (ỹn) converge. Then, in Step 3, we will identify the boundary

conditions of h and prove the main claim of the lemma.
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Step 2. Convergence of (x̃n) and (ỹn). First we will show that a.s. (x̃n) converges to a (random)

point x̃ ∈ ∂D. The idea is to use the fact that h̃n → h̃2 locally uniformly and that the boundary

conditions of h̃n have a discontinuity (which we can describe explicitly) at x̃n to show that (x̃n)

must converge. Suppose that with positive probability (x̃n) does not converge. Then with positive

probability, there exist d > 0, xµ, xλ, yµ, yλ ∈ ∂D and subsequences (x̃µn), (x̃λn) such that x̃µn →
xµ, x̃λn → xλ, ỹµn → yµ, and ỹλn → yλ as n → ∞, and |xµ − xλ| ≥ d. We fix w /∈ {xµ, xλ, yµ, yλ}
and let ψ be the conformal transformation mapping D onto H such that ψ(0) = i and ψ(w) = ∞.

Let arg0 ψ
′ be a fixed branch of argψ′ (the one where arg(ψ′(0)) ∈ (−π, π], say) and define1

ĥn = h̃n +χ argψ′, ĥ = h̃+χ argψ′. We immediately have that ĥn → ĥ locally uniformly as n→ ∞.

Both fn ◦φ−1
n and ψ are conformal maps from D to H sending, respectively, ỹn and w to ∞. It can

be shown that arg(f̃n)
′ − argψ′ has discontinuities on, ∂D, of magnitude 2π at ỹn and w, and that

the boundary conditions of ĥn depend on the cyclic order of x̃n, ỹn and w. In the case that ỹn lies on

the clockwise arc from x̃n to w, the boundary conditions (up to a multiple of 2πχ) of ĥn are given

by λ− ϕj(n)χ on the (clockwise) arc from x̃n to ỹn, by −λ− ϕi(n)χ+ 2πχ on the arc from ỹn to w,

and by −λ− ϕi(n)χ on the arc from w to x̃n. This case is depicted in Figure 8. Otherwise, ỹn lies

on the counterclockwise arc from x̃n to w, and the boundary conditions are given by λ− ϕj(n)χ on

the (clockwise) arc from x̃n to w, by λ− ϕj(n)χ− 2πχ on the arc from w to ỹn, and by −λ− ϕi(n)χ

on the arc from ỹn to x̃n. We emphasize that these boundary conditions are correct only up to an

integer multiple 2πχkn, with kn ∈ Z, coming from the chosen branch of arg f ′n. The quantity kn is

global in the sense that it is constant on D, but it may change in n.

Suppose we are in the case that xλ ̸= yλ. By possibly taking d > 0 to be smaller, we can also

assume that dist(w, {x̃µn , ỹµn , x̃λn , ỹλn}) ≥ d and that dist(x̃λn , {x̃µn , ỹλn}) ≥ d for all n sufficiently

large. Then the boundary conditions (up to a multiple of 2πχ) of ĥλn on B(x̃λn , d) ∩ ∂D are given

by λ− ϕj(λn)χ (resp. −λ− ϕi(λn)χ) on the left2 (resp. right) side of x̃λn . If ỹµn ∈ B(x̃λn , d) ∩ ∂D
then the boundary conditions (up to a multiple of 2πχ) of ĥµn on B(x̃λn , d) ∩ ∂D are given by

either −λ− ϕi(µn)χ+ 2πχ to the left of ỹµn and λ− ϕj(µn)χ to its right, or by −λ− ϕi(µn)χ to the

left of ỹµn and λ− ϕj(µn)χ− 2πχ to its right (note that since we are only specifying the boundary

conditions up to multiples of 2πχ, these two possibilities are effectively the same). If ỹµn is not on

this arc, then the boundary values of ĥµn are constant on B(x̃λn , d)∩∂D and are given by one of the

four values just listed. Since ϕi(n), ϕj(n) → θ, we can assume λ1, µ1 are large enough that all of the

angles ϕi(λn), ϕj(λn), ϕi(µn), ϕj(µn) lie in (θ −∆θ, θ +∆θ) for some small ∆θ > 0. In any of the cases

where we have constant boundary values, it can be checked that there must always be some arc In
of B(x̃λn , d) ∩ ∂D of length at least d/2 on which the absolute value of the difference between the

boundary values of ĥµn and ĥλn is at least min(2πχ, 2λ)− 2χ∆θ. In the case where the boundary

values change, by checking various cases we see that there must be an arc In of B(x̃λn , d) ∩ ∂D of

length at least d/2 on which the absolute value of the difference between the boundary values is

at least min(λ, πχ)− 2∆θχ. These differences are at least χ for a small enough choice of ∆θ. We

note that in determining the difference in boundary conditions above, we have accounted for the

fact that the boundary conditions of ĥλn , ĥλn have been described only up to multiples of 2πχ, and

that the above statements are true even if we alter ĥλn − ĥµn by 2π∆Kχ for some ∆K ∈ Z. In

particular, these statements are true for the actual values of ĥλn and ĥµn , not just for a particular

(possibly incorrect) choice of multiple of 2πχ.

1Note that ĥn is defined on D, not H, so (D, h̃n) and (D, ĥn) are not the same imaginary surface in the sense of

[25]. We introduce ĥn because its boundary conditions are simpler than those of h̃n.
2By the left side of x̃n, we mean the arc of ∂D ∩B(x̃n, d) on the clockwise side of x̃n.
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Fix δ ∈ (0, d/8), let an be the midpoint of the above arc In, and let bn be the point on the segment

[0, an] such that |an − bn| = δ. It follows that in every case we have that the absolute value of the

difference of the boundary values on B(an, d/8) ∩ ∂D between ĥµn and ĥλn is at least χ > 0 for

all n sufficiently large. The Beurling estimate implies that there exists a universal constant C so

that the probability that a Brownian motion starting from bn exits D in C \B(an, d/8) is at most

C(8δ/d)1/2. Also, there exists M <∞ depending only on κ and θ so that ||ĥn||∞ ≤M for all n. It

follows that

|ĥµn(bn)− ĥλn(bn)| ≥ χ−MC(8δ/d)1/2 ≥ χ

2
> 0

for all n sufficiently large if we choose δ such that MC(8δ/d)1/2 < χ/2. But this is a contradiction

since

sup
z∈B(0,1−δ)

|ĥµn(z)− ĥλn(z)| → 0 as n→ ∞.

In the case that xµ ̸= yµ an analogous argument gives a contradiction.

Next, we assume that xλ = yλ and xµ = yµ. Then, either ỹλn lies in the counterclockwise arc of

∂D from x̃λn to x̃µn for infinitely many values of n or ỹλn lies in the clockwise arc of ∂D from x̃λn

to x̃µn for infinitely many values of n. Suppose that the former case holds. Then, we can assume

that ỹλn lies in the counterclockwise arc of ∂D from x̃λn to x̃µn for all n. Let d > 0 be such that

|xλ − xµ| ≥ d and dist(w, {xλ, xµ}) ≥ d. There exists n0 so that |x̃λn − ỹλn | ≤ d/100, |x̃µn − ỹµn | ≤
d/100, |x̃λn − xλ| ≤ d/100, and |x̃µn − xµ| ≤ d/100, for all n ≥ n0. The boundary conditions (up

to a multiple of 2πχ) of ĥλn on B(xλ, d/2) are given by λ− ϕj(λn)χ on the left side of x̃λn and by

λ − ϕj(λn)χ − 2πχ on the right side of ỹλn . The boundary conditions of ĥµn are constant in this

region, so there must exist an arc of ∂D of length at least d/4 on which the difference between the

boundary values of ĥλn and ĥµn is at least χ for all n ≥ n0, yielding a contradiction as before. If

ỹλn lies in the clockwise arc of ∂D from x̃λn to x̃µn for infinitely many values of n, then a similar

argument leads to a contradiction. This proves the convergence of (x̃n).

Now we prove the convergence of (ỹn) to a point ỹ using Lemma 5.2. Let ϕ be as in Lemma 5.2 and

set F̃ = ϕ(F(θ1, θ2)) and F̃n = ϕ(Fn) for all n. Then we have that Ũn = ϕ(Un) is the connected

component of H \ F̃n containing z̃ = ϕ(z) for all n. Moreover, we have that ϕ(yn) (resp. ϕ(xn)) is

the opening (resp. closing) point of Ũn. Let φ̃n be the conformal transformation mapping Ũn onto D

such that φ̃n(z̃) = 0 and φ̃′
n(z̃) > 0 and note that φ̃n = e−2i arg(z)φ−1

n ◦ϕ−1|
Ũn

. Combing Lemma 5.2

with the a.s. convergence of (x̃n) above, we obtain that the sequence (φ̃n(ϕ(yn))) converges to some

point on ∂D. But since φ̃n(ϕ(yn)) = e−2i arg(z)ỹn, it follows that (ỹn) converges a.s.

Step 3. Identifying the boundary conditions of h. We define x = x(U) = φ−1(x̃), y = y(U) = φ−1(ỹ),

both of which are defined as prime ends in ∂U . Suppose first that x̃ ̸= ỹ so that x(U) and y(U)

are distinct prime ends in ∂U . In this case, by considering h̃n(0), we see that the correct branch

of arg(f̃n)
′ is eventually the same for all sufficiently large n, in the sense that the limit arg(f̃n)

′(z)

exists for all z ∈ D and does not depend on z (if this were not the case, h̃n would not converge

locally uniformly). Note that arg(f̃n)
′ (mod 2πχ) is actually determined only by ỹn (the point

mapped to ∞), and not on x̃n or indeed on the implicit scale factor present in the choice of f̃ ′n. Then

we can identify h̃ (using the explicit descriptions of h̃n) as the harmonic function with boundary

conditions given by λ− θχ−χ arg f̃ ′ on the clockwise arc from x̃ to ỹ, and by −λ− θχ−χ arg f̃ ′ on

the counterclockwise arc, where f̃ : D → H is a conformal map with f̃(x̃) = 0, f̃(ỹ) = ∞ (compare

to Figure 8). The corresponding boundary conditions for h are given by λ− θχ− χ arg f ′ on the
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counterclockwise arc from x to y, and by −λ− θχ− χ arg f ′ on the clockwise arc, where f = f̃ ◦ φ
is a conformal map sending x to 0 and y to ∞. The correct branch of arg f ′ here is determined

by the branches of arg f ′n (via arg(f̃n)
′), and is measurable with respect to the flow lines η1, . . . , ηn,

but not with respect to U on its own.

It remains then to prove the result when x̃ = ỹ. The issue that can arise here is if, as x̃n and ỹn
converge to x̃, the side of x̃n that ỹn lies on changes at arbitrarily high values of n. Away from

any small region around x̃, for sufficiently large n the boundary conditions of ĥn (up to a multiple

of 2πχ) are given by λ − ϕj(n)χ − χ arg(f̃n)
′ (resp. −λ − ϕi(n)χ − χ arg(f̃n)

′) if ỹn is to the left

(resp. right) of x̃n. Since h̃n converges locally uniformly as n→ ∞, we would like to conclude that

ỹn must eventually always lie on the same side of x̃n. However, since the boundary values of ĥn
are given by the above only up to a multiple of 2πχ which may depend on n, it is actually not

possible to do so at this stage. In particular, suppose ỹn lies to the left of x̃n and ỹm lies to the

right of x̃m (for large enough n that these points are very close to x̃ and that ϕi(n), ϕj(n), ϕi(m), ϕj(m)

are close to θ). Then, at any point of ∂D far away from x̃, the difference ĥn − ĥm is given by

2λ− (ϕj(n) − ϕi(m))χ− χ(arg(f̃n)
′ − arg(f̃m)′). The final term here is of the form 2π∆Kχ where

∆K = −(arg(f̃n)
′− arg(f̃m)′) ∈ Z, and in particular may not be 0. If 2λ+2π∆Kχ is bounded away

from 0 for all ∆K ∈ Z, then for large enough n,m (so that the difference in angles is small) we can

obtain a contradiction to the locally uniform convergence of h̃n using similar methods to Step 2.

However, for κ = 2, 3 and more generally κ = 4−2/∆K for ∆K ∈ N, we have 2λ+2π∆Kχ = 0, and

that we cannot rule out at the present that the side of x̃n that ỹn lies on may change at arbitrarily

high values of n (however, in Lemma 5.13 we will actually show that a.s. x̃ ̸= ỹ, so this whole case

never actually occurs).

We will now identify the boundary conditions of h̃ and h in the case x̃ = ỹ. Fix ṽ ∈ ∂D with

ṽ ̸= x̃ and suppose in the following that n is large enough that x̃n, ỹn ∈ B(x̃,dist(x̃, ṽ)/2). Define

g̃ : D → H to be a conformal map sending ṽ to 0 and ỹn to ∞. Up to a choice of branch, arg(g̃n)
′

does not depend on ṽ and in fact, arg(g̃n)
′ = arg(f̃n)

′ on ∂D \ {ỹn}. Suppose now that ỹn lies to the

left of x̃n for all sufficiently large n. Then from the locally uniform convergence of h̃n, the branch of

arg(f̃n)
′ must eventually stabilize in the sense that limn→∞ arg(f̃n)

′(z) exists for all z ∈ D and does

not depend on z. If the branch of arg(g̃n)
′ is chosen such that arg(g̃n)

′ = arg(f̃n)
′ on ∂D \ {ỹn},

then we have that arg(g̃n)
′ → arg(g̃)′ where g̃ : D → H is a conformal map sending ṽ to 0 and ỹ to

∞. Therefore, the boundary conditions of h̃ are given by −λ− θχ− χ arg(g̃)′ on all of ∂D \ {ỹ}
where the branch of the argument is chosen depending on the branches of arg(g̃n)

′. It follows that

the boundary conditions of h on ∂U are given by −λ− θχ− χ arg g′, where g = g̃ ◦ φ. Note that

these boundary conditions are actually unchanged if we replace g by any conformal map g1 : U → H

which sends y to ∞. Similarly, in the case where ỹn eventually always lies to the right of x̃n, we can

conclude that the boundary conditions of h are given by λ − θχ − χ arg g′, where g is defined as

before.

It remains finally to identify h̃ and h in the case that the cyclic order of x̃n, ỹn, ṽ changes for

arbitrarily high values of n, where ṽ is defined as above. Let g̃n, g̃ and g be as above, and note that

if we restrict to the subsequence (Rn) of integers where ỹRn lies to the right of x̃Rn for all n, then, by

the locally uniform convergence of h̃n, the branch of arg(f̃Rn)
′ must again stabilize, meaning we have

arg(g̃Rn)
′ → arg(g̃)′ for the correct choices of branches of the argument as in the previous case. We

conclude again that the boundary conditions of h̃ are given by λ− θχ− χ arg(g̃)′ on ∂D \ {ỹ}, and
hence that the boundary conditions of h are given by λ− θχ− χ arg g′ on ∂U . Note that we could
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have instead determined the boundary conditions of h̃ and h using the subsequence (Ln) where ỹLn

lies to the left of x̃Ln . The resulting boundary conditions for h are then given by −λ− θχ−χ arg1 g
′,

where the branch of arg1 g
′ is chosen in such a way that these boundary conditions are the same

as those given by −λ − θχ − χ arg1 g
′ on ∂U . We emphasize that the branches arg g′ and arg1 g

′

must differ by 2λ since hRn and hLn must converge locally uniformly to the same harmonic function,

ensuring that we do not have an issue in this pathological case. Therefore we have identified the

boundary conditions of h in every case, completing the proof of the lemma. □

We emphasize that in Lemma 5.7 we have not shown that x(U), y(U) ∈ ∂U are distinct so that ∂U

has two non-degenerate boundary arcs. The first step in showing this is the following lemma. We

will make use of the following notation. Let γ : [0, 1] → H be a simple curve with γ(0) ∈ (−∞, 0),

γ(1) ∈ (0,∞), and γ(t) ∈ H for each t ∈ (0, 1). Let F(θ1, θ2; γ) be the closure of the union of the

flow lines of h from 0 to ∞ with rational angles in [θ1, θ2] and stopped upon first hitting γ. This is

a local set by Lemma A.2. Let h be a distribution on H which is harmonic in H \ F(θ1, θ2; γ) so
that we can write h = h0 + h where given Fγ = σ(h,F(θ1, θ2; γ)) we have that h0 is a GFF with

zero boundary conditions in H \ F(θ1, θ2; γ). The next lemma describes the boundary conditions of

h when restricted to the bounded connected components of H \ (F(θ1, θ2; γ) ∪ γ) whose boundaries

intersect γ.

Lemma 5.8. Suppose that we have the setup described just above. Suppose that V is a bounded

connected component of H \ (F(θ1, θ2; γ) ∪ γ) with ∂V ∩ F(θ1, θ2; γ) ̸= ∅. We will view ∂V as a

collection of prime ends in V . Then there exists z(V ) ∈ ∂V and θ(V ) ∈ R so that the boundary

conditions for the conditional law of h given Fγ on ∂V ∩F(θ1, θ2; γ) are given by the right (resp. left)

side of a flow line of angle θ(V ) starting from z(V ) and going in the clockwise (resp. counterclockwise)

direction until hitting γ.

In this case, by flow line boundary conditions, we mean that the boundary conditions for h given

Fγ are −λ− θχ− χ argψ′ on the arc of ∂G from z(V ) to ẑ, and λ− θχ− χ argψ′ on the arc of ∂G

from z(V ) to ŷ, where ŷ, ẑ are the prime ends at y and z respectively obtained by approaching y

or z from the unbounded component of H \ γ, and where the branch of argψ′ is chosen such that

limz→∞ argψ′(z) = 0. Here, G is the unbounded connected component of H \ F(θ1, θ2) and y (resp.

z) is the leftmost (resp. rightmost) point on γ ∩ ∂V lying to the left (resp. right) of γ(t) (see also

Figures 9 and 10).

Proof. Step 1. Overview and setup. Let t ∈ (0, 1) ∩Q be fixed and note that γ(t) /∈ F(θ1, θ2; γ) a.s.

We work on this event and let V be the bounded connected component of H \F(θ1, θ2; γ) which has

γ(t) on its boundary. We will prove the claim of the lemma for this component V . Let (ϕn) be the

fixed enumeration of (Q ∩ [θ1, θ2]) ∪ {θ1, θ2} from Lemma 5.7 and for each n ∈ N, 1 ≤ j ≤ n, we let

ηj be the flow line of h from 0 to ∞ with angle ϕj , stopped at the first time that it hits γ. We then

set Fn(θ1, θ2; γ) = ∪n
j=1ηj . Let also ψn be the conformal transformation mapping the unbounded

connected component Gn of H \ Fn(θ1, θ2; γ) onto H so that ψn(γ(t)) = i and ψn(∞) = ∞. Note

that Fn(θ1, θ2; γ) converges in the Hausdorff sense to F(θ1, θ2; γ) as n→ ∞, and Gn converges in the

Caratheodory kernel sense to G, where G is the unbounded connected component of H \F(θ1, θ2; γ).
Also, for each n ∈ N, we have that Fn(θ1, θ2; γ) is a local set for h and so h = h0n + hn, where h

0
n

is a zero boundary GFF on H \ Fn(θ1, θ2; γ) and hn is harmonic on H \ Fn(θ1, θ2; γ). Similarly,

Lemma A.2 implies that F(θ1, θ2; γ) is a local set for h and so we have that h = h0+h, where h0 is a

zero boundary GFF on H \F(θ1, θ2; γ) and h is harmonic on H \F(θ1, θ2; γ). Since (Fn(θ1, θ2; γ))n
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Figure 9. On the left we depict the setup described in Lemma 5.8 including the

curve γ and the set F(θ1, θ2; γ), along with the flow lines ηi(n), ηj(n) and the points

xn, yn and zn. We show the boundary conditions of hn on the left side of ηi(n) and

the right side of ηj(n). The conformal map ψn maps Gn, the unbounded connected

component ofH\Fn(θ1, θ2; γ), ontoH. On the right we show the boundary conditions

of h̃n on [ỹn, x̃n] and [x̃n, z̃n]. We use a harmonic measure argument to show that

(ỹn) and (z̃n) converge, and use the local uniform convergence of (h̃n) to show the

convergence of (x̃n) and identify the boundary conditions of h̃.

is an increasing sequence of local sets, it follows from [25, Proposition 6.5] that hn → h locally

uniformly as n→ ∞ a.s. Moreover, we have that ψn → ψ locally uniformly as n→ ∞ a.s., where

ψ is the conformal transformation mapping G onto H such that ψ(γ(t)) = i and ψ(∞) = ∞.

We set h̃n = h ◦ ψ−1
n − χ arg(ψ−1

n )′, h̃n = hn ◦ ψ−1
n − χ arg(ψ−1

n )′, h̃ = h ◦ ψ−1 − χ arg(ψ−1)′, and

h̃ = h ◦ ψ−1 − χ arg(ψ−1)′.

Let Vn be the bounded connected component of H \ (Fn(θ1, θ2; γ) ∪ γ) whose boundary contains

γ(t). Then, there exist unique 1 ≤ i(n), j(n) ≤ n so that ϕi(n) is the maximal angle among (ϕk)k≤n

for which ηi(n) first hits γ to the right of γ(t), and ϕj(n) is the minimal angle with ηj(n) hitting γ to

the left of γ(t) (see Figure 9). Note that since ηθ1 := R+ and ηθ2 = R−, we have η1 = [0, γ(1)] and

η2 = [γ(0), 0]. In particular, i(n), j(n) are well-defined for n ≥ 2 and, as in Lemma 5.7, a.s. for large

enough n we will have that ηi(n), ηj(n) are actual flow lines (and not segments of R). Then ∂Vn
consists of the following three arcs. The first arc is a clockwise arc of ηj(n) from xn to yn (where xn
is the last intersection point between ηi(n) and ηj(n) before hitting γ for the first time and yn is the

first point of γ that ηj(n) hits), the second arc is a counterclockwise arc of ηi(n) from xn to zn (where

zn is the first point of γ that ηi(n) hits), and the third arc is the clockwise arc of γ connecting yn to

zn. Arguing as in Lemma 5.7 we can show that (ϕi(n)) and (ϕj(n)) converge to a common limit θ,

which we refer to as θ(V ) ≡ θ(γ, t). Furthermore, by definition yn+1 lies on the arc of γ from yn to

γ(t) (often we have yn = yn+1) so y := limn yn must exist and lie on γ. Analogously we can define

z = limn zn. In Step 2, we will show that the sequences (ψn(xn)), (ψn(yn)), and (ψn(zn)) converge

to points x̃, ỹ, and z̃ on R respectively, using the local uniform convergence of hn to h. Then, using

this, in Step 3 we will identify the boundary conditions of h and hence prove the lemma.

Step 2. Convergence of ψn(xn), ψn(yn), and ψn(zn). Set x̃n = ψn(xn), ỹn = ψn(yn), and z̃n = ψn(zn),

for each n ∈ N. We will show that a.s. there exist x̃, ỹ, z̃ ∈ R so that x̃n → x̃, ỹn → ỹ and z̃n → z̃

as n → ∞. First, we will show the a.s. convergence of (ỹn) and (z̃n). Let pn (resp. qn) be the

harmonic measure in Gn as seen from γ(t) of the clockwise (resp. counterclockwise) arc of ∂Gn

from yn (resp. zn) to ∞. Then it suffices to show that both (pn) and (qn) converge as n→ ∞. Fix

ϵ > 0. Then, a.s. there exists n0 ∈ N such that for all n ≥ n0, we have that the probability that

a Brownian motion B starting from γ(t) exits Gn on the arc of ∂Gn from yn to yn0 (i.e. B exits
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Gn either by hitting the left side of ηj(n), the right side of ηj(n0), or either side of a flow line ηk
where k ≤ n and ϕj(n) < ϕk < ϕj(n0)) is at most ϵ. For n ≥ m ≥ n0, we claim that the probability

that B exits Gn on the clockwise arc of ∂Gn from yn0 to ∞ and does not exit Gm on the clockwise

arc of ∂Gm from ym to ∞ is at most ϵ if we take n and m sufficiently large. Indeed, this follows

because the Hausdorff distance (with respect to the spherical metric) between Fn(θ1, θ2; γ) and

Fm(θ1, θ2; γ) tends to 0 as n,m→ ∞ and so if the Brownian motion exits Gn on the clockwise arc of

∂Gn from yn0 to ∞, but does not exit ∂Gm on the clockwise arc from ym to ∞ then it will have to

travel macroscopic distance without hitting the clockwise arc of ∂Gm from ym to ∞. But the latter

probability can be made arbitrarily small by the Beurling estimate. It follows that pn ≤ pm + 2ϵ for

all n ≥ m ≥ n0, and so lim supn→∞ pn ≤ 2ϵ+ lim infn→∞ pn. Since ϵ > 0 was arbitrary, we obtain

that (pn) converges a.s. and a similar argument shows the a.s. convergence of (qn). This shows the

a.s. convergence of (ỹn) and (z̃n), and let ỹ, z̃ be their limits respectively.

Let ŷ be the unique prime end of ∂G corresponding to approaching the point y from the unbounded

component of H \ γ. We now show that ŷ = ψ−1(ỹ) by an argument similar to the above. Let p be

the probability that a Brownian motion B started from γ(t) exits G on the arc of ∂G from ŷ to

−∞. Fix ϵ > 0 and n > n0 with n0 large enough that the probability that B exits G on the arc of

∂G from ŷ to (the prime end corresponding to) yn0 is at most ϵ. Then the probability that B exits

G on the arc from yn0 to −∞ and does not exit Gn on the arc from yn to −∞ is at most ϵ for n

large enough by the Beurling estimate, as before, since Fn(θ1, θ2; γ) → F(θ1, θ2; γ) in the Hausdorff

sense. Similarly, the probability that B exits G on the arc from ŷ to +∞ and that B does not

exit Gn on the arc from yn to +∞ is at most ϵ for large enough n. Therefore, we conclude that

limn→∞ pn − 2ϵ ≤ p ≤ limn→∞ pn + 2ϵ, which holds for all ϵ > 0. Therefore p = limn→∞ pn and

ψ−1(ỹ) = ŷ. Similarly we can show that ψ−1(z̃) = ẑ, where ẑ is the prime end corresponding to z.

Next, we show the convergence of (x̃n). We let w1 = γ(1) + 1 and w2 = γ(0) − 1. Then,

a.s. there exists p > 0 so that for all n ∈ N, the harmonic measure of each of the intervals

(−∞, ψn(w2)], (ψn(w2), ψn(xn)], (ψn(xn), ψn(w1)], and (ψn(w1),∞) in H as seen from i is at least

p. Thus there exists M > 0 depending only on p so that −M ≤ ψn(w2) < ψn(w1) ≤ M for all

n. Suppose that (x̃n) is not convergent. Then there exist subsequences (x̃µn), (x̃λn) and points

xµ, xλ ∈ R, and ϵ0 > 0 so that x̃µn → xµ, x̃λn → xλ as n → ∞, and |x̃µn − x̃λn | ≥ ϵ0, for all n.

We can also assume that x̃µn < x̃λn and [x̃n − ϵ0, x̃n + ϵ0] ⊆ [ψn(w2), ψn(w1)] for all n. Note that

ỹn ≤ x̃n ≤ z̃n for all n, and so since ỹn → ỹ and z̃n → z̃ as n→ ∞, a.s. there exists n0 ∈ N so that

[an, bn] ⊆ [x̃µn , z̃µn ] ∩ [ỹλn , x̃λn ] for all n ≥ n0, where an = x̃µn + ϵ0/3 and bn = x̃µn + 2ϵ0/3. Then

the boundary values of h̃µn (resp. h̃λn) on [an, bn] are given by −λ−ϕi(µn)χ (resp. λ−ϕj(λn)χ). Since

ϕi(n) and ϕj(n) both converge to θ, by possibly taking n0 to be larger we can assume that there exists

δ0 > 0 depending only on λ and χ such that the absolute value of the difference of the boundary values

of h̃µn and h̃λn on [an, bn] is at least δ0. Fix δ ∈ (0,min{δ0, ϵ0/200}) and set cn = (an + bn)/2 + iδ.

Then cn ∈ Kδ for all n ≥ n0, where Kδ = {z ∈ H : Im(z) ≥ δ,Re(z) ∈ [−M,M ]}. Since Kδ ⊆ H is

compact, we have that supz∈Kδ
|h̃µn(z)− h̃λn(z)| → 0 as n→ ∞. Also, the Beurling estimate implies

that a Brownian motion starting from cn exits H on R \ [an, bn] is at most ≲ (δ/ϵ0)
1/2, where the

implicit constant is universal. Moreover, we have that ∥h̃n∥∞ ≲ 1, for all n, where the implicit

constant depends only on a, b, λ, χ, θ1, and θ2. Combining, we obtain that we can choose δ > 0

sufficiently small such that supz∈Kδ
|h̃µn(z)− h̃λn(z)| ≥ δ0/2 for all n ≥ n0, but this contradicts the

local uniform convergence of h̃n to h̃. Therefore, it is a.s. the case that there exists x̃ ∈ R such that

x̃n → x̃ as n→ ∞. We define z(V ) to be the prime end of ∂G, ψ−1(x̃).
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Step 3. Conclusion of the proof. Note that the boundary values of h̃n on [ỹn, x̃n] (resp. [x̃n, z̃n]) are

given by λ− ϕj(n)χ (resp. −λ− ϕi(n)χ) and so since h̃n → h̃ locally uniformly and x̃n → x̃, ỹn → ỹ,

and z̃n → z̃ as n→ ∞, we obtain that the boundary values of h̃ on [ỹ, x̃] (resp. [x̃, z̃]) are given by

λ− θχ (resp. −λ− θχ). Note that either (but not both) of the intervals [ỹ, x̃] and [x̃, z̃] may be a

single point. Since h̃ = h ◦ ψ−1 − χ arg(ψ−1)′, we can identify the boundary conditions of h̃ on the

(possibly degenerate) arcs of ∂G (viewed as a set of prime ends) from ŷ to z(V ), and from z(V ) to

ẑ and see that they are exactly the boundary conditions of the right and left sides of a flow line of

angle θ.

We have now shown that for a fixed curve γ and t ∈ [0, 1], on the almost sure event that γ(t) /∈
F(θ1, θ2; γ), that the boundary conditions of h on the arc of ∂G from ŷ to z(V ) (resp. from z(V ) to

ẑ) are given by those of the right (resp. left) side of a flow line of angle θ(V ). Since for every bounded

connected component V of H \ (F(θ1, θ2; γ) ∪ γ) there exists t ∈ [0, 1] ∩Q with γ(t) ∈ ∂V ∩ γ, the
lemma statement follows. Finally we remark that if z(V ) is in the bounded component of H \ γ,
then z(V ), ŷ and ẑ are distinct prime ends on ∂G. □

Fix t ∈ (0, 1) and suppose that we have the setup of the statement of Lemma 5.8. We let θ be the

angle associated with the connected component V containing γ(t) on its boundary. Let

F(t; γ) = ∩ϕ1<θ<ϕ2
ϕ1,ϕ2∈Q

F(ϕ1, ϕ2; γ).

In Lemma 5.9, we will show that F(t; γ) is a local set for h, and then in Lemma 5.10, we will identify

the boundary conditions of the field h|H\F(t;γ).

Lemma 5.9. Suppose that we have the setup described just above and t ∈ (0, 1) is fixed. Then

F(t; γ) is a local set for h.

Proof. To prove the claim of the lemma , we will use [38, Lemma 3.9]. Suppose that (ϕn) is the

enumeration of (Q ∩ [θ1, θ2]) ∩ {θ1, θ2} as before. For each j, we let ηj be the flow line of h from

0 to ∞ in H with angle ϕj , stopped upon hitting γ. For each n, we let Fn(t; γ) be given by

F(ϕi(n), ϕj(n); γ) where ϕi(n), ϕj(n) are, as in Lemma 5.8, the angles of the two flow lines among

those with angles in ϕ1, . . . , ϕn which make up the right and left boundaries respectively of the

bounded connected component of H \ (γ ∪ η1 ∪ · · · ∪ ηn) whose boundary contains γ(t). In other

words, the boundary of the bounded connected component of H \ (γ ∪ η1 ∪ · · · ∪ ηn) with γ(t) on its

boundary consists of a segment of γ, ηi(n), and ηj(n). See Figure 10 for a partial representation of

Fn(t; γ). Note that F(t, γ) = ∩nFn(t; γ). Since (Fn(t; γ))n is a countable and decreasing sequence

of closed sets which are determined by the field, by combining with Lemma A.1, we obtain that it

suffices to show that Fn(t; γ) is a local set for the field for each n. Fix an open set U ⊆ H. We need

to show that the event that Fn(t; γ) ∩ U ̸= ∅ is conditionally independent of the projection of the

field onto the functions which are supported in U given the projection onto those functions which

are harmonic in U . Let Vn be the bounded connected component of H \ (γ ∪ η1 ∪ · · · ∪ ηn) with γ(t)
on its boundary. Then there exist 1 ≤ i(n), j(n) ≤ n so that ∂Vn can be written as the union of a

segment of γ as well as segments of ηi(n) and ηj(n).

We claim that ηi(n) ∪ ηj(n) is local for h. Upon proving this, it will follow that Fn(t; γ) is local for h

since Fn(t; γ) is given by the closure of the union of the flow lines of the conditioned GFF given

ηi(n) ∪ ηj(n) with rational angles in [ϕi(n), ϕj(n)], stopped at the first time that they hit γ. To see

that ηi(n) ∪ ηj(n) is local, for each j, we let η̃j be the flow line of h from 0 to ∞ in H stopped upon
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either first hitting γ or U . Let Ṽn be the bounded connected component of H \ (γ ∪ η̃1 ∪ · · · ∪ η̃n)
with γ(t) on its boundary. Then we have that (ηi(n) ∪ ηj(n)) ∩ U ̸= ∅ if and only if ∂Ṽn does not

consist of part of γ and parts of ηi, ηj so that ϕi, ϕj are consecutive numbers in the enumeration

(ϕm). Hence we obtain that the event {(ηi(n) ∪ ηj(n)) ∩ U ̸= ∅} is determined by η̃1, · · · , η̃n. But

the latter collection of curves is determined by the projection of h onto the functions which are

harmonic in U . It follows that {(ηi(n) ∪ ηj(n)) ∩ U ̸= ∅} is a.s. determined by the projection of h

onto the space of harmonic functions in U and so [38, Lemma 3.9] implies that ηi(n) ∪ ηj(n) is local
for h. This proves the claim hence the lemma. □

Lemma 5.10. Let ψ̂ be the unique conformal transformation from the unbounded connected

component of H \ F(t; γ) onto H which fixes ∞ and sends γ(t) to i. On the event that z(V ) is in

the bounded connected component of H \ γ, there exist x1 < x2 < x3 < x4 < x5 so that the field

h ◦ ψ̂−1 − χ arg(ψ̂−1)′ has boundary conditions given by:

− a in (−∞, x1], −λ− θχ in (x1, x2], λ− θχ in (x2, x3]

− λ− θχ in (x3, x4], λ− θχ in (x4, x5], b in (x5,∞).

Proof. Suppose that we have the setup of the proof of Lemma 5.9. For each n ∈ N, we let Ĝn be

the unbounded connected component of H \ Fn(t; γ) and let ψ̂n be the conformal transformation

mapping Ĝn onto H such that ψ̂n(γ(t)) = i and ψ̂n(∞) = ∞. Similarly, we let Ĝ be the unbounded

connected component of H \ F(t; γ) and let ψ̂ be the conformal transformation mapping Ĝ onto

H such that ψ̂(γ(t)) = i and ψ̂(∞) = ∞. Then we have that ψ̂n → ψ̂ locally uniformly as n→ ∞
a.s. We let ĥ0n be a zero boundary GFF on Ĝn and let ĥn be a harmonic function on Ĝn such that

h|
Ĝn

= ĥ0n + ĥn. Also, since F(t; γ) is a local set for h (Lemma 5.9), we can write h|
Ĝ
= ĥ0 + ĥ,

where ĥ0 (resp. ĥ) is a zero boundary GFF (resp. harmonic function) in Ĝ. We define ηi(n), ηj(n), zn
and yn as in Lemma 5.8, and as before let y = limn yn, z = limn xz with ŷ, ẑ. We have assumed that

the prime end z(V ) ∈ ∂V is in the bounded connected component of H \ γ. Let un (resp. vn) be

the rightmost (resp. leftmost) point on R+ ∩ ηi(n) (resp. R− ∩ ηj(n)). Let xn1 and xn5 be the images

of vn and un under ψ̂n, let x
n
2 , x

n
4 be the images of (the unique prime ends corresponding to) yn, zn,

let yn2 , y
n
4 be the images of ŷ, ẑ and finally let xn3 be the image of z(V ). See Figure 10 for a partial

representation of this setup.

Let Jn (resp. In) be the clockwise (resp. counterclockwise) arc of γ from yn to y (resp. from zn
to z), and let p̂n (resp. q̂n) be the probability that a Brownian motion starting from γ(t) hits In
(resp. Jn) before exiting Ĝn. Since yn → y and zn → z as n→ ∞ a.s., we obtain that p̂n → 0 and

q̂n → 0 as n → ∞ a.s. Let pn (resp. qn) be the harmonic measure of the left (resp. right) side of

ηj(n) (resp. ηi(n)) in Ĝn as seen from γ(t). Next we claim that the sequences (pn) and (qn) converge

a.s. Indeed, fix ϵ > 0. Then, there exists n0 ∈ N such that p̂n + q̂n < ϵ for all n ≥ n0. By possibly

taking n0 to be larger, we can assume that the Hausdorff distance with respect to the Euclidean

metric between ηj(n) and ηj(m) (resp. ηi(n) and ηi(m)) stopped upon first hitting γ is at most ϵ,

for all n,m ≥ n0. Moreover, there a.s. exists δ > 0 such that the distance between the clockwise

arc of γ connecting z to R+ and the counterclockwise arc of γ from y to R− is at least δ. Fix

m > n ≥ n0. Then, the Beurling estimate implies that the probability that a Brownian motion

starting from γ(t) hits the right side of ηi(n) and then exits Ĝm on the left side of ηj(m) is at most

≲ (ϵ/δ)1/2, where the implicit constant is universal. Also, if the Brownian motion exits Ĝm on

the left side of ηj(m) without hitting In ∪ Jn or the right side of ηi(n), we have that it exits Ĝn on
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Figure 10. Left. This is a schematic depiction of Fn(t; γ). Here, ηi(n), ηj(n), xn
and yn are as in Figure 9. We also include y = limn yn, z = limn zn and the prime

end z(V ) ∈ ∂V . Fn(t; γ) is contained in the (closed) shaded region. We do not

try to depict it since our information about its precise behavior is limited at this

point. We emphasize that we do not know how complicated its boundary is in the

region near y, x and z (the light blue line), and that we have not yet shown that this

boundary is a simple curve. We include also some of the boundary conditions of ĥn.

Right. ψ̂n is a conformal map from the unbounded component of H \ Fn(t; γ) to H

sending γ(t) to i and fixing ∞. We identify the points xn1 , x
n
2 , y

n
2 , x

n
3 , y

n
4 , x

n
4 and xn5

as the images of the seven points (more precisely, prime ends) vn, yn, y, x, z, zn and

un (defined in the proof of Lemma 5.10). We include the boundary conditions of

ĥn ◦ ψ̂−1
n −χ arg(ψ̂−1

n )′. The boundary conditions on intervals marked ∗∗ may change,

but are uniformly bounded in n. The convergence of the points xnj and ynj allows us

to determine the boundary conditions of the limiting harmonic function ĥ ◦ ψ̂−1 −
χ arg(ψ̂−1)′.

the left side of ηj(n). It follows that pm ≤ pn + ϵ + C(ϵ/δ)1/2 for all m > n ≥ n0, where C < ∞
is a universal constant, which implies that lim supm→∞ pm ≤ pn + ϵ + C(ϵ/δ)1/2 for all n ≤ n0
and so lim supm→∞ pm ≤ lim infn→∞ pn + ϵ+ C(ϵ/δ)1/2. Since ϵ > 0 was arbitrary, we obtain that

there exists p > 0 such that pn → p as n → ∞. Similarly, there exists q > 0 such that qn → q as

n → ∞. Furthermore, the harmonic measures of R− ∩ ∂Ĝn,R+ ∩ ∂Ĝn, and the clockwise (resp.

counterclockwise) arc of ∂V from z(V ) to ŷ (resp. ẑ), all converge as n → ∞ a.s., since they are

increasing functions in n.

The results of the previous paragraph imply that there a.s. exist x1 < x2 ≤ x3 ≤ x4 < x5 such

that xnj → xj as n → ∞ for all 1 ≤ j ≤ 5 and that ynj → xj for j = 2, 4. We note that on the

event that z(V ) is in the bounded connected component of H \ γ, we have that x2 < x3 < x4.

Also, by a harmonic measure argument similar to the one in Lemma 5.8, we can identify ψ̂−1(x2)

(resp. ψ̂−1(x4)) with the (unique) prime end of ∂Ĝ corresponding to y (resp. z). Using Lemma 5.8

and [25, Lemma 3.8] we can explicitly describe the boundary conditions of the harmonic functions

ĥn ◦ ψ̂−1
n − χ arg(ψ̂−1

n )′ (except on the intervals [xn2 , y
n
2 ] and [yn4 , x

n
4 ], but by applying Lemma 5.8

to a dense set of points on γ, we know the boundary conditions on these intervals are bounded

uniformly in n). These boundary conditions are depicted in Figure 10. Finally, since xnj → xj for

each j and ynj → xj for j = 2, 4, it follows that these harmonic functions converge locally uniformly

as n → ∞ to the harmonic function on H with boundary conditions given by −a in (−∞, x1],

−λ− θχ in (x1, x2], λ− θχ in (x2, x3], −λ− θχ in (x3, x4], λ− θχ in (x4, x5], and b in (x5,∞) (on
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y zγ(t)

F (t; γ)

−a b

η2
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Figure 11. The flow lines η2 and η4 are defined as in Lemma 5.11 and merge before

either of them merge with V . The dashed line η′2 is an alternate realization of η2 in

the case where η′2 merges with ∂V . In either case, γ(t) may or may not be contained

in U , but ∂U \ ∂V will always be contained in η2 ∪ η4.

the event that z(V ) lies in the bounded connected component of H \ γ). On the other hand, we

have that ĥn ◦ ψ̂−1
n − χ arg(ψ̂−1

n )′ converges locally uniformly to ĥ ◦ ψ̂−1 − χ arg(ψ̂−1)′ as n → ∞
a.s. Combining, we obtain that ĥ ◦ ψ̂−1 − χ arg(ψ̂−1)′ has the required boundary conditions and so

this completes the proof of the lemma. □

Next, we assume that we have the setup of Lemma 5.8. Then, we will show in the following lemma

that there exists a connected component U of H \ F(θ1, θ2) which agrees with ∂V near z(V ). This

will imply that x(U) ̸= y(U) and so the two boundary arcs of ∂U described in Lemma 5.7 are

non-degenerate. We also show that ∂U \ ∂V is contained in flow lines of a conditional field. We

remark that U may not contain γ(t). Figure 11 depicts F(t; γ) and these conditional flow lines.

Lemma 5.11. Suppose that V is a bounded connected component of H \ (F(θ1, θ2; γ) ∪ γ) with

∂V ∩F(θ1, θ2; γ) ̸= ∅ as in Lemma 5.8, and that z(V ) in the bounded connected component of H \ γ.

(i) There exists a unique connected component U of H \ F(θ1, θ2) so that ∂U agrees with ∂V ∩
F(θ1, θ2; γ) near z(V ).

(ii) We have that ∂U \ ∂V is contained in the union of the flow lines of angle θ starting from the

two prime ends corresponding to x2 and x4 from Lemma 5.10 in H \ F(t; γ).
(iii) We have that x(U) ̸= y(U).

Proof. We begin by proving (i) and (ii). Let η2 (resp. η4) be the flow line of h|H\F(t;γ) of angle θ start-

ing from ψ̂−1(x2) (resp. ψ̂
−1(x4)). Then we have that η2 has the law of an SLEκ(ρ

L; ρ1,R, ρ2,R, ρ3,R)

process in the unbounded connected component Ĝ of H \ F(t; γ) with the force points located at

ψ̂−1(x1), ψ̂
−1(x3), ψ̂

−1(x4), and ψ̂
−1(x5) respectively, where

ρL = −1 +
a− θχ

λ
, ρ1,R = −2, ρ2,R = 2, ρ3,R = −1 +

b+ θχ

λ
.

Similarly, we have that η4 has the law of an SLEκ(ρ
3,L, ρ2,L, ρ1,L; ρR) process in Ĝ with the force

points located at ψ̂−1(x1), ψ̂
−1(x2), ψ̂

−1(x3), and ψ̂−1(x5) respectively, and ρR = ρ3,R, ρ1,L =

−2, ρ2,L = 2, and ρ3,L = ρL. It follows from the proofs of [29, Lemma 2.1, Theorem 3.1] and [5,

Lemma 15] that η2 (resp. η4) does not hit the clockwise (resp. counterclockwise) arc of ∂V from

z(V ) to ψ−1(x2) (resp. ψ
−1(x4)) except for at its starting point. Moreover, either η2 merges with

the counterclockwise arc of ∂V from z(V ) to γ or it merges with η4. Similarly, either η4 merges
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with the clockwise arc of ∂V from z(V ) to γ or it merges with η2. If η2 and η4 merge before either

of them merges with ∂V , we have that both of them do not intersect ∂V except for their starting

points. Some of these possibilities are shown in Figure 11. Let Ũ be the connected component

of H \ (F(t; γ) ∪ η2 ∪ η4) whose boundary contains z(V ). In any of these cases, neither η2 nor η4
can hit ∂V at z(V ), meaning that ∂Ũ agrees with ∂V near z(V ). Next we will prove that Ũ is a

connected component of H \ F(θ1, θ2) which agrees with V near z(V ), and that the boundary of Ũ

excluding ∂V is contained in η2 ∪ η4, thus proving (i) and (ii).

We will first show that F(θ1, θ2) ∩ Ũ = ∅ a.s. This will imply that Ũ ⊆ U for some connected

component U of H\F(θ1, θ2). Suppose that η2 merges with the counterclockwise arc of ∂V from z(V )

to γ. Then ∂Ũ consists of part of ∂V and the part of η2 up until it merges with the counterclockwise

arc of ∂V from z(V ) to γ. Then the flow line interaction rules imply that for all ϕ ∈ Q ∩ [θ, θ2],

we have that the flow line of h of angle ϕ does not cross η2 from left to right and so it does not

enter Ũ . We note that the flow line of h with angle θ (in the unbounded component of H \ F(t; γ))
can be sampled by first sampling F(t; γ) and then sampling the flow line of angle θ of the field

h ◦ ψ̂−1 − χ arg(ψ̂−1)′ introduced in Lemma 5.10. This follows from the martingale characterization

in [25, Theorem 2.4] and is similar to the argument in, for example, [25, Lemmas 4.7, 7.1]. Also, for

all ϕ ∈ Q ∩ [θ1, θ], the flow line of h with angle ϕ cannot enter Ũ since it can only do so by crossing

η2 from left to right, but then it has to exit Ũ and it can only do so by crossing η2 again. But the

latter cannot happen and so F(θ1, θ2) ∩ Ũ = ∅. Analogously, F(θ1, θ2) ∩ Ũ = ∅ if η4 merges with

the clockwise arc of ∂V from z(V ) to γ. Finally, if η2 and η4 merge, we have that ∂Ũ consists of

part of ∂V and the parts of η2 and η4 up until they merge. Then, for all ϕ ∈ Q∩ [θ1, θ], the ϕ-angle

flow line of h cannot enter Ũ since it can only do so by crossing η4 from right to left and the latter

cannot happen. Similarly, for all ϕ ∈ Q ∩ [θ, θ2], the ϕ-angle flow line of h cannot enter Ũ since

it can only do so by crossing η2 from left to right, and the latter cannot happen. Combining the

above observations, we obtain that Ũ ∩F(θ1, θ2) = ∅ in every case and so Ũ ⊆ U for some connected

component U of H \ F(θ1, θ2).

To show that Ũ = U , suppose that Ũ ̸= U . Then there exists w ∈ U ∩(η2∪η4). Suppose without loss
of generality that w ∈ η2. Then for all ϵ > 0, using Proposition 3.1, there a.s. exists ϕ ∈ Q ∩ [θ, θ2]

such that the ϕ-angle flow line of h enters B(w, ϵ). This is a contradiction since U is open and hence

there exists some ϵ > 0 such that F (θ1, θ2) does not intersect B(w, ϵ), so Ũ = U , completing the

proof of (i) and (ii).

Finally, (iii) follows from [25, Lemma 3.8] and the fact that we have explicit descriptions of the

local set boundary conditions of ∂U and ∂V from Lemmas 5.7 and 5.8. In particular, we see

that x(U) = z(V ), but that y(U) cannot be equal to this prime end by comparing the boundary

conditions. □

Suppose that we have z ∈ H fixed and let θ = θ(z) be the angle corresponding to the connected

component U of H \ F(θ1, θ2) containing z as in Lemma 5.7, which exists a.s. Set

F(z) = ∩ϕ1<θ<ϕ2
ϕ1,ϕ2∈Q

F(ϕ1, ϕ2).

Let P be the (countable) set of simple piecewise linear paths γ : [0, 1] → H with γ(0) ∈ (−∞, 0)∩Q,

γ(1) ∈ (0,∞) ∩ Q, and γ(t) ∈ H for each t ∈ (0, 1), and which consist of finitely many line

segments and where all intersection points of distinct line segments have rational coordinates. We

parameterize each path by arc length divided by its total arc length (so that γ is defined on [0, 1]).



54 CILLIAN DOHERTY, KONSTANTINOS KAVVADIAS, AND JASON MILLER

Let γ be a path in P. Then, we say that U is discovered by (γ, t) if U is the unique connected

component of H \ F(θ1, θ2) so that ∂U agrees with ∂V near z(V ), as in Lemma 5.11, where V is

the bounded connected component of H \ (F(θ1, θ2; γ) ∪ γ) whose boundary contains γ(t). Recall

that θ(V ) ≡ θ(γ, t) is defined in Lemma 5.8 as the infimum of angles ϕ ∈ [θ1, θ2] for which ηϕ first

hits γ to the left of γ(t). We will show in the following lemma that it is a.s. the case that every

connected component of H \ F(θ1, θ2) can be discovered using the fixed and countable collection of

paths P. In particular, combining with Lemma 5.2, this will imply that the two boundary arcs of

any connected component U of H \F(θ1, θ2) are non-degenerate and that ∂U can be represented as

parts of flow lines of a conditional GFF.

Lemma 5.12. Suppose that z ∈ H∩Q2 is fixed. Then a.s. there exists a path γ ∈ P and t ∈ [0, 1]∩Q
so that the connected component U of H \ F(θ1, θ2) containing z is discovered by (γ, t).

Proof. Step 1. U is the connected component of H \ F(z) containing z. For ϕ1 < θ < ϕ2, the

connected component of H \ F(ϕ1, ϕ2) containing z can be seen to be equal to U , since by its

definition U is determined only by flow lines with angle in (ϕ1, ϕ2). It follows from the definition of

F(z) that the connected component of H \ F(z) containing z is equal to U .

Step 2. Choosing a suitable curve γ ∈ P. Now, we will show that for any point z ∈ H ∩Q2, there

a.s. exist γ ∈ P and t ∈ [0, 1] ∩Q2 such that θ(γ, t) = θ(U) and that U intersects the unbounded

component of H \ γ. We will explain how this completes the proof in Step 3.

First, we show that F(z) is equal to its left and right boundaries, in a way that we will now make

precise. Let W be the connected component of C \ F(z) containing −i. Then, W is a simply

connected set. We claim that F(z) = ∂W . Indeed, suppose that this does not hold. Then, there

exists w ∈ F(z) and ϵ > 0 such that B(w, ϵ) ⊆ C \W . Let WL (resp. WR) be the union of the

connected components of H \F(z) whose boundaries contain non-trivial intervals of R− (resp. R+).

There exists ϕ ∈ Q such that ϕ ≠ θ and the flow line of h of angle ϕ intersects B(w, ϵ/2). Suppose

that ϕ > θ. Then the flow line interaction rules imply that the ϕ-angle flow line lies in WL and so

B(w, ϵ/2)∩WL ̸= ∅ which implies that B(w, ϵ/2)∩W ̸= ∅, and that is a contradiction. Suppose that

ϕ < θ. Again, the flow line interaction rules imply that ηϕ lies in WR and so B(w, ϵ/2) ∩WR ̸= ∅
which leads to a contradiction. It follows that F(z) = ∂W .

Since W is simply connected, there exists a unique conformal map f : W → H such that f(0) =

0, f(∞) = ∞, and f(x) = 1, where x is the last point in the boundary of the connected component

of H \ ηθ2 containing −1 that ηθ2 hits. Note that f extends to a homeomorphism mapping ∂W onto

∂H, where the points on ∂W are seen as prime ends. We define the left side FL (resp. right side FR)

of F(z) to be given by f−1([0,∞)) (resp. f−1((−∞, 0])). By Proposition 5.5 and Remark 5.6, F(z)

and ∂W are locally connected, so by [33, Theorem 2.1] the map f extends to a continuous map

(with respect to the spherical metric) from W to H. It follows that the left and right boundaries FL

and FR are (possibly non-simple) curves, naturally parameterized by the map f . In this way, F(z)

is exactly the union of its left and right boundaries. By Step 1, ∂U is contained in FL ∪ FR, and

since ∂U is locally connected, its boundary can be parameterized by a (possibly non-simple) curve

[33, Theorem 2.1].

Next, suppose we have the notation of Lemma 5.7 (see Figure 8). Since ∂U ⊆ FL ∪ FR, at least one

of FL, FR intersects ∂U . Suppose without loss of generality (for the remainder of this step) that

FL intersects ∂U (while allowing that FR may also do so). Let uL be the first point at which FL

intersects ∂U and let F s
L be FL stopped the first time it hits uL. Let uR be the first point at which
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Figure 12. Here we depict the setup of Lemma 5.12. This figure is not meant to

represent the reality and is included mainly to explain our notation. It is (deliberately)

misleading in the sense that ∂U, uL and uR cannot appear in the configuration shown.

In fact, as we will eventually show, F s
L and F r

L are equal, and uL = uR. We choose

this layout to emphasize that we have not proven the above at this stage, and so we

have to allow for situations where we do not know the configuration of uL, uR and

∂U .

FR intersects ∂U , if such a point exists, and set uR = 0 otherwise. Let F s
R be FR stopped the first

time it hits uR. We claim that z lies in the unbounded connected component of C \ (F s
L ∪ F s

R).

Indeed, suppose that z lies in a bounded component B of this set. Then there must exist a point

u ∈ ∂U \ (F s
L ∪ F s

R), and ϵ > 0 such that B(u, ϵ) is contained in B. Since u ∈ FL ∪ FR, it is in

WL ∪WR, meaning that B ∩ (WL ∪WR) is not empty. But every point in WL ∪WR is in W , which

is an unbounded connected component of C \ F(z). Since F s
L ∪ F s

R ⊆ F(z), such a point cannot be

in a bounded component of C \ (F s
L ∪ F s

R), yielding a contradiction and proving the claim. Since

F s
L ∩F s

R is bounded and z is in the unbounded connected component of its complement, there exists

a path γ ∈ P such that F s
L ∪ F s

R is in the bounded connected component of H \ γ and that z is in

the unbounded component.

To complete this step we show that there exists t ∈ [0, 1] ∩Q such that θ(γ, t) = θ(U). Since ∂U

is locally connected, the unique conformal map g : D → U with g(0) = z, g′(0) > 0 extends to a

continuous map from D → U (see [33, Theorem 2.1]), and there exists a simple path γ′ in U ∪ {uL}
from uL to z. Let v ∈ U be the first time this path hits γ. Let γ∗ be the (not necessarily simple)

curve obtained by concatenating F s
L and γ′ which starts at 0, ends at z and hits γ for the first

time at v. For each n, F(z) and hence also γ∗ lie between ηi(n) and ηj(n) (in the sense that they

are contained in the closure of the region between these two curves). Let zn (resp. yn) be the first

point at which ηi(n) (resp. ηj(n)) hits γ. Then v must lie on the clockwise arc of γ from yn to zn.

Let y = limn→∞ yn and z′ = limn→∞ zn. Since U is open and v ∈ U , v must lie on the (necessarily

non-empty) clockwise arc from y to z′, and we can choose t ∈ [0, 1] ∩Q such that γ(t) also lies on

this arc. If ϕ > θ(U), then ϕ > ϕj(n) for some n, and hence by the flow line interaction rules ηϕ
must hit γ for the first time to the left of yn, and thus to the left of y. Analogously, if ϕ < θ(U),

then ηϕ hits γ to the right of z′. It follows that θ(U) = θ(γ, t).
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Step 3. Completing the proof. Suppose that γ ∈ P, t ∈ [0, 1] ∩Q, that θ(U) = θ(γ, t) and z ∈ U is

in the unbounded connected component of H \ γ. By the previous step such a pair (γ, t) exists a.s.

Let V be the unique bounded component of H \ (F(θ1, θ2; γ) ∪ γ) with γ(t) on its boundary. To

complete the proof of the lemma, we will prove that U is discovered by (γ, t) a.s. By the arguments

used to prove (ii) in Lemma 5.11, the set F(z) \ F(t; γ) is the union of the two flow lines, η2 and η4,

of angle θ started from the prime ends ψ−1(x2) and ψ
−1(x4) respectively. In particular, since z is

in a bounded component of H \ F(z) and z is in the unbounded component of H \ γ, the only way

this can occur is if U is equal to the region bounded by ∂V, η2 and η4 (or perhaps one of these flow

lines if one of them merges into ∂V , see Figure 11). This means exactly that U is discovered by

(γ, t). □

As a consequence of Lemmas 5.12 and 5.2, we will now show that for all z ∈ H, a.s. F(z) has the

form of a simple curve which splits into two curves which in turn merge back into a single curve.

From this we can deduce that a.s., every connected component of H \ F(θ1, θ2) is a Jordan domain

with distinct marked boundary points. We state and prove this in the following lemma.

Lemma 5.13. Fix z ∈ H and let U be the connected component of H \F(θ1, θ2) containing z. Then

F(z) is a.s. the union of a simple curve ηa from 0 to x(U), two simple curves ηL and ηR from

x(U) to y(U) which form, respectively, the clockwise and counterclockwise boundary arcs of ∂U from

x(U) to y(U), and a simple curve ηb from y(U) to ∞. The curves ηa, ηL, ηR and ηb do not intersect

except at x(U) and y(U), and the boundary conditions of h given F(z) are those of the left (resp.

right) side of a flow line of angle θ(U) on the left (resp. right) side of each of these curves.

Proof. The proof of this argument is effectively a bootstrapping of the argument used in Lemma 5.12,

and we will only mention here the details that we need to change. Suppose that we have γ as in

Step 3 of the proof of Lemma 5.12. By Lemma 5.10 the boundary conditions of h given F(t; γ) are

such that η2 and η4 do not hit any fixed point on F (t; γ) a.s. and in particular do not hit uL ∈ ∂U

a.s. As explained in the proof of Lemma 5.11 either η2 and η4 merge, or exactly one of η2 or η4
merges with ∂V . Define y′ ≡ y′(U) to be this merging point. Now y′(U) ̸= uL a.s. so it follows that

there exists γ̃ ∈ P such that FL
s (γ̃) is in the bounded component of H \ γ̃ and that y′ is in the

unbounded component. If we now repeat the argument of Step 3 in Lemma 5.12, we find that in

this case the flow lines η2(γ̃) and η4(γ̃) a.s. do not merge with ∂V (γ̃) and therefore must merge

together to create the pocket U(γ̃), which as before must be equal to U . This ensures that the form

of F (z) \ F(t; γ) consists of two flow lines of the same angle which merge and then go on to ∞. To

obtain information about the start of the flow line, we use reversibility and draw a new path γ̂ which

disconnects y′(U) from 0 and does not intersect γ̃. By considering F̂(t; γ′), the analogue of F(t; γ̂)

except we look at the time reversal of the flow lines from ∞ to 0 until they hit γ̂, we can conclude

that the form of F(z)\ F̂(γ̂) consists of two simple curves which merge together. By combining these

observations, we can deduce the structure of F(z). Finally, the form of the boundary conditions

then can be read off using Lemma 5.10 and [25, Lemma 3.8], which allows us to identify that y(U)

and y′(U) are equal, and that x(U) = uL = uR. □

5.3. Interaction of components in the complement of the fan. We now recall some results

from [29]. Suppose that

0 < ∆θ <
κπ

4− κ



CONNECTIVITY OF THE ADJACENCY GRAPH OF THE SLE FAN 57

and let

ρ(∆θ) =
1

π
(∆θ)

(
2− κ

2

)
− 2.

Then by [29, Theorem 1.5], the Hausdorff dimension of the intersection of flow lines with angle

difference ∆θ is given by

(5.1) 2− 1

2κ

(
ρ+

κ

2
+ 2
)(

ρ− κ

2
+ 6
)
.

We in particular note that the above formula determines ∆θ. We recall also from [25, Theorem 1.5]

that θc = πκ/(4−κ) is the critical angle difference in the sense that two flow lines of angle difference

∆θ may intersect (without crossing) only when ∆θ < θc.

Suppose that η is a flow line of a GFF which has the law of an SLEκ(ρ) process in H from 0 to ∞
with the force point located at 0+ and such that ρ ∈ (−2, κ2 − 2). Then it is a.s. the case that for all

0 < x1 < x2, on the event that η ∩ [x1, x2] ̸= ∅, the Hausdorff dimension of η ∩ [x1, x2] is equal to

[29, Theorem 1.6]

(5.2) 1− 1

κ
(ρ+ 2)

(
ρ+ 4− κ

2

)
.

In particular, from the dimension we can recover ρ (or, equivalently, the angle of the flow line). In

the following it is worth keeping in mind that (2− κ/2)/π = χ/λ.

Let us now record some consequences of the above and Lemmas 5.10-5.12.

Lemma 5.14. Fix z, w ∈ H distinct points and let U1 (resp. U2) be the connected component of

H \ F(θ1, θ2) containing z (resp. w). Then we have that:

(i) On the event that ∂U1 ∩ ∂U2 ̸= ∅ and U1 ̸= U2, we have that the left (but not the right) side of

∂U1 intersects the right (but not the left) side of ∂U2 or vice-versa.

(ii) ∂U1, ∂U2 can only intersect if their angle difference |θ(U1)− θ(U2)| is below the critical angle.

(iii) On the event that ∂U1 ∩ ∂U2 ̸= ∅, we have that the Hausdorff dimension of ∂U1 ∩ ∂U2 ̸= ∅ is

a.s. equal to (5.1) with ρ = 1
π |θ(U1)− θ(U2)|

(
2− κ

2

)
− 2.

(iv) On the event that ∂U1 ∩ R+ ≠ ∅ and that the right boundary of U1 does not contain any

open interval of R+, we have that the Hausdorff dimension of ∂U1 ∩R+ is equal to (5.2) with

ρ = −1 + b+θ(U1)χ
λ .

Proof. Step 1. Proof of (i), (ii), and (iii). Suppose that we are working on the event that U1 ≠ U2

and that ∂U1 ∩ ∂U2 ̸= ∅. By the proofs of Lemmas 5.12 and 5.13, we know that if z ∈ U1, then F (z)

is a simple curve until it hits x(U1), then “splits” into two curves and traces ∂U1. These two curves

merge at y(U1), after which F (z) is again a simple curve until it reaches ∞. Since F (z) depends

on z only through θ1 ≡ θ(z) ≡ θ(U1), it follows that θ(U1) ̸= θ(U2) if U1 ≠ U2. Therefore, we can

assume that θ(U1) > θ(U2). Fix ϵ > 0 small enough that |y(Uj)− x(Uj)| > ϵ for j = 1, 2. We let γ

be a simple path in H as in Lemma 5.12 such that γ(s) ∈ U1, γ(t) ∈ U2 for some s, t ∈ Q ∩ (0, 1)

with s < t and that F (γ(s)) (resp. F (γ(t))) does not hit γ before it hits x(U1) (resp. x(U2)). We

also assume that ∂Uj \B(x(Uj), ϵ) is contained in the unbounded connected component of H \ γ
for j = 1, 2. We note that we can always choose such a path for all ϵ > 0 sufficiently small. The

following setup is depicted in Figure 13. We let u1 (resp. v1) be the point on F(s; γ) which is hit

first (resp. last) by γ. Similarly, we let u2 (resp. v2) be the point on F(t; γ) which is hit first (resp.

last) by γ. Moreover, we let ηu1 (resp. ηv1) be the flow line starting from u1 (resp. v1) with angle

θ(U1) of the conditional field given F(s; γ). Then we have that ηu1 and ηv1 merge upon hitting
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Figure 13. This figure corresponds to parts (i), (ii) and (iii) of Lemma 5.14. Since

we know ηu1 , ηv1 , ηu2 , ηv2 are flow lines of a GFF, we can deduce that (i), (ii) and

(iii) hold on the parts of ∂U1, ∂U2 that are traced after F (γ(s)) and F (γ(t)) leave

the bounded component of H \ γ, respectively. By varying γ, we can prove the result

for all of ∂U1, ∂U2.

y(U1) and then evolve towards ∞. Also, it follows from Lemma 5.11 that ∂U1 \ B(x(U1), ϵ) is

contained in ηu1 ∪ ηv1 . Similarly, we let ηu2 (resp. ηv2) be the flow line starting from u2 (resp. v2)

with angle θ(U2) of the conditional field given F(t; γ). Again, we have that ηu2 and ηv2 merge

upon hitting y(U2) and then evolve towards ∞. Also, ∂U2 \ B(x(U2), ϵ) is contained in ηu2 ∪ ηv2 .
Moreover, we have that (∂U1 \ B(x(U1), ϵ)) ∩ (∂U2 \ B(x(U2), ϵ)) ⊆ ηv1 ∩ ηu2 , since the flow line

interaction rules imply that ηv1 cannot cross ηu2 when they are both restricted to the unbounded

connected component of H \ (F(s; γ) ∪ F(t; γ)). Furthermore, the flow line interaction rules imply

that |θ(U1)− θ(U2)| ≤ θc and by the proof of Lemma 5.11 we have that the left (resp. right) side of

∂Uj contained in ∂Uj \B(x(Uj), ϵ) is contained in the part of ηuj (resp. ηvj ) stopped at the first time

that it hits y(Uj) for j = 1, 2. It follows that (∂U1 \B(x(U1), ϵ)) ∩ (∂U2 \B(x(U2), ϵ)) is contained

in the intersection of the right side of ∂U1 with the left side of ∂U2. Furthermore, we have that

any fixed segment of the right (resp. left) side of ∂U1 (resp. ∂U2) is contained in ∂U1 \B(x(U1), ϵ)

(resp. ∂U2 \ B(x(U2), ϵ)) for all ϵ > 0 sufficiently small, and so it follows by [29, Theorem 1.5]

that the Hausdorff dimension of (∂U1 \ B(x(U1), ϵ)) ∩ (∂U2 \ B(x(U2), ϵ)) is given by (5.1) with

ρ = 1
π |θ(U1)− θ(U2)|

(
2− κ

2

)
− 2. Claims (i), (ii), and (iii) then follow since we can always choose

such a path γ (among a countable and fixed set of choices) for all ϵ > 0 sufficiently small.

Step 2. Proof of (iv). Suppose that we have the setup of the previous paragraph. First, we

note that Lemma 5.10 implies that conditionally on F(s; γ), the curve ηv1 has the law of an

SLEκ(ρ
3,L, ρ2,L, ρ1,L; ρR) process from v1 to ∞ in the unbounded connected component of H\F(s; γ),

where

ρ3,L = −1 +
a− θ(U1)χ

λ
, ρ2,L = 2, ρ1,L = −2, ρR = −1 +

b+ θ(U1)χ

λ
,

and the force points are respectively at the leftmost point on F(s; γ)∩R−, u1, x(U1) and the rightmost

point on F (s; γ) ∩R+. Hence, by conformally mapping the unbounded connected component of

H \ F(s; γ) onto H, in order to prove (iv), it suffices to prove that the following is true. Fix

−∞ < w3 < w2 < w1 < 0 and let η be an SLEκ(ρ
3,L, ρ2,L, ρ1,L; ρR) process in H from 0 to ∞

with the force points located at w3, w2, w1, and 1 respectively. Then, a.s., for all x, y ∈ Q ∩ (1,∞)

with x < y, we have that on the event that η does not merge with [w2, w1] before hitting [x, y], we
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have that the Hausdorff dimension of η ∩ [x, y] is given by (5.2) with ρ = ρR. To prove the latter

claim, we fix x, y as above and consider sequences of stopping times (τn) and (σn) as follows. We

set τ1 = inf{t ≥ 0 : η(t) ∈ [x, y]}, σ1 = inf{t ≥ τ1 : |η(t) − η(τ1)| ≥ δ}, and inductively we define

τn+1 = inf{t ≥ σn : η(t) ∈ [x, y]}, σn+1 = inf{t ≥ τn+1 : |η(t)− η(τn+1)| ≥ δ}, where δ > 0 is fixed

and such that 1 < x− δ. It follows from [29, Lemma 2.7] that for all n ∈ N, if we condition on the

event that τn <∞, we have that the law of η|[τn,σn] is mutually absolutely continuous with respect

to the law of an SLEκ(ρ
R) process in H from η(τn) to ∞ with the force point located at η(τn)

+

and stopped at the first time that it exits B(η(τn), δ). It then follows from [29, Theorem 1.6] that

the Hausdorff dimension of η([τn, σn]) ∩ [x, y] is given by (5.2) with ρ = ρR a.s. on the event that

τn <∞, for all n ∈ N, and so the claim follows. This completes the proof of the lemma. □

We let Fc(z) be the part of the left and right boundaries of F(z) up until z is disconnected from

∞. We also let U(z) be the connected component of H \ F(θ1, θ2) containing z. We show in the

next lemma that Fc(z) is a local set for h and identify the boundary values of h restricted to the

unbounded connected component of H \ Fc(z).

Lemma 5.15. We have that Fc(z) is a local set for h. Let U = U(z) and let y = y(z) be the

closing point for U . Let φ be the unique conformal map from the unbounded connected component of

H\Fc(z) to H which takes y,∞ and the the rightmost point of Fc(z)∩R+ to 0,∞ and 1, respectively.

Then there exists x1 < x2 < x3 so that the boundary conditions for h ◦ φ−1 − χ arg(φ−1)′ are given

by −a in (−∞, x1], −λ− θχ in (x1, x2], λ− θχ in (x2, x3], and b in (x3,∞).

Proof. It follows from the same argument used to prove Lemma 5.9 that Fc(z) is a local set for h.

We now focus on the proof of the second claim of the lemma. It follows from Lemma 5.12 that we

can choose a path γ as in the statement of Lemma 5.12 such that γ(t) ∈ U for some t ∈ Q ∩ (0, 1),

that F (γ(t)) hits x(U) before hitting γ, and that F(t; γ) ⊆ Fc(z). Let h (resp. hc) be the harmonic

extension to H \ F(t; γ) (resp. H \ Fc(z)) of the boundary values of h on ∂(H \ F(z; γ)) (resp.

∂(H \ Fc(z))). It then follows by combining the form of the boundary conditions of h on F(z; γ)

(Lemma 5.10) with [25, Proposition 3.8] that the boundary conditions of h on the part of the left

(resp. right) boundary of Fc(z) lying on F(t; γ) are given by −λ − θχ (resp. λ − θχ). Since we

can discover all of Fc(z) by varying the path γ as in the proof of Lemma 5.14, we obtain that the

boundary conditions of h ◦ φ−1 − χ arg(φ−1)′ have the desired form. □

We are now ready to show that the marked points of each connected component of H \F(θ1, θ2) are
a.s. determined by F(θ1, θ2).

Lemma 5.16. Fix z ∈ H and let U be the connected component of H \F(θ1, θ2) containing z. Then

{x(U), y(U)} are a.s. determined by F(θ1, θ2).

We emphasize that the statement of Lemma 5.16 implies that the pair of points {x(U), y(U)} is

determined by F(θ1, θ2) which means that the two marked arcs of ∂U are determined but not which

one is the clockwise (resp. counterclockwise) arc.

Proof of Lemma 5.16. Step 1. Overview and setup. Suppose that U is the connected component of

H \ F(θ1, θ2) containing z. We are going to show that x(U), y(U) are singled out among points in

∂U by the property that there exist infinitely many connected components UL, UR of H \ F(θ1, θ2)
so that UL (resp. UR) intersects the left (resp. right) side of ∂U and ∂UL ∩ ∂UR ≠ ∅ and U , UL, UR
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together surround y(U) (or x(U)) and we have that |θ(U)− θ(UL)| < |θ(UL)− θ(UR)| and the same

holds with the roles of UL, UR swapped. We note that the way that boundaries of distinct connected

components of H \ F(θ1, θ2) interact (Lemma 5.14) implies that the marked points x(U), y(U) are

the only points on ∂U for which there exist components UL, UR as above. Since the Hausdorff

dimension of the set of intersection points of the boundaries of two distinct connected components

of H \F(θ1, θ2) determines the absolute value of their angle difference (Lemma 5.14), we obtain that

the latter is a.s. determined by F(θ1, θ2) and so the above event is also determined by F(θ1, θ2).

To complete the proof, it suffices to show that there are a.s. infinitely many such components

UL, UR for each connected component U of H \ F(θ1, θ2). By the reversal symmetry of the SLE

fan (Lemma 5.2), it suffices to show that this is a.s. the case for the closing point y(U) of U . We

let φ be as in the statement of Lemma 5.15 meaning that the boundary conditions for the field

h̃ = h ◦ φ−1 − χ arg(φ−1)′ are as described in the statement of Lemma 5.15. For all k ∈ N, let Ak

be the annulus B(0, 2−k) \B(0, 2−(k+1)), and fix k0 ∈ N sufficiently large and assume that we are

working on the event that the boundary conditions of h̃ on [−2−k0+1, 2−k0+1] are given by −λ− θχ

on (−2−k0+1, 0] and λ− θχ in (0, 2−k0+1], where θ = θ(U). We note that we can find k0 ∈ N with

the above property a.s. and that in this case, by [25, Proposition 3.4], the law of h̃ restricted to Ak0

is absolutely continuous with respect to the law of the restriction to Ak0 of a GFF ĥ on H with

boundary conditions given by −λ− θχ on R− and λ− θχ on R+.

Step 2. Defining the events Ek and Gk. For each k ≥ 1, we let ηLk (resp. ηRk ) be the flow line of ĥ of

angle θ+ ϵ (resp. θ− ϵ) starting from xLk = −3 · 2−(k+2) (resp. xRk = 3 · 2−(k+2)), and stopped at the

first time that it exits Ak, and we let Gk ≡ Gk(ĥ) be the event that ηLk and ηRk intersect and form a

component which disconnects 0 from ∞. We note that ηLk has the law of an SLEκ(ρ
L; ρ1,R, ρ2,R)

process in H from xLk to ∞ with the force points located at (xLk )
−, (xLk )

+, and 0 respectively, and

ρL = ϵ
π

(
κ
2 − 2

)
, ρ1,R = −2 + ϵ

π

(
2− κ

2

)
, and ρ1,R + ρ2,R = ϵ

π

(
2− κ

2

)
. Similarly, ηRk has the law of

an SLEκ(ρ
2,L, ρ1,L; ρR) process in H from xR to ∞ with the force points located at 0, (xR)−, and

(xR)+ respectively, where ρR = ρL, ρ1,L = ρ1,R, and ρ2,L = ρ2,R. Since ηLk and ηRk intersect a.s., it

follows by combining Lemmas 2.3 and 2.5 in [29] that P(Gk) > 0. By Corollary A.4, it follows that

Gk occurs infinitely often a.s. By absolute continuity, the event Gk(h̃), which is defined in the same

way as Gk(ĥ) but with (flow lines of) ĥ replaced by (flow lines of) h̃, also occurs infinitely often for

the field h̃.

We are now going to define an event Ek ≡ Ek(ĥ) for each k so that if the corresponding event

Ek(h̃) for the field h̃ occurs for infinitely many k then there exist infinitely many components UL,

UR as described in Step 1. As for the event Ek(h̃), we will prove that Ek(ĥ) occurs a.s. and use

absolute continuity to deduce that Ek(h̃) also occurs a.s. Before we define the event, we first need

to introduce some notation. Let zL = ei7π/8, wL = ei5π/8, zR = eiπ/8, and wR = ei3π/8. For each k

and q ∈ {L,R}, we let zq,k = 3 · 2−(k+2)zq, wq,k = 3 · 2−(k+2)wq. For each w ∈ H, we let ηw (resp.

η̃w) be the flow line of h̃ with angle θ (resp. θ + π) starting from w. Fix ϵ > 0 small. Let η+w (resp.

η−w ) to be the flow line of h̃ with angle θ + ϵ (resp. θ − ϵ) starting from w. Finally, let η̃+w (resp. η̃−w )

to be the flow line of h̃ with angle θ + π + ϵ (resp. θ + π − ϵ) starting from w. Then we let Ek be

the event that the following occur (see Figure 14 for an illustration):

• η̃+zL,k
and η̃wL,k

intersect before either flow line leaves Ak

• η̃−zR,k
and η̃wR,k

intersect before either leaves Ak

• ηwL,k
merges into the left side of ηwR,k

before either leaves Ak

• η+zL,k
intersects (−∞, 0) before leaving Ak
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0

zL,k

wL,k wR,k

zR,k

η̃wL,k

η̃−zR,k

η̃wR,k

η̃+zL,k

η+zL,k

η−zR,k

ηwR,k

ηwL,k

xLk xRk−2−(k+1) 2−(k+1) 2−k−2−k

ŨL

ŨR

Ak

Figure 14. Illustration of the event Ek from the proof of Lemma 5.16 (in the

κ ∈ (0, 2] case). Flow lines colored red have angle θ, flow lines colored orange have

angle θ ± ϵ, flow lines colored blue have angle θ + π, flow lines colored purple have

angle θ + π ± ϵ. We show that φ−1(ŨL) and φ−1(ŨR) are contained in distinct

components UL, UR of H \ F(θ1, θ2) which intersect in the way described in Step 1.

The event Gk is not depicted for simplicity, but we include the points xLk , x
R
k .

• η−zR,k
intersects (0,∞) before leaving Ak

• η+zL,k
intersects η−zR,k

before either leaves Ak.

We note that Ek is determined by h̃|Ak
and therefore by applying the same argument as for Gk

except using Lemmas 3.8 and 3.9 of [27] in addition to Lemmas 2.3 and 2.5 of [29], we obtain that

the event E1 occurs with positive probability and hence that Ek occurs for infinitely many values of

k a.s. As before, we conclude that Gk(h̃) also occurs infinitely often a.s.

Step 3. Conclusion of the proof. To complete the proof we will make repeated use of the flow

line interaction rules described in [27, Theorem 1.7]. Suppose that K is large enough that

φ−1(−2−K), φ−1(2−K) are not in R, that GK(h̃) occurs and that Ek(h̃) occurs for some k > K. By

the above, this occurs a.s. for infinitely many such pairs (K, k) (we may actually keep K fixed). Let

ŨL (resp. ŨR) be the pocket bounded by η+zL,k
, η̃+zL,k

, η̃wL,k
, ηwL,k

(resp. η−zR,k
, η̃−zR,k

, η̃wR,k
, ηwR,k

) as

shown in Figure 14. When κ ∈ (0, 2], ηwL,k
and η̃wL,k

(and the other pairs of flow lines starting from

zL,k, wR,k, zR,k) do not intersect, meaning that the pocket ŨL is connected, and similarly for ŨR.

When κ ∈ (2, 4) the topology can be more complicated, and then we include in the event Ek that

the final intersection between ηwL,k
and η̃wL,k

occurs in some small ball around zL,k, and that the

same occurs for each of the other three pairs of flow lines started from the same points. Arguing as

above, Ek still occurs infinitely often a.s. and in this case we redefine ŨL, ŨR to be the connected

components (of the complement in H of our collection of flow lines) containing points far away from

these starting points. In this case, the analogue of Figure 14 looks similar to the κ ∈ (0, 2] case,

except in some small balls around the points zL,k, wL,k, zR,k, wR,k.

We claim that none of the flow lines in φ(F(θ1, θ2)) enters ŨL ∪ ŨR. Indeed, suppose that a flow line

of angle ϕ ∈ [θ1, θ2] enters ŨL. We first prove that since GK occurs, we have that ϕ ∈ [θ − ϵ, θ + ϵ].

Indeed, let VK be the corresponding component formed by ηLK and ηRK . We claim that a flow line in

F(θ1, θ2) with angle larger (resp. smaller) than θ + ϵ (resp. θ − ϵ) does not enter φ−1(VK). First

we note that if η is the flow line of h̃ with angle θ from 0 to ∞, then η is a.s. well-defined (since

Fz(z) is a local set for h by Lemma 5.9) and hits ∞ before hitting its continuation threshold. Also,
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the flow line interaction rules imply that η exits VK at the first intersection point of ηLK and ηRK
and stays to the right (resp. left) of ηLK (resp. ηRK). Note also that a flow line of h with angle larger

than θ + ϵ cannot cross φ−1(η) and so the only way that such a flow line can enter φ−1(VK) is by

crossing φ−1(ηLK) from left to right but this cannot happen due to the flow line interaction rules.

Similarly, a flow line of h with angle at most θ − ϵ cannot cross η from right to left and so the only

way that such a flow line enters φ−1(VK) is by crossing φ−1(ηRK) from right to left. But the latter

does not occur due to the flow line interaction rules. In particular, we have that there is no flow

line in F(θ1, θ2) with angle larger (resp. smaller) than θ + ϵ (resp. θ − ϵ) which enters φ−1(Ak) for

all k′ > K.

Suppose that ϕ ∈ [θ, θ + ϵ] and let ηϕ be the image under φ of the flow line of this angle. The flow

line interaction rules imply that ηϕ cannot cross ηwL,k
from left to right. Similarly, it cannot cross

η+zL,k
from right to left. Since ϕ− (θ+ π + ϵ) ∈ (−2π,−π), again using [27, Theorem 1.7], ηϕ cannot

cross η̃+zL,k
from left to right. Similarly, it cannot cross η̃wL,k

from right to left. It follows that ηϕ

cannot enter ŨL. Suppose that ϕ ∈ [θ − ϵ, θ). Then, in order for the flow line to enter ŨL, it has to

cross η (which stays to the left (resp. right) of η−zR,k
(resp. η+zL,k

)) from right to left and this cannot

happen. It follows that no flow line in φ(F(θ1, θ2)) enters ŨL. By symmetry, we see that no flow

line in φ(F(θ1, θ2)) enters ŨR, either.

Therefore, we conclude that F(θ1, θ2) ∩ (φ−1(ŨL) ∪ φ−1(ŨR)) = ∅, and so there exist connected

components UL, UR of H \ F(θ1, θ2) such that φ−1(ŨL) ⊆ UL and φ−1(ŨR) ⊆ UR. Since φ
−1(η) ⊆

F(θ1, θ2) and φ−1(ŨL) (resp. φ−1(ŨR)) lies to the left (resp. right) of φ−1(η), we obtain that

UL ̸= UR. Since the above holds for infinitely many pairs (K, k), it remains only to show that there

are infinitely many distinct components UL = UL(K, k), UR = UR(K, k) (i.e. that ŨL(K, k), ŨR(K, k)

do not give rise to the same components UL, UR for infinitely many pairs (K, k)). But this can be

ruled out by using Proposition 3.1 to show that a.s. there exists ϕ ∈ (θ, θ + ε) so that the flow line

of h with angle ϕ started from 0 will disconnect φ−1(ŨL) from some neighborhood of y(U) (since

this flow line will not hit y(U) a.s.). This completes the proof of the lemma. □

Now we are ready to prove Theorem 1.2. It will be a consequence of Lemmas 5.14, 5.16 and the

fact that the graph of connected components of H \ F(θ1, θ2) is connected a.s.

Proof of Theorem 1.2. As explained at the beginning of this section, it suffices to show that θ(U)

as defined in Lemma 5.10 exists and is determined by F(θ1, θ2) a.s. Fix such a component U

and let θ = θ(U). There exists a finite chain of components U1, . . . , Un so that ∂Ui ∩ ∂Ui+1 ̸= ∅
for each 1 ≤ i ≤ n − 1, ∂Un ∩ ∂H ̸= ∅, and U1 = U . For each 1 ≤ i ≤ n we let θi = θ(Ui).

Lemma 5.14 implies that F(θ1, θ2) determines |θj+1 − θj | for each 1 ≤ j ≤ n − 1. Moreover,

Lemma 5.14 implies that F(θ1, θ2) determines θn and Lemma 5.16 implies that it determines the

marked points of Un as well, which implies that it also determines which arc of ∂Un is the clockwise

(resp. counterclockwise) arc. Since the counterclockwise arc of a component boundary can only

intersect the clockwise arc of another components boundary and vice-versa (Lemma 5.14) and the

marked points of each component are determined by F(θ1, θ2) (Lemma 5.16), it follows that the

clockwise and counterclockwise arcs of each of the ∂Uj is determined. This, in turn implies that

(θj+1 − θj) for each 1 ≤ j ≤ n− 1 is determined. Since

θ = θ1 =

n−1∑
j=1

(θj − θj+1) + θn,
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it follows that F(θ1, θ2) determines θ. The result follows by combining with Lemma 5.7 since U was

an arbitrary complementary component. □

Appendix A. Local set lemmas

Lemma A.1. Suppose that h is a GFF on a domain D ⊊ C and (An) is a sequence of local sets of

h so that An is a.s. determined by h and An+1 ⊆ An for each n. Then A = ∩nAn is local for h.

Proof. We will prove the claim of the lemma in the case that D is bounded since then the result

will follow for general domains using the conformal invariance of the GFF. We are going to use the

characterization of local sets given in [38, Lemma 3.9]. Fix B ⊆ D an open set. We note that for all

n, the event {An ∩B = ∅} is a.s. determined by h and [38, Lemma 3.9] implies that conditionally

on the projection of h onto Hharm(B), we have that h and 1{An∩B=∅} are independent, since under

this conditioning, the field h is determined by its projection onto H1
0 (B). Hence, combining with

[7, Proposition 10.7], we obtain that {An ∩B = ∅} is a.s. determined by the projection of h onto

Hharm(B). Set K = D \B and note that K is closed with respect to the relative topology on D. Set

also Um = {z ∈ D : dist(z,K) > 1/m} for all m ∈ N, and let Fm = D\Um. Note that B = ∪m≥1Um

and {A ∩ B = ∅} = ∩m≥1 ∪n≥1 {An ∩ Um = ∅}. Define Fh
U ,Fh

K+ as in [25]. For all U ⊆ D, we

set Fh
U = σ((h, f) : f ∈ C∞

0 (U)). For all m,n, we can show as above that {An ∩ Um = ∅} ∈ Fh
F+
m
.

It follows that {A ∩ B = ∅} ∈ ∩m≥1Fh
F+
m
. Note that Fh

K+ ⊆ Fh
F+
m

for all m and if Fm ⊆ V for an

open set V , then Fh
F+
m

⊆ Fh
V . Since every open set V containing K must also contain one of the

Fm, it follows from [25, Proposition 3.2] that Fh
K+ = ∩U⊆D,UopenFh

U = ∩m≥1Fh
F+
m
, and hence that

{A ∩B = ∅} ∈ Fh
K+ . It then follows from [38, Lemma 3.9] that A is a local set. □

Lemma A.2. Suppose that h is a GFF on a domain D ⊊ C and let (An) be a sequence of local

sets of h so that An ⊆ An+1 for each n ∈ N. Then A = ∪nAn s a local set for h.

Proof. As in the proof of Lemma A.1, we are going to use [38, Lemma 3.9]. Fix U ⊆ D open set

and let h1 (resp. h2) be the projection of h onto H1
0 (U) (resp. Hharm(U)). Fix also measurable

function G : H−1
loc (D) → R and a Borel set B ⊆ R. Then [38, Lemma 3.9] implies that 1An∩U ̸=∅

and 1G(h1)∈B are conditionally independent given h2, and so we have that

E[1{A∩U ̸=∅}1{G(h1)∈B} |h2] = lim
n→∞

E[1{An∩U ̸=∅}1{G(h1)∈B} |h2]

= lim
n→∞

E[1{An∩U ̸=∅} |h2]E[1{G(h1)∈B} |h2]

= E[1{A∩U ̸=∅} |h2]E[1{G(h1)∈B} |h2].

Since G,B were arbitrary, we obtain that {A ∩ U ̸= ∅} and h1 are conditionally independent given

h2 and so [38, Lemma 3.9] implies that A is a local set. □

Lemma A.3. Suppose that r > 0, r ̸= 1 and h is a GFF on H with boundary conditions given by

−a on R− and b on R+. Let θr be the transformation from the space of distributions on H to itself

given by (θr(h))(ϕ) = h((1/r2)ϕ(·/r)). Then θr is ergodic and measure-preserving on (D′(H),F ,P),

where D′(H) is the space of distributions on H, F is the σ-algebra generated by the random variables

(h, ϕ) for ϕ ∈ C∞
0 (H) and P is the law of h.
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Proof. By considering the map z 7→ −1/z if necessary, we may assume that r < 1. The fact

that θr is measure-preserving comes from the fact that the law of h is invariant under scaling,

see e.g. [3, Theorem 1.57], (note that this holds if h is a zero boundary GFF or if the boundary

conditions are constant on each of R− and R+). To prove ergodicity, let A ∈ F be an event that is

invariant under θr, by which we mean that θ−1
r (A) = A. By the martingale convergence theorem,

E[1A |σ(h|B(0,m)∩H)] converges a.s. and in L1 to 1A as m→ ∞. Therefore, for any ϵ > 0, we can

find m > 0 such that if B is the event {E[1A |σ(h|B(0,m)∩H)] > 1/2}, then P(A△B) < ϵ, where

A△B is the symmetric difference (A ∩Bc) ∪ (Ac ∩B). Note that for any N ∈ N,(
A ∩ θ−N

r (A)
)
△
(
B ∩ θ−N

r (B)
)
⊆ (A△B) ∪

(
θ−N
r (A)△θ−N

r (B)
)
,

and that the two events on the right hand side have probability less than ϵ by scale invariance.

Therefore,

P(A) = P(A ∩ θ−N
r (A)) ≤ P(B ∩ θ−N

r (B)) + 2ϵ

for all N . Now, the probability on the right-hand side can be written as

P(θ−N
r (B))P(B | θ−N

r (B)) = P(B)P(B | θ−N
r (B))

for all N . Notice that since B depends on h|B(0,m)∩H, the event θNr (B) depends on h|B(0,mr−N )∩H.

The proof of [7, Lemma 7.2] applies also to the case of the zero-boundary GFF, meaning that

∩δ<0σ(h|B(0,δ)∩H) is trivial and hence that P(B | θ−N
r (B)) → P(B) as N → ∞. Therefore we can

deduce that

P(A) ≤ P(B)2 + 2ϵ ≤ P(A)2 + ϵ2 + 4ϵ,

for all ϵ > 0 and hence that P(A) ∈ {0, 1}, proving ergodicity. □

Corollary A.4. Suppose that we have the setup of Lemma A.3. Let E ∈ F be an event which

is measurable with respect to the restriction of h to B(0, 1) ∩H. For k ∈ N, let Ek be the event

that θ−k
1/2(E) holds (note that this means that the event E holds for the GFF θ2−kh and that Ek

is measurable with respect to h|B(0,2−k)∩H). Then the sum (1/N)
∑

1≤k≤N 1Ek
→ P(E) a.s. as

N → ∞, and in particular if P(E) > 0 then Ek occurs infinitely often a.s.

Proof. Due to Lemma A.3, this is an immediate consequence of Birkhoff’s ergodic theorem. □
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8/3-Liouville quantum gravity. Ann. Sci. Éc. Norm. Supér. (4), 54(2):305–405, 2021.

https://sites.math.washington.edu/~burdzy/open_mathjax.php


CONNECTIVITY OF THE ADJACENCY GRAPH OF THE SLE FAN 65

[12] E. Gwynne and J. Miller. Percolation on uniform quadrangulations and SLE6 on
√

8/3-Liouville quantum gravity.
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