
Comptes Rendus
Physique
Draft

Quantum transport in strongly correlated

Fermi gases

Transport quantique dans des gaz de fermions fortement

corrélés

Tilman Enss a

a Institute for Theoretical Physics, University of Heidelberg, Germany

Abstract. Transport in strongly correlated fermions cannot be understood by fermionic quasiparticles alone.
We present a theoretical framework for quantum transport that incorporates strong local correlations of
fermion pairs. These contact correlations add essential contributions to viscous, thermal and sound trans-
port coefficients. The bulk viscosity, in particular, receives its dominant contribution from pair excitations.
Moreover, it can be measured elegantly by observing the response to a time-dependent scattering length even
when the fluid is not moving. Rapid changes of the scattering length drive the system far out of local equi-
librium, and we show how it relaxes back to equilibrium following a hydrodynamic attractor before a Navier-
Stokes description becomes valid. This paper summarizes a talk given at the Symposium “Open questions in
the quantum many-body problem” at the Institut Henry Poincaré, Paris, in July 2024.

Résumé. Le transport dans les fermions fortement corrélés ne peut être compris par les seules quasiparti-
cules fermioniques. Nous présentons un cadre théorique pour le transport quantique qui incorpore les fortes
corrélations locales des paires de fermions. Ces corrélations de contact ajoutent des contributions essen-
tielles aux coefficients de transport visqueux, thermique et sonore. La viscosité de volume, en particulier, re-
çoit sa contribution dominante des excitations de paires. En outre, elle peut être mesurée de manière élé-
gante en observant la réponse à une longueur de diffusion dépendant du temps, même lorsque le fluide n’est
pas en mouvement. Des changements rapides de la longueur de diffusion éloignent le système de l’équilibre
local, et nous montrons comment il retourne à l’équilibre en suivant un attracteur hydrodynamique avant
qu’une description de Navier-Stokes ne devienne correcte. Cet article résume un exposé donné au sympo-
sium «Open questions in the quantum many-body problem» à l’Institut Henri Poincaré, Paris, en juillet 2024.
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1. Introduction

Resonantly interacting fermions are characterized by strong short-range correlations between ↑
and ↓ fermions (see Yvan Castin’s presentation in this volume). These correlations give rise to
remarkable transport properties that have been observed in experiments with ultracold Fermi
gases in recent years. Noteworthy examples include (i) dilute clouds of opposite spin bounce off
one another and create shock waves before they eventually merge diffusively [1]; (ii) the unitary
Fermi gas exhibits extremely low friction, given by the ratio of shear viscosity to entropy density
η/s ≳ 0.5ħ/kB , and thereby constitutes a nearly perfect fluid [2–4]; (iii) a quantum lower bound
on diffusivity D ≳ħ/m is observed for spin diffusion (i) [1, 5–9] and momentum diffusion (ii) but
also for thermal and sound diffusion [10–17]; (iv) several transport relaxation rates τ−1 ∼ kB T /ħ
scale proportional to temperature in the normal state above the superfluid critical temperature
Tc , reminiscent of quantum critical scaling [9, 13, 18, 19].

Important questions include how this collective behavior arises from the microscopic Hamil-
tonian and how to derive an effective description at large scales. Near equilibrium, hydrodynam-
ics works well as an effective description in the strongly correlated regime that is dominated by
frequent collisions. However, dissipative hydrodynamics requires the equation of state and the
transport cofficients as input, and their computation from first principles remains a challeng-
ing task. Explicit computations have shown quantum limited diffusion in many instances, but a
universal many-body mechanism for different microscopic models has not yet emerged. Beyond
hydrodynamics, the short-time behavior and the approach to equilibrium can exhibit relaxation
phenomena on different scales, for instance attractor behavior beyond a Navier-Stokes descrip-
tion [20].

2. Boltzmann kinetic theory

The dilute two-component Fermi gas is described by the Hamiltonian [21]

Ĥ =
∫

d d x
∑
σ=↑,↓

ψ†
σ(x)

(
−ħ2∇2

2m
−µσ

)
ψσ(x)+ g0

∫
d d xψ†

↑(x)ψ†
↓(x)ψ↓(x)ψ↑(x) (1)

for nonrelativistic fermions of mass m with an attractive short-range (contact) interaction. The
bare coupling strength g0 = [(4πħ2a/m)−1−mΛ/(2π2ħ2)]−1 in three dimensions is given in terms
of the low-energy scattering length a and a large-wavenumber cutoff Λ. In the following we set
ħ= 1.

The first approach to transport in a Fermi gas is by Boltzmann kinetic theory [22]. The single-
particle distribution function f (r , p , t ) evolves according to the Boltzmann equation

∂ f

∂t
+v p ·∇r f +F ·∇p f =

(
∂ f

∂t

)
coll

, (2)

where the left-hand side is the streaming term that includes mean-field interactions, while the
right-hand side denotes the collision integral(

∂ f1

∂t

)
coll

≃−
∫

d p2 dΩ
dσ

dΩ
|v 1 −v 2|

[
f1 f2(1− f1′ )(1− f2′ )− (1− f1)(1− f2) f1′ f2′

]
. (3)

The collision integral describes how scattering between two particles 1, 2 into new states 1′, 2′

leads to a loss (first term) or gain (second term) of particles in state 1. At high temperatures above
the Fermi temperature (T ≫ TF ) the resonant cross section dσ/dΩ= 4ħ2/|p1 −p2|2 is so simple
that the collision integral can be computed analytically. In the degenerate Fermi gas (T ≲ TF )
Pauli blocking of final states reduces the Fermi distribution factors in the collision integral. At
the same time, however, Pauli blocking of the intermediate virtual states between scatterings
enhances the cross section dσ/dΩ [19, 23]. Near the scattering resonance, remarkably these
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two competing effects cancel almost perfectly and the resulting collision rate τ−1 follows nearly
classical scaling [13, 24]. The relaxation time τ is then combined with thermodynamics (in the
case of shear viscosity, the pressure p) to yield the frequency dependent transport coefficient,
for instance the complex shear viscosity η(ω) = pτη/(1 − iωτη) as follows from the memory
function formalism [13]. The Boltzmann prediction for sound attenuation is found to agree with
experimental data [11] for the degenerate unitary gas down to T ≃ 2Tc , which constitutes a
remarkable success of kinetic theory in the strongly correlated regime.

In the collision integral (3) the two-particle distribution function has been factorized into the
product of two separate distribution functions for particles 1 and 2. This factorization based on
the assumption of molecular chaos does not capture the strong local pair correlations g (2)

↑↓ (r ) ∼
C /r 2 +O (1/r ) at short distance, where C denotes the expectation value of the contact operator
(see below). In the following we will see how these short-range correlations affect transport.

3. Kubo formula and bulk viscosity

A more general approach to transport, which makes no quasiparticle assumption, is derived in
linear response theory. The transport coefficients are related by Kubo formulas to equilibrium
expectation values; for instance the frequency dependent shear viscosity is given in terms of the
transverse stress response function [4, 25],

η(ω) =
∫

d d x d t
e i (ω+i 0)t −1

i (ω+ i 0)
iθ(t )〈[Π̂x y (x , t ),Π̂x y (0,0)]〉, (4)

where Π̂x y (x , t ) denotes the shear stress operator. The bulk viscosity ζ, furthermore, characterizes
friction during isotropic expansion and contributes to sound attenuation. In constrast to the
shear viscosity, however, the bulk viscosity is constrained by symmetry and vanishes identically
for a scale invariant gas such as the ideal gas but also the unitary Fermi gas [26, 27]. It can be
computed by the Kubo formula [28]

ζ(ω) =
∫

d d x d t
e i (ω+i 0)t −1

i (ω+ i 0)
iθ(t )〈[δp̂(x , t ),δp̂(0,0)]〉 (5)

in terms of the operator δp̂ that measures pressure fluctuations. The pressure p = −∂E/∂V
is obtained by performing a scale transformation, and specifically for the dilute gas in three
dimensions one obtains the pressure operator

p̂ = 2

3
Ĥ + Ĉ

12πma
, (6)

where Ĥ denotes the Hamiltonian density and a the scattering length. The last term involves on
the contact operator

Ĉ = m2g 2
0 n̂↑(x)n̂↓(x) = ∆̂†(x)∆̂(x), (7)

which is the continuum version of the doublon or pair density regularized by the bare coupling
g0 ∼ −r0 such that its zero-range limit r0 → 0 is well defined [29]. Equivalently, the contact
operator can be expressed in terms of the local pair operator ∆̂= mg0ψ̂↓ψ̂↑, such that the contact
measures the density of local pairs. At the scattering resonance 1/a = 0 the scale invariant
pressure relation p = (2/3)E is recovered, while the contact term quantifies the deviation from
scale invariance due to pairing fluctuations. The pressure fluctuations are now given as the
component of the pressure orthogonal to density and energy fluctuations [28],

δp̂ = p̂ − (∂p/∂n)E n̂ − (∂p/∂E )nĤ . (8)

Because conserved quantities do not contribute to dissipation, in the dynamical response the
dissipation at ω > 0 can only arise from the response function of the contact operator, δp̂ =
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Ĉ /(12πma), which is not conserved. One thus finds that the bulk viscosity at nonzero frequency
is given by [28, 30–32]

ζ(ω> 0) = 1

(12πma)2

∫
d d x d t

e i (ω+i 0)t −1

i (ω+ i 0)
iθ(t )〈[Ĉ (x , t ),Ĉ (0,0)]〉. (9)

Hence, bulk viscosity is a pure interaction effect that arises from fluctuations of the pair density,
not of single fermions. These contributions are not easy to capture in a fermionic kinetic theory,
even if the interaction functional is included [33]. Instead, the bulk viscosity can be computed
using self-consistent conserving approaches (Luttinger-Ward), which are formulated in terms of
coupled fermion and pair degrees of freedom [4, 5, 31, 34]. Explicit microscopic computations for
the contact correlations and bulk viscosity in the degenerate, strongly correlated gas [31] show
a low-frequency Drude peak in the complex bulk viscosity ζ(ω) ≃ χτζ/(1− iωτζ) followed by an
anomalous contact tail ζ(ω → ∞) ∼ C /ω3/2 at large frequency. Remarkably, in the unitary gas
the bulk scattering rate τ−1

ζ
∝ T exhibits a T -linear scaling in a wide temperature range from

slightly above Tc to high temperatures above TF , in distinction to other transport relaxation times
that decay at high temperatures. This unusual scaling arises from scattering between pairs, not
individual fermions, and is specific to the bulk viscosity.

Open questions concern the response in the low-temperature, superfluid state, where a su-
perfluid of fermion pairs can behave differently from a bosonic superfluid due to the additional
pair-breaking excitations [35, 36]. In particular for the bulk viscosity, but also for the other trans-
port coefficients it is desirable to derive a kinetic theory that captures the strong fermion correla-
tions. A kinetic formulation in terms of coupled fermions and pairs has been derived in the high-
temperature virial expansion [37]: the fermionic contribution to the total bulk viscosity agrees
with previous Boltzmann calculations [33], but the pair contribution is found to be much larger
near unitarity. Efforts are underway to extend this to the quantum degenerate regime.

3.1. Measurement of the bulk viscosity

Often transport measurements observe the damping of fluid motion: elliptic flow or quadrupole
motion for shear viscosity, and isotropic flow or radial breathing for the bulk viscosity. The
measurement of sound attenuation [11, 12, 14–17, 38] gives access to a combination of several
transport coefficients, as sound decays by both momentum and thermal relaxation processes.
For the bulk viscosity, however, there is another way of measurement in a dilute gas that works
even if the fluid is homogeneous and at rest [39]. In linear response the contact correlation, and
thereby the bulk viscosity, is given by the response of the contact to an earlier change of scattering
length [31],

iθ(t − t ′)〈[Ĉ (x , t ),Ĉ (0, t ′)]〉 =−4πm
∂〈Ĉ (x , t )〉
∂a−1(0, t ′)

∣∣∣∣∣
S,N

(10)

at fixed entropy and particle number. Experimentally the spatially integrated contact has been
measured with a high temporal resolution [6, 8], and one can modulate the scattering length
in time via the applied magnetic field to measure the response. In this way, the frequency
dependence of the bulk viscosity can be mapped out.

4. Attractors to hydrodynamics

When a system is brought far from equilibrium, one might expect that the approach to equilib-
rium at long times is governed by hydrodynamics (Navier-Stokes equation). In heavy-ion colli-
sions, however, fluid behavior is found already at short times after a collision, earlier than hydro-
dynamics is expected to be valid, in a so-called hydrodynamic attractor [40]. In general, one can
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ask which equations describe the approach to hydrodynamics and whether they are universal.
Furthermore, if hydrodynamics is viewed as a “derivative expansion” in powers of ωτ, what de-
termines the higher orders? Some answers may be provided by experiments with ultracold quan-
tum gases, where the time-resolved evolution toward equilibrium can be observed starting from
defined initial conditions or subject to a particular driving.

Hydrodynamic attractors can arise in many forms of fluid motion, but there is a particularly
simple case where it can be studied in a uniform ultracold atomic gas at rest, with no moving
parts, when the scattering length a(t ) is ramped at time t > 0 to bring the system out of local
equilibrium [20, 39]. The relaxation back to equilibrium can be observed in the equation of state,
most directly in the contact density expectation value, which is given in linear response as

C (t ) =Ceq +
∫ ∞

0
d t ′

∂C (t )

∂a−1(t ′)
δa−1(t ′). (11)

Using Eq. (10) this can be expressed in terms of the contact correlation, and one finds that
the approach to equilibrium occurs via local dissipation, with the dissipation rate set by the
bulk viscosity [39]. The Drude peak of the bulk viscosity [31] ζ(ω) ≃ χτζ/(1− iωτζ) (see above)
corresponds in the time domain to an exponential decay of the contact response within the bulk
relaxation time τζ:

∂C (t )

∂a−1(t ′)
≃ θ(t − t ′)

(
∂C

∂a−1

)
S,N

exp[−(t − t ′)/τζ]

τζ
. (12)

By inserting this form into Eq. (11) one can predict the time evolution of the contact following
arbitrary drives δa−1(t ) as long as the drive amplitude is small enough to remain in the linear
response regime. But does this time evolution agree with the prediction of Navier-Stokes hydro-
dynamics? When the scattering length is varied, the local pressure also changes in time, and the
nonequilibrium component of the pressure is quantified by the dissipative bulk pressure

π(t ) = C (t )−Ceq[a(t )]

12πma(t )
, (13)

which for a dilute gas is given in terms of the difference of the instantaneous contact and the
equilibrium contact for the instantaneous scattering length [39]. In Navier-Stokes hydrodynam-
ics the bulk pressure π = −ζVa is driven by the local expansion of the fluid, Va = ∇· v , times the
bulk viscosity ζ. On the other hand, when the scattering length is changed, the local scale vari-
ation arises equally from the rate of change of the scattering length, Va(t ) = −3ȧ(t )/a(t ). There-
fore, both expansion and variations of the scattering length are equivalent ways to probe local
bulk dissipation. In contrast to Navier-Stokes hydrodynamics, we obtain the equation of motion
for π(t ) from the time derivative of Eq. (12), which we have derived microscopically [20]:

τπ̇(t )+π(t ) =−ζ[a(t )]Va(t ). (14)

This differs from Navier-Stokes by the relaxation term on the left-hand side, which has the same
form as in a Müller-Israel-Stewart formulation. For a given external drive a(t ) the bulk pressure is
obtained by integrating this differential equation, and the result can be compared to the Navier-
Stokes prediction πNS(t ) =−ζ[a(t )]Va(t ). For slow drive frequencies ωτζ≪ 1 the dissipative term
τπ̇ has little effect and the bulk pressure follows the drive almost instantaneously. For fast drives
ωτζ ≳ 1, instead, π(t ) follows the drive with a time delay and a deviation from Navier-Stokes
hydrodynamics is predicted. This is exemplified by a power-law drive a−1(t > tini) ≡ a−1

ini (t/tini)−α,
which starts at a finite scattering length and sweeps at first fast, then slower toward unitarity
a−1 = 0. In this case the bulk pressure is found analytically as [20]

π(t ) =πini e−(t−tini)/τζ +πatt(t ), πatt(t ) = cαχe−t/τζΓ(−2α,−t/τζ) (15)
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Figure 1. Hydrodynamic attractor. The normalized bulk pressure c(t ) − ceq(t ) = π(t )/χ
exhibits different time evolutions for different initial conditions (thin lines), which quickly
converge toward the attractor solution (thick blue line) and only later approach Navier-
Stokes hydrodynamics (green dashed line). Adapted from [20].

in terms of the sum rule χ= ζ/τζ and the incomplete Gamma function Γ(s, z). The first term de-
scribes the exponential decay of initial conditions on time scale τζ, while the so-called hydrody-
namic attractor solution πatt(t ) is the same for different initial conditions and depends only on
the transport properties ζ, τζ as well as the drive parameter α. For different initial conditions the
bulk pressure is found to first converge toward the attractor solutionπatt before the attractor itself
approaches the Navier-Stokes prediction at longer times, cf. Fig 1.

Standard hydrodynamics is recovered in the solution π(t ) in the long-time limit. When ex-
panding in “temporal gradients” τζ/t ≪ 1, the leading order reproduces πNS(t ), but the sub-
sequent orders have factorially growing coefficients an ∼ (n + 2α)! and form an asymptotic se-
ries. The initial condition, furthermore, is nonperturbative in τζ/t and is therefore a nonhydro-
dynamic mode. Even though the gradient expansion does not converge, the solution obtained
from the equation of motion is physical and accessible with current experiments [20].

5. Conclusion

The short-time attractor behavior in a driven system is an example of a microscopically motivated
extension of hydrodynamics beyond Navier-Stokes. Cold atom experiments can observe these
attractors in real time by measuring the response of the contact to variations in the scattering
length, thus probing isotropic expansion and local dissipation by an external drive with no
moving parts. A remarkable prediction of quantum transport theory is that the bulk relaxation
rate τ−1

ζ
∝ T scales approximately linearly in temperature but is largely independent of density

[31]; this is because pressure fluctuations couple predominantly to pairs rather than individual
fermions. The computation of frequency dependent transport coefficients remains a challenge,
also in the superfluid state. Recently, the accurate computation of fermion and pair spectra
was achieved by solving the self-consistent Luttinger-Ward equations directly in real frequency
[41–43], which match recent experiments [44]. It will be interesting to extend these methods
and compute dynamical response functions in real frequency, such as Eqs. (4) and (5), which
determine the transport coefficients near equilibrium. Interesting questions arise also in the far-
from-equilibrium response, which can be computed using the Keldysh formulation [45].
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