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Abstract— The development of more complex inverter-based
resources (IBRs) control is becoming essential as a result of the
growing share of renewable energy sources in power systems.
Given the diverse range of control schemes, grid operators
are typically provided with black-box models of IBRs from
various equipment manufacturers. As such, they are integrated
into simulation models of the entire power system for analysis,
and due to their nature, they can only be simulated in the
time domain. Other system analysis approaches, like eigenvalue
analysis, cannot be applied, making the comprehensive analysis
of defined systems more challenging. This work introduces
an approach for identification of three-phase IBR models for
grid-forming and grid-following inverters using Hammerstein-
Wiener models. To this end, we define a simulation framework
for the identification process, and select suitable evaluation
metrics for the results. Finally, we evaluate the approach
on generic grid-forming and grid-following inverter models
showing good identification results.

I. INTRODUCTION
The expansion of inverter-based resources (IBRs) has

brought benefits and challenges to grid integration, including
the need to ensure sufficient power quality, energy efficiency,
and grid resilience [1]. In order to satisfy newly arisen
requirements and create competitive solutions, an increasing
number of vendors introduce devices of various architectures
to the market. When connecting IBRs to grids, equipment
manufacturers are typically required to provide simulation
models of their hardware to grid operators. The models
are usually provided as black-box models that enable time-
domain simulation of the power system. However, it is
challenging to use black-box models for other purposes, such
as eigenvalue analysis [2], and they often require different
time-steps for simulation or cause numerical instabilities. In
contrast, white-box models, implemented in the simulation-
software itself and with a known structure, are generally pre-
ferred, as they mitigate the issues associated with black-box
models. In this work, we introduce an approach for identifi-
cation of black-box IBR models, based on the Hammerstein-
Wiener (HW) model.

Diverse approaches are being used to provide representa-
tions of nonlinear IBR dynamics for identification of IBRs,
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1A. Dželo is with Faculty of Electrical Engineering, University of
Sarajevo, Bosnia and Herzegovina adzelo1@etf.unsa.ba
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utilizing both time-domain and frequency-domain acquired
experimental data [3], [4]. Such data is used as a learning
foundation for system dynamics in the identification process.
The majority of identification approaches use time-domain
measured data [5], [4]. The lack of approaches based on
frequency-domain data is attributed to them not being suit-
able for nonlinear system identification as they are relying
on linear techniques [6]. Using time-domain data represents
a challenge due to the difficulty in interpreting dominant
physical features in the data [6]. Hence, techniques that
combine gathered data and knowledge of the system structure
are typically used for IBR model identification. A larger part
of studies is based on convergence-based numerical methods
that require a priori knowledge of the model’s structure
(white-box and grey-box model identification). These meth-
ods concentrate on accurately identifying previously defined
parameters within the structure [7], [4].

Concerning black-box model identification, the most
widely used models for representing nonlinear systems are
the Nonlinear autoregressive exogenous (NARX) model, HW
model and the Artificial neural network (ANN) model. Each
option has specific advantages for different setups [8], [9].
Poor fitness criteria results are often stated as a reason for
avoiding HW models in the identification process. While
being an important metric for goodness of identification
results, its basis lies in the quality of the acquired and
proposed validation dataset. Therefore, evaluating the model
performance solely on an arbitrarily created dataset is not
a good practice [10]. HW identification has already been
undertaken on simplified single-phase structures, but without
a general approach that is independent of the operating mode
or the type of IBRs [11]. It has been shown that there is
a possibility of identifying the single-phase inverter system
dynamics in steady-state mode [12].

Recent literature on HW IBR identification typically omits
the nonlinear components of models in the validation proce-
dure and highlights the lack of a systematic identification
process for the general model. Additionaly, the achieved
fitness criteria results are inconsistent and only a few of
them are considered to be satisfying, even for specific
systems [13], [14].

The main novelty of our work lies in introducing, for
the first time, a general procedure for HW model-based
identification for IBR devices, regardless of their operating
mode. In contrast to previous works, we consider three-
phase models of grid-following (GFL) and grid-forming
(GFM) modes of operation, which require a more complex
structure for the identified model. A multiple-input multiple-
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output (MIMO) structure is proposed, consisting of three
multiple-input single-output (MISO) subsystems. Further-
more, compared to previous works, the acquired data for the
estimation process is processed and transformed from the
abc to the dq system, yielding better fitness criteria results
for identification accuracy and shortening the identification
time. The quality of the developed model is verified by
conducting residual analysis, in addition to examining the
final prediction error and loss function values.

The paper is structured as follows. In Section II, an
overview of GFM and GFL working principles, crucial
concerns and requirements are presented in order to propose
a general model representation for inverters. The structure
and design of the HW model, preparation of the estimation
data and the algorithm for the identification procedure are
provided in Section III. Numerical results for the algo-
rithm, evaluations for an online-working model and model
validation are presented in Section IV. Finally, Section V
provides conclusions, highlights encountered challenges, and
discusses possible improvements.

II. GFM AND GFL INVERTER WORKING
PRINCIPLES

There is a multitude of available GFM and GFL control
structures, with differences in proposed designs within both
industrial and academic communities [15]. Since the exact
internal model structure of an inverter is not intended to
be known in the procedure of black-box identification, it is
important to address only the main functions of the inverter.
To determine the required functions, key aspects of their
general functionalities and grid behavior in GFM and GFL
modes are stressed.

In the GFL mode, inverters synchronize with the grid
voltages and inject current according to a control logic. The
performance of GFL inverters declines in low-strength grids
and they cannot operate without an external voltage source
[16]. Gathering simulation data for the identification process
requires simulating GFL inverters connected to a voltage
source [15]. When operating in the GFM mode, inverters
actively control the voltage magnitude and phase at the
connection point. As a result, GFM inverters react almost
instantly to system changes, aiding in grid stabilization
[16]. The GFM converter regulates the voltage by directly
controlling the power at its output terminals.

For the utilization of the described structures in our work,
a general representation for the inverter in both GFM and
GFL modes is considered and depicted in Fig. 1. Based
on examples of common inverter model formulations [15],
[17], it has a MIMO structure with terminal currents id and
iq in the dq frame as inputs, and terminal voltages ud and
uq in the dq frame as outputs. Signal f is the controlled
frequency of GFM control, or the PLL output frequency of
the GFL control. This designed structure enables different
classes of control strategies for implementation, such as
droop control, virtual synchronous machine control, virtual
oscillator control, synchronous power control, voltage and
current PID-based control [15].

idq

udq

f
GFL/GFM

control block 2π
s

dq0

θt abc
GridPCC

dq0 θt

abc

Filter

INVERTER SYSTEM

Fig. 1. Generalized control structure of GFM/GFL converter.

III. HAMMERSTEIN-WIENER MODEL DESIGN
AND RESULTS

In HW model design, the black-box system is approx-
imated by the nonlinear HW structure [18]. The structure
is shown in Fig. 2 and consists of a linear continuous-time
system enclosed by an algebraic input and output nonlin-
earity. The input nonlinear function f (w,α) and the output
nonlinear function h(x,β ) are memoryless, parametrized by
vectors α and β , and may be represented by nonlineari-
ties such as piecewise linear functions or one-dimensional
polynomial nonlinearities. Although they are not generally
invertible, their first derivatives with respect to the parameter
vectors α and β exist.

The model identification is based on minimizing the loss
function, the weighted sum of the squares of the errors
e(t) between the identified model outputs and the black-box
measured response. For a model with ny outputs, the loss
function V (θ) has the following general form [19]:

V (θ) =
1
N

N

∑
t=1

eT (t,θ)W (θ)e(t,θ) (1)

where N is the number of data samples, e(t,θ) is ny × 1
error vector at a given time t, parameterized by the parameter
vector of the HW structure θ , and W (θ) is the weighting
matrix, specified as a positive semidefinite matrix.

Insight into the quality of the identified model is assessed
by the fitness quality metrics for accuracy and complexity.
The accuracy metric used for the figures presented in this
paper is normalized root mean squared error (NRMSE),
given as:

NRMSE = 100
(

1− ∥ymeasured− ymodel∥
∥ymeasured− ymeasured∥

)
(2)

where ymeasured is the measured output data corresponding to
udq and f , ymeasured is mean value for all ymeasured channels
and ymodel is the identified model response. The metric used
for complexity comparison is Akaike’s final prediction error
(FPE), given as:

FPE = det
(

1
N

ET E
)(

1+ np
N

1− np
N

)
(3)

where np is the number of free parameters in the model, N
is the number of samples in the estimation dataset and E is
the N×ny matrix of prediction errors.
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Input NL
f(w, α)

Output NL
h(x, β)

u(t) x(t) ymodel(t)

Fig. 2. Basic HW structure.

iq

id ud

uq

f

MIMO
GFM/GFL control

Fig. 3. Assumed initial model MIMO structure for both grid-forming and
grid-following mode.

A. Structure of considered models

We distinguish between two kinds of models: the initial
model and the identified model. The initial model, presented
in Fig. 3, is the general external representation of the black-
box that is being identified. Establishing the representation
of the black-box model is important due to the necessity of
knowing the input and output data used for the identification
process. Despite the differences in the working principles of
inverters in GFM and GFL modes, the same initial model is
used for the identification of both types. The justification for
this is found within the control structure of both types, where
both of them have voltage and frequency as their outputs,
either as a regulated values or from the PLL.

The structure of the identified model is shown in Fig.
4, consisting of three basic HW models (see Fig. 2).
Decoupling the initial model’s MIMO structure into three
MISO structures is justified by greater possibilities regarding
design flexibility and reduced computation time for a general
solution. The parameters of the MIMO structures are subject
to the procedure of fitting with an objective to match the
black-box model behavior.

B. Design considerations for the identified model

As almost all control schemes are in the dq coordinate
system, we perform the model identification in this system
as well. This process first requires the transformation of
sinusoidal input signals (voltage and current) into the dq
rotating frame, using the measured frequency to calculate
the rotating frame angle. Furthermore, when simulating with

idq

ud

uq

f

HW MISO

HW MISO

HW MISO

HW IDENTIFIED MODEL

Fig. 4. Identified model MIMO structure.

idq
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s

dq0

θt abc
GridPCC

dq0 θt

abc

Fig. 5. Adaptation of inputs and outputs of the identified system for
simulation with other components.

the identified model from Fig. 4, its inputs and outputs must
be transformed into the corresponding frames, as depicted
in Fig. 5. The described strategy ensures a better fit to
the estimation and validation data [19], reduces the amount
of processed data, and simplifies the modeling and control
scheme overall.

Designing the test signals, in light of known inverter ap-
plications, requires a well-defined form to excite significant
system dynamics. We consider normal operating conditions
for the inverter, which include voltage variations between
0.9pu and 1.1pu and frequency variations within ±0.5Hz.
Expanding to incorporate several operating modes for the
identification process leads to complicated solution that will
not always provide a complete representation. Therefore,
differentiating between several operating modes and having
them identified separately enables a faster and simpler ap-
proach to find the better solution [20]. The generally favored
pseudorandom binary sequence signal cannot be used for
this situation due to its unsuitability for detecting input
nonlinearities [20].

C. Algorithm for the identification procedure

Creating a general concept for the identification of GFM
and GFL inverters implies having a variety of options for
the HW model settings that incorporate possible physical
characteristics of the original inverter model. The following
settings are considered for variation in this paper:
• Degree of nonlinearity estimators for static input/output

nonlinearity blocks f and h (see Fig. 2);
• Nonlinearity estimators (piecewise linear estimator, one-

dimensional polynomial estimator, one-layer sigmoid
network estimator and wavelet network estimator);

• Numerical search methods used for iterative parame-
ter estimation (Subspace Gauss-Newton least-squares
method, Adaptive subspace Gauss-Newton method,
Levenberg-Marquardt least squares method, Steepest
descent least-squares method);

• Order and delay properties of the linear subsystem
transfer function.

Based on previous observations, the proposed identifica-
tion procedure is expressed in Algorithm 1. After acquiring
the necessary estimation and validation data, the identifica-
tion process consists of iterating through the aforementioned
significant parameters. We perform a search by exploring
different types of nonlinearity estimators (nonlinearities) and
iterating over key parameters of the linear block: numerator



order (num), denumerator order (denum), transport delay
(delay) and nonlinearity degree (nl degree). The search
algorithm is then decided based on the current combination
of parameters (comb). After the model is obtained with the
current combination and search algorithm, it is compared
with the current best model in terms of its accuracy and
complexity, as defined in (2) and (3). Due to the importance
of having a simpler and, therefore, faster system, higher
priority is given to systems that are less complex but with
relatively lower accuracy. This is accomplished by setting
the ε values to favor the complexity criterion. In the end,
the best model is validated for quality. If it does not meet all
the validation criteria, the second-best model undergoes the
same process. This step continues until a model successfully
passes the validation.

Algorithm 1 General GFM and GFL identification procedure
Run the black-box simulation and acquire estimation and

validation data
Run space search:

for each nl ∈ nonlinearities do
for each comb ∈ num,denum,delay,nl degree do

Decide SearchAlgorithm(est data,nl,comb)
model←CreateHWModel

best f it← bestmodel. f it nrmse
bestcomplexity← bestmodel. f it f pe
if model. f it nrmse > best f it then

if |model. f it f pe−bestcomplexity|< ε1 then
bestmodel← model

end if
else if model. f it f pe < bestcomplexity then

if |model. f it nrmse−best f it|< ε2 then
bestmodel← model

end if
end if

end for
end for

Run model validation procedures from the best model
downwards until satisfied (final prediction error, loss func-
tion analysis with validation data and residual analysis)

IV. NUMERICAL EVALUATIONS
To evaluate the applicability of the described algorithm,

we consider examples of common GFM and GFL inverter
model formulations [15], [16], [17], depicted in Fig. 6 and
Fig. 7. By treating them as black-box models, these inverters
are simulated with only their input and output time-domain
data being acquired. The nature of the inputs and outputs is
the same as in Fig. 3, and each output is subjected to the
space search within its corresponding HW MISO system, as
depicted in Fig. 4.

The proposed test signals are created by simulating the
scheme depicted in Fig. 1 and are acquired at the point of
common coupling (PCC). The test signals for the estimation

Filter GridPCC

Voltage, angle and frequency
reference

Voltage, active and reactive
power calculation

Pulse Width
Modulation

Outer control
loop

Inner control
loop

Angle and modulated voltage
reference

Modulation signals

Voltage and current

Fig. 6. Control structure example of GFM inverter model formulation.

Filter GridPCC

Current reference

Active and reactive
power calculation

Pulse Width
Modulation

Power control
loop

Current control
loop

Angle and modulated voltage
reference

Modulation signals

Synchronization
(angle reference)

Fig. 7. Control structure example of GFL inverter model formulation.

data of the normal operating mode for grid-forming inverters
are shown in Fig. 8 and Fig. 9. Both voltage and frequency
variations are present, allowing the system to achieve a
steady state and satisfy time limitations due to the computa-
tion time criteria.

The identification results include the number of possible
variations of the identified HW model for the examined
system, with an NRMSE fit greater than 92 %. A fit threshold
of 92 % was arbitrarily chosen, as it satisfactorily captures
the dynamics, as confirmed through the validation procedure.
Although the best model solution has the optimal accuracy-
to-complexity ratio based on the established metrics, the
number of other possible model variations are presented to
provide a better understanding of the proposed algorithm’s
effectiveness. Additionally, this offers insight into alternative
options if different accuracy-to-complexity ratio preferences
are prioritized.
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A. Hammerstein-Wiener GFM model

During an extensive numerical space search, the following
results were attained considering estimation data:
• 760 possible HW model structures for frequency MISO

block solution with fits greater than 92 %.
• 187 possible HW model structures for Ud voltage MISO

block solution with fits greater than 92 %.
• 61 possible HW model structures for Uq voltage MISO

block solution with fits greater than 92 %.
The comparison between actual model and identified

model outputs for the validation data set is shown in Fig.
10. The best solution obtained has the following fits for the
estimation data: 97.85% (frequency), 98.05% (Ud voltage)
and 99.53% (Uq voltage). As for the observed validation data
fits, the results are as follows: 95.23% (frequency), 96.89%
(Ud voltage) and 99.47% (Uq voltage).

B. Hammerstein-Wiener GFL model

During an extensive numerical space search, the following
results were attained considering estimation data:
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Fig. 10. Comparison between actual model and identified model outputs
in grid-forming mode.

• 473 possible HW model structures for frequency MISO
block solution with fits greater than 92 %.

• 49 possible HW model structures for Ud voltage MISO
block solution with fits greater than 92 %.

• 56 possible HW model structures for Uq voltage MISO
block solution with fits greater than 92 %.

The comparison between actual model and identified
model outputs for the validation data set is shown in Fig.
11. The best solution obtained has the following fits for the
estimation data: 96.76% (frequency), 97.36% (Ud voltage)
and 98.31% (Uq voltage). As for the observed validation data
fits, the results are as follows: 92.79% (frequency), 95.84%
(Ud voltage) and 93.74% (Uq voltage).

C. Online-working model design

Previously derived models should not only be accurate for
offline experiments, where both the estimation and validation
data is acquired before the identification process. Instead,
they become significant if they are workable in ongoing grid
simulations.

A simulation microgrid experiment was conducted with
varied specified voltage at the PCC (see Fig. 12) and the
results are presented in Fig. 13. It can be concluded that the
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Fig. 12. Validation microgrid scheme for model in simulation.

identification model achieves satisfactory results in terms of
stability and demonstrates good accuracy.

D. Residual analysis

To gain confidence in the identified model, one can ensure
that model errors are distinguished from disturbances through
residual analysis, which includes autocorrelation and cross-
correlation tests [21]. Autocorrelation and cross-correlation
tests provide insights into the model fidelity regarding the
candidate model structure and account for possible distur-
bances (disturbance path and input-output path respectively).

High autocorrelation test results have been observed for
the HW identification [22]. This is because of the high
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Fig. 13. Simulation outputs comparison between actual and adapted
identified model.

disturbance level at the model connection points with the
rest of system.

By addressing the problem of disturbance path and in-
corporating filter dynamics, the residual analysis for the
identified model gets as in Fig. 14. The confidence interval,
which corresponds to the range of statistically insignificant
residual values for the system, is marked by blue area and it
is specified with a probability of 99 %. The proposed input-
output path in the model structure is acceptable because the
cross-correlation residuals values lie within the confidence
boundaries. The autocorrelation function of the residuals is
within the confidence area except at lag 0, where the signal is
correlated with itself. It can be concluded that the identified
model achieves satisfactory results.

V. CONCLUSIONS

In this work, we propose an algorithm for automatic
model identification of black-box IBR models based on HW
model identification. Key aspects of the identification process
are determined by analyzing GFM and GFL inverter func-
tionalities and grid behavior. We adopt a MIMO structure
representing the inverter system, independent of its mode.
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By selecting a loss function, and accuracy and complexity
metrics, we lay the foundation for developing a simpler
and faster substitution model. Several decisions were made
to achieve a more general and improved result: (i) three-
phase architectures for both GFM and GFL are considered;
(ii) the original MIMO model structure is decoupled into
MISO subsystems for each output; (iii) identification data is
transformed into the dq system; (iv) residual analysis is intro-
duced as part of the model validation process. The proposed
identification algorithm integrates the paper’s considerations
and is verified with GFM and GFL model examples. A
microgrid with GFM and GFL inverters further confirmed
the model’s stability and accuracy.

We conclude that the proposed solution is independent
of subsystem variations in inverter implementations. How-
ever, it cannot reliably link the physical characteristics of
linear or nonlinear blocks with actual inverter subsystems.
Nonetheless, the overall model expands analysis options,
enabling studies such as singular value analysis, advanced
stability analysis, and frequency domain analysis, which
were previously unavailable. As noted in [16], a key issue
in inverter network stability studies is the lack of complete
models and standardization. Traditional methods struggle to
assess small-signal stability in networks with mixed IBRs
and synchronous machines. We believe this identification
framework will deliver an upturn in this matter.

For future work, the challenge of interpreting the physical
characteristics of the identified blocks could be addressed.
Additionally, the question of the complexity metric remains
unresolved, as it is uncertain whether different system sim-
plification techniques will yield better general results.
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