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Almost invariant subspaces of shift operators and products of

Toeplitz and Hankel operators
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Abstract

In this paper we formulate the almost invariant subspaces theorems of backward shift operators in
terms of the ranges or kernels of product of Toeplitz and Hankel operators. This approach simplifies
and gives more explicit forms of these almost invariant subspaces which are derived from related
nearly backward shift invariant subspaces with finite defect. Furthermore, this approach also leads to
the surprising result that the almost invariant subspaces of backward shift operators are the same as
the almost invariant subspaces of forward shift operators which were treated only briefly in literature.
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1 Introduction

The recent study of almost invariant subspaces inside Banach spaces attributes its starting point to
the paper by Androulakis-Popov-Tcaciuc-Troitsky [1] in 2009, see also [25] [28] [29] [31] [17]. But an
equivalent definition on Hilbert spaces occurred in Hoffman [20] in 1978 in connection with essentially
invariant subspaces [6] in 1971 (see Definition 5.2 and Definition 5.5). In the sequel, let H be a complex
Hilbert space and B(H) be the algebra of bounded linear operators acting on H . For an operator
T ∈ B(H), write R(T ) and N(T ) for the range and the kernel of T , respectively. If M is a closed
subspace of H , then the orthogonal projection from H onto M is denoted by PM .

Definition 1.1 [1] Let T ∈ B(H). A closed subspace H1 of H is called an almost invariant subspace of T
if there is a finite dimensional subspace W such that TH1 ⊂ H1 +W. The minimal possible dimension n
of W is called the defect of H1, denoted by ς(H1) = ς(T,H1) = n, and W is called a minimal defect space
of H1. If W is a minimal defect space of H1 such that W ⊥ H1, then W is called a minimal orthogonal
defect space of H1.

We say H1 is an almost reducing subspace of T if both H1 and H⊥
1 are almost invariant for T or

equivalently H1 is almost invariant for both T and T ∗. To avoid triviality, often H1 is assumed such that
both H1 and H⊥

1 are infinite dimensional, such an H1 is called a half-space. The study of almost invariant
subspaces is motivated by the Invariant Subspace Problem which is still open on Hilbert spaces. By a
series of papers from several authors [25] [28] [29] [31], Tcaciuc proved the following important theorem.

Theorem 1.2 Let X be a separable Banach space and T be a bounded linear operator on X. Then T has
an almost invariant half-space with defect at most 1.

On the other hand, the celebrated Beurling-Lax-Halmos (BLH) invariant subspace Theorem [3] [21]
[18] for the (forward) shift operator is a cornerstone of modern analysis. It has played an important role
in operator theory, function theory and applications. The following question is natural.

Question 1.3 What are the almost invariant subspaces of the shift operator?

1

http://arxiv.org/abs/2411.13177v1


It turns out the almost invariant subspaces of the backward shift operator are characterized recently,
see [9] [10] [8] [23]. By formulating the results of these papers using the ranges of Toeplitz and Hankel
operators, we will answer the above motivating question. Now we introduce the function theoretic
background of the shift operator. Let L2 be the space of square integrable functions on the unit circle
T with respect to the normalized Lebesgue measure. Let H2 be the Hardy space on the open unit disk
D. L∞ and H∞ are the algebras of bounded functions in L2 and H2 respectively. Let E and F be two
complex separable Hilbert spaces. Let B(E,F ) be the set of bounded linear operators from E into F.
L2
E and H2

E denote E-valued L2 and H2 spaces, respectively. L∞
B(E) and H∞

B(E) are operator-valued L∞

and H∞ algebras, and L∞
B(E,F ) and H∞

B(E,F ) are operator-valued L∞ and H∞ spaces.

Denote by P the projection from L2
E toH2

E andQ := I−P the projection from L2
E to zH2

E := L2
E⊖H2

E,
where E is any complex separable Hilbert space. Let Φ ∈ L∞

B(E,F ). The multiplication operator by Φ

from L2
E into L2

F is denoted by MΦ. The (block) Toeplitz operator TΦ from H2
E into H2

F is defined by

TΦh = P [Φh] , h ∈ H2
E .

When E = F, let Tz(= TzIE ) denote the shift operator on H2
E for some E which the context will make

clear. We will also use SE or just S to denote this shift operator Tz on H2
E and S∗

E or just S∗ for the
backward shift. We note that E may be regarded as a subspace H2

E in the sense that if for each x ∈ E,
we define

fx(z) := x for all z ∈ T,

then fx ∈ H2
E , so that E ∼= {fx : x ∈ E} ⊆ H2

E . Thus if there is no confusion in the context of H2
E , we

will still use the notation PE . Observe that

I − SES
∗
E = PE .

The Toeplitz operator TΦ = A is characterized by the operator equation S∗
FASE = A.

Let J be defined on L2
E by

Jf(z) = zf(z), f ∈ L2
E .

J maps zH2
E onto H2

E , and J maps H2
E onto zH2

E . Furthermore J is a unitary operator,

J∗ = J, J2 = I, JQ = PJ, and JP = QJ.

For Φ ∈ L∞, the Hankel operator HΦ from H2
E into H2

F is defined by

HΦh = JQ [Φh] = PJ [Φh] , h ∈ H2
E .

The Hankel operator HΦ = A is characterized by the operator equation ASE = S∗
FA. Set Φ̃(z) = Φ(z)∗.

It is easy to check that H∗
Φ = HΦ̃. The Toeplitz and Hankel operators are connected in the following

basic formula:
TΩΨ − TΩTΨ = H∗

Ω∗HΨ (1)

for symbols Ω and Ψ with compatible dimensions, see [4] [24].
We emphasize that again Toeplitz and Hankel operators TΦ and HΦ could be between different spaces

H2
E and H2

F according to whether the symbol Φ acts between different spaces E and F. In this paper,
all underlying Hilbert spaces E, F, and Ei for the vector-valued Hardy spaces H2

E , H
2
F , and H2

Ei
will be

finite dimensional. We also note that TΦ and HΦ could be unbounded operators, where Φ ∈ L2
B(E,F ), that

is, Φ is a matrix-valued function whose entries belong to L2. In this case an operator equation involving
TΦ and HΦ is valid when it acts on polynomials or H∞ functions, see for example [14] where the product
of unbounded operator TΦHΨ can be interpreted by using the bilinear form 〈TΦHΨh, g〉 := 〈HΨh, TΦ∗g〉
for h, g being polynomials or H∞ functions.

The S∗
E-almost invariant subspaces (and related nearly S∗

E-invariant subspaces) have been charac-
terized by Chalendar-Chevrot-Partington [9], Chalendar-Gallardo-Partington [10], Chattopadhyay-Das-
Pradhan [8], and independently in O’Loughlin [23], see Theorem 3.5 and Corollary 3.6 below for their
developments and characterizations.
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In this paper, we reformulate their results using operator ranges and prove a number of results on the
almost invariant subspaces of S∗

E and SE . Our approach achieve three goals: first the reformulation sim-
plifies the results of S∗

E-almost invariant subspaces in [9] [10] [8] [23] which were derived as consequences
of related nearly S∗

E-invariant subspaces, the reformulation bypasses the use of nearly S∗
E-invariant sub-

spaces; second our approach leads to more explicit examples of S∗
E-invariant subspaces; third surprisingly,

we prove that almost invariant subspaces of SE are the same as the almost invariant subspaces of S∗
E and

thus answer our motivating Question 1.3 completely.
Let us briefly outline the plan of the paper. In Section 2, we show that the closures of ranges of finite

sums of finite products of Hankel and Toeplitz operators under a mild condition are S∗
E-almost invariant

and SE-almost invariant. In Section 3, we reformulate their results (see Theorem 3.5) as follows.

Theorem 1.4 A closed subspace M of H2
F is S∗

F -almost invariant if and only if one of the following
holds:

(1) M = R(TΘ), where Θ ∈ H∞
B(E,F ) is inner.

(2) M = R(TΦ (IE1
− TΘT

∗
Θ)), where Θ ∈ H∞

B(E,E1)
is inner and pure, and Φ ∈ H2

B(E1,F ) is such that

TΦ (IE1
− TΘT

∗
Θ) is a partial isometry.

The idea of using ranges of partial isometries to represent almost invariant subspaces is inspired by
[7] [32] [16], where the invariant subspaces of SF ⊕ S∗

F are represented as ranges of partial isometries
involving Toeplitz and Hankel operators. Such an approach also enables us to observe the following.

Corollary 1.5 Let M be a closed subspace of H2
F . Then M is S∗

F -almost invariant if and only if M is
SF -almost invariant. Consequently, If M is SF -almost invariant, then M is SF -almost reducing.

The above corollary gives explicit forms of SF -almost invariant subspaces, otherwise, SF -almost invari-
ant subspaces are represented as M⊥, where M is as in Theorem 1.4. See Remark 3.3 in [10] and Remark

3.7 in [8], where it is observed that S∗
EM ⊂ M ⊕W if and only if SE (M ⊕W )

⊥
⊂ (M ⊕W )

⊥
⊕W. The

orthogonal complement M⊥ seems difficult to identify, for example, we know M is infinite dimensional
if and only if Θ is not a finite Blaschke-Potapov product, but we know M⊥ to be infinite dimensional
in some special cases. In Section 4, we study in more details M = R(TΦ (IE1

− TΘT
∗
Θ)), where Φ is also

inner and give more explicit examples of S∗
E-invariant or SE-invariant subspaces.

An observation on Banach spaces [1] says that a closed subspace M is T -almost invariant if and
only if M is (T + T0)-invariant for some finite rank operator T0, see Lemma 5.1 below. In section 5, we
first give a more precise result on Hilbert spaces by using the equivalent definition of almost invariant
subspaces in [20]. Namely, if M is T -almost invariant, we identify all finite rank operators T0 such that
M is (T + T0)-invariant. We then apply this theorem to S∗

F -almost invariant subspaces. For a given
M = R(TΦ (IE1

− TΘT
∗
Θ)) as in Theorem 1.4, we write down all finite rank operators T0 in terms of Φ,

Θ, M such that M is (S∗
F + T0)-invariant or (SF + T0)-invariant or (SF + T0)-reducing.

2 The ranges of products of Toeplitz and Hankel operators are

S∗-almost invariant

We begin with:

Lemma 2.1 Let Ψ ∈ L∞
B(E,E1)

and Φ ∈ L∞
B(E1,F ). Then S∗

FTΦHΨ − TΦHΨSE is of finite rank, more
precisely,

S∗
FTΦHΨ − TΦHΨSE = S∗

FTΦPE1
HΨ. (2)

Also, we have

SFHΦTΨ −HΦTΨS
∗
E = HΦS

∗
E1

TΨPE − PFHΦS
∗
E1

TΨ + SFHΦPE1
TΨ. (3)
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Proof. Recall S∗
FTΦSE1

= TΦ and S∗
E1

HΨ = HΨSE . Then

S∗
FTΦSE1

S∗
E1

= TΦS
∗
E1

,

S∗
FTΦ (I − PE1

) = TΦS
∗
E1

and hence, S∗
FTΦ = TΦS

∗
E1

+ S∗
FTΦPE1

(4)

and

S∗
FTΦHΨ =

(
TΦS

∗
E1

+ S∗
FTΦPE1

)
HΨ

= TΦS
∗
E1

HΨ + S∗
FTΦPE1

HΨ

= TΦHΨSE + S∗
FTΦPE1

HΨ.

This proves (2).
Similarly, it follows from S∗

FHΦ = HΦSE1
that

SFS
∗
FHΦS

∗
E1

= SFHΦSE1
S∗
E1

,

(I − PF )HΦS
∗
E1

= SFHΦ (I − PE1
) ,

SFHΦ = HΦS
∗
E1

− PFHΦS
∗
E1

+ SFHΦPE1
(5)

and

SFHΦTΨ =
(
HΦS

∗
E1

− PFHΦS
∗
E1

+ SFHΦPE1

)
TΨ

= HΦS
∗
E1

TΨ − PFHΦS
∗
E1

TΨ + SFHΦPE1
TΨ

= HΦTΨS
∗
E +HΦS

∗
E1

TΨPE − PFHΦS
∗
E1

TΨ + SFHΦPE1
TΨ.

The proof is complete.

Let H1 be an almost invariant subspace of T and W is the minimal orthogonal defect space of H1. So
TH1 ⊂ H1 ⊕W. Since TH1 ⊂ H1 ⊕W is equivalent to T ∗ (H1 ⊕W )

⊥
⊂ H⊥

1 = (H1 ⊕W )
⊥
⊕W. Thus

H1 is T -almost invariant with defect n if and only if (H1 ⊕W )
⊥

is T ∗-almost invariant with defect n.

Furthermore, T ∗H⊥
1 = T ∗

[
(H1 ⊕W )

⊥
⊕W

]
⊂ H⊥

1 + T ∗W, so H⊥
1 is T ∗-almost invariant with defect

less than or equal to n.

Lemma 2.2 Let Ψ ∈ L∞
B(E,E1)

and Φ ∈ L∞
B(E1,F ). The following statements hold.

(i) R(TΦHΨ)
− is S∗

F -almost invariant and ς(R(TΦHΨ)
−) ≤ dimE1.

(ii) R(H∗
ΨT

∗
Φ)

− is S∗
E-almost invariant and ς(R(H∗

ΨT
∗
Φ)

−) ≤ dimE1.

(iii) N(TΦHΨ) is SE-almost invariant and ς(SE , N(TΦHΨ)) = ς(S∗
E , R(H∗

ΨT
∗
Φ)

−) ≤ dimE1.

(iv) N(H∗
ΨT

∗
Φ) is SF -almost invariant and ς(SF , N(TΦHΨ)) = ς(S∗

F , R(TΦHΨ)
−) ≤ dimE1.

Proof. It follows from Lemma 2.1 that S∗
FTΦHΨ = TΦHΨSE +G, where G is a finite rank operator with

rank less than or equal to dimE1. Thus S
∗
FR(TΦHΨ) ⊂ R(TΦHΨ) + R(G). Since G is of finite rank, by

taking closure in H2
F , one see that

S∗
FR(TΦHΨ)

− ⊂ R(TΦHΨ)
− +R(G),

and R(TΦHΨ)
− is S∗

F -almost invariant and ς(R(TΦHΨ)
−) ≤ rank(G). This proves (i).

By taking adjoint, we have
S∗
EH

∗
ΨT

∗
Φ = H∗

ΨT
∗
ΦSF −G∗.

4



A similar argument shows that R(H∗
ΨT

∗
Φ)

− is S∗
E-almost invariant and ς(R(H∗

ΨT
∗
Φ)

−) ≤ rank(G∗). This
proves (ii)

Since R(H∗
ΨT

∗
Φ)

− = N(TΦHΨ)
⊥, by the argument just above this lemma, N(TΦHΨ) is SE-almost

invariant and
ς(SE , N(TΦHΨ)) = ς(S∗

E , R(H∗
ΨT

∗
Φ)

−) ≤ dimE1.

This proves (iii). The proof of (iv) is similar.

Remark 2.3 The above lemma also holds when E and F are infinite dimensional.

It is natural to ask if R(TΦHΨ)
− is SE-almost invariant, the answer is yes under a more restricted

assumption that E1, E and F are all finite dimensional. But the defect of R(TΦHΨ)
− is more complicated.

Lemma 2.4 Let Ψ ∈ L∞
B(E,E1)

and Φ ∈ L∞
B(E1,F ). Then R(HΦTΨ)

− is SF -almost invariant and

ς(SF , R((HΦTΨ)
−)) ≤ dimE1 + dimE + dimF.

Moreover, N(HΦTΨ) is S∗
E-almost invariant with ς(S∗

E , N(HΦTΨ)) = ς(SE , R(T ∗
ΨH

∗
Φ)

−). In the case
Ψ∗ ∈ H∞

B(E1,E), we have ς(SF , R((HΦTΨ)
−) ≤ dimE1 + dimF.

Proof. It follows from Lemma 2.1 that SFHΦTΨ = HΦTΨS
∗
E + G, where G is a finite rank operator

with rank less than or equal to dimE1 + dimE + dimF. The rest of the proof is similar to the proof of
Lemma 2.2. In the case Ψ∗ ∈ H∞

B(E1,E), we note that HΦS
∗
E1

TΨPE = HΦTΨS
∗
EPE = 0, so G is a finite

rank operator with rank less than or equal to dimE1 + dimF.

To search for better representations of SE-almost invariant subspaces as ranges of operators, we make
another observation.

Lemma 2.5 Let Ψ ∈ L∞
B(E,E1)

and Φ ∈ L∞
B(E1,F ). Then R(TΦTΨ)

− is SF -almost invariant and ς(SF ,

R(TΦTΨ)
−) ≤ dimE1 + dimF. In particular, if Φ ∈ H∞

B(E1,F ), then ς(SF , R(TΦTΨ)
−) ≤ dimE1.

Proof. By taking adjoint of (4), we have

SE1
TΨ = TΨSE − PE1

TΨSE ,

SFTΦ = TΦSE1
− PFTΦSE1

.

Hence

SFTΦTΨ = (TΦSE1
− PFTΦSE1

) TΨ

= TΦ (TΨSE − PE1
TΨSE)− PFTΦSE1

TΨ

= TΦTΨSE − TΦPE1
TΨSE − PFTΦSE1

TΨ.

Since rank(TΦPE1
TΨSE +PFTΦSE1

TΨ) ≤ dimE1+dimF, by a proof similar to the proof of Lemma 2.2,
R(TΦTΨ)

− is SF -almost invariant. In the case Φ ∈ H∞
B(E1,F ), PFTΦSE1

TΨ = PFSFTΦTΨ = 0.

It turns out the closure of the range of a finite sum of finite products of Toeplitz and Hankel operators
is SE-almost invariant and S∗

E-almost invariant under an appropriate condition.

Theorem 2.6 Let T =
k∑

i=1

Ai ∈ B(H2
E , H

2
F ) with Ai =

mi∏
j=1

Cj,i, where each Cj,i is either a (bounded)

Hankel operator or a (bounded) Toeplitz operator. Then R(T )− is SF -almost invariant and S∗
F -almost

invariant, and N(T ) is SE-almost invariant and S∗
E-almost invariant.
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Proof. By using (4) and (5) repeatedly, if for each i, Ai contains an even number of Hankel operators,
then

S∗
FT =

k∑
i=1

S∗
FAi =

k∑
i=1

(AiS
∗
E +Gi) = TS∗

E +G,

where each Gi is of finite rank and G =
∑k

i=1Gi is of finite rank. Hence R(T )− is S∗
F -almost invariant.

Similarly, SFT = TSE + G, where G is of finite rank. Hence R(T )− is SF -almost invariant. Note that

T ∗ =
∑k

i=1A
∗
i , where for each i, A∗

i also contains an even number of Hankel operators. Therefore, R(T ∗)−

is SE-almost invariant and S∗
E-almost invariant. By Lemma 2.9, N(T ) = R(T ∗)⊥ is SE-almost invariant

and S∗
E-almost invariant.

If for each i, Ai contains an odd number of Hankel operators, then S∗
FT = TSE + G1 and SFT =

TS∗
E +G2, where G1 and G2 are of finite rank. The same argument as the above gives the result.

In view of the above theorem, the following question is interesting.

Question 2.7 Let Ψ ∈ L∞
B(E,F ) and Φ ∈ L∞

B(E,F ). When is R(TΨ +HΦ)
− SF -almost invariant? When

is R(TΨ +HΦ)
− S∗

F -almost invariant?

The C∗-algebra generated by all Toeplitz operators is called the Toeplitz algebra and the C∗-algebra
generated by all Toeplitz and Hankel operators is called the Toeplitz+Hankel algebra. The operator T
in Theorem 2.6 belongs to this algebra.

On H2, since S is irreducible, a nontrivial S-invariant subspace is not S∗-invariant. It seems surprising
that in the examples above S-almost invariant subspace is also S∗-almost invariant, it is interesting to
ask if this is the case for other operators.

We include the following two lemmas in this section for future use. Recall T ∈B(H).

Lemma 2.8 If H1 is an almost invariant subspace of T, then the minimal orthogonal defect space of H1

is unique.

Proof. Let W1 and W2 be two n-dimensional minimal orthogonal defect spaces of H1. Then TH1 ⊂ H1⊕
W1 and TH1 ⊂ H1⊕W2. By the minimality of W1, TH1+H1 ⊃ W1. Hence H1⊕W2 ⊃ TH1+H1 ⊃ W1.
This implies W2 ⊃ W1. Similarly, W1 ⊃ W2. So W1 = W2.

We here record the argument just above Lemma 2.2 as a lemma for future use.

Lemma 2.9 The following statements hold.

(i) H1 is T -almost invariant with defect n if and only if H⊥
1 is T ∗-almost invariant with defect n.

(ii) If TH1 ⊂ H1+W and ς(T,H1) = dimW , then T [H1 +W ] ⊂ [H1 +W ]+TW and ς(T,H1+W ) =
dim(TW )− dim(TW ∩ (W +H1)).

Proof. We already argued that if H1 is T -almost invariant with defect n, then H⊥
1 is T ∗-almost invariant

with defect less than or equal to n. If ς(T ∗, H⊥
1 ) = k < n, then by applying what we just proved to H⊥

1 , we

will get H1 =
(
H⊥

1

)⊥
is T -almost invariant with defect less than or equal to k, which is a contradiction.

This proves (i).
Now we prove (ii). Let W be a minimal defect space of H1. Observe T [H1 +W ] = TH1 + TW ⊂

[H1 +W ] + TW = [H1 +W ] + [TW ⊖ (TW ∩ (W +H1)] . Thus ς(T,H1 +W ) ≤ dim(TW )− dim(TW ∩
(W +H1)). On the other hand, assume T [H1 +W ] ⊂ [H1 +W ]⊕G for some finite dimensional subspace
G. Since W is a minimal defect space of H1, we know TH1+H1 ⊃ W. Thus H1+T [H1 +W ] ⊃ W +TW
and

[H1 +W ]⊕G ⊃ H1 + T [H1 +W ] ⊃ H1 +W + TW.

Hence dimG ≥ dim(TW )−dim(TW ∩ (W +H1)). That is, ς(T,H1+W ) ≥ dim(TW )−dim(TW ∩ (W +
H1)).
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It is interesting to note that by iteration,

ς(T,H1) ≥ ς(T,H1 +W ) ≥ ς(T,H1 +W + TW ) ≥ · · · ≥ ς(T,H1 +W + TW + · · ·+ T kW ).

So it is possible for H1 +W + TW + · · ·+ T kW to become an invariant subspace of T.

3 Representations of S-almost invariant subspaces.

The closely related nearly S∗-invariant subspaces actually predates S∗-almost invariant subspaces.

Definition 3.1 A closed subspace M of H2
E is said to be nearly S∗

E-invariant if h ∈ M and h(0) = 0
implies that S∗

Eh ∈ M.

Nearly S∗-invariant subspaces of H2 are useful in describing kernels of Toeplitz operators and finding
inverses of Toeplitz operators [13] [11]. The following characterization (due to Hitt [19] and Sarason [26])
will be useful for us, see Theorem 30.15 in [13]. For x, y ∈ H∞, an admissible pair (x, y) of an outer

function G is a Pythagorean pair (x, y) such that |x|
2
+ |y|

2
= 1 on T, x is outer and G = x/(1− y).

Theorem 3.2 [19] [26] Let M be a nearly S∗-invariant subspace of H2. Then M has one of the following
forms:

(i) There exists an inner function θ such that θ(0) 6= 0 and M = θH2.

(ii) There exists a function g of unit norm in M such that g(0) > 0 and an inner function θ such that
θ(0) = 0 and θ divides the function y, where (x, y)is admissible pair for the outer factor G of g,
such that M = TgKθ, where Kθ = H2 ⊖ θH2.

The requirement that θ divides the function y is equivalent to Tg acts isometrically on Kθ so that
indeed TgKθ is a closed subspace of H2, see Theorem 30.14 in [13].

The case (ii) should contain the S∗-invariant subspace Kφ. Indeed, in this case if

g = (1− |φ(0)|2)−1/2(1− φ(0)φ) and θ =
φ(0)− φ

1− φ(0)φ
, (6)

then TgKθ = Kφ (cf. [27]).
The vector-valued version of nearly S∗-invariant subspaces of H2

E , where E is of finite dimension
was given by Chalendar-Chevrot-Partington [9]. Recently the concept of nearly S∗-invariant subspace
with finite defect was introduced, and a description of nearly S∗-invariant subspace with finite defect
inside H2 was obtained in Chalendar-Gallardo-Partington [10]. The vector-valued version of nearly S∗-
invariant subspace with finite defect inside H2

E was described first in Chattopadhyay-Das-Pradhan [8],
then independently in O’Loughlin [23].

Definition 3.3 A closed subspace M of H2
E is said to be nearly S∗

E-invariant with defect p if there is a
p-dimensional subspace G (called a defect space of M that may be taken to be orthogonal to M) such that
if h ∈ M and h(0) = 0, then S∗

Eh ∈ M +G. The smallest possible p is said to be the defect of M, denoted
by η(S∗

E ,M) = p.

It is clear that if M is S∗
E-almost invariant with ς(S∗

E ,M) = p, then M is nearly S∗
E-invariant with

η(S∗
E ,M) ≤ p. But if M is S∗

E-almost invariant with ς(S∗
E ,M) = p, it is possible that M is not nearly

S∗
E-invariant, see for example Proposition 2.6 in [8]. We will see below when a S∗

E-almost invariant
subspace is nearly S∗-invariant. It has been shown in Proposition 2.2 in [10] and Proposition 2.2 in [8]
that a nearly S∗

E-invariant subspace is S∗
E-almost invariant.

Next we generalize this result to a nearly S∗
E-invariant subspace with finite defect.
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Proposition 3.4 If a closed subspace M of H2
E is nearly S∗

E-invariant with η(S∗
E ,M) = p, then M is

S∗
E-almost invariant with ς(S∗

E ,M) ≤ p+ dimE.

Proof. Assume M is nearly S∗
E-invariant with defect p. That is, there is a p-dimensional subspace W

such that if h ∈ M and h(0) = 0, then S∗
Eh ∈ M +W. Set M1 = {h ∈ M : h(0) = 0} = M ∩ zH2

E. Thus
S∗
EM1 ∈ M +W. Set

W1 := M ⊖M1 = M ⊖M ∩ zH2
E .

By a lemma from [9], dimW1 ≤ dimE. Then

S∗
EM = S∗

E (M1 ⊕W1) ⊂ S∗
EM1 + S∗

EW1 ⊂ M +W + S∗
EW1.

Hence ς(S∗
E ,M) ≤ dim(W + S∗

EW1) ≤ p+ dimE.

So the set of nearly S∗
E-invariant subspaces with finite defect is the same as the set of S∗

E-almost
invariant subspaces.

Theorem 3.5 [9] [10] [8] [23] Let M be a closed subspace of H2
Cm that is nearly S∗-invariant with defect

p. Then:

(i) In the case where there are functions in M that do not vanish at 0,

M = {G : G(z) = G0(z)k0(z) + z
p∑

i=1

gi(z)ki(z) : (k0, · · · , kp) ∈ K}, (7)

where G0 is the matrix of size m × r whose columns consist of any orthonormal basis of M ⊖(
M ∩ zH2

Cm

)
, {g1, · · · , gp} is any orthonormal basis of the defect space W, and K ⊂ H2

Cr+p is a

S∗-invariant subspace. Furthermore, ‖G‖2 =
∑p

i=0 ‖ki‖
2 .

(ii) In the case all functions in M vanish at 0,

M = {G : G(z) = z
p∑

i=1

gi(z)ki(z) : (k0, · · · , kp) ∈ K},

with the same notation as in (i) except that K ⊂ H2
Cp is a S∗-invariant subspace. Furthermore,

‖G‖
2
=

∑p
i=1 ‖ki‖

2
.

Conversely if a closed subspace M of H2
Cm has a representation as in (i) or (ii), then it is nearly

S∗-invariant with defect p.

The proof of the above theorem generalizes Hitt’s algorithm as in proving Theorem 3.2 and uses a
lemma of [2] about C·0 contractions.

Corollary 3.6 [10] [8] [23] A closed subspace M of H2
Cm is S∗-almost invariant with defect p if and only

if it satisfies the conditions of the above theorem together with an extra condition that the column space
of S∗G0 is contained in M +W in case (i), while case (ii) is unchanged.

Using Lemma 2.2, we reformulate the above theorem and corollary in terms of ranges of Toeplitz and
Hankel operators. (We have to use unbounded Toeplitz operators, but the justification should be easy).

Recall Θ ∈ H∞
B(E,E1)

is (left) inner if Θ(z)∗Θ(z) = IE for almost all z ∈ T for some E ⊂ E1. Similarly,

Θ ∈ H∞
B(E,E1)

is right inner if Θ(z)Θ(z)∗ = IE1
for almost all z ∈ T for some E1 ⊂ E. When E = E1 and

Θ is both left and right inner, we say Θ is a two-sided inner function or a square inner function. In short,
if Θ is left inner, then we just say Θ is inner. If Θ ∈ H∞

B(E,E1)
is inner, let KΘ = H2

E1
⊖ΘH2

E denote the

model space. The celebrated Beurling-Lax-Halmos (BLH) Theorem [3] [21] [18] says an invariant subspace
of SE1

is of the form ΘH2
E, and consequently, an invariant subspace of S∗

E1
is of the form KΘ. It follows
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that TΘ is an isometry from H2
E into H2

E1
. When Θ is two-sided inner, by (1), H∗

Θ∗H∗
Θ = I − TΘT

∗
Θ,

so H∗
Θ∗ is a partial isometry and R(H∗

Θ∗) = KΘ. It is known that the kernel of a Hankel operator is
S-invariant. However, when Θ is just left inner, N(HΘ∗) ⊃ ΘH2

E and R(H∗
Θ∗) ⊂ KΘ in general. Thus

representing ΘH2
E as the kernel of a Hankel operator is studied in [15] when dimE1 < ∞, see also [12]

for a study of this problem when dimE1 = ∞. See also [22] where the connection of Hankel operators
and shift invariant subspaces on Dirichlet spaces are studied. Connected to this, we have the following
result.

Lemma 3.7 [12] Let Θ ∈ H∞
B(E,E1)

be inner. Then there exists Φ ∈ L∞
B(E1,E1)

such that N(HΦ) = ΘH2
E.

Consequently, KΘ = R(HΦ̃)
−.

KΘ is unchanged if we replace Θ by Θ ⊕ U, where U is a constant unitary operator. To clarify
this situation, we recall a classical concept. Let B ∈ H∞

B(E,E1)
and B is a contractive operator-valued

function. The function B is called purely contractive (or just pure) if ‖B(0)v‖ < ‖v‖ for all v ∈ E\{0}.
Any contractive B ∈ H∞

B(E,E1)
admits a decomposition such that

B(z) = B1(z)⊕ U : E = E1 ⊕ E2 → F = F1 ⊕ F2, (8)

where B1 is B(E1, F1)-valued and pure in the sense that ‖B1(0)v‖ < ‖v‖ for v ∈ E1\{0} and U is a
unitary constant from E2 onto F2. The B1 is referred to be the purely contractive part and U is the
unitary part of B, see [30, Page 194]. It is easy to see that with respect to the decomposition (8),

IF − TBT
∗
B =

(
IF1

− TB1
T ∗
B1

)
⊕ 0F2

.

Therefore, to represent KΘ, we can assume Θ is inner and pure.

Theorem 3.8 A closed subspace M of H2
F is S∗

F -almost invariant if and only if one of the following
holds:

(1) M = R(TΘ), where Θ ∈ H∞
B(E,F ) is inner. In this case, ς(S∗

F , M) = dimE − rank(U), where U is
the unitary part of Θ.

(2) M = R(TΦ (IE1
− TΘT

∗
Θ)), where Θ ∈ H∞

B(E,E1)
is inner and pure, Φ ∈ H2

B(E1,F ), dimE1 < ∞, and

TΦ (IE1
− TΘT

∗
Θ) is a partial isometry. In this case, a minimal defect space is W := R(S∗

FTΦPE1
)⊖

[R(S∗
FTΦPE1

) ∩M ] and ς(S∗
F , M) = dimW.

Proof. The “if” direction follows from Theorem 2.6. For the ”only if” direction, set F = C
m. We will

deal with case (i) in Theorem 3.5 since the proof of case (ii) is similar. Then in case (i) E1 = Cr+p, Φ =[
G0 zg1 · · · zgp

]
is an inner matrix function of size m× (r+ p). Since K ⊂ H2

Cr+p is S∗-invariant,
either K = H2

Cr+p and hence, M = R(TΦ) and (1) holds, or by BLH Theorem, K = KΘ = H2
Cr+p⊖ΘH2

Cn ,
where Θ ∈ H∞

B(E,E1,)
for E = Cn with n ≤ r + p. Note that I − TΘT

∗
Θ is the projection from H2

Cr+p onto

KΘ. By (7), M = TΦKΘ = R(TΦ (IE1
− TΘT

∗
Θ)). Now the equation ‖G‖

2
=

∑p
i=0 ‖ki‖

2
is equivalent to

that TΦ acts on KΘ as an isometry. Namely, for all h ∈ H2
E1

,

〈TΦ (I − TΘT
∗
Θ)h, TΦ (I − TΘT

∗
Θ)h〉 = 〈(I − TΘT

∗
Θ)h, h〉 .

Equivalently,
[TΦ (I − TΘT

∗
Θ)]

∗ [TΦ (I − TΘT
∗
Θ)] = (I − TΘT

∗
Θ) . (9)

Since (I − TΘT
∗
Θ) is a projection, we know [TΦ (I − TΘT

∗
Θ)] is a partial isometry. The proof of the “only

if” direction is complete.
If M = R(TΘ), then by (4), we have

S∗
FTΘ = TΘS

∗
E + S∗

FTΘPE .
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Thus the defect space W of M = R(TΘ) is a subspace R(S∗
FTΘPE), where

R(S∗
FTΘPE) = Span {z [Θ(z)−Θ(0)] e : e ∈ E} .

Note that z [Θ(z)−Θ(0)] e ∈ R(TΘ)
⊥, and hence the minimal orthogonal defect space W is R(S∗

FTΘPE).
It is easy to see that dimR(S∗

FTΘPE) = dimE − rank(U), where U is the unitary part of Θ(z).
If M = R(TΦ (IE1

− TΘT
∗
Θ)), then by using (4) twice, we have

S∗
FTΦ (I − TΘT

∗
Θ)

=
(
TΦS

∗
E1

+ S∗
FTΦPE1

)
(I − TΘT

∗
Θ)

= TΦS
∗
E1

(I − TΘT
∗
Θ) + S∗

FTΦPE1
(I − TΘT

∗
Θ)

= TΦ (I − TΘT
∗
Θ)S

∗
E1

+G, (10)

where
G = −TΦS

∗
E1

TΘPET
∗
Θ + S∗

FTΦPE1
(I − TΘT

∗
Θ) . (11)

Note R(TΦS
∗
E1

TΘPET
∗
Θ) ⊂ R(TΦS

∗
E1

TΘPE) and

R(TΦS
∗
E1

TΘPE) = {Φ(z)z [Θ(z)−Θ(0)] e : e ∈ E} .

Since Φ(z)z [Θ(z)−Θ(0)] e ∈ M, the defect space W is a subspace of R(S∗
FTΦPE1

(I − TΘT
∗
Θ)). We claim

that if Θ is pure, then
R(PE1

(I − TΘT
∗
Θ)) = R(PE1

). (12)

Thus a minimal defect space W is R(S∗
FTΦPE1

)⊖ [R(S∗
FTΦPE1

) ∩M ] . To prove the claim, assume there
exists e0 ∈ E1 such that e0 ⊥ R(PE1

(I − TΘT
∗
Θ)). Then for any e1 ∈ E1

0 = 〈e0, PE1
(I − TΘT

∗
Θ) e1〉E1

= 〈e0, e1 − PE1
(TΘΘ(0)∗e1)〉E1

= 〈e0, (IE1
−Θ(0)Θ(0)∗)) e1〉E1

.

Since Θ is pure, Θ(0) is a strict contraction. Hence e0 = 0 and the claim is proved.

For a scalar Toeplitz operator Tϕ, where ϕ ∈ L∞, it is known that Tϕ is a partial isometry if and
only if ϕ is inner [5]. But it is difficult to characterize when TΦ (IE1

− TΘT
∗
Θ) is a partial isometry, see

Theorem 3.2 above for the case when both Φ ≡ g and Θ ≡ θ are scalar-valued functions.

Corollary 3.9 A closed subspace M of H2
F is S∗

F -almost invariant if and only if either M = R(TΘ),
where Θ ∈ H∞

B(E,F ) is inner or M = R(TΦHΨ)
−, where Φ ∈ H∞

B(E,F ) and Ψ ∈ L∞
B(F,E).

Proof. By the above theorem, either M = R(TΘ) or M = TΦKΘ. By Lemma 3.7, KΘ = R(HΨ)
− for

some Ψ ∈ L∞
B(F,E). Thus M = TΦKΘ = R(TΦHΨ)

−.

The above theorem seems to suggest that “an extra condition that the column space of S∗
FG0 is

contained in M + G in case (i)” in Corollary 3.6 is not needed which is not the case, what the above
theorem says is that without this condition, M is still S∗

F -almost invariant, but the defect of M is more
than p. Corollary 3.6 shows how to get a S∗

F -almost invariant subspace with defect p from a nearly S∗
F -

invariant subspace with defect p by this extra condition. Our theorem combines these two concepts using
Proposition 3.4. Theorem 3.8 captures the essential part of Theorem 3.5 and Corollary 3.6 and leaves
out some details. We think such a reformulation and simplification is useful. The approach to view M as
the range of an operator involving Toeplitz and Hankel operators is fruitful. Of course we can also add
back more details (a more precise information of Φ) if we need to. We can pick out nearly S∗

F -invariant
subspaces from S∗

F -almost invariant subspaces in the following way.
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Corollary 3.10 Let M := R(TΦ (IE1
− TΘT

∗
Θ)) be as in Theorem 3.8 (2). Then M is nearly S∗

F -
invariant if and only if rank [Φ(0)] = dimE1. In particular, dimE1 ≤ dimF. If M = R(TΘ), where
Θ ∈ H∞

B(E,F ) is inner, then M is nearly S∗
F -invariant if and only if rank [Θ(0)] = dimF. In particular,

Θ is two-sided inner.

Proof. Assume rank [Φ(0)] = dimE1. Let h ∈ M be such that h(0) = 0. Write h = Φk, where k ∈ KΘ.
Then 0 = h(0) = Φ(0)k(0) implies k(0) = 0 since Φ(0) is full column rank. Hence S∗

Fh = ΦS∗
E1

k ∈ M
and M is nearly S∗

F -invariant.
On the other hand, assume M is nearly S∗

F -invariant. Let h ∈ M be such that h(0) = 0. Write
h = Φk, where k ∈ KΘ. Then

S∗
Fh(z) = Φ(z)S∗

E1
k(z) + z [Φ(z)− Φ(0)] k(0)

= Φ(z)S∗
E1

k(z) + zΦ(z)k(0) ∈ M

implies that zΦ(z)k(0) = Φ(z)k1(z) for some k1 ∈ KΘ. Thus Φ(z)k(0) = Φ(z)zk1(z) and k(0) = zk1(z).
This can only happen if k(0) = 0. In conclusion, Φ(0)k(0) = 0 implies k(0) = 0. If we show the set of all
the possible k(0) is E1, then the above implication proves that rank [Φ(0)] = dimE1. Indeed, the set of
all possible k(0) = PE1

k1(z), where k1 ∈ KΘ, is R(PE1
(I − TΘT

∗
Θ)), which is equal to R(PE1

) by (12)
since Θ is pure.

In the case M = R(TΘ), similarly, we can prove that M is nearly S∗
F -invariant if and only if

rank [Θ(0)] = dimF.

The above corollary contains Lemma 2.4 in [8], where Φ is assumed to be a diagonal inner function. By
Theorem 3.8 and Lemma 2.4, a S∗

F -almost invariant subspace is SF -almost invariant, special examples in
the scalar-valued case (dimF = 1) have been observed in Proposition 2.2 in [10] and in the vector-valued
case in Proposition 2.2 in [8]. We also have the converse.

Corollary 3.11 Let M be a closed subspace of H2
F . Then M is S∗

F -almost invariant if and only if M is
SF -almost invariant.

Proof. If M is S∗
F -almost invariant, then by the above theorem, M = R(TΦ (IE1

− TΘT
∗
Θ)). It follows

from Theorem 2.6 that M is SF -almost invariant.
If M is SF -almost invariant, then by Lemma 2.9, M⊥ is S∗

F -almost invariant. By what we just proved,

M⊥ is SF -almost invariant. By Lemma 2.9 again, M =
(
M⊥

)⊥
is S∗

F -almost invariant.

Quite amazingly, we obtain the same characterization of SF -almost invariant subspaces. We also find
the defect space.

Theorem 3.12 Under the same notation as in Theorem 3.8, a closed subspace M of H2
F is SF -almost

invariant if and only if one of the following holds:

(1) M = R(TΘ), where Θ ∈ H∞
B(E,F ) is inner. In this case, ς(SF , M) = 0.

(2) M = R(TΦ (IE1
− TΘT

∗
Θ)), where Θ ∈ H∞

B(E,E1)
is inner and pure, Φ ∈ H2

B(E1,F ), dimE1 < ∞, and

TΦ (IE1
− TΘT

∗
Θ) is a partial isometry. In this case, a minimal defect space W is R(TΦTΘPE) ⊖

[R(TΦTΘPE) ∩M ] and ς(SF , M) = dimW.

Proof. By using (4), we have

SFTΦ (I − TΘT
∗
Θ)

= TΦSE1
− TΦTΘSET

∗
Θ

= TΦSE1
− TΦTΘ (T ∗

ΘSE1
− PET

∗
ΘSE1

)

= TΦ (I − TΘT
∗
Θ)SE1

+ TΦTΘPET
∗
ΘSE1

. (13)
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Therefore, the defect space W is a subspace of R(TΦTΘPE) = {Φ(z)Θ(z)e : e ∈ E} . We now claim
R(PET

∗
ΘSE1

) = E. To prove the claim, assume there exists e0 ∈ E such that e0 ⊥ R(PET
∗
ΘSE1

). Then
for any h ∈ H2

E1
,

0 = 〈e0, PET
∗
ΘSE1

h〉E = 〈e0, PET
∗
ΘSE1

h〉H2
E

= 〈e0, T
∗
ΘSE1

h〉H2
E
= 〈Θe0, zh〉H2

E

= 〈z [Θ(z)−Θ(0)] e0, h〉H2
E
.

Thus z [Θ(z)−Θ(0)] e0 = 0 and ‖Θ(z)e0‖H2
E

= ‖Θ(0)e0‖H2
E
. Since TΘ is an isometry, ‖Θ(z)e0‖H2

E
=

‖e0‖E . Since Θ is pure, ‖Θ(0)e0‖H2
E
< ‖e0‖E if e0 6= 0. Hence e0 = 0 and the claim is proved. Thus a

minimal defect space W is R(TΦTΘPE)⊖ [R(TΦTΘPE) ∩M ] .

4 Examples of SF -almost invariant subspaces

In spite of a complete characterization of S∗
F -almost invariant subspaces and SF -almost invariant sub-

spaces by [9] [10] [8] [23] and by Theorem 3.8 and Theorem 3.12, a good understanding of those subspaces
requires to clarify the relation between Φ and Θ which seems difficult, as this can be already seen in The-
orem 3.2 which is the simplest case when both Φ ≡ g and Θ ≡ θ. are scalar-valued functions. In this
section, we give some examples of such Φ and Θ.

For a ∈ D, let

ϕa(z) =
z − a

1− az
(14)

be the automorphism of D. Then b(z) = λ
∏n

i=1ϕai
(z) is a finite Blaschke product, where ai ∈ D and

|λ| = 1. Let F be a subspace of E and PF be the projection from E onto F. The inner function

Q(z, a, F,E) = ϕa(z) (IE − PF ) + PF

is called a Blaschke-Potapov factor. To avoid triviality, we assume F 6= E whenever we write down a
Blaschke-Potapov factor. Let B(z) := U

∏n
i=1Q(z, ai, Fi, E), where U ∈ B(E) is unitary, ai ∈ D and Fi

is a subspace of E for 1 ≤ i ≤ n. Such a B ∈ H∞
B(E) is called a finite Blaschke-Potapov product. It is

known that KΘ is of finite dimension if and only if Θ is a finite Blaschke-Potapov product [24].

Proposition 4.1 Let Φ ∈ H2
B(E1,F ) be inner and Θ ∈ H∞

B(E,E1)
be inner and pure. Let

M := R(TΦ (IE1
− TΘT

∗
Θ)).

The following statements hold.

(i) M is SF -almost invariant and S∗
F -almost invariant.

(ii) ς(SF , M) = ς(S∗
F ,M

⊥) = dimE and ς(SF , M
⊥) = ς(S∗

F , M) = dimE1 − rank(U), where U is the
unitary part of Φ.

(iii) M⊥ = R(TΦΘ)⊕KΦ = R(TΦ1

(
I − TΘ1

T ∗
Θ1

)
), where Φ1 and Θ1 are defined by

Φ1 =
[
ΦΘ IF

]
∈ H∞

B(E⊕F,F ) and Θ1 =

[
0
Φ

]
∈ H∞

B(E,E⊕F ). (15)

(iv) M is a half-space if and only if Θ is not a finite Blaschke-Potapov product.
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Proof. By assumption, we have E ⊂ E1 ⊂ F. Since Φ is inner, by Theorem 3.12, ς(SF , M) =
dimR(TΦTΘPE). But TΦTΘPE = TΦΘPE and ΦΘ is inner, so dimR(TΦTΘPE) = dimE. By Lemma
2.9, ς(S∗

F , M
⊥) = ς(SF , M) = dimE.

By Theorem 3.8, ς(S∗
F , M) = dimW, where W := R(S∗

FTΦPE1
) ⊖ [R(S∗

FTΦPE1
) ∩M ] is a minimal

defect space. We claim R(S∗
FTΦPE1

) ∩M = {0}. Assume e1 ∈ E1 be such that for some h ∈ H2
E1

S∗
FTΦPE1

e1 = TΦ (IE1
− TΘT

∗
Θ)h.

Set g := (IE1
− TΘT

∗
Θ)h. It follows that

[Φ(z)− Φ(0)] e1 = zΦ(z)g and Φ(z) (e1 − zg) = Φ(0)e1.

Since Φ is inner,

‖Φ(0)e1‖
2
= ‖Φ(z) (e1 − zg)‖

2
= ‖(e1 − zg)‖

2
= ‖e1‖

2
+ ‖zg‖

2
.

Thus g = 0. This proves the claim R(S∗
FTΦPE1

) ∩M = {0}. So W = R(S∗
FTΦPE1

) is a minimal defect
space. Write Φ = U ⊕ Ψ, where U is the unitary part of Φ and Ψ is the purely contractive part of Φ.
Therefore, W = R(S∗

FTΦPE1
) = R(S∗

FT0⊕ΨPE1
) and dimW = dimE1 − rank(U). This proves (ii).

Next for (iii), we find M⊥. Assume h ⊥ M . Then T ∗
Φh ⊥ KΘ and there exists g ∈ H2

E such that
T ∗
Φh = Θg. Thus

Φ∗h = Θg + zu(z) for some u ∈ H2
E1

.

Write h = Φh1 + h2, where h1 ∈ H2
E1

and h2 ∈ KΦ. Plugging this decomposition of h into the above
equation, we have

h1 = Θg + zu(z) + Φ∗h2.

Since Φ∗h2 ∈ zH2
E1

, we have h1 = Θg. Hence h = Φh1 + h2 = ΦΘg + h2 ∈ R(TΦΘ) ⊕ KΦ and M⊥ ⊂

R(TΦΘ) ⊕KΦ. The inclusion R(TΦΘ) ⊕KΦ ⊂ M⊥ can be verified. So M⊥ = R(TΦΘ) ⊕KΦ. According
to Theorem 3.12, R(TΦΘ) ⊕KΦ = R(TΦ1

(
I − TΘ1

T ∗
Θ1

)
) for some Φ1 and Θ1. Indeed, if Φ1 and Θ1 are

defined by (15), then Θ1 is inner and TΦ1
acts an an isometry on KΘ1

. Since KΘ1
= H2

E ⊕KΦ, we have
M⊥ = R(TΦ1

(
I − TΘ1

T ∗
Θ1

)
). We can also use this representation M⊥ to compute ς(S∗

F ,M
⊥) and ς(SF ,

M⊥) directly. This proves (iii).
Since TΦ is an isometry, M is finite dimensional if and only only if Θ is a finite Blaschke-Potapov

product. When Θ is not a finite Blaschke-Potapov product, then M is infinite dimensional. By (iii), M⊥

is always infinite dimensional. Hence M is a half-space if and only if Θ is not a finite Blaschke-Potapov
product. This proves (iv).

Example 4.2 From Proposition 4.1, one can see that if Φ ∈ H∞
B(E) is inner and Θ ∈ H∞

B(E) is inner
and pure then

Φ
(
ran (IE − TΘT

∗
Θ)

)
= Φ

(
ran (H∗

Θ∗)
)
= ΦKΘ

is SF -almost invariant. In particular, KΘ is SF -almost invariant with ς(SF , KΘ) = dimE.

Example 4.2 contains Propositions 1.4 and 1.5 in [10], where M = ϕKθ is considered with ϕ and θ

being two scalar inner functions and it also contains Propositions 2.5 and 2.6 in [8] where M = (ΨKΘ)
⊥

is considered with Ψ being a diagonal square inner function and Θ being an inner function.

In view of Proposition 4.1, we make the following conjecture.

Conjecture 4.3 Let M := R(TΦ (IE1
− TΘT

∗
Θ)) be as in Theorem 3.8. Then M is a half-space if and

only if Θ is not a finite Blaschke-Potapov product.

It follows from Lemma 2.2 (iv) that we can characterize a SF -almost invariant subspace as the kernel

of HΘ∗T ∗
Φ (when T ∗

Φ is unbounded, we simply interpret kerHΘ∗T ∗
Φ as [R(TΦH

∗
Θ∗)]

⊥
).
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Corollary 4.4 Under the same notation as in Theorem 3.8, a closed subspace M of H2
F is SF -almost

invariant if and only if M = N(T ∗) = [R(T )]⊥ , where T = TΦ (IE1
− TΘT

∗
Θ) . In this case, ς(SF ,

N(T ∗)) = ς(S∗
F , R(T )).

Since T = TΦ (IE1
− TΘT

∗
Θ) is a partial isometry,

IF − TT ∗ = IF − TΦ(IE1
− TΘT

∗
Θ)T

∗
Φ (16)

is the projection onto N(T ∗).

Corollary 4.5 Under the same notation as in Theorem 3.8, a closed subspace M of H2
F is S∗

F -almost
invariant if and only if either M = R(TΘ) or M is a reproducing kernel space whose kernel KM (z, w) is
of the form

KM (z, w) =
Φ(z)(IE1

−Θ(z)Θ(w)∗)Φ(w)∗

1− zw
. (17)

Similarly, a closed subspace M of H2
F is SF -almost invariant if and only if either M = KΘ or M is a

reproducing kernel space whose kernel is of the form

KM⊥(z, w) =
IF − Φ(z)(IE1

−Θ(z)Θ(w)∗)Φ(w)∗

1− zw
. (18)

Proof. Set T := TΦ (IE1
− TΘT

∗
Θ) . Since T is a partial isometry [13], the reproducing kernel of R(T ) is

TT ∗ (kw(z)IF ), where kw(z) = 1/(1− zw) is the reproducing kernel of H2 [13]. It follows from a general
fact that

TT ∗ (kw(z)IF ) = TΦ(IE1
− TΘT

∗
Θ)T

∗
Φkw(z)IF

=
Φ(z)(IE −Θ(z)Θ(w)∗)Φ(w)∗

1− zw
.

Similarly, by (16), the reproducing kernel of N(T ∗) is given by (18).

We note that the reproducing kernels of R(TΘ) and KΘ in the above corollary are respectively (Θ ∈
H∞

B(E,F ) is inner)

Θ(z)Θ(w)∗

1− zw
and

IF −Θ(z)Θ(w)∗

1− zw
.

By Corollary 3.11, the kernel in (18) can be represented as a kernel in (17) with different Φ(z) and Θ(z),
it will be interesting to have a direct proof of this fact.

5 Invariant subspaces of a finite rank perturbation of the shift

operator

It has been observed in Proposition 1.3 in [1] that an almost invariant subspace of T on a Banach space
is actually an invariant subspace of T + T0, where T0 is a finite rank operator.

Lemma 5.1 [1] Let X be a Banach space, T ∈ B(X) and M be a closed subspace of X. Then M is
T -almost invariant if and if M is (T + T0)-invariant for some finite rank operator T0.

It turns out that if X is a Hilbert space, for a given M, we can write down all those T0 such that M
is (T + T0)-invariant. Then M is T -invariant for T ∈ B(H) if and only if TPM − PMTPM = 0 and M is
T -reducing if and only if TPM − TPM = 0. This inspires another equivalent notion of almost invariance
which appeared in literature much earlier, see for example [20]. To distinguish we temporarily give it a
different term.
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Definition 5.2 [20] Let T ∈ B(H) and M be a closed subspace of H. Then we say that M is T -finite
rank invariant if TPM − PMTPM is of finite rank and that M is T -finite rank reducing if TPM − PMT
is of finite rank.

It is known that the notion of T -finite rank invariant is equivalent to the notion of T -almost invariant.
We write down a proof to illustrate some points.

Lemma 5.3 Let T ∈ B(H) and M be a closed subspace of H. Then M is T -finite rank invariant if and
only if M is T -almost invariant. Similarly, M is T -finite rank reducing if and only if M is T -almost
reducing.

Proof. Assume W := TPM − PMTPM = (I − PM )TPM is of finite rank. Then for any h ∈ M,
Th = PMTh + Wh ∈ M + R(W ). That is, TM ⊂ M + R(W ). So R(W ) is a finite dimensional defect
space of M and M is T -almost invariant. In fact, R(W ) ⊥ M since PMW = PM (I − PM )TPM = 0. So
R(W ) is the minimal orthogonal defect space of M.

On the other hand, assume M is T -almost invariant. That is, TM ⊂ M ⊕ G, where G is finite
dimensional. Set W := TPM − PMTPM . It is clear that W |M⊥ = 0. For h ∈ M, Wh = Th− PMTh =
(I − PM )Th ∈ M ⊕ G. Thus Wh ∈ G since Wh ⊥ M. This proves R(W ) ⊂ G and W is a finite rank
operator. Hence M is T -finite rank invariant.

Similarly, assume W := TPM − PMT is of finite rank. Then, TM ⊂ M + R(W ) and T ∗M ⊂
M +R(W ∗). Hence M is T -almost reducing.

On the other hand, assume M is T -almost reducing. By what we have just proved, W1 := (I −
PM )TPM and W2 := (I − PM )T ∗PM are both of finite rank. Then

TPM − PMT = W1 −W ∗
2

is of finite rank. Hence M is T -finite rank reducing.

Theorem 5.4 Let T ∈ B(H) and M be a closed subspace of H. Assume M is T -almost invariant. Then
M is (T + T0)-invariant for some finite rank operator T0 if and only if

T0 = −(I − PM )TPM +
∑k

i=1xi ⊗ yi +
∑m

j=1uj ⊗ vj , (19)

where xi ∈ M and yi ∈ H, uj ∈ H and vj ∈ M⊥ are arbitrary.
Similarly, assume M is T -almost reducing. Then M is (T +T0)-reducing for some finite rank operator

T0 if and only if

T0 = −(I − PM )TPM − PMT (I − PM ) +
∑k

i=1xi ⊗ yi +
∑m

j=1uj ⊗ vj

where xi, yi ∈ M and uj, vj ∈ M⊥ are arbitrary.

Proof. Set W := (I−PM )TPM , W1 =
∑k

i=1xi⊗yi andW2 =
∑m

j=1uj⊗vj . Assume T0 = −W+W1+W2.
Then for h ∈ M,

(T + T0) h = Th− (TPM − PMTPM )h+
∑k

i=1 〈h, yi〉xi

= PMTPMh+
∑k

i=1 〈h, yi〉xi ∈ M.

This proves “if” direction.
Now assume T0 is a finite rank operator such that M is (T + T0)-invariant. Then for h ∈ M,

(T0 +W )h = T0h+ (TPM − PMTPM )h = (T + T0)h− PMTPMh ∈ M.

Hence (T0 +W )PM is a finite rank operator and R [(T0 +W )PM ] ⊂ M. Therefore, (T0 +W )PM = W1

for some W1 of the form
∑k

i=1xi ⊗ yi. Note that

(T0 +W ) (I − PM ) = T0(I − PM ) = W2 =
∑m

j=1uj ⊗ vj
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for some W2 of the form
∑m

j=1uj ⊗ vj . Thus

(T0 +W ) = (T0 +W )PM + T0(I − PM ) = W1 +W2.

This proves (19).
Next we prove the reducing case. The “if” direction comes from a direct verification. We prove the

“only if” direction. Assume T0 is a finite rank operator such that M is (T + T0)-reducing. Set

Q := T0 + (I − PM )TPM + PMT (I − PM ).

Since M is T -almost reducing, both (I−PM )TPM and PMT (I−PM ) are of finite rank. Then for h ∈ M,

Qh = (T0 + T )h− PMTh ∈ M,

and for h1 ∈ M⊥

Qh1 = T0h1 + PMTh1 = (T0 + T )h1 − (I − PM )Th1 ∈ M⊥.

Thus QM ⊂ M and QM⊥ ⊂ M⊥. Consequently,

Q = PMQPM + (I − PM )Q(I − PM ) =
∑k

i=1xi ⊗ yi +
∑m

j=1uj ⊗ vj

where xi, yi ∈ M and uj , vj ∈ M⊥. The proof is complete.

For essentially invariant subspaces, its first appearance was in Brown and Pearcy [6] in 1971 where
it was proved that every operator on a complex infinite dimensional Hilbert space admits an essentially
invariant subspace. Here is the definition used in [6] [20].

Definition 5.5 [6] [20] Let T ∈ B(H) and M be a closed subspace of H. Then we say that M is T -BP
essentially invariant if TPM − PMTPM is a compact operator and that M is T -BP essentially reducing
if TPM − PMT is a compact operator.

Inspired by Lemma 5.1, Sirotkin and Wallis [29] gave the following definition on a Banach space, but
we state it on a Hilbert space.

Definition 5.6 [29] Let T ∈ B(H) and M be a closed subspace of H. Then we say that M is T -SW
essentially invariant if M is (T + T0)-invariant for some compact operator T0 and that M is T -SW
essentially reducing if M is (T + T0)-reducing for some compact operator T0.

Inspired by Definition 1.1, we can make the following definition.

Definition 5.7 [29] Let T ∈ B(H) and M be a closed subspace of H. Then we say that M is T -essentially
invariant if there exists a compact operator G such that TM ⊂ M + R(G) and that M is T -essentially
reducing if both M and M⊥ are T -essentially invariant.

As expected, these three definitions are equivalent and we give a proof for clarity.

Lemma 5.8 Let T ∈ B(H) and M be a closed subspace of H. Then M is T -BP essentially invariant if
and only if M is T -SW essentially invariant if and only if T -essentially invariant. A similar statement
holds for essentially reducing subspaces.

Proof. Assume that M is T -BP essentially invariant. Then (I − PM )TPM is compact and M is
[T − (I − PM )TPM ]-invariant. Thus M is T -SW essentially invariant.

Assume M is T -SW essentially invariant. That is M is [T + T0]-invariant for some compact operator
T0. Thus [T + T0]M ⊂ M. Then it is easy to see that TM ⊂ M + R(T0). Thus M is T -essentially
invariant.
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Assume M is T -essentially invariant. Let G be a compact operator such that TM ⊂ M +R(G). Then

TM ⊂ M +R(G) = M +R(PMG+ (I − PM )G) ⊂ M ⊕R((I − PM )G).

Set W := (I − PM )TPM . Then W |M⊥ = 0 and R(W ) ⊂ M⊥. For h ∈ M,

Wh = Th− PMTh ⊂ M ⊕R((I − PM )G).

Therefore, R(W ) ⊂ R((I −PM )G). Since (I −PM )G is compact, W is compact. This proves M is T -BP
essentially invariant. The proof for the reducing case is similar.

Theorem 5.9 Let T ∈ B(H) and M be a closed subspace of H. Assume M is T -essentially invariant.
Then M is (T + T0)-invariant for some compact operator T0 if and only if

T0 = −(I − PM )TPM + PMW1 +W2(I − PM ), (20)

where W1,W2 ∈ B(H) are two arbitrary compact operators.
Similarly, assume M is T -essentially reducing. Then M is (T +T0)-reducing for compact operator T0

if and only if

T0 = −(I − PM )TPM − PMT (I − PM ) + PMW1PM + (I − PM )W2(I − PM ),

where W1,W2 ∈ B(H) are two arbitrary compact operators.

Proof. Set W := (I − PM )TPM . By assumption and Lemma 5.8, W is a compact operator. Assume
T0 = −W + PMW1 +W2(I − PM ), where W1,W2 ∈ B(H) are compact. Then for h ∈ M,

(T + T0)h = Th− (TPM − PMTPM )h+ PMW1h

= PMTPMh+ PMW1h ∈ M.

This proves “if” direction.
Now assume T0 is a compact operator such that M is (T + T0)-invariant. Then for h ∈ M ,

(T0 +W )h = T0h+ (TPM − PMTPM )h = (T + T0)h− PMTPMh ∈ M.

Hence, PM (T0 +W )PM = (T0 +W )PM . Thus

T0 +W = (T0 +W )PM + (T0 +W ) (I − PM )

= PM (T0 +W )PM + T0(I − PM ).

This proves (20) with W1 = (T0 +W )PM and W2 = T0.
The proof for the reducing case is similar.

By using Theorem 5.4, for a S∗-almost invariant subspace M , we can write down all finite rank
operators T0 such that M is (S + T0)-invariant.

Theorem 5.10 Let M := R(TΦ (IE1
− TΘT

∗
Θ)) be as in Theorem 3.8. The following statements hold.

(i) M is (SF + T0)-invariant for some finite rank operator T0 if and only if

T0 = −TΦTΘPET
∗
ΘT

∗
Φ +

∑k
i=1xi ⊗ yi +

∑m
j=1uj ⊗ vj , (21)

where xi ∈ M and yi ∈ H, uj ∈ H and vj ∈ M⊥ are arbitrary.

(ii) M is (S∗
F + T1)-invariant for some finite rank operator T1 if and only if

T1 = −S∗
FTΦPE1

(I − TΘT
∗
Θ)T

∗
Φ +

∑k
i=1xi ⊗ yi +

∑m
j=1uj ⊗ vj ,

where xi ∈ M and yi ∈ H, uj ∈ H and vj ∈ M⊥ are arbitrary.
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(iii) M is (SF + T2)-reducing for some finite rank operator T2 if and only if

T2 = −TΦTΘPET
∗
ΘT

∗
Φ − S∗

FTΦPE1
(I − TΘT

∗
Θ)T

∗
Φ +

∑k
i=1xi ⊗ yi +

∑m
j=1uj ⊗ vj ,

where xi, yi ∈ M and uj , vj ∈ M⊥ are arbitrary.

Proof. Set K := TΦ (I − TΘT
∗
Θ) and W := TΦTΘPET

∗
ΘSE1

. Then (13) become SFK = KSE1
+W. Since

K is a partial isometry, PM = KK∗. Thus

(I − PM )SFPM = (I −KK∗)SFKK∗

= (I −KK∗)(KSE1
+W )K∗

= (I −KK∗)WK∗ = WK∗ − PMWK∗,

where (I −KK∗)K = 0. Since Θ is inner, we have

WK∗ = TΦTΘPET
∗
ΘSE1

(I − TΘT
∗
Θ) T

∗
Φ

= TΦTΘPET
∗
Θ ((I − TΘT

∗
Θ)T

∗
ΦS − TΘPET

∗
ΘT

∗
Φ)

= TΦTΘPET
∗
ΘT

∗
Φ.

Set W1 :=
∑k

i=1xi ⊗ yi and W2 :=
∑m

j=1uj ⊗ vj , where xi ∈ M , yi, uj ∈ H , vj ∈ M⊥. By Theorem 5.4,

T0 = − (WK∗ − PMWK∗) +W1 +W2.

Note that PMWK∗ is a finite rank operator of the same form as W1. Thus T0 = −WK∗ +W1 +W2.
Next we prove (ii). Set G := −TΦS

∗
E1

TΘPET
∗
Θ + S∗

FTΦPE1
(I − TΘT

∗
Θ) . Then (10) becomes S∗

FK =
KS∗

E1
+G. Note that

(I − PM )S∗
FPM = (I −KK∗)S∗

FKK∗

= (I −KK∗)
(
KS∗

E1
+G

)
K∗

= (I −KK∗)GK∗ = GK∗ − PMGK∗. (22)

Since Θ is inner,

GK∗ =
[
−TΦS

∗
E1

TΘPET
∗
Θ + S∗

FTΦPE1
(I − TΘT

∗
Θ)

]
(I − TΘT

∗
Θ)T

∗
Φ

= S∗
FTΦPE1

(I − TΘT
∗
Θ)T

∗
Φ.

By Theorem 5.4,
T1 = − (GK∗ − PMGK∗) +W1 +W2.

Note that PMGK∗ is a finite rank operator of the same form as W1. Thus T1 = −GK∗ +W1 +W2.
Now we prove (iii). By taking adjoint, (22) becomes

PMSF (I − PM ) = KG∗ −KG∗PM .

Set W1 :=
∑k

i=1xi ⊗ yi and W2 :=
∑m

j=1uj ⊗ vj , where xi, yi ∈ M , uj, vj ∈ M⊥. By Theorem 5.4,

T2 = − (WK∗ − PMWK∗)− (GK∗ − PMGK∗) +W1 +W2.

Since M = R(K), PMK = K and K∗ = K∗PM . Thus PMWK∗ = PMWK∗PM and PMGK∗ =
PMWK∗PM . So PMWK∗PM and PMWK∗PM are finite rank operators of the same form as W1. There-
fore, T2 = −WK∗ −GK∗ +W1 +W2.

We end up the paper with a question. Let G be a given finite rank operator on H2
F . If M is (SF +

G)-invariant, then M is SF -almost invariant and a subspace of R(G) is a defect space. Thus M =
R(TΦ (I − TΘT

∗
Θ)). In this case, the following question naturally arises:

18



Question 5.11 How do we find these Φ and Θ in terms of G?
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