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Abstract
Given a graph G = (V, E), a function f : V → {0, 1, 2} is said to be a Roman Dominating function
(RDF) if for every v ∈ V with f(v) = 0, there exists a vertex u ∈ N(v) such that f(u) = 2. A Roman
Dominating function f is said to be an Independent Roman Dominating function (IRDF), if V1 ∪ V2

forms an independent set, where Vi = {v ∈ V | f(v) = i}, for i ∈ {0, 1, 2}. The total weight of f is
equal to

∑
v∈V

f(v), and is denoted as w(f). The Roman Domination Number (resp. Independent
Roman Domination Number) of G, denoted by γR(G) (resp. iR(G)), is defined as min{w(f) | f is
an RDF (resp. IRDF) of G}. For a given graph G, the problem of computing γR(G) (resp. iR(G))
is defined as the Roman Domination problem (resp. Independent Roman Domination problem).

In this paper, we examine structural parameterizations of the (Independent) Roman Domination
problem. We propose fixed-parameter tractable (FPT) algorithms for the (Independent) Roman
Domination problem in graphs that are k vertices away from a cluster graph. These graphs have a
set of k vertices whose removal results in a cluster graph. We refer to k as the distance to the cluster
graph. Specifically, we prove the following results when parameterized by the deletion distance k to
cluster graphs: we can find the Roman Domination Number (and Independent Roman Domination
Number) in time 4knO(1). In terms of lower bounds, we show that the Roman Domination number
can not be computed in time 2ϵknO(1), for any 0 < ϵ < 1 unless a well-known conjecture, SETH
fails. In addition, we also show that the Roman Domination problem parameterized by distance to
cluster, does not admit a polynomial kernel unless NP ⊆ coNP/poly.
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1 Introduction

The concept of Roman Dominating function originated in an article by Ian Stewart, titled
“Defend the Roman Empire!” [14], published in Scientific American. Given a graph, where
every vertex corresponds to a distinct geographical region within the historical narrative of
the Roman Empire, the characterization of a location as secured or unsecured is delineated
by the Roman Dominating function, denoted as f .

Specifically, a vertex v is said to be unsecured if it lacks stationed legions, expressed
as f(v) = 0. Conversely, a secured location is one where one or two legions are stationed,
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denoted by f(v) ∈ {1, 2}. The strategic methodology for securing an unsecured area involves
the deployment of a legion from a neighboring location.

In the fourth century A.D., Emperor Constantine the Great enacted an edict precluding
the transfer of a legion from a fortified position to an unfortified one if such an action would
result in leaving the latter unsecured. Therefore, it is necessary to first have two legions
at a given location (f(v) = 2) before sending one legion to a neighbouring location. This
strategic approach, pioneered by Emperor Constantine the Great, effectively fortified the
Roman Empire. Considering the substantial costs associated with legion deployment in
specific areas, the Emperor aimed to strategically minimize the number of legions required
to safeguard the Roman Empire.

The notion of Roman Domination in graphs was first introduced in an article by Ian
Stewart [14]. Given a graph G = (V, E), a Roman Dominating function (RDF) is defined as
a function f : V → {0, 1, 2}, where every vertex v, for which f(v) = 0 must be adjacent to at
least one vertex u with f(u) = 2. The weight of an RDF is defined as w(f) =

∑
v∈V f(v).

The Roman Domination Number is defined as γR(G) = min{w(f) | f is an RDF of G}.
While the context is clear, if f(v) = i for some RDF f , then we say that v has label i.

Given a graph G = (V, E), a set S ⊆ V is defined as independent set if any two vertices
of S are non-adjacent. A function f is referred to as an Independent Roman Dominating
function (IRDF) if f is an RDF and V1 ∪ V2 is an independent set. The Independent Roman
Domination Number is defined as iR(G) = min{w(f) | f is an IRDF of G}. An IRDF f of
G with w(f) = iR(G) is denoted as an iR(G)-function of G. Given a graph G = (V, E), the
problem of computing iR(G) is known as Independent Roman Domination problem.

One of the objectives of parameterized complexity is to identify parameters that render NP-
hard problems fixed-parameter tractable (FPT). This is of practical significance because there
are often small parameters, aside from solution size, that capture important practical inputs.
Hence, it only makes sense to explore problems under a multitude of parameters. There has
recently been a lot of research in this area. A key research direction involves identifying a
parameter as small as possible, under which a problem becomes fixed-parameter tractable or
admits a polynomial-sized kernel. Structural parameterization involves a parameter that is
a function of the input structure rather than the standard output size. A recent trend in
structural parameterization is to study problems parameterized by the deletion distance to
various graph classes where the problem is efficiently solvable.

Our parameter of interest is the ‘distance’ of the graph from a natural class of graphs.
Here, ‘distance’ refers to the number of vertices that must be deleted from the graph to
belong to the specified class. This article focuses on one such special class of graphs: cluster
graphs, where each connected component of the graph is a clique. Note that both Roman
Domination and Independent Roman Domination problems can be easily solved in cluster
graphs. Given a graph G = (V, E), the minimum number of vertices that need to be deleted
from the graph so that the remaining graph becomes a cluster graph is called distance to
cluster of G (denoted by CVD size of G).

2 Preliminaries

2.1 Graph Theoretic Notations
This paper only considers simple, undirected, finite and nontrivial graphs. Let G = (V, E)
be a graph. n and m will be used to denote the cardinalities of V and E, respectively. N(v)
stands for the set of neighbors of a vertex v in V . The number of neighbors of a vertex v ∈ V

defines its degree, which is represented by the symbol deg(v). The maximum degree of the
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graph will be denoted by ∆. For a set U ⊆ V , the notation degU (v) is used to represent the
number of neighbors that a vertex v has within the subset U . Additionally, we use NU (v) to
refer to the set of neighbors of vertex v within U . Given a set S ⊆ V , G \ S is defined as the
graph induced on V \ S, that is G[V \ S].

A vertex of degree one is known as a pendant vertex. A set S ⊆ V is said to be a
dominating set if every vertex of V \ S is adjacent to some vertex of S. A graph G is said to
be a complete graph if any two vertices of G are adjacent. A set S ⊆ V is said to be a clique
if the subgraph of G induced on S is a complete graph. A graph is said to be a cluster graph
if every component of the graph is a clique. For every positive integer n, [n] denotes the set
{1, 2, . . . , n}.

Given a graph G = (V, E) and a function f : V → {0, 1, 2}, fH : V (H) → {0, 1, 2} is
defined to be the function f restricted on H, where H is an induced subgraph of G.

For a graph G = (V, E) and a function f : V → {0, 1, 2}; we define Vi = {v ∈ V | f(v) = i}
for i ∈ {0, 1, 2}. The partition (V0, V1, V2) is said to be ordered partition of V induced by f .
Note that the function f : V → {0, 1, 2} and the ordered partition (V0, V1, V2) of V have a
one-to-one correspondence. So, when the context is clear, we write f = (V0, V1, V2). Given
an RDF f = (V0, V1, V2), (V1, V2) is said to be Roman Dominating pair corresponding to f .
When the context is clear, we write Roman Dominating pair (omitting the notion of f).

2.2 Problem Definitions
Before presenting our results, we formalize the problems considered in the paper as follows.
SET-COVER

Input: An universe U and a collection of subsets of U , F = {S1, . . . , Sm} and a non-
negative integer k.
Parameter: |U |.
Question: Does there exists k sets Si1 , . . . , Sik

in F , such that
⋃k

j=1 Sij = U?

RD-CVD
Input: A graph G = (V, E), a cluster vertex deletion set S and a non-negative integer ℓ.
Parameter: |S| = k.
Question: Does there exists an RDF f on G, with weight at most ℓ?

RD-VC
Input: A graph G = (V, E), a vertex cover S and a non-negative integer ℓ.
Parameter: |S| = k.
Question: Does there exists an RDF f on G, with weight at most ℓ?

IRD-CVD
Input: A graph G = (V, E), a cluster vertex deletion set S and a non-negative integer ℓ.
Parameter: |S| = k.
Question: Does there exists an IRDF f on G, with weight at most ℓ?

d-hitting set
Input: An universe U and a collection of subsets of U , F = {S1, . . . , Sm} such that
|Si| ≤ d, for all i ∈ [m] and a non-negative integer k.
Parameter: |U |.
Question: Does there exists a subset U ′ ⊆ U , such that U ′ ∩ Si ̸= ∅, for every i ∈ [m]?
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2.3 Parameterized Complexity Notations and Defenitions
▶ Definition 1. (Fixed Parameter Tractability) Let L ⊆ Σ∗ × N be a parameterized language.
L is said to be fixed parameter tractable (or FPT) if there exists an algorithm B, a constant
c and a computable function f such that for all x, for all k; B on input (x, k) runs in at most
f(k) · |x|c time and outputs (x, k) ∈ L if and only if B([x, k]) = 1. We call the algorithm B
as fixed parameter tractable algorithm (or FPT algorithm).

▶ Definition 2. (Parameterized Reduction) Let P1, P2 ∈ Σ∗ × N be two parameterized
languages. Suppose there exists an algorithm B that takes input (x, k) (an instance of P1 )
and constructs an instance (x′, k′) of P2 such that the following conditions are satisfied:

(x, k) is a YES instance if and only if (x′, k′) is a YES-Instance.
k′ ∈ f(k) for some function depending only on k.
Algorithm B must run in g(k)|x|c time, where g(.) is a computable function.

Then we say that there exists a parameterized reduction from P1 to P2.

W-hierarchy: To capture the parameterized languages being FPT or not, the W-hierarchy
is defined as FPT ⊆ W[1] ⊆ · · · ⊆ XP. It is believed that this subset relation is strict [5].
Hence, a parameterized language that is hard for some complexity class above FPT is unlikely
to be FPT. Theorem 4 gives the use of parameterized reduction. If a parameterized language
L ⊆ Σ∗ × N can be solved by an algorithm running in time O

(
nf(k)), then we say L ∈ XP.

In such a situation, we also say that L admits an XP algorithm.

▶ Definition 3. (para-NP-hardness) A parameterized language L ⊆ Σ∗ × N is called para-
NP-hard if it is NP-hard for some constant value of the parameter.

It is believed that a para-NP-hard problem does not admit an XP algorithm as; otherwise
it will imply P = NP [5].

▶ Theorem 4. [5] Let there be a parameterized reduction from parameterized problem P1 to
parameterized problem P2. Then if P2 is FPT, then so is P1. Equivalently, if P1 is W [i]-hard
for some i ≥ 1, then so is P2.

▶ Definition 5. (Kernelization) Let L ⊆ Σ∗ × N be a parameterized language. Kernelization
is an algorithm that replaces the input instance (x, k) by a reduced instance (x′, k′) such that

k′ ≤ f(k), |x′| ≤ g(k) for some functions f, g depending only on k.
(x, k) ∈ L if and only if (x′, k′) ∈ L.

The reduction from (x, k) to (x′, k′) must be computable in p(|x| + k) time, where p(.) is a
polynomial function. If g(k) = kO(1) then we say that L admits a polynomial kernel.

It is well-known that a decidable parameterized problem is FPT if and only if it has a
kernel. However, the kernel size could be exponential (or worse) in the parameter. There is
a hardness theory for problems having polynomial sized kernel. Towards that, we define the
notion of polynomial parameter transformation.

▶ Definition 6. (Polynomial parameter transformation (PPT)) Let P1 and P2 be two
parameterized languages. We say that P1 is polynomial parameter reducible to P2 if there
exists a polynomial time computable function (or algorithm) f : Σ∗ × N → Σ∗ × N, a
polynomial p : N → N such that (x, k) ∈ P1 if and only if f(x, k) ∈ P2 and k′ ≤ p(k) where
f(x, k) = (x′, k′). We call f to be a polynomial parameter transformation from P1 to P2.

The following theorem gives the use of the polynomial parameter transformation for
obtaining kernels for one problem from another.
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▶ Theorem 7. [2] Let P, Q ⊆ Σ∗ × N be two parameterized problems and assume that there
exists a PPT from P to Q. Furthermore, assume that the classical version of P is NP-hard
and Q is in NP. Then, if Q has a polynomial kernel, then P has a polynomial kernel.

We use the following conjecture to prove one of our lower bounds.

▶ Conjecture 8. [11] (Strong Exponential Time Hypothesis (SETH)) There is no ϵ > 0
such that ∀q ≥ 3, q-CNFSAT can be solved in (2 − ϵ)nnO(1) time where n is the number of
variables in input formula.

We have the following theorem, which gives an algorithm for SET-COVER parameterized
by the size of the universe.

▶ Theorem 9. [9] The SET-COVER problem can be solved in 2n(m + n)O(1) time where n

is the size of the universe and m is the size of the family of subsets of the universe.

2.4 Related Works

From the parameterized complexity point of view, it is surprising that there does not exist
much literature on the Roman Domination problem (except [12, 8]), while the classical
dominating set problem is very well studied. Some related literature about the parameterized
complexity of the domination problem can be found in [1, 7, 13]. One recent work about
the domination problem parameterized by several structural parameters like distance to
cluster, distance to split, can be found in [10]. The techniques we designed in this paper, are
adaption of the technique used in [10], with appropriate modification to fit our problem.

In [8], Fernau proved that the Roman Domination parameterized by the solution size
is W [2]-hard in general graphs, but FPT for planar graphs. He also showed that the same
problem parameterized by treewidth is FPT. In [12], Mohannapriya et al. showed that a
more generalized problem, that is k-Roman Domination problem parameterized by solution
size is W [1]-hard, even for split graphs. To the best of our knowledge, no other parameterized
complexity results exist for the Roman Domination problem.

2.5 Our Results

The main contribution of the paper is following:
In Section 3.1 (resp. Section 3.2), we show that the RD-CVD (resp. IRD-CVD) problem
is FPT.
In Section 4, we show that the RD-CVD problem cannot be solved in time 2ϵknO(1)

(where 0 < ϵ < 1) unless SETH fails, neither it admits a polynomial kernel unless NP ⊆
coNP/poly.
In Section 5, we conclude the paper with some future research directions.

3 Variants of Roman Domination parameterized by CVD size

In this section, we assume that a cluster vertex deletion set S of size k is given with the
input graph G = (V, E). If not, the algorithm mentioned in [3] can be used, which runs in
1.92knO(1) time and outputs a cluster vertex deletion set of size at most k or concludes that
there does not any cluster vertex deletion set of size at most k.
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3.1 Roman Domination
In this section, we propose an FPT algorithm for the Roman Domination problem when the
parameter is CVD size.

We consider a CVD set S as a part of the input, where |S| = k. Our algorithm starts
with making a guess for S1 = V1 ∩ S and S2 = V2 ∩ S, where (V1, V2) is an optimal Roman
Dominating pair. At first, a guess of S2 is made from S. Then, the vertices of N [S2] ∩ S are
deleted from the graph. Then we guess S1 from the remaining S and delete S1 from S.

Note that S is a CVD set, hence G \ S is disjoint union of cliques. Let G \ S =
C1 ∪ C2 ∪ . . . Cq, where every Ci is a clique and |Ci| = ℓi, for i ∈ [q], Note that q ≤ n − k.
After the selection of S1 and S2, every clique belongs to exactly one of the following three
types:

Type 0 (T0) cliques: Ci is a T0 clique if every vertex of Ci is adjacent to at least one
vertex of S2.

Type 1 (T1) cliques: Ci is a T1 clique if exactly one vertex of Ci is not adjacent to any
vertex of S2.

Type 2 (T2) cliques: Ci is a T2 clique if Ci contains at least two vertices which are not
adjacent to any vertex of S2.

We define an order ρi on the vertices of the clique Ci as follows: if Ci is a T0 or T2
clique, then we order them arbitrarily; if Ci is a T1 clique, then the set Ci \ N [S2] contains
exactly one vertex. We make that vertex the first vertex of ρi and order the rest of the
vertices of Ci arbitrarily. Now we define an order ρ on the vertex set of G \ S as follows:
ρ = v1, v2, . . . , v|G\S|, where first ℓ1 vertices of ρ are vertices of C1 and follows the order ρ1,
then the next ℓ2 vertices of ρ are vertices of C2 and follows the order ρ2 and so on. Now,
here comes an observation.

▶ Observation 10. Given a T2 clique Ci, any Roman Dominating pair (V1, V2) extended
from (S1, S2) has one of the following properties:
1. Ci ∩ V2 ̸= ∅.
2. A Roman Dominating pair (V ′

1 , V ′
2) can be extended from (S1, S2), which has same or less

weight than (V1, V2) and V ′
2 ∩ Ci ̸= ∅

Proof. As Ci is a T2 clique, let us assume that v1 and v2 are two vertices of Ci which are
not adjacent to S2. If either of v1, v2 belongs to V2, then we are done. If not, then two cases
may arise:
Case 1: At least one vertex among v1, v2 has label 0. Without loss of generality, let v1
has label 0. Then, one neighbour v of v1 must have label 2. But v can not belong to S as
V2 ∩ S = S2 and v1 has no neighbour in S2. Hence, v must belong to Ci, which implies that
Ci ∩ V2 ̸= ∅.
Case 2: None of v1, v2 has label 0, which implies that both have label 1. Now we construct a
dominating pair (V ′

1 , V ′
2) as follows: V ′

2 = V2 ∪{v1} and V ′
1 = V1 \{v1, v2}. Note that (V ′

1 , V ′
2)

is a Roman Dominating pair and (V ′
1 , V ′

2) has the same weight as (V1, V2) and V ′
2 ∩ Ci ≠ ∅.

Hence, the result follows. ◀

From the above observation, we can rephrase the remaining problem as follows:

RD-DisjointCluster problem
Input: A graph G = (V, E), a subset S ⊆ V such that every component of G\S is a clique,
a (0, 1, 2)-flag vector f = (f1, f2, . . . , fq) corresponding to the cliques (C1, C2, . . . , Cq)
and ℓ ∈ Z+.
Parameter: |S|.
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Question: Does there exists a subset T ⊆ G \ S which satisfies all of the following
conditions?
a. For every Ci with fi = 2, T ∩ Ci ̸= ∅.
b. 2|T | + g(T ) ≤ ℓ, where g(T ) = number of cliques with flag 1, which have empty

intersection with T .

For an instance (G, S, ℓ) of the RD-CVD problem, with cliques C1, . . . , Cq and the guesses
of S1, S2, we build an instance (Ĝ, Ŝ, f, ℓ̂) of the RD-DisjointCluster problem as follows:

Ĝ = G \ ((N [S2] ∩ S) ∪ S1).
Ŝ = S \ ((N [S2] ∩ S) ∪ S1).
ℓ̂ = ℓ − 2|S2| − |S1|.
For all i ∈ [q], fi = j, if Ci is a Tj clique, j ∈ {0, 1, 2}.

Formulation of the problem as a variant of set cover: We define a variant of the set
cover problem. Given an instance of the RD-DisjointCluster problem, we construct an
instance of the set cover problem. Let (G, S, f, ℓ) be an instance of the RD-DisjointCluster
problem and ρ = (v1, v2, . . . , v|G\S|) be an ordering of the vertex set of G \ S, as defined
earlier. We take the universe U = S and F = {S1, S2, . . . , S|G\S|}, where Si = N(vi) ∩ S for
every i ∈ [|G \ S|]. Now, we modify the usual SET-COVER problem to suit our problem.
The modified SET-COVER problem is defined below:

SET-CoverWithPartition problem (SCP)
Input: Universe U , a family of sets F = {S1, S2, . . . , Sm}, a partition of β = (β1, . . . , βq)
of F , a (0, 1, 2) flag vector f = (f1, f2, . . . , fq) corresponding to each block in the partition
β and a non-negative integer ℓ.
Parameter: |U |.
Question: Does there exists a subset F ′ ⊆ F which satisfies all of the following conditions?
a. For every βi with fi = 2, F ′ ∩ βi ̸= ∅.
b. 2|F ′| + g(F ′) ≤ ℓ, where g(A) = number of blocks with flag 1, which have empty

intersection with A, for A ⊆ F .

Given an instance (G, S, f, ℓ) of the RD-DisjointCluster problem, we define an instance
(U, F, β, f ′, ℓ′) of the SCP problem as follows:

U = S.
F = {Si = N(vi) ∩ S | vi ∈ G \ S}.
βi = {Sj | vj ∈ Ci}, for i ∈ [q].
f ′ = f .
ℓ′ = ℓ.

It is not hard to show that the RD-DisjointCluster and SCP are equivalent problems.

▶ Observation 11. (G, S, f, ℓ) is a YES instance of the RD-DisjointCluster problem if
and only if (U, F, β, f ′, ℓ′) is a YES instance of the SCP problem.

Now, we propose an algorithm to solve the SCP problem.

▶ Theorem 12. The Set-CoverWithPartition problem can be solved in 2|U |O(m · |U |)
time.

Proof. We propose a dynamic programming algorithm to solve the problem. For every
W ⊆ U , j ∈ [m] and b ∈ {0, 1, 2}, we define OPT [W, j, b] := minX{2|X| + gj(X)}, where X

satisfies the following properties:
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1. X ⊆ {S1, . . . , Sj}.
2. X covers W .
3. Let βx be the block that contains Sj . We redefine fx = b, where fx is the flag associated

with βx. From every block βi (i ≤ x) with fi = 2, at least one set from βi is in X.
4. The function gj is defined as follows. gj(X) := number of blocks βi (i ≤ x) with fi = 1,

which have empty intersection with X.

Now, coming to the base case, for every W ⊆ U , with W ̸= ∅ and b ∈ {0, 1, 2};
OPT [W, 1, b] = 2 if W ⊆ S1, OPT [W, 1, b] = ∞, otherwise.

If W = ∅, OPT [W, 1, b] = b, for b ∈ {0, 1, 2}. To compute all the values of OPT [W, j, b],
we initially set all the remaining values to be ∞. We construct the following recursive
formulation for OPT [W, j + 1, b], for j ≥ 1:
Case 1: Sj+1 is not the first set of the block βx.

Note that two possibilities appear here. First, we pick Sj+1 in the solution X. Hence, we
are left with the problem of covering W \ Sj+1 with some subset of {S1, . . . , Sj} and since
Sj+1 from the partition βx is already taken in solution, so the flag of βx can be reset to 0.
Hence, in this case OPT [W, j + 1, b] = 2 + OPT [W \ Sj+1, j, 0].

In the latter case, we do not pick Sj+1 in X; hence nothing is changed except the fact that
now we need to cover W with a subset of {S1, . . . , Sj} and the flag of βx remains unchanged
as b. Hence, OPT [W, j + 1, b] = OPT [W, j, b].

So, OPT [W, j + 1, b] = min{2 + OPT [W \ Sj+1, j, 0], OPT [W, j, b]}.
Case 2: Sj+1 is the first set of the block βx. Here, three scenarios can appear:

Case 2.1: b = 2.
In this case, there is no option but to include Sj+1 in the solution as b = 2. Hence, we

take Sj+1 in the solution and shift to the previous block. Now we need to cover W \ Sj+1
with a subset of {S1, . . . , Sj}. Hence, OPT [W, j + 1, b] = 2 + OPT [W \ Sj+1, j, fx−1].

Case 2.2: b = 0.
In this case, there are two choices, to include Sj+1 in the solution or not. If we include

Sj+1 in the solution, then OPT [W, j + 1, b] = 2 + OPT [W \ Sj+1, j, fx−1]. If we do not,
then OPT [W, j + 1, b] = OPT [W, j, fx−1]. Hence OPT [W, j + 1, b] = min{2 + OPT [W \
Sj+1, j, fx−1], OPT [W, j, fx−1]}

Case 2.3: b = 1.
Similarly, in this case, there are two choices. If Sj+1 is included in the solution then

OPT [W, j + 1, b] = 2 + OPT [W \ Sj+1, j, fx−1], by similar argument as above. If not, then
Sj+1 has to contribute 1 in OPT [W, j + 1, b], as at least one set from the block βx has
to contribute 1 to OPT [W, j + 1, b] and Sj+1 is the only set left in βx at this moment.
So, in this case, OPT [W, j + 1, b] = 1 + OPT [W, j, fx−1]. Hence, OPT [W, j + 1, b] =
min{2 + OPT [W \ Sj+1, j, fx−1], 1 + OPT [W, j, fx−1]}.

We compute OPT [W, j, b] in the increasing order of size of W, j, b. Hence, there are
3 · 2|U | · m subproblems. It takes |U | time to compute set differences (like W \ Sj+1). Hence,
the time-complexity of our algorithm is 2|U |O(m · |U |). ◀

Hence, the following corollary can be concluded.

▶ Corollary 13. The RD-DisjointCluster problem can be solved in time 2|S|nO(1).

▶ Theorem 14. The RD-CVD problem can be solved in time 4knO(1).
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Proof. Given an instance (G, S, ℓ) of the RD-CVD problem and for every guess of S′
1, S′

2 ⊆
S (with |S′

1| = i1 and |S′
2| = i2), we can construct an instance (Ĝ, Ŝ, f, ℓ̂) of the RD-

DisjointCluster problem, which can be solved in time 2k−i1−i2nO(1). Hence, total time
taken is

∑k
i1=1(

(
k
i1

) ∑k−i1
i2=1(

(
k−i1

i2

)
2k−i1−i2))nO(1)=4knO(1). ◀

In the next section, using a similar approach, we show that the IRD-CVD problem is
also FPT.

3.2 Independent Roman Domination
In this section, we propose an FPT algorithm for the Independent Roman Domination
problem when the parameter is the CVD size.

Similarly, like the case of Roman Domination, a guess for S1 = V1 ∩ S and S2 = V2 ∩ S is
made, where (V1, V2) is an optimal independent Roman Dominating pair. At first, we guess
an independent set S2 from S and then delete all the vertices of N [S2] from the graph, as
if our choice of S2 is right, then all the vertices in N(S2) \ S2 should have label 0. Then,
we choose another independent set S1 from the remaining S and delete all the vertices
of S1 and N(S1) ∩ (G \ S) from the remaining graph. Note that if there exists a clique
Ci ⊆ N [S1] ∪ N [S2] such that Ci has a vertex v, that is not adjacent to any vertex of S2,
but it is adjacent to some vertex in S1, then our choices of S1, S2 are incorrect, and we do
not move further with these choices of S1 and S2.

Note that S is a CVD set, hence G \ S is disjoint union of cliques. Let G \ S =
C1 ∪ C2 ∪ . . . Cq, where every Ci is a clique and |Ci| = ℓi, for i ∈ [q]. Note that q ≤ n − k.
Note that, after the selection of S1 and S2 and the deletion process, every clique belongs to
exactly one of the following two types:

Type 1 (T1) cliques: Ci is a T1 clique if Ci has exactly one vertex.
Type 2 (T2) cliques: Ci is a T2 clique if Ci has at least two vertices.

▶ Observation 15. Given a T2 clique Ci, any independent Roman Dominating pair (V1, V2)
extended from (S1, S2) has the following property: Ci ∩ V2 ̸= ∅.

Proof. Ci is a T2 clique, hence there exist at least two vertices v1, v2 in Ci. Note that both
of them can not have non zero labels; at least one of them must have label 0. Without loss
of generality, let v1 have label 0, but v1 does not have any neighbor in S, which has label 2,
which implies a vertex in Ci must have label 2. Hence, the result follows. ◀

Hence the remaining problem can be rephrased as follows:

IRD-DisjointCluster problem
Input: A graph G = (V, E), a subset S ⊆ V such that every component of G \ S is a
clique, a (1, 2)-flag vector f = (f1, f2, . . . , fq) corresponding to the cliques (C1, C2, . . . , Cq)
and ℓ ∈ Z+.
Parameter: |S|.
Question: Does there exists a subset T ⊆ G \ S which satisfies all of the following
conditions?
a. For every Ci with fi = 2, |T ∩ Ci| = 1.
b. 2|T | + g(T ) ≤ ℓ, where g(T ) = number of cliques with flag 1, which have empty

intersection with T .

For an instance (G, S, ℓ) of the IRD-CVD problem, with cliques C1, . . . , Cq and the
guesses of S1, S2, we build an instance (Ĝ, Ŝ, f, ℓ̂) of the IRD-DisjointCluster problem as
follows:



XX:10 (Independent) Roman Domination Parameterized by Distance to Cluster

Ĝ = G \ (S1 ∪ N [S2] ∪ (N(S1) ∩ (G \ S)).
Ŝ = S \ (N [S2] ∪ S1).
ℓ̂ = ℓ − 2|S2| − |S1|.
fi = j, if Ci is a Tj clique, i ∈ [q] and j ∈ {1, 2}.

Formulation of the problem as a variant of set cover: We define a variant of the
set cover problem similarly to the Roman Domination problem. Given an instance of the
IRD-DisjointCluster problem, we construct an instance of the set cover problem. Let
(G, S, ℓ, f) be an instance of the IRD-DisjointCluster problem and ρ be any arbitrary
order of the vertex set G \ S. We take the universe U = S and F = {S1, S2, . . . , S|G\S|},
where Si = N(vi) ∩ S for every i ∈ [|G \ S|]. Now, we modify the usual set cover problem to
suit our problem. The modified set cover problem is defined below:

Independent-Set-CoverWithPartition problem (ISCP)
Input: Universe U , a family of sets F = {S1, S2, . . . , Sm}, a partition of β = (β1, . . . , βq)
of F , a (1, 2) flag vector f = (f1, f2, . . . , fq) corresponding to each block in the partition
β and a non-negative integer ℓ.
Parameter: |U |.
Question: Does there exists a subset F ′ ⊆ F which satisfies all of the following conditions?
a. For every βi with fi = 2, |F ′ ∩ βi| = 1.
b. 2|F ′| + g(F ′) ≤ ℓ, where g(A) = number of blocks with flag 1, which have empty

intersection with A; for A ⊆ F .

Given an instance (G, S, f, ℓ) of the IRD-DisjointCluster problem, we define an
instance (U, F, β, f ′, ℓ′) of the ISCP problem as follows:

U = S.
F = {Si = N(vi) ∩ S | vi ∈ G \ S}.
βi = {Sj | vj ∈ Ci}, for i ∈ [q].
f ′ = f .
ℓ′ = ℓ.

▶ Observation 16. (G, S, f, ℓ) is a YES instance of the IRD-DisjointCluster problem if
and only if (U, F, β, f ′, ℓ′) is a YES instance of the ISCP problem.

Next we propose an algorithm to solve the ISCP problem.

▶ Theorem 17. The Independent-Set-CoverWithPartition problem can be solved in
2|U |O(m · |U |) time.

Proof. We propose a dynamic programming algorithm to solve the problem, similar to
the algorithm used in the previous section, with slight modifications. For every W ⊆ U ,
j ∈ [m] and b ∈ {1, 2}, we define OPT [W, j, b] := minX{2|X| + gj(X)}, where X satisfies
the following properties:

1. X ⊆ {S1, . . . , Sj}.
2. X covers W .
3. Let βx be the block that contains Sj . We redefine fx = b, where fx is the flag associated

with βx. From every block βi (i ≤ x) with fi = 2, exactly one set from βi is in X.
4. gj(X) := number of blocks βi (i ≤ x) with fi = 1, which have empty intersection with X.
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The base cases are defined as follows:
If Sj ∈ β1 and W ̸= ∅, then OPT [W, j, b] = 2 if W ⊆ Si, for some i ≤ j and

OPT [W, j, b] = ∞ otherwise.
If Sj ∈ β1 and W = ∅, then OPT [W, j, b] = b. To compute all the values of OPT [W, j, b],

we initially set all the remaining values to be ∞. We construct the following recursive
formulation for OPT [W, j + 1, b], (where Sj+1 /∈ β1):
Case 1: Sj+1 is not the first set of the block βx.

Then, two choices appear. The first one is to include Sj+1 in the solution, then we are
left with the problem of covering W \ Sj+1 by a subset of {S1, . . . , Sk}, where Sk is the last
set in the block βx−1. Hence for this choice, OPT [W, j + 1, b] = 2 + OPT [W \ Sj+1, k, fx−1].

If Sj+1 is not included in the solution, then OPT [W, j + 1, b] = OPT [W, j, b]. Hence
OPT [W, j + 1, b] = min{2 + OPT [W \ Sj+1, k, fx−1], OPT [W, j, b]}.
Case 2: Sj+1 is the first set of the block βx.

Case 2.1: b = 2.
In this case, there is no option but to include Sj+1 in the solution as b = 2. Hence, we shift
to the previous block, and now we need to cover W \ Sj+1 with a subset of {S1, . . . , Sj}.
Hence, OPT [W, j + 1, b] = 2 + OPT [W \ Sj+1, j, fx−1].

Case 2.2: b = 1.
In this case, there are two choices. If Sj+1 is included in the solution then OPT [W, j +
1, b] = 2 + OPT [W \ Sj+1, j, fx−1], by similar argument as above. If not, then Sj+1 has to
contribute 1 in OPT [W, j + 1, b], as at least one set from the block βx has to contribute
1 to OPT [W, j + 1, b] and Sj+1 is the only set left in βx at this moment. So, in this case,
OPT [W, j + 1, b] = 1 + OPT [W, j, fx−1]. Hence, OPT [W, j + 1, b] = min{2 + OPT [W \
Sj+1, j, fx−1], 1 + OPT [W, j, fx−1]}.

We compute OPT [W, j, b] in the increasing order of size of W, j, b. Hence, there are
2 · 2|U | · m subproblems. Each subproblem takes |U | time to compute set differences (like
W \ Sj+1). Hence, the time-complexity of our algorithm is 2|U |O(m · |U |). ◀

Hence, the following corollary can be concluded.

▶ Corollary 18. The IRD-DisjointCluster problem can be solved in time 2|S|nO(1).

▶ Theorem 19. The IRD-CVD problem can be solved in time 4knO(1).

Proof. The proof is analogous to the proof of Theorem 14. ◀

4 Lower Bounds

In this section, we propose a lower bound on the time-complexity of the RD-CVD problem.
We also show that the RD-CVD (resp. RD-VC) problem does not admit a polynomial
kernel (recall that RD-VC is the Roman Domination problem parameterized by vertex cover
number).

First, we provide the lower bound for the RD-CVD problem. Below, we state a necessary
result from the existing literature (refer to Theorem 1.1 in [4]).

▶ Theorem 20. [4] The following statement is equivalent to SETH: For every ϵ < 1, there
exists d ∈ Z+, such that the d-HITTING SET problem for set systems over [n] can not be
solved in time O(2ϵn).

Now, we show a reduction from the d-HITTING SET problem to the RD-CVD problem
to show a similar lower bound like Theorem 20 for the RD-CVD problem.



XX:12 (Independent) Roman Domination Parameterized by Distance to Cluster

▶ Theorem 21. There exists a polynomial time algorithm that takes an instance (U, F, t) of
the d-HITTING SET problem and outputs an instance (G, 2t) of the RD-CVD problem (and
the RD-VC problem), where G has a cluster vertex deletion set (and vertex cover) of size |U |;
and (U, F ) has a d-hitting set of size at most t if and only if G has a Roman Dominating
function of size at most 2t.

Proof. Consider a d-HITTING SET instance (U, F, t), where U = {u1, . . . , un} and F =
{S1, . . . , Sm}. We construct a graph G = (V, E) as follows:

V = U ∪ F1 ∪ F2, where the vertices of U correspond to elements of the universe U and
vertices in F1 and F2 correspond to sets in F . U = {u1, . . . , un} and Fi = {si

j | Sj ∈ F},
for i ∈ {1, 2}.
E = E1 ∪ E2 ∪ E3, where E1 = {uiuj | i, j ∈ [n], i ̸= j}, E2 = {uis

1
j | ui ∈ Sj} and

E2 = {uis
2
j | ui ∈ Sj}.

Note that G is a split graph, where U is a clique, and F1 ∪ F2 is the independent set. U

is a cluster vertex deletion set and a vertex cover of G.
Let (U, F, t) be a YES instance, which implies that there exists S ⊆ U , such that S∩Si ≠ ∅,

for every i ∈ [m], and |S| ≤ t. Now, we define a function on V as follows: f : V → {0, 1, 2},
where f(v) = 2 for v ∈ S and f(v) = 0, otherwise. Now, since S ⊆ U , f(v) = 0 for every
v ∈ F1 ∪ F2. For every si

j ∈ Fi, there must exist uk ∈ S which is adjacent to si
j , since S must

has an element uk which hits the set Sj . For every v ∈ U \ S, with f(v) = 0 is adjacent to
some vertex with f -value 2, as G[U ] is a clique and S is nonempty. Hence, we can conclude
that f is an RDF with weight at most 2|S| ≤ 2t.

Conversely, let f be an RDF with w(f) ≤ 2t. First, we prove the following claim.

▷ Claim 22. There exists an RDF g on V with weight at most w(f), which satisfies the
property: g(v) = 0, for all v ∈ F1 ∪ F2.

Proof. Let there exist v ∈ F1 ∪ F2, such that f(v) > 0. Two cases may appear:
Case 1: f(v) = 1

Without loss of generality, let v ∈ F1, hence v = s1
j for some j ∈ [m]. If s1

j has a neighbour
v′ which has non zero label, then define a function f ′ : V → {0, 1, 2} as follows: f ′(v′) = 2
and f ′(s1

j) = 0 and f ′(u) = f(u) for every other u ∈ V . Note that f ′ is an RDF and
w(f ′) ≤ w(f).

Now, if every neighbour of s1
j has label 0 under f , then observe that f(s2

j) > 0. Hence,
we define a function f ′ : V → {0, 1, 2} as follows: f ′(v′) = 2, f ′(s1

j) = f ′(s2
j) = 0, where v′

is a neigbour of s1
j and f ′(u) = f(u) for every other u ∈ V . Note that f ′ is an RDF and

w(f ′) ≤ w(f).
Case 2: f(v) = 2

In this case, we define a function f ′ : V → {0, 1, 2} as follows: f ′(v′) = 2, f ′(v) = 0,
where v′ is a neigbour of v and f ′(u) = f(u) for every other u ∈ V . Note that f ′ is an RDF
and w(f ′) ≤ w(f).

Hence, in both cases, we can define another RDF f ′ of the same or less weight than f ,
such that |(V f ′

1 ∪ V f ′

2 ) ∩ (F1 ∪ F2)| < |(V f
1 ∪ V f

2 ) ∩ (F1 ∪ F2)|. Hence, applying this technique
iteratively, we get an RDF g, with w(g) ≤ w(f) and |(V g

1 ∪ V g
2 ) ∩ (F1 ∪ F2)| = 0. Hence, the

claim follows. ◁

Hence, by Claim 22, we consider an RDF f on V , such that f(v) = 0, for every v ∈ F1 ∪F2
and w(f) ≤ 2t. We define S = {v ∈ U | f(v) = 2}. Note that |S| ≤ 2t

2 = t and every vertex
of F1 ∪ F2 is adjacent to some vertex of S. This implies that S is a hitting set of (U, F ) of
cardinality at most t. Hence, the theorem follows. ◀
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Hence, by Theorem 20 and 21, we can prove the following theorem.

▶ Theorem 23. The RD-CVD (and RD-VC) problem can not be solved in time 2ϵknO(1),
for any 0 < ϵ < 1, unless SETH fails.

Proof. Let the RD-CVD (or RD-VC) problem be solved in time 2ϵknO(1). Then by Theorem
21, we can solve the d-HITTING SET problem with |U | = k in 2ϵknO(1) time. Hence, by
Theorem 20, this contradicts the SETH. Hence, the RD-CVD (and RD-VC) problem can not
be solved in time 2ϵknO(1), unless the SETH fails. ◀

We state another theorem to show that the RD-CVD (and RD-VC) problem is unlikely
to admit a polynomial kernel.

▶ Theorem 24. [6] The d-HITTING SET problem parameterized by the universe size does
not admit any polynomial kernel unless NP ⊆ coNP/poly.

Hence combining the above discussion with Theorem 24, the following theorem can be
concluded.

▶ Theorem 25. The RD-CVD (and RD-VC) problem does not admit a polynomial kernel
unless NP ⊆ coNP/poly.

Proof. By Theorem 24, the d-HITTING SET problem parameterized by universe size does
not admit a polynomial kernel unless NP ⊆ coNP/poly. Since the reduction provided in
Theorem 21 is a polynomial parameter transformation (PPT), by Theorem 7, the RD-CVD
and RD-VC do not admit a polynomial kernel unless NP ⊆ coNP/poly. ◀

5 Conclusion
In this work, we have extended the study on the parameterized complexity of the Roman
Domination problem and one of its variants. There are other interesting structural parameters,
such as neighborhood diversity and cliquewidth, for which it would be interesting to determine
whether the problem parameterized by these parameters is fixed parameter tractable (FPT).

Another promising research direction is to develop an algorithm to solve the RD-CVD
problem with better time-complexity than 4knO(1). Given that the lower bound on time-
complexity mentioned in Theorem 23, it might be possible to achieve an improved algorithm.
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