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ABSTRACT 
 

This white paper, developed through close collaboration between IBM Research and University of Illinois 
Urbana-Champaign researchers within the IBM-Illinois Discovery Accelerator Institute (IIDAI), envisions 
transforming hybrid cloud systems to meet the growing complexity of AI workloads through innovative, full-
stack co-design approaches, emphasizing usability, manageability, affordability, adaptability, efficiency, 
and scalability. By integrating cutting-edge technologies such as generative and agentic AI, cross-layer 
automation and optimization, unified control plane, and composable and adaptive system architecture, the 
proposed framework addresses critical challenges in energy efficiency, performance, and cost-
effectiveness. Incorporating quantum computing as it matures will enable quantum-accelerated simulations 
for materials science, climate modeling, and other high-impact domains. Collaborative efforts between 
academia and industry are central to this vision, driving advancements in foundation models for material 
design and climate solutions, scalable multimodal data processing, and enhanced physics-based AI 
emulators for applications like weather forecasting and carbon sequestration. Research priorities include 
advancing AI agentic systems, LLM as an Abstraction (LLMaaA), AI model optimization and unified 
abstractions across heterogeneous infrastructure, end-to-end edge-cloud transformation, efficient 
programming model, middleware and platform, secure infrastructure, application-adaptive cloud systems, 
and new quantum-classical collaborative workflows. These ideas and solutions encompass both theoretical 
and practical research questions, requiring coordinated input and support from the research community. 
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms, fostering 
breakthroughs in AI-driven applications and scientific discovery across academia, industry, and society. 
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1 Executive Summary 
 
Our goal over the next 5-10 years is to identify new computing, storage, and communication elements, sub-
systems, and innovations across all stack levels to transform the hybrid cloud for emerging artificial 
intelligence (AI) workloads. In this white paper, we intend to answer the following two key questions: (1) 
What is possible? (2) What would be the outcome? We envision a reimagined hybrid cloud system featuring 
a fully integrated and optimized stack that supports a wide range of AI frameworks, runtimes, tools, and 
various hardware resources, including cache-coherent interconnects, SmartNiCs, AI accelerators, and 
quantum computers - just to name a few. This will ensure that AI remains a dynamic and transformative 
force in years to come. Our aspiration is to achieve a 100-1000x improvement in performance/watt when 
all the pieces come together.  
  
Generative AI (Gen AI), foundation models (FMs), and large language models (LLMs) represent significant 
advancements in AI technology. These innovations have the potential to revolutionize various sectors by 
enabling more sophisticated and context-aware applications. Market research anticipates substantial 
growth in the AI sector over the next 5-10 years. The demand for AI-driven solutions is expected to 
skyrocket as industries recognize the potential of Gen AI, FMs, and LLMs to drive efficiency, innovation, 
and competitive advantage. 
  
These AI models need terabytes or petabytes of data to train and often require more advanced memory 
architectures and storage solutions to handle the vast amounts of data and model parameters. Meanwhile, 
given the layers of such AI models are interdependent, and transformer architectures and attention 
mechanisms require close coordination between tokens in a sequence, such tightly coupled computations 
necessitate high-speed interconnections and synchronization across numerous hardware components. In 
addition, such AI models are rapidly advancing and evolving, experiencing exponential increase in model 
size and data, requiring heterogenous hardware environment with various AI accelerators, and demanding 
high throughput, high energy efficiency, and dependable performance and accuracy. All these differ from 
traditional high-performance computing (HPC) workloads in their complexity, computational demands, 
infrastructure needs, and breadth of applications. 
  
Most importantly, the compute system to support such AI workloads must be affordable to ensure broad 
accessibility and adoption. Cost-effective solutions leveraging cloud-based technologies and scalable 
hardware systems are essential to support the widespread use of the advanced AI models. Additionally, 
the complexity of these systems necessitates innovative approaches to manage and simplify their design, 
deployment, and operation. Overall, managing complexity, ensuring cost-effectiveness, maintaining 
sustainability and efficiency, and being adaptive for rapidly changing workload characteristics and demands 
are key challenges that must be addressed to drive the momentum of AI advancements. 
  
To address these key challenges, we call upon the research community to optimize and redesign 
application, middleware, platform, infrastructure, and hardware layers of cloud systems, while also 
implementing intelligent and scalable full-stack system management solutions. Incorporating new enabling 
technologies, such as agentic AI, unified control plane, cross-layer automation and integration, and 
composable and adaptive design approaches, will be critical to support these advancements.  
  
To maximize the usability of AI technologies, it is important to develop new application interfaces that make 
it easier for users (and developers) to interact with and use AI models and frameworks. We propose LLM-
as-an-Abstraction (LLMaaA), which relies on agentic AI frameworks to enable a natural language-based 
user interface for building, deploying, and managing complex applications. Efficient scaling and optimization 
of emerging AI models are essential for maximizing their impact on real-world applications. New 
reconfigurability and adaptability features should be explored across various system levels to dynamically 
optimize cloud resources for specific workload requirements and integrate emerging technologies 
efficiently. The expansion of cloud computing to the edge, and the development of smart cooperative edge-
to-cloud computing models, further enhances the capabilities of AI systems, enabling real-time processing 
and decision making at the point of need. This evolution brings additional challenges related to data 
distribution, security, privacy, and latency.   
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We propose cross-layer automation and AI-driven integration to improve resource allocation, scheduling, 
and performance monitoring. This will enhance efficiency, flexibility, and scalability for complex AI 
workloads. Advancing programmable, AI-optimized networking and data management systems for large-
scale models will be key to ensuring smooth, secure data flow across hybrid cloud environments. 
Leveraging emerging hardware technologies like CXL and GPUDirect through system co-design will 
enhance performance and energy efficiency. Future AI systems should also prioritize security, robustness, 
and energy management, with novel frameworks that ensure adaptability, sustainability, and resilience 
against evolving security threats in hybrid cloud environments. 
 
As quantum computing hardware becomes increasingly available and reliable toward producing actual 
utility for applications, we foresee its increasing integration into Hybrid Clouds alongside AI. An emerging 
example for such hardware includes using the modern quantum computer as a powerful accelerator for 
simulations. To make this an everyday reality, we envision advancing quantum computing by demonstrating 
its utility through diverse scientific use cases: initially targeting quantum chemistry, materials science, and 
physics, and the goal is to expand the space of applications and to showcase how quantum computing can 
solve domain-specific problems by generalizing these solutions to other fields. This involves integrating 
quantum algorithms into classical computational workflows, exploring their performance and noise 
characteristics, developing new quantum algorithms, and testing error mitigation techniques.  
 
Leveraging the new cloud system, we specifically target two important AI-driven scientific computing 
applications. First, for material discovery, future research will focus on using AI foundation models (FMs) 
for inverse material design, exploring vast chemical spaces, and developing intelligent agents to enhance 
problem-solving in material synthesis and optimization. Second, the long-term vision for climate and 
sustainability research focuses on developing scalable and efficient FMs that can process multimodal, high-
dimensional data. This includes optimizing model size, composability, and pre-training strategies. Another 
key direction is improving physics-based AI emulators for applications like weather forecasting and carbon 
sequestration. Additionally, exploring the intersection of quantum computing with climate solutions presents 
new opportunities for scientific discovery in areas such as climate impact analysis and greenhouse gas 
emission quantification. 
   
In summary, we are committed to fostering and developing a new generation of ideas and solutions that 
will revolutionize how we conceptualize, design, and operate future hybrid clouds for emerging AI 
frameworks and models while paving the road for seamless integration of quantum-bound workloads. Our 
focus is on ease of use, affordability, adaptability, and ubiquity at very large scales. These ideas and 
solutions encompass both theoretical and practical research questions, requiring coordinated input and 
support from the research community. Our role is to spearhead and nurture the environment that will lead 
to the realization of these transformative technologies. 
 
2 Introduction 
 
IBM and the Grainger College of Engineering at the University of Illinois Urbana-Champaign launched the 
IBM-Illinois Discovery Accelerator Institute in 2021 to combine the strengths of academia and industry to 
spur breakthroughs in the rapidly growing areas of hybrid cloud, AI, quantum computing, and AI-driven 
scientific computing applications for material discovery, climate and sustainability. Subsequently, the 
Institute announced a new call for proposals for multi-year projects in March of 2023.  
 
In this white paper, for each of the focus areas, we outline challenges and opportunities, state-of-the-art 
solutions based on ongoing IBM-Illinois collaborations, and the long-term vision and the technical approach 
and research priorities of the Institute.  
 
The growing adoption of AI-driven applications is leading to a significant surge in demand for high-
performance computing resources. Recently, LLMs, with billions of parameters and trained on terabytes of 
data, have shown outstanding capabilities in handling a plethora of tasks. We expect this trend to continue 
with increase in number of parameters, amount of training data, and modalities of foundation models. The 
demand for more performant and optimized cloud platforms and infrastructure continues to rise, driven by 
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the need for efficient training, fine-tuning, and inference of advanced AI models. Simultaneously, the 
maturation of quantum computing technologies necessitates thinking about their integration, challenges, 
and expected potential in the context of hybrid cloud systems. In this paper, we show how the resulting 
cost, complexity, and fragmentation of existing technologies and solutions cannot meet such demand, and 
we lay out our grand vision for a converged, adaptive, high-performant, affordable, consumable, and 
ubiquitously accessible hybrid cloud system.  
 
Over the past sixty years, supercomputing has been instrumental to fundamental discoveries in scientific 
areas such as physics, astronomy, and medicine. Researchers and engineers have used supercomputing 
to study, simulate, and predict complex systems such as weather, financial systems, air travel, and more. 
Over the last fifteen years, supercomputing has enabled new fields, such as big data analytics and AI 
foundation models. Today, more than ever, the ability to drive new drugs or material discoveries, 
understand and manage complex systems like the earth's climate, or create ever more powerful intelligent 
automation depends on the ever-increased power of AI-enabled applications and systems. 
  
However, the growing power of AI systems is being increasingly challenged by their rising complexity and 
cost. When developing future AI-enabled applications, teams must navigate the intricacies of large 
distributed systems, manage heterogeneous platforms and infrastructures, and now face the added 
complexity introduced by quantum computing. Balancing these demands while ensuring efficiency and 
affordability presents a significant challenge for future development. As a result, such applications require 
large teams and development cycles spanning months and years. What is even more problematic, the cost 
and amount of specialized computing resources required have grown significantly over time, making it no 
longer affordable for many university and scientific institutions. Furthermore, the energy required to train 
large AI models and run today's AI-enabled applications makes them unsustainable. The effort to build the 
AI platforms and applications of tomorrow will likely reach a regime of diminishing returns in multiple 
dimensions unless new ideas arise. 
  
In this paper, we will highlight a new research program that the IBM-Illinois Discovery Accelerator Institute 
(IIDAI) has launched to tackle these challenges and change the current path of AI computing to make it 
more efficient, affordable, and accessible to enable the next generation of AI-enabled applications. 
 
We are committed to fostering and developing a new generation of ideas that will revolutionize how we 
conceptualize, design, and operate the future hybrid cloud for emerging AI workloads. Our vision focuses 
on creating cloud systems that prioritize ease of use, affordability, adaptability, and ubiquity at massive 
scales. These ideas encompass both theoretical foundations and applied research questions, which require 
the collective input and support of the broader research community. Our role is to lead, catalyze, and nurture 
the conditions for these innovations to come to fruition. 
 

2.1 Evolution of High-Performance Computing 
 
For many years, the field of High-Performance Computing (HPC) has been dedicated to enabling scientific 
exploration and discovery through large-scale simulations and modeling in domains such as physics, 
biology, climate science, and many other fields. Traditional HPC applications were often developed as 
monolithic programs written in languages like FORTRAN and ran on single, large systems, such as those 
provided by Cray supercomputers.  
 
Distributed computing clusters built with x86 machines emerged and delivered the needed performance for 
HPC simulations using frameworks for parallel processing like MPI. Such systems were crucial to fulfill the 
potential of supercomputers anticipated by the Atkins report in 2003 [1]. Initiatives such as TeraGrid and 
XSEDE then made these compute resources accessible to thousands of research scientists, reinvigorating 
science as a whole. This in turn enabled widespread access to modeling and simulation, a de facto third 
leg of science [2] alongside theory and experiment. Scientific computing applications continued to evolve 
and started to encompass new areas such as data analytics and machine learning (ML), which introduced 
corresponding heterogeneity in supporting platforms and infrastructures.  
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2.2 Today’s AI-infused Scientific Computing Applications, Platforms, and Infrastructures 
 
Today, scientific computing applications span multiple computing paradigms, many platforms, and a variety 
of heterogeneous infrastructure requirements, as shown in Figure 1. Besides classical simulations, big data 
analytics, AI and machine learning are being used heavily. Each application component requires dedicated 
platform-level support, for instance, Spark for data analytics, PyTorch for AI training, and Ray for machine 
learning processing and model serving. Additionally, the rise of massively parallel distributed clusters and 
specialized hardware accelerators like GPUs, TPUs, and FPGAs has enabled highly efficient processing of 
specific tasks. These resources, essential for handling AI workloads, are now readily accessible in the 
cloud, making the combination of Cloud + AI a promising approach for advancing many HPC applications. 
 

 
Figure 1: Current state of AI-infused scientific applications, platforms, and infrastructure. 

AI-infused simulation is a fast-growing application paradigm in HPC. For example, in a cancer research 
application that simulates protein interactions at different scales of resolution with physics and molecular 
dynamics ensembles, the infusion of AI techniques in simulations accelerates search-space exploration by 
orders of magnitude. To accomplish such complex tasks, the combination of batch schedulers, such as 
Flux and Slurm, on massively parallel computers like IBM Summit [54], along with specialized accelerators 
and distributed cloud clusters for AI model training and inference, is essential. 
 

2.3 AI-centric Hybrid Cloud Computing of the Future 
 
Tomorrow, the future hybrid cloud will enable next-generation applications, which embrace fast-growing AI 
workloads, such as large language models and other types of Gen-AI workloads, big data analysis, AI-
driven simulations, quantum resources and algorithms, to tackle new challenging problems in more efficient 
and integrated ways. Figure 2 illustrates this future trend. 
 
More precisely, we envision systems that exhibit the following properties: 

• Easy to consume by scientists, and will need to seamlessly leverage Classical, AI, and Quantum 
computing capabilities, from within the same hybrid cloud context. They will automatically map high-
level task descriptions to the low-level optimized constructs. 

• Affordability of such systems is a critical requirement to democratize access to resources. We 
envision a new breed of systems and specialized computing elements with 100x cost/performance 
improvements over today’s technology. 

• Ubiquitous access to ensure demand fulfilment with abundant resource availability everywhere, is 
yet another requirement for these systems. Accessing these systems will be more similar to 
plugging into a standardized outlet than performing a request based on a detailed specification. 

 
The table below highlights how evolving needs in HPC systems have been incrementally addressed through 
specific technical advancements. Despite the success of these responses, continued reliance on traditional 
approaches will fall short when scaling to more complex hybrid systems. We believe that new, innovative 
ideas are essential to tackle the future challenges of ease of use, adaptability, affordability, and ubiquity at 
greater problem and system scales. 

Applications

Platform

Infrastructure
First-generation 

+ 
Vector Processors

Massively Parallel
+

Distributed Clusters

Specialized / Hybrid

CPU + GPU + FPGA 
Cloud + AI

MPI

AI

ChatGPT

Dall-E, 
Stable 

Diffusion

Copilot, 
Codex

SARA 
(metastable 

inorganic 
materials)

AlphaFold
(protein), 

DM21(DNA)

Numerical 
Solvers

Language

Image

Code

Material Discovery

Science

Simulation
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Dimension Past Current Technical response 

Data volume Small number of 
parameters 

Very large datasets Multiple scales and localities of data 
storage 

Data format Structured, 
homogeneous 

Unstructured, 
heterogeneous 

Multimode information storage and 
retrieval mechanisms 

Computational 
structure 

Stencil-based, static, 
SIMD-friendly 

Problem-specific, 
dynamic, varying 
distributed workloads 

Hybrid and adaptive architectures 
(CPU, GPU, TPU, AIU, FPGA, QPU) 

Problem type Linear or linear-
approximate 

Non-linear Advanced statistical and numerical 
methods 

Problem 
dynamics 

Deterministic Stochastic Stochastic numerical methods 

Workflow 
composition 

Homogeneous Heterogeneous Multiple scales of scheduling and 
division of tasks with better 
programmability 

Counterfactual 
modeling 

Parameter variation Parameter variation + 
combinatorial explosion 

Approximate algorithms, AI, quantum 
algorithms 

Solution 
reachability 

High Very low  Programmability, portability, standard 
API 

Extent of aims Impact to scientific and 
applied matters 

Impact to societal grand 
challenges 

Integrated, specialized, and accessible 
cyberinfrastructure 

Urgency of 
solutions 

Low to medium Medium to high High-performance, high-throughput 
computing 

 
 

 
Figure 2: Hybrid Cloud Platform of the Future. 
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3 Challenges of AI-centric Hybrid Cloud Computing 
 
AI-centric hybrid cloud systems are complex, difficult to model at operationally relevant levels of detail, 
costly, and unsustainable due to the inherent challenges of their massive scale. These issues, which will 
be explored in the following subsections, present significant barriers to future progress. In short, current 
knowledge, infrastructure, and tools are insufficient to propel future computing systems forward by orders 
of magnitude without encountering severely diminishing returns. Addressing these challenges requires 
fresh approaches to sustain scalability and efficiency at larger system scales. 
 

3.1 Complexity and Difficult Consumability 
 
In the words of the late Richard Hamming, “the purpose of computing is insight, not numbers” [3]. The co-
evolution of scientific goals and computational infrastructure has been a defining factor in shaping research-
driven software and hardware over the past 80 years. We've progressed from calculating non-elementary 
integrals with a few parameters to analyzing petabytes of video streams in near real-time, thanks to a 
positive feedback loop between the ever-growing challenges in research and the continuous advancements 
in computational capacity. In essence, as the complexity, volatility, and uncertainty of today's major 
research challenges continue to grow, the development and application of future computing systems are 
poised to generate significant, transformative insights. 
 
Hardware heterogeneity in contemporary AI-centric hybrid cloud computing has been on the rise, causing 
increased complexity for the acquisition, integration, programming and administration of these systems. A 
mix of CPUs, GPUs, TPUs, FPGAs, and other specialized hardware accelerators that provide higher 
performance at higher energy efficiency entails multiple programming paradigms, new physical and logical 
constraints, and even higher hardware procurement uncertainty across market value chains. To make 
matters worse, the need to access increasingly scarce compute resources requires bursting from on-
premise private clouds to multiple cloud providers, which do not offer a uniform management interface and 
introduce variance in the offered resource types, their cost, and cost models. 
  
These distributed computing platforms come with their own challenges in scaling, distributed data 
movement, consistency and synchronization, scheduling and resource management, fault tolerance, and 
resiliency, just to name a few. Management and operations of each of these distributed computing platforms 
require deep talent and skills. A single team having to manage multiple of these platforms might find the 
task daunting.  
 
HPC and AI systems today use a variety of programming models, frameworks, and libraries at different 
layers of abstraction. This wide range includes low-level GPU programming models like CUDA and NCCL, 
all the way to higher-level frameworks and abstractions like OpenMP, PyTorch, Spark and Ray. In addition, 
many workflow managers are in use today, such as Airflow, Makeflow, Pegasus, Argo, Parsl, etc. Moreover, 
a mixture of schedulers for bare-metal (e.g., LSF, Slurm), virtualized, and container systems (e.g., 
Kubernetes, OpenShift) are used. There is no single, unified, easy way to program or administer these 
systems. Such a diverse composition of interfaces, programming models, runtimes, and infrastructure 
systems leads to difficult consumability. A unified abstraction layer is therefore needed. 
 

3.2 Complexity of Engineering Very Large-scale Systems 
 
Increasing demands on AI and computing infrastructure have affected the resilience, operation, 
programmability, and design of AI-centric cloud systems. We anticipate that future systems will achieve 
unprecedented levels of integration, growing by orders of magnitude compared to today’s systems. 
Reflecting on the behavior of these systems, we can draw the following key observations. 
 
Very high hardware and data volumes necessitate thinking at the thermodynamic limit. Current error rates 
per bit reach 10-24 in the best-case scenario. In a system running at 1 exaflop (1018), one would need 106 
seconds (~11.6 days) to observe an error. These error rates and number of bits are commensurate with 
Avogadro's number and Boltzmann’s constant respectively, which justify thinking about computing as a 
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phenomenon at thermodynamic limit through the tools of statistical physics. Moving from exaflops to 
zettaflops and beyond will justify even more such treatment into higher data units (e.g., bits to bytes).  
 
Very large hybrid hardware platforms and complex software workflows follow known scaling laws driven by 
constraints. As the number and diversity of processing elements grow, the structure and communication 
patterns of these computing systems converge to hierarchical modularity. In particular, patterns of 
specialization and information integration have been shown to follow Rent’s rule [4]. Rentian scaling arises 
in systems whose evolution is driven by the economics of constraints (e.g., energy consumption, 
complexity) and utility (e.g., efficiency, functionality).  

 
Very large hybrid hardware platforms and complex software workflows also emerge compositionally. The 
properties of individual nodes and processing elements determine the ability of an entire system to compute 
at scale. The laws that govern the result depend to a large extent on the resources and modes of interaction 
these elements provide. For instance, space and time comprise the main resources for CPU, GPU, TPU, 
AIU, and FPGA architectures, while QPUs (Quantum Processing Units) add superposition, interference and 
entanglement. The ability to understand and predict system properties based on those of its components 
will be essential, yet increasingly complex as more diverse elements are introduced. 
 
Very large hybrid hardware platforms increase software complexity. The number of possible bugs in a 
program appears to be directly proportional to the number of lines of code and the number of different kinds 
of compute elements involved. Beyond correctness, this growing complexity produces two classes of 
bottlenecks: one in which the probability of finding the skill set to write scientific software decreases as 
more technologies are added, and another one in which optimizing code execution becomes increasingly 
difficult and can fall outside of human ability in the future. 
 

3.3 Limited Affordability and Adaptability 
 
AI-centered computing is expensive. Moreover, the total expenses of running the system are not fixed, but 
depend on various factors that change over time and are influenced by market forces. These include the 
costs of operation, maintenance, and energy consumption, which may increase (typically) or decrease 
(seldom) depending on the demand and supply.  
 

 
Figure 3: Estimated increase in data center power demand driven by AI. 

We believe that an industrial-academic collaboration is the best approach to achieve the best advanced 
technical results at reasonable cost.  We have seen many successful cases of this model, where the 
synergy between the two sectors led to breakthroughs that would not have been possible otherwise. It is 
encouraging to see that very large-scale academic collaboration has led to results matching focused 
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industry innovation. For example, the BigScience Large Open-science Open-access Multilingual Language 
Model (BLOOM) matches the size of GPT-3. BLOOM resulted from collaboration between ~1000 
researchers, 60 countries, and 250 institutions.  
 
The training of large language models is unsustainable. The energy required for training is estimated to 
double every 3-4 months, and a single training of a large language model such as GPT-3 may emit the 
equivalent carbon of 10 cars throughout their lifetimes. What is worse is that pre-training is just the 
beginning of the journey. Once a model is deployed it needs to be retrained to maintain accuracy. Re-
training can occur on a daily, weekly, or monthly basis, and billions of inference jobs contribute significantly 
to carbon emissions. It's also important to note that the manufacturing of specialized devices, such as 
GPUs, carries a substantial environmental impact, including a large carbon footprint, high water usage, and 
the release of toxic materials. These factors must be taken into account when considering the sustainability 
of AI-centric cloud systems. 

 
Figure 4: AI model training in accelerator years, energy consumption, and CO2e emission. 

AI is expected to be the dominant factor in 160% increase in data center power demand, by 2030. This is 
illustrated in Figure 3. A ChatGPT query needs nearly 10 times as much electricity to process as a Google 
search [5]. Figure 4 shows that OpenAI trained the 175B GPT-3 by consuming 1.287 GWh, using 405 V100 
GPU years, and emitting over 550 metric tons of CO2 equivalent gases [6]. 
 
Figure 5 shows that around 2015-2016 a new trend of large-scale models emerged. This new trend began 
with AlphaGo in late 2015 and continues up to the present day. The trend of increasing compute in these 
large-scale models appears to double every 4 to 9 months [7]. 
 
IceCube was an experiment conducted by an Antarctic observatory dedicated to detecting and analyzing 
neutrinos, with the goal of performing a month’s worth of simulation in 1 hour. This required 80,000 GPUs, 
and the team set out to acquire them from AWS. They did not succeed, and ended up acquiring only 51,000 
GPUs across AWS, Azure, and Google. This failed large-scale experiment illustrates the scarcity of the 
resources needed for these HPC projects, despite availability of funds to support such research work. In 
addition, even when these compute resources may be present, logistics across market value chains may 
pose conditions adverse to the prompt acquisition of relevant parts. 
 
One advantage of a hybrid cloud system is its flexibility to offload workloads from a private cloud to a public 
cloud when additional resources are needed. However, offloading (or bursting) workloads to public cloud 
services presents notable challenges, particularly around cost management and price fluctuations, 
especially when seeking additional GPUs or specialized AI accelerators. The unpredictability of finding the 
right accelerator type, knowing where it is available, and assessing its cost can create barriers. This 
uncertainty impacts budgeting and cost management as prices for GPU or other accelerator resources can 
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vary greatly based on availability, demand, and location. Such variability makes it difficult to plan and control 
expenses, adding complexity to managing hybrid cloud operations effectively. This issue emphasizes the 
need for more predictable resource allocation and transparent cost models in hybrid cloud services. 
 
Increased specialization and reliance on special-purpose accelerators to cater to application-specific needs 
lead to more efficient systems. However, such systems lack the flexibility needed to adapt swiftly to different 
application and workload demands. The current HPC or cloud systems have some limited ability for 
reconfiguration and programmability. However, the existing capabilities focus on point solutions and do not 
offer a systematic and holistic treatment that coordinates different levels of such capabilities that can take 
place in the system hierarchy. Today’s large-scale distributed computing platforms lack capabilities to 
reconfigure, reprogram, and adapt themselves to serve dynamically changing workloads while ensuring 
highly optimized performance and efficiency. 
 

 
Figure 5: Trends in training compute demand of ML systems, showing the emergence of a new trend of 

large-scale models, contrasted to CPU, GPU, and TPU compute trends. 

 
4 Transforming the Hybrid Cloud for the Future  
 

4.1 A Broad Vision  
 
The IBM-Illinois shared vision for IIDAI is to transform the hybrid cloud systematically, addressing the 
various challenges outlined in Section 3. Our goal is to identify new computing, storage, and communication 
elements, sub-systems, and innovations across the various layers of the whole cloud computing stack. We 
envision a reimagined hybrid cloud platform and infrastructure featuring a fully integrated and optimized 
stack that supports a wide range of AI frameworks, runtime middleware, tools, and hardware. This will 
ensure that AI remains a dynamic and transformative force in the years to come, while understanding how 
quantum technologies will integrate to it with a more strategic outlook. Our aspiration is to achieve a 100-
1000x improvement in performance/watt when all the pieces come together. Our focus is on ease of use, 
affordability, adaptability, and ubiquity at very large scales. 
 
Emerging compute-intensive workloads, especially driven by the disruptive new AI/ML techniques, are 
increasingly complex workflows with wide-ranging compute and data requirements. From the remarkable 
rise of large-scale distributed training leading to self-supervised models (also known as foundation models), 
to complex workflows mixing workloads with different characteristics, such as asynchronous, batch jobs 
(e.g., data ingestion, pre-processing, and training), and synchronous, interactive computations (e.g., model 
inference), these workloads commonly span multiple steps in different computing environments. They 
leverage and benefit from an increasingly wide range of computing resources, from commodity CPUs, to 
high-end GPUs, to specialized AI accelerators, and upcoming quantum devices. 
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Cloud computing technology has transformed how heterogenous computing resources can be used through 
multiple layers of abstraction, from programming models to platform and infrastructure. Cross-layer 
orchestration technology, driven by these abstractions, enables elasticity, fault-tolerance, and flexibility. 
Historically, however, the majority of distributed, large-scale applications and commonly used libraries have 
been written with programming models developed for a fixed, homogeneous architecture in a contained 
environment (e.g., MPI). While this fixed topology is efficient, it prevents the new class of emerging AI/ML 
applications to benefit from cloud-native computing’s key underlying characteristics, such as elasticity, fault-
tolerance, cost and resource efficiency, and portability. 
 

 
 

Figure 6: Transforming the Hybrid Cloud for the future. Orange bars represent new features; green boxes 
represent enhanced components to work with the newly added features; blue boxes are existing 

components. 

Meanwhile, with the rapid growth of emerging AI/ML applications, existing cloud-native solutions are facing 
significant challenges to their relevance for these applications, especially in terms of consumability, 
affordability, adaptability, and complexity, as outlined in Section 3. Looking ahead, we envision the 
development of a next-generation hybrid cloud system designed to tackle these multi-dimensional 
challenges posed by the evolving workflows in AI/ML and AI-centric scientific computing domains. This 
future system must be capable of addressing the growing application demands while providing greater 
flexibility, robustness, efficiency, affordability, and sustainability. 
 
As illustrated in Figure 6, this new vision spans across multiple layers of the system stack. First of all, we 
propose a groundbreaking computing paradigm that fundamentally transforms how humans interact with 
complex computer systems. At its core is the concept of LLM as an Abstraction (LLMaaA), which leverages 
advanced language models to create a natural, intuitive interface between humans and machines. This 
vision centers on an enhanced cloud-native system that integrates heterogeneous computing resources 
under the governance of LLMaaA. This new cloud system will incorporate AI-driven middleware/runtime for 
sophisticated workflow orchestration, provide dynamic resource allocation and robust error handling to 
ensure continuous operation, offer a unified interface and abstraction to diverse computing environments, 
from edge devices to powerful servers and accelerators, and enable seamless communication and 
coordination between different system layers, from hardware to application. 
 
The key to realizing this future vision lies in the development of intelligent AI agents that leverage large 
language models, including a newly proposed framework called THINKagents. These agents will plan and 
execute complex workflows, debug issues across the system stack, generate comprehensive reports, 
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observe system behavior and performance, control resource allocation and task scheduling, and 
communicate with each other and with human users.  
 
To fully harness the power of LLMaaA, we must reimagine and re-engineer existing abstractions and tools. 
This involves implementing intelligent, vertical cross-layer automation flows to optimize resource utilization 
and workflow execution, developing mechanisms across different system components and layers for 
integration, efficiency, and adaptability, as well as creating comprehensive monitoring and analytics 
capabilities that span the entire system stack, thus providing accurate assessment and timely delivery of 
desired quality of results. Our aim is to ensure efficient scheduling, adaptive workload management and 
orchestration, flexible IaaS (Infrastructure as a Service) and PaaS (Platform as a Service), cross-layer 
robustness and security, and guaranteed SLOs (Service Level Objectives). 
 
Horizontally, a unified control plane (Figure 6) is essential for managing heterogeneous computing 
resources across different environments, such as on-prem data center, private cloud, public cloud, and 
edge. As resource managers like Kubernetes and LSF/Slurm become specialized for distinct workloads, 
there is a need for AI-powered middleware/runtime to automatically orchestrate resources across these 
systems while working with different platforms seamlessly and efficiently, enabled by this unified control 
plane. A multi-cloud broker can decompose computing jobs and map them to the most appropriate resource 
managers across the edge-cloud system. 
 
At the infrastructure and hardware level, emerging cache-coherent interconnects like Compute Express 
Link (CXL) and Ultra Accelerator Link (UAL) offer revolutionary potential for improving data transfer and 
enabling cooperative heterogeneous computing. These technologies provide cache-coherent host-to-
device and device-to-host memory access, simplifying data movement with load/store semantics rather 
than complex DMA transfers. Coupled with software-defined interface between the infrastructure and 
hardware layers, future systems can integrate memory, storage, and network devices with near-data 
processing (NDP) capabilities, allowing fine-grained cross-device cooperation. This approach promises to 
dramatically reduce ML training and inference costs by optimizing resource use across devices based on 
specific computational requirements of individual ML model layers, offering unprecedented efficiency and 
flexibility with better affordability. 
 
Overall, we desire to offer a more cohesive, forward-looking approach to address the challenges and 
opportunities in hybrid cloud environments for emerging AI/ML workloads and enhance and reinvent the 
latest hardware and software technologies, while ensuring the systems are scalable, highly performant, 
energy-efficient, and robust enough to handle increasingly complex workloads distributed across the edge 
and cloud systems. With this broad vision, we have identified the following important future research 
directions to drive the next generation of innovation and creativity. 
 
THINKagents: Advancing Collaboration and Intelligence in Agentic AI Systems. A major research focus is 
improving AI agent collaboration through transactive memory, enhancing specialization and group 
intelligence. We propose THINKagents – a new agentic AI research framework. Leveraging this framework, 
future research should explore how AI agents collaborate like human collective intelligence, enabling them 
to avoid collective mistakes and achieve higher levels of intelligence. By leveraging memory systems, 
specialized tools, and planning mechanisms, future agentic AI systems should achieve better task 
decomposition, chaining, and self-improvement, offering new research pathways in cognitive and AI 
systems design. 
 
LLM-as-an-Abstraction (LLMaaA). Our newly proposed system interface, called LLMaaA, is a novel 
paradigm for engaging with cloud computing and services in the future, with a natural language-based 
interface for building, deploying, and managing complex applications. The system uses a Master Agent – 
an LLM-based orchestrator that intelligently coordinates LLM and non-LLM agents (e.g., simulation agents, 
solvers) to perform tasks efficiently. This architecture ensures scalability, security, and continuous evolution 
by tracking agent performance. Future research should focus on enhancing agent collaboration, improving 
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the adaptive programming model, and advancing secure, scalable cloud systems that flexibly integrate LLM 
and specialized agents for evolving real-world applications. 
 
AI Compilers and Runtimes. Scaling foundation models to handle larger context lengths is crucial for 
advancing AI applications in areas like NLP, climate prediction, and geospatial data. Achieving this requires 
innovations in neural architectures, AI frameworks, and compiler optimizations. Additionally, sparse 
machine-learning models play a pivotal role in predictive analytics for fields like drug and material discovery 
and quantum chemistry, but are challenging to scale due to irregular data. Future research should focus on 
compiler, framework-level optimizations, common accelerator abstractions and higher-level kernels (e.g., 
Triton) as well as hardware innovations with a focus on cross-stack co-design to unlock synergies that will 
enable efficient scaling and optimization of emerging AI models, thus maximizing their impact on real-world 
applications. 
 
Adaptive Middleware and Runtime in Hybrid Cloud Systems. Future research should focus on developing 
adaptive and intelligent middleware and runtime solutions to optimize the interplay between compute and 
communication across distributed AI workloads. The goal is to make future hybrid cloud dynamically adjust 
to real-time workload demands, evolving system topologies, and edge-cloud coordination, through AI-
driven workload management prioritizing efficiency, scalability, and fault tolerance. One important direction 
is to design a unified control plane for AI-powered management of the resources in heterogeneous and 
dynamic cloud environments. 
 
Cross-Layer Automation and Integration. To optimize cloud infrastructure for complex computations, cross-
layer automation, integration, and observability are essential. Automation across layers of the cloud stack 
enables efficient resource allocation, scheduling, and SLO optimization, ensuring minimal delays and 
maximum availability. Cross-layer observability provides crucial performance monitoring, helping identify 
bottlenecks and automate diagnostics. Future research should focus on developing automated frameworks 
for seamless orchestration and monitoring across cloud layers, which will improve efficiency, flexibility, 
robustness, adaptability, and scalability in next-generation cloud systems. 
 
Unified, Programmable, and AI-Optimized Networking for Distributed AI Workloads. Future research should 
focus on designing unified, reconfigurable, and AI-optimized networking infrastructures that facilitate 
smooth and efficient data transfer across hybrid cloud environments, eliminating inefficiencies in inter-node 
and intra-node communications. One important direction is to develop AI-driven network orchestration 
schemes that intelligently allocate bandwidth and resources, minimizing latency and cost while maximizing 
throughput for AI frameworks like PyTorch and TensorFlow, and ensuring secure data flow across diverse 
networking protocols (e.g., RoCE v2, InfiniBand).  
 
Data Management and Storage Efficiency for Large Models. Future large-scale AI training will rely on 
techniques to automatically place and migrate data in real-time, ensuring efficient storage use while 
reducing bottlenecks – not just within a single cloud, but also across edge devices, private clouds, and 
public clouds. Additionally, new AI-enhanced security frameworks should ensure data integrity and 
encryption during data transfers across these environments. Future research should focus on innovating 
data management systems that intelligently distribute and manage a large amount of data (e.g., those used 
by foundation models and LLMs) across AI-Accelerator/CPU memory, SSDs, and node-local storage in 
hybrid cloud environments securely and efficiently.  
 
Advancing AI Systems through Co-Design and Emerging Hardware Innovations. In order to dramatically 
enhance AI system performance and energy efficiency, leveraging system co-design and emerging 
hardware technologies such as Compute Express Link (CXL), Advanced Matrix Extensions (AMX), and 
GPUDirect will be essential. These technologies will streamline data transfer, optimize memory access, 
and facilitate cooperative heterogeneous computing. Future research should focus on novel data 
compression, memory management, and orchestration techniques for efficient AI/ML training and inference 
with lower cost. Software-defined interface and cache-coherent interconnects need to be co-designed to 
improve fine-grained computational efficiency across AI workloads. 
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End-to-end Edge-Cloud Transformation and Optimization. The future of AI system design lies in flexible 
SLOs, optimizing the balance between edge and cloud computation, and fine-grained, composable 
acceleration. Emerging applications like extended reality and robotics require a better understanding of 
trade-offs between latency, accuracy, and power. The design of fine-grained accelerators will boost energy 
efficiency without the recurring cost of monolithic designs. Research should focus on unified programming 
models, specialized data communication methods, co-design of neural architectures and accelerators, and 
integrated offline and online optimization techniques. End-to-end system prototypes and benchmarking are 
essential to validate these ideas, driving the future of AI systems with advanced flexibility, functionality, 
performance, and energy efficiency. 
 
Robustness, Security, and System Health Monitoring for AI in Hybrid Cloud. Future cloud systems should 
include advanced fault detection, intrusion detection and containment, and self-healing algorithms and 
mechanisms to ensure their long-term health, resiliency, and dependability. Future research should focus 
on developing AI-driven robustness and security solutions for AI models running in hybrid cloud 
environments. Additionally, robust security protocols must be integrated into the AI orchestration layer, 
leveraging AI-enhanced intrusion detection, encryption, and access control techniques to prevent data 
breaches and system attacks. These mechanisms should be designed to allow systems to adapt to evolving 
security threats and ensure the integrity of distributed AI workloads. 
 
Energy-Efficient AI Workloads and Sustainability in Hybrid Cloud Systems. Next-generation novel 
approaches will allow AI frameworks (e.g., Triton, PyTorch, Ray/CodeFlare) to make energy-aware 
decisions during model training and inferencing, contributing to carbon efficiency while maintaining high 
performance. Future research should focus on developing AI-driven energy management systems that 
dynamically optimize energy consumption across hybrid multi-cloud systems powered by diversified energy 
sources, including renewable sources, while working with various AI frameworks. This includes creating 
adaptive techniques to balance energy and performance, efficient compute/memory/storage management, 
and smart workload distribution between edge devices and multi-cloud resources.  
 
Adaptive and Reconfigurable Cloud Infrastructures for AI Workloads. One exciting future direction is to 
enhance reconfigurability and adaptability in hybrid cloud system through technologies such as 
programmable SmartNiCs and in-network switches, reconfigurable hardware and interconnects, software-
defined programmable interface, and workload-adaptive control strategies. Coordinated reconfiguration 
and specialization tailored towards specific workload characteristics will enable clouds to achieve significant 
performance gains (e.g., up to 100x). These innovations will allow smart and flexible adaptation to various 
workloads, from lightweight services to large-scale AI tasks, positioning future clouds as highly efficient, 
affordable, dynamic platforms.  
 
The following sections elaborate on these exciting research directions in more detail. Section 4.2 introduces 
the key concepts of our proposed agentic system, called THINKagents. Section 4.3 introduces LLM as an 
Abstraction (LLMaaA). Section 4.4 discusses various AI model optimization techniques. In Section 4.5, we 
present the newly envisioned programming model, middleware, and platform, and then Section 4.6 covers 
the underlying infrastructure and hardware. Section 4.7 delivers our vision for an end-to-end edge-cloud 
transformative approach. Section 4.8 delves into critical system-level optimization tasks, including 
robustness, dependability, and security (Section 4.8.1), as well as energy optimization and sustainability 
(Section 4.8.2). Lastly, Section 4.9 explores opportunities for application-adaptive system architecture 
designs aiming for high efficiency and performance for the hybrid cloud system. 
 

4.2 THINKagents: A Research Framework for Agentic Systems 
 

4.2.1 Introduction 
 
Agentic AI is a class of AI systems that are designed to act autonomously – as agents – to perform general-
purpose work like completing a task end-to-end using planning and software tool-calling skills. Building on 
base AI technologies such as LLMs or reinforcement learning, these larger systems are constructed so 
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they can make decisions, interact with their environments without constant human vigilance, and even 
interact in a multi-agent manner to learn from each other, cooperate, perhaps even developing their own 
language. As an example, AI agents have been created to model each role on a software development 
team and collected into a functioning multi-agent structure. These agents then collaborate using 
standardized operating procedures and a shared memory to complete complex tasks, to produce software 
engineering artifacts such as project requirements, design documents, and functional code.  As another 
example, AI agents can be used to run large-scale simulations in a game-theoretic formulation to address 
notoriously difficult policy design questions such as design of dynamic tax codes, regulations to protect 
information environments, or optimize supply chains to ensure reliability and resilience. Going forward, one 
might imagine automating cybersecurity, where agents would scan for vulnerabilities, patch them, and 
further develop/test possible solutions in controlled environments. There is strong interest going forward in 
automated design of agentic systems (ADAS) where one combines building blocks to automate design. 
 
Broadly, agentic workflows empower generative AI models to tackle more complex, real-world problems by 
providing them with a structured approach, increased autonomy, and the ability to learn and adapt. As AI 
continues to advance, agentic workflows will likely play a crucial role in unlocking the full potential of 
generative AI technologies. Indeed, as compared to current foundation generative AI that often requires 
step-by-step human guidance, AI-enabled agents may take a prompt, break the goal down into subtasks, 
take action, check work, and adapt the approach as needed. Recent research on software engineering 
tasks, such as resolving Github issues [8-9], has shown state-of-the-art retrieval augmented generation 
(RAG) algorithms [17] with modern foundation models, e.g. GPT-4, perform much worse than agentic 
workflows with the same underlying LLM.  
 

 
Figure 7: THINKagents, an agentic AI research framework that mirrors the structure of an agentic AI 

system [This figure was reproduced from a blog post by Lilian Weng: 
https://lilianweng.github.io/posts/2023-06-23-agent/]. 

To advance agentic AI workflows for tackling real world problems, there is a need for agentic AI research 
infrastructure, as shown in Figure 7.  Such an infrastructure would enable addressing numerous research 
questions: an agentic AI research framework would have different components, corresponding to research 
questions of interest, and how these components are connected in the agentic infrastructure would itself 
provide insights.  In a way inspired by cognitive science, some of the key components of the THINKagents 
framework is to have short-term and long-term memory as well as the use of a variety of tools that are 
engineered for specific purposes.  To bring these capabilities together, there are forms of planning that 
enable decomposition and well-planned chaining of tasks, together with reflection and self-criticism so as 
to correct and improve. 
 

4.2.2 Broad Research Questions 
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An agentic AI system must be highly reliable to successfully achieve complex goals and take actions in 
complex environments. Consider a travel-planning agent that must coordinate calendars, find destinations, 
check the weather, book flights and hotels, and plan activities. Even a small mistake such as overlooking 
time zone changes when booking connecting flights could render the whole trip untenable, and there may 
be 40 or 50 steps over which even small individual error probabilities might compound. Now imagine the 
same for programming tasks that may require thousands of lines of code, perhaps in several modules: even 
perfection in almost all individual steps might yield faulty outputs.  Current agentic AI systems are good only 
at simple tasks such as those that may take people a few minutes, but struggle significantly for complex 
tasks that may take a person a few hours.  To move beyond narrow and specialized tasks such as software 
development with testable solutions or math problems with provable answers, high reliability is needed.   
 
How might one make agentic systems perform better planning and reasoning?  Further, how can one 
develop agentic foundation models that are capable of making decisions and interacting with the world to 
solve long-horizon tasks through extensive interactions? Agentic foundation models have achieved great 
success in recent years and are widely recognized as a promising way forward, by enabling the foundation 
models to frequently interact with the world, improve with outside feedback, keep growing with self-
reflection, and eventually address tasks that require many steps to accomplish. While there are already 
successful examples such as OpenAI’s o1 model, the mechanism for how to build such models is still 
largely unknown to the foundation model community.  
 
One may further wonder how one can bridge the gap between state-of-the-art and open-source models for 
agentic tasks.  In most agentic tasks, e.g. Github issue resolution [8] or answering financial questions, we 
have seen frontier models, e.g., GPT-4, performing significantly better than open source LLMs, e.g., Llama 
3.1 405B. As such, it is important to determine whether there are effective training mechanisms for open-
source models for agentic tasks, so as to determine whether one should investigate better training 
objectives or better neural architectures.  Moreover, one might wonder whether one can generate feedback-
based training/instruction-tuning data (feedback can come from evaluation or interpretation of the agents, 
and can be adjusted to their abilities) that improves training.  Indeed, it is of interest to determine what 
extent such feedback would improve the performance of open-source models compared to frontier models.  
All such studies can be carried out in the THINKagents framework. 
 
Another application of agentic AI systems is in the area of regulatory compliance to empower organizations 
to navigate regulatory complexities and mitigate risks more effectively. Compliance agents not only 
enhance operational efficiency and accuracy but also expose agentic collaborative capabilities to foster the 
leverage of other agents’ skills, for instance to outsource non-compliance resolution to SRE (Site Reliability 
Engineering) agents for incident remediation or to GRC (Governance, Risk and Compliance) agents for 
exception handling and audit. The focus on agentic AI for regulatory compliance is motivated by the 
extremely high pace of regulatory compliance programs development. Our approach to compliance Agentic 
AI brings together the latest technology on compliance as code, that enables programmatic expression of 
how regulatory controls are satisfied, with LLM-assisted code generation. Our aim is to empower a 
compliance team in accelerating the adoption and operation of new regulatory programs by automating the 
generation of code for the evidence collection and for its posture validation against the requirements, based 
on the compliance rules and RAG technology templates. We aim to demonstrate the end-to-end ecosystem 
from Compliance as Code to automatic generation of Policy as Code and its real-time deployment and 
execution to generate compliance posture, handle non-compliance resolution, and support adaptable audit 
reporting. 
 
In addition to acting in real world and software development settings, agentic AI systems can be used within 
complex world simulations to design policies to meet a variety of objectives.  One example is wargaming 
and multilateral decision-making in international relations, where agents can be role-prompted to act like 
certain countries or bureaucracies, and various scenarios played out.  This can be done purely with LLM-
based agents, but another possible approach is to combine LLM techniques with reinforcement learning 
techniques within agents: such an approach would allow the combination of qualitative and quantitative role 
prompting, based on notions of value-driven rationality together with language-driven idiosyncrasies.  One 
might develop multilateral regulatory regimes by considering not just agents for each country, but also a 
special governance agent that sets the rules of play in a two-level Stackelberg game setting, so that the 
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policies of the governance agent emerge as a dynamic regulatory regime.  The same basic approach only 
considering reinforcement learning agents, has been used to design taxation policies that balance 
productivity and equity in a manner that far exceeds static analytical solutions.  Going forward, an especially 
compelling setting where agentic AI built into agent-based models of the world may be impactful is in 
policies for securing supply chains, e.g. for food or semiconductors.  Again, agentic AI systems may find 
equilibrium problem solving policies that yield efficient and resilient supply chains.  There are numerous 
related embodied agentic AI problems that can be considered. 
 

4.2.3 Initial Results from IBM-Illinois 
 
One promising direction that has achieved initial success in existing works is to build agentic foundation 
models with Monte Carlo Tree Search (MCTS). More specifically, one may implement a tree-based search 
mechanism that allows the foundation model as an agent to explore different branches of its decision, select 
the most promising actions by comparison, and correcting its perception with feedback from the outside 
world. Such a mechanism has been applied on several prior works, such as RAP [31], LATS [37], and LLM-
MCTS [32], and has shown success in improving the model’s reasoning, acting, and planning ability.  
 
Figure 8 demonstrates the performance of LATS. We believe such a method, when combined with existing 
LLM techniques such as reinforcement learning with human feedback (RLHF), can be quite promising for 
building stronger agentic foundation models. To thoroughly evaluate such a proposed solution, one may 
test methods on a variety of benchmarks such as NaturalPlan [33] and VisualAgentBench [34], and build 
novel environments if necessary. 
 
Code-empowered LLMs enable better reasoning and can perform more complex tasks [10-12]. They take 
the task instruction as a prompt in natural language and synthesize an executable program as a 
response/action. The performance of code-empowered LLMs and agents relies on the quality of the 
generated code. However, several studies demonstrate that LLM-generated code can often be semantically 
incorrect, especially when the instruction is long and complex (the LLM may generate a syntactically correct 
code that does not pass the tests) [13-14]. Iterative code improvement with textual feedback from test 
execution or user feedback is a technique to alleviate the issue. However, this feedback is returned to the 
model “after” the execution of the entire code, making it hard for the model to pinpoint and resolve the root 
cause of semantic correctness violation. More importantly, in all existing Code LLMs, the rationale for a 
response/action is explained in natural language, making it hard to validate the reasoning or pinpoint 
hallucinations. Given that such feedback is specifically important for Software Engineering (SWE) agents 
[25], one direction is to enable LLMs to better understand and reason about code execution [15-16]. Such 
models understand control and data flow and hence, perform programming tasks that depend on them 
better. As a first step in this direction, one may investigate techniques to analyze code execution reasoning 
abilities of the models, and based on the insight from that analysis, we aim to instruction-tune models that 
can better simulate code execution and use the results promptly in solving programming tasks. These 
techniques are especially useful when agents are used to perform the tasks proposed in the LLMaaA 
section below (Section 4.3). 
 
Several current applications of agentic AI are in AI4Code. SWE tasks are inherently connected, and 
performing them separately can in fact make individual tasks harder. For example, to fix bugs, one needs 
to first show the existence of the bug in the program, and then pinpoint/localize the statements culprit of 
manifesting the bug. Without proper bug localization, fixing the bug is hard, if not impossible [19-22], 
specifically for LLMs that usually do not consider the intra- and inter-procedural dependencies in programs 
[18]. The synergy between agents in the agentic SWE framework can help overcome this limitation. We 
first may identify the tasks that can benefit from this unity in agentic frameworks, e.g., the oracle problem 
in test generation [23], bug localization and repair [24-25], and code translation [13], and then explore how 
to unify agents so that their collaborations overcome the limitations of performing SWE tasks separately. 
These research tasks are also essential for enabling the LLMaaA vision. 
 
While LLMs, and specifically agents, have shown emerging abilities in programming tasks, evaluating their 
abilities is still in its infancy. Except SWE-Bench [8], which is a collection of real-world projects and is used 
for program repair task, researchers still use HumanEval and similar datasets for every other code-related 
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tasks. Such datasets do not reflect complexities of the real-world, and using them for evaluation can mislead 
the state-of-the-art and state-of-the-practice concerning true abilities of the models [26]. As a result, we 
explore automated techniques for construing benchmarks to better evaluate Code LLMs, in general, and 
agentic programming frameworks, specifically. Our initial results shown in Figure 9 demonstrate the value 
of agentic approaches. 
 

 
 

Figure 8: Language agent tree search (LATS) improves agentic performance over simpler prompt 
programming techniques, on a variety of tasks including mathematical reasoning, programming, web 

navigation, and interactive question-answering. 

 
4.2.4 Long-term Direction and Vision  

 
Following the common task framework, there are several existing datasets that may be used to evaluate 
the performance of agentic AI systems, especially in the area of software engineering.  We may consider 
using existing benchmarks, e.g., HumanEval [28] and its extensions such as MultiPL-E [27] and 
HumanEvalPack [36], SWE-Bench [8], ClassEval [18], CodeNet [29], and R2E [30].  Going forward, 
however, it is very important to construct new benchmark datasets in a variety of application areas.  These 
will provide methods of evaluation.  As an example, there is a need for open benchmark tasks and datasets 
in the area of IT automation. This benchmark would be designed to evaluate how well analytical solutions 
can handle real-world incident management challenges, particularly by resolving real faults that may 
manifest in IT environments.  More broadly, to drive progress, it is important to release open-source code 
and synthetic data on platforms such as Github, Zenodo and HuggingFace to help the advancement of the 
academic community on agentic foundation model research. Indeed, researchers at IBM and Illinois have 
a track record of open-sourcing their research artifacts and datasets, and obtaining official ACM artifact 
evaluation badges [35].   
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Moreover, it is of interest to extend systems-theoretic concepts from information theory, control theory, 
game theory, and statistical learning theory to understanding the fundamental limits of problem solving that 
any system could do, so as to provide absolute scales against which to compare. We believe existing 
challenge tasks, further challenge tasks that may be developed, and corresponding fundamental limits will 
push the field forward and lead to new ideas in how to orchestrate agentic AI systems to accomplish 
complex tasks.  Beyond software development and IT operations, another key direction that will drive 
progress is embodied agentic AI, where notably safety is of utmost importance not just in supply chain 
optimization but in all kinds of settings where there are interactions with the physical world.  Physical 
embodiment also introduces novel information sources and novel constraints that my help ground agentic 
systems and advance numerous dimensions, whether tool use, memory use, or planning. 
 
Of particular importance is improving the ability of AI agents to delegate to other AI agents that may be 
more skilled at a certain task than themselves. This requires endowing AI agents with transactive memory 
capability, which seems to thus far be absent.  If this capability can be developed, it will lead to gains from 
even more hyperspecialization of AI agents and tools in context, just like efficiencies in the labor market.  
As there are more agents involved in working together, it will be important to understand what kinds of 
communication and collaboration patterns yield collective intelligence rather than collective stupidity.  In 
studies of human collective intelligence, patterns such as turn-taking and human abilities in theory of mind 
and emotional intelligence are key for collective intelligence, often even more than the individual intelligence 
of the group members.  It is important to understand the analogs in agentic AI systems, so these dimensions 
can be enhanced.  
  

 

 
 

Figure 9: Agentic techniques demonstrate superior performance (and are improving over time) for real-
world software engineering (SWE) tasks. 
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4.3 LLM as an Abstraction (LLMaaA) 

 
4.3.1 Introduction and Challenges  

The recent emergence of Large Language Models (LLMs) has revolutionized AI-driven language 
processing, transforming how we interact with technology and information. Over the past few years, trends 
such as the scaling of foundation models, the rise of LLM as a Service (LLMaaS), and the fine-tuning of 
models for specific tasks have made LLMs more powerful, accessible, and widely applicable in fields such 
as code synthesis [38], design verification [39], hardware design [40], social networks [41], cloud system 
operations [42], and scientific workflows [43]. With LLMs playing the pivotal role, these developments are 
driving innovations across diverse domains in both academia and industry. 
 
This rapidly growing field still faces significant challenges in automation, flexibility, reliability, 
reconfigurability, and evolvability. Specifically, existing LLMs often struggle to adapt to task-specific 
requirements without human intervention, necessitating prompt engineering to elicit precise and high-
quality responses. Moreover, they typically require finetuning on domain-specific datasets to acquire expert-
level knowledge, which can be time consuming and labor intensive. Furthermore, LLMs are prone to 
hallucinations, generating factually inaccurate outputs that compromise their reliability. Their lack of 
reconfigurability makes it difficult to adapt them to different tasks without extensive engineering efforts. 
Finally, they often fail to demonstrate evolvability, as they do not automatically learn from new data in an 
on-line fashion and may struggle to keep pace with rapidly evolving environments, requirements, and 
developments. Some of these issues have been discussed in the previous section. 
 

4.3.2 Long-term Vision  
 
To address these challenges, we envision a future where LLMs not only become more capable and reliable 
themselves but also become building blocks for establishing a brand-new abstraction equipped with user-
friendly application interfaces. This paradigm shift will enable a new class of applications that can adapt to 
changing computational demands in real-time, efficiently utilize diverse computing resources, and provide 
intuitive, natural language interfaces for complex tasks. By abstracting away the complexities of traditional 
programming and system management, LLMaaA will democratize access to advanced computing 
capabilities, fostering innovation across industries and disciplines. In addition, such an abstraction can also 
create a common framework that allows applications to be deployed across different cloud platforms. Our 
vision is characterized by the following powerful and novel features: 
 
• LLM as an abstraction (LLMaaA) is a new concept that leverages advanced cloud application platforms 

that host LLM and non-LLM agents, provides user-friendly, natural language-based, secure, scalable, 
and evolvable services for building, deploying, and managing complex user applications. LLMaaA 
offers intuitive interfaces for interacting with users (a comprehensive term that can include developers 
too) and contains an LLM-based Master Agent, which works and coordinates with other LLM-based 
worker agents and specialized non-LLM agents (e.g., simulation agent, ILP solver agent, etc.). The 
Master Agent will intelligently select the right agent(s) to perform the desirable user tasks while tracking 
each agent's service quality and updating the agents as needed. Security is ensured with measures 
such as data encryption, access controls, and regular vulnerability scanning. LLMaaA can enable the 
continuous evolution of both the agents and the programming model used to integrate different agents 
within the cloud platform. Please refer to Figure 10 for the overall design of LLMaaA. More details are 
introduced below. 

• Interface Agents are human-friendly and can carry out iterative conversations with users. Each 
Interface Agent offers automated prompt engineering that either helps a user to clearly define problem 
statements, goals, and objectives for various tasks or directly generates high-quality prompts that can 
be verified by the user. Input and output formats are standardized according to specific task API 
requirements. Interface Agents also engage with the Master Agent: pass user requests to the Master 
Agent and channel intelligent suggestions back to the user.  

• LLM-based Master Agent communicates with the Interface Agents with a language that can precisely 
capture the user tasks. It interacts with various surrounding agents, selects the right agents 
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(customizing them, when necessary, e.g., through fine-tuning), and carries out inter-agent coordination 
in order to complete specific user tasks aiming for multiple targets, including correctness, efficiency, 
robustness, and security. The Master Agent will monitor the service quality of individual agents and the 
overall application, offering optimization suggestions to improve result quality, increase problem-solving 
capability, and reduce solution generation latency. The Master Agent can also help refine problem 
statements and assist in constructing and testing task flows composed of various agents while working 
with multiple users simultaneously (Figure 10 illustrates task flows for different users). 

• A heterogenous agent pool enables the capability of combining multiple LLM and non-LLM agents to 
tackle complex problems or tasks. Notably, non-LLM agents can be leveraged to perform high-precision 
simulations, execute complicated mathematical calculations, and run reinforcement learning (RL) 
solvers (e.g., AlphaZero for board games, and GNN+RL for graph combinatorial optimizations), just to 
name a few. The Master Agent, working with the agent pool, will coordinate the interactions of the 
selected agents from the pool, verify responses from these agents, and ensure the accuracy and 
reliability of the entire task flow. One important novel feature is the plug-and-play nature of these agents 
which is enabled by the agents conforming to a standardized communication interface defined by 
LLMaaA. This feature enables seamless integration of suitable agents into the task flow as well as the 
removal of individual agents on demand. By harnessing the strengths of different agents, we create a 
more adaptive, reliable, robust, and flexible application ecosystem.  

• Our vision is to build and create all these aforementioned agentic features in the THINKagents 
framework (Section 4.2) so THINKagents becomes the enabler of LLMaaA, and LLMaaA becomes a 
highly efficient new user interface for future cloud applications. 

 
LLMaaA can be realized as pods running on large-scale Kubernetes (K8s) CPU/GPU clusters: each 
LLM/non-LLM agent instance is packed inside a pod with CPU, RAM, GPU, and storage (LLMaaA can 
accommodate dedicated AI chips as well, such as IBM AIU). These agents talk to each other through inter-
pod APIs. While each pod processes only one task request (from a user or from another agent), multiple 
pods (each with specific user customization settings) can process many requests in parallel. A nice feature 
of this design strategy is that each agent type can be handled by a K8s deployment where multiple 
replicated pods will auto-scale based on number of incoming requests.  
 

 
Figure 10: The Concept Design of LLM as a New Abstraction.  

 
With LLMaaA, a new paradigm emerges that significantly enhances problem-solving capabilities, 
streamlines operational and design processes, improves application efficiency, and boosts development 
productivity. For instance, in October 2029, a UIUC graduate student majoring in astrophysics needs to run 
a black hole simulation on NCSA's Delta system. The student has the necessary simulation scripts on a 
Windows laptop but has no experience with Slurm, K8s, or Linux bash scripting. Instead of spending hours 
or days learning Slurm and navigating Delta's official user guide for job script formatting, the student simply 
requests Delta's LLMaaA to convert the Windows .bat simulation scripts into the appropriate .Slurm job 
submission format, customized according to Delta’s guidelines. The problem is solved in <10 minutes. 
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4.4 AI Model Optimization across System Stack 

 
4.4.1 Introduction 

 
This section focuses on techniques aimed at enhancing the efficiency of AI models themselves, thereby 
improving their performance, scalability, adaptability, and reducing their operating costs. Deep neural 
networks have become an important workload that many systems, programming language, compiler and 
hardware architecture researchers are optimizing for. IBM has been pioneering work on foundation models 
for different domains achieving significant productivity boosts. We foresee novel neural architecture designs 
and training methodologies to evolve as foundation models grow in popularity and artificial intelligence (AI) 
will be pivotal in enabling new frontiers in future scientific discovery. We identify three main research 
directions that are paramount to advancing the body of knowledge in this area. 
 
First, among different neural network architectures, transformer models and its variants have become 
exceedingly important due to the popularity of large language models such as GPT-4, LLaMA, Claude etc. 
Therefore, optimizing these architectures for both accuracy and runtime performance have become an 
important topic. Second, we notice that sparsity is becoming ever more important to both encode 
information (e.g. knowledge graphs) as well as to scale existing machine learning models (e.g. sparse 
attention). However, getting good performance across multiple sparse inputs has remained challenging and 
we believe innovative optimization techniques are needed to bridge this gap. Third, we notice an explosion 
of novel hardware architectures proposed to accelerate deep neural network models. Examples include 
Google’s Tensor Processing Units, Amazon’s Inferentia, IBM’s AIU Spyre and numerous other academic 
proposals.  Providing compilation and programming support for such architectures are paramount to get 
wide scale adoption.  
 

4.4.2 Research Challenges and Opportunities 
 
4.4.2.1 Scaling and optimizing large language models 
 
Researching models that can handle long context lengths, particularly beyond 1 million tokens, presents 
significant computational and algorithmic challenges. Traditional transformers struggle with scaling due to 
the quadratic complexity of the self-attention mechanism, which limits their ability to manage such extensive 
sequences efficiently. Addressing this requires novel architectures or optimization strategies that reduce 
the computational overhead while maintaining or improving the model's performance on long-context tasks. 
We expect two categories of innovations to address the above challenges. 
 
Novel model architectures. There has been work on improved model architectures such as SSMs [44], 
memory-augmented neural networks, linear attention mechanisms that reduce the computational cost of 
LLMs, while preserving the accuracy. Selective state space models such as Mamba [45] have 
demonstrated promising results in sequence modeling with linear attention complexity, significantly 
reducing the memory footprint compared to Transformers. These architectures eliminate the quadratic 
complexity of self-attention and thereby allowing large context length models. However, a key challenge is 
to preserve accuracy at large context lengths. Mamba can struggle with extremely long context tasks, 
because it processes sequences in a recurrent manner, leading to difficulties in maintaining information 
over very long sequences. We believe there is more innovation to be done here, specially on hybrid 
architectures that combine traditional transformers with their approximate versions. Combining both model 
architectures, such as a mixture of Transformer layers and Mamba layers, can help mitigate some of these 
limitations by leveraging the strengths of both models. This hybrid approach can improve performance in 
tasks that require both long-term context and efficient sequential processing. The goal of the hybrid model 
architecture is to obtain the best of both worlds of different architectures while maintaining the training 
stability and convergence speed. Therefore, it requires careful design to ensure that the components work 
seamlessly together, which involves significant engineering and experimentation efforts.  
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Systems-level scaling. While hybrid architectures can optimize memory usage, they may introduce 
additional computational overhead because of the complexity of integrating multiple components. Novel 
hybrid parallelism strategies are needed to accommodate different components in the hybrid model. Long 
context evaluation itself remains a big challenge both due to limited task coverage (e.g., primarily retrieval 
capability) and high inference computational cost. Therefore, it is also important to come up with advanced 
distribution techniques to accelerate the long context inference and evaluation.  
 
4.4.2.2 Scaling and optimizing sparse machine learning models 
 
Optimizations and programming support for sparse-attention models. There is relatively little work on 
optimizing or supporting programming interfaces for sparse attention mechanisms [46] and they are left 
underexplored in the compiler community. We believe there is room to innovate powerful optimization 
techniques for these models. OpenAI’s Triton implementation of Sparse attention is an example of what we 
can achieve if we hard-code the optimizations. However, such approaches are brittle and do not generalize 
to newer attention patterns (Figure 11). Therefore, it is important to build user abstractions, compiler 
representations and optimizations that can cover a wide range of approximate attention patterns. 

 
Figure 11: Different sparse attention patterns used in linear attention mechanisms. 

Optimizations and programming support for graph neural networks. Graph neural networks (GNN) have 
become popular in fields such as drug discovery, financial services, and knowledge mining. Multiple 
variants of GNNs exist for each task ranging from static, temporal and streaming GNN variants. Getting 
performance across diverse graph inputs, embedding sizes as well as different GNN variants have 
remained challenging. We believe innovation in programming models, adaptive optimization techniques as 
well as novel distributed learning mechanisms are needed to enable better programmability and large- scale 
training of graph machine learning models. 
 
4.4.2.3 Programming and compiling to accelerator platforms 
 
Most ML models are compiled for hardware accelerators such as GPUs, TPUs, and custom ASICs. 
However, optimizing workloads across diverse hardware architectures introduces challenges in ensuring 
performance portability and maintaining efficiency. While frameworks like Triton and Pallas are capable of 
providing hardware agnostic high level languages, they are still premature. Triton targets GP-GPU 
architecture and provides a high level Pythonic interface for users to write kernels in. It works well for 
NVIDIA and AMD GPUs. Whereas, the design of Triton does not allow it to target emerging AI accelerators 
such as TPUs and IBM AIU Spyre. These chips leverage data flow architecture, disaggregating compute 
and data flows. Such elements are also showing up in newer GPUs such as NVIDIA H100, bringing the 
primitives needed for cross hardware support closer. To address these complexities, we envision three 
different areas of innovation. 
 
Agile and retargetable compiler construction for accelerators. Companies spend many man hours 
perfecting compilers for their own accelerators. However, such manual compiler construction techniques 
are not agile or evolvable enough to keep up with the explosion of hardware platforms that are coming up. 
Recent work on automated compiler construction techniques using either formal methods or machine 
learning have shown promise on building compiler components that are easily retargetable across many 
platforms. Most of this work is done for commodity hardware and relatively little work has been done for 
tensor accelerators and we believe there are unique opportunities and challenges in replicating such for 
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accelerators. For example, accelerators don’t have predefined hardware software interfaces. On the other 
hand, accelerators don’t have complex control logic making them easier for performance modeling. 
 
Programming interfaces for new hardware features. Frameworks such as Triton and Pallas allow 
programmers to use advanced hardware features that you find in accelerators. However, it is unclear how 
to build these frameworks to support newer hardware features without significantly changing their 
programming models and user interfaces. For example, TMA was introduced by H100 GPUs and Triton 
has only enabled one of the features and lacked multicast features. A key challenge is designing 
frameworks and programming interfaces that are evolvable and portable. 
 
Unified programming model for heterogeneous hardware. Currently, we have multiple frameworks for 
programming accelerators of different types. Pallas targets data flow accelerators, while Triton targets many 
core GPUs. As a user it is easier to program at an abstraction that can cover many of these accelerators. 
However, without exposing low-level details it is unclear how to provide a sufficiently high-level 
programming abstraction for users to directly program these accelerators for ML workloads. We expect 
multiple innovations on this front on programming languages for heterogeneous sets of accelerators. 
 

4.4.3 Representative Contributions  
 
UIUC and IBM have been at the forefront of addressing the aforementioned research challenges. Many 
works have focused on scaling the performance of LLMs. DeepSpeed-Ulysses [47] introduces novel 
distributed attention that enables highly efficient and scalable LLM training with sequences over a million 
tokens, 4x larger than existing systems. DeepSpeed-MoE [48] enables end-to-end 4D parallelism for novel 
sparse MoE model architectures, which open opportunities for training and deploying high-quality models 
with fewer resources and lower cost. ZeRO-Offload [49] enabled training massive LLMs with heterogeneous 
memory (Figure 12) and has been widely adopted in industry (e.g., NVIDIA, Microsoft, HP, Meta PyTorch). 
 
UIUC PIs have proposed multiple approaches to optimize and bring better programmability to sparse 
machine learning models. TGLite [50] is a temporal GNN programming framework that introduces novel 
constructs to both program and optimize temporal GNN models. SPLAT [46] is a GPU code generation 
algorithm that produces high performance sparse attention kernels for a variety of sparse patterns.  
 

 
Figure 12: The workflow of model training on heterogeneous memory using ZeRO-Offload. 

 
UIUC is at the forefront of creating automated compiler construction algorithms. Vegen [51] was the first 
vectorizer generator that automatically generates vectorizers given instruction set architecture semantics. 
Hydride [52] (Figure 13) is the first compilation framework that automatically generates a compiler IR. These 
works mainly focus on the commodity hardware platforms, and we believe that innovations are needed to 
bring the same benefits to accelerator platforms. 
 

4.4.4 Optimization for Foundation Models 
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Given the importance and significance of foundation models, this subsection discusses various optimization 
techniques for foundation models. We focus on the coordination and adaptation between the cloud and 
edge to achieve satisfactory results targeting different applications.  
 

 Figure 13: Hydride workflow of generating compiler IR and code generators automatically. 
 
When foundation models are developed with hybrid cloud techniques, a typical case is that we pre-train the 
foundation model on cloud computation nodes, and then deploy it on edge devices, as illustrated in Figure 
14. However, a challenge usually arises from the discrepancy between training on the cloud and inference 
on the edge (more details in Section 4.7): the real-world application on the edge side may face data 
distributions, target tasks, computation resources, or other environments and conditions that are drastically 
different from the training time. For example, the foundation model may require large memory and efficient 
GPU computation support, but such computation resources cannot be equipped on the edge device. In 
such cases, if the foundation model is directly applied, it would not be able to achieve satisfactory results. 
 
Therefore, for foundation model inference on the hybrid cloud, it becomes essential to develop a 
comprehensive set of algorithms to seamlessly adapt the foundation model for diverse inference settings, 
including varying data, task, and computation capacities. Moreover, the constraints of training data and 
labels need to be considered carefully – oftentimes, we do not have abundant labeled data for the inference 
setting. We may only observe raw, unlabeled data in the inference setting, but annotating these new data 
samples can be both time-consuming and resource-demanding. As such, when adapting the foundation 
model, we cannot expect a massive, curated, and fully labeled dataset as in the pre-training setting. Instead, 
we may only rely on new data in the target setting with limited or even no human annotations. 
 

 
Figure 14: Typical training-inference paradigm of foundation models on hybrid clouds. 

 
To address such challenges in deploying foundation models on the hybrid cloud, we have proposed a 
variety of algorithms to adapt foundation models for different inference settings with minimal human 
supervision. In particular, we investigate the computation constraints on the edge, and accelerate 
foundation models for better accuracy-latency trade-off; we adapt foundation models to bridge the data 
domain gap between training and inference, and even exploit foundation models for novel tasks that the 
models have never seen during training; we also explore how to develop foundation models with domain-
specific knowledge and data. Specifically, we are pursuing the following novel studies on foundation model 
inference. 
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1) Accelerating Foundation Model Inference: The computation platform may be less powerful on the edge 
side, as compared with the abundant cloud computation resources. Therefore, foundation models need to 
be accelerated for deployment on the edge. We can develop new smaller models based on the learned 
knowledge of larger foundation models, and aim to preserve the accuracy, robustness, and generalizability 
of the powerful large models. Existing techniques including knowledge distillation, model compression, and 
quantization have been studied to create a small model that can function like a well-trained large model, 
but with significantly reduced computation demands. 
 
2) Balancing Accuracy and Latency of Foundation Models in Real-Time Applications: In real-time 
applications, such as autonomous vehicles and immersive computing, the demands on AI can be multi-
faceted. While high-accuracy models are always being pursued, the temporal demands of real-time 
applications focus on the latency of foundation models. A strategic computation allocation is critical to strike 
a balance between accuracy and latency. Furthermore, the models must be capable of forecasting future 
scenarios and compensate for any discrepancies emerging due to state changes during the inference time. 
 
3) Adapting Foundation Models to New Data Domain with Limited Supervision: Another challenge in real-
world edge-side applications is the data domain gap between training and inference. The real world often 
exhibits an environment where the data follow a new distribution, different from the training time. For 
instance, the training data may only instruct the foundation model to predict in normal weather conditions, 
but when the weather turns foggy or rainy, the change in visual observations may lead to impaired 
performance. Furthermore, the lack of labeled training data in the new data domain adds to the challenge, 
requiring the model to adapt dynamically without human supervision. 
 
4) Exploiting Full Potential of Foundation Models Beyond Fine-Tuning: While foundation models are 
typically pre-trained for certain tasks such as text generation or visual recognition, they have implicitly 
obtained capabilities beyond the pre-training tasks. For example, a language-based foundation model may 
be tuned for conversations and act as a chat bot. The traditional approach of transfer learning exploits such 
capabilities through fine-tuning, i.e., further training the foundation model on a new task or dataset. In 
contrast to this transfer learning approach, our novel exploration reveals potentials of foundation models 
without further fine-tuning. 
 

 
Figure 15: Frozen large language model (LLM) layers in a visual classification model. 

 
Figure 15 shows one example where we surprisingly discover that frozen LLM layers can effectively function 
as visual encoding layers [53]. We insert LLM layers into a vision classification model, keep its parameters 
frozen, and only learn the other components in the classification model. Even though pre-trained for a 
different data modality and task, the LLM layer can improve the visual recognition model’s performance. In 
another study, we build a Monte Carlo search tree that enables AI agents to reason, act, and plan in a 
unified framework [37]. Although the LLM is pre-trained for text generation, we can utilize its capabilities 
and knowledge to guide an AI agent. Our exploration demonstrates future directions in exploiting foundation 
models beyond the traditional pre-training and fine-tuning paradigm. 
 
5) Self-Directed Enhancement of Foundation Models for Novel Downstream Tasks: In inference time, the 
foundation model may face a previously unseen target task. For example, the visual foundation model may 
be pre-trained for image classification, but the edge application requires object detection, i.e., recognizing 
and localizing all objects in a complex scene. Such task transition prohibits direct deployment of the 
foundation model, since the model has not been trained for the novel task.  Typically, architectural changes, 
additional data labels, and further fine-tuning are necessary when the target task differs. 
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To address this challenge of novel tasks, we propose a fully self-directed or self-supervised multi-stage 
learning paradigm [55] to enhance the foundation model, as shown in Figure 16. In the first stage, we 
discover potential objects in complex scenes by clustering visual features extracted by the pre-trained 
model into semantically coherent regions, and then build structured representation of objects and their 
constituent parts in the complex scene. In the following second stage, we learn the enhanced perception 
model for the object detection task based on the discovered objects. We adopt self-training strategies to 
refine the model itself and correct previous errors, improving the overall detection accuracy. 
 

 
Figure 16: Self-supervised learning approach for enhancing visual foundation models for structured 

perception tasks of object detection. 
 
6) Developing Foundation Models with Domain-Specific Knowledge: Although usually pre-trained on 
general data, foundation models have potentials in specific domains, such as answering scientific 
questions. However, compared with typical AI tasks (e.g., vision and language in general scenarios), certain 
domains may only contain limited data samples (e.g., materials science). With data scarcity in 
consideration, domain-specific knowledge becomes the key to learn foundation models for domain tasks. 
By injecting domain knowledge into the learning process, models can be augmented with the necessary 
information and produce more accurate, reliable predictions. 
 
Additionally, in certain domain tasks, understanding the factors that decide the model’s predictions is critical 
and provides scientific insights. Integrating domain knowledge can also enhance model interpretability, 
allowing us to understand and explain the model predictions. 
 
Our recent research, as exemplified by [56], aims to create foundation models in the hybrid cloud for 
general-purpose accelerated discovery of inorganic crystalline materials, thus overcoming the traditionally 
laborious, empirical materials discovery process. In particular, we exploit the domain knowledge imparted 
by materials physics (together with the interconnections between materials properties) and the pre-encoded 
knowledge in LLMs to build foundation models from heterogeneous materials data for materials property 
prediction, design, and synthesis. Section 5.1 is dedicated to exploring the application of AI techniques in 
material discovery. 
 
In another line of work, we aim to develop largely automated program generation tools that greatly reduce 
the effort required for program development and testing by automatically generating application code with 
a correctness guarantee with respect to an automatically constructed formal specification. We combine 
formal typing guarantees from type-based program synthesis with program generation from LLMs, which 
would greatly simplify automated code generation, produce well-documented and interpretable generated 
code, and also give end-users increased confidence in the correctness of their code. 
 

4.4.5 Long-term Directions and Vision 
 
Foundation models, including large language models, have shown immense promise in enabling the next 
generation of AI applications. The transformer architectures that power these models are the cornerstone 
of multiple foundational models including those invented by IBM [57]. It is our belief that scaling these 
models to large context lengths will be key to unlocking newer capabilities. This will enable novel 
applications and new scientific discoveries in the fields of natural language processing, weather and climate 
predictions, code generation, geospatial data management etc. We believe novel neural architecture 
designs, systems designs, compiler optimizations are key to achieving this goal as mentioned in detail 
under the research challenges and opportunities subsection. We also believe that cross-layer innovations 
and co-design would enable extra synergies to collectively reach these objectives. 
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Sparse machine learning models efficiently use relationships that exist in data to enable predictive analytics 
on graphs and other sparse structures. These have already enabled groundbreaking applications in drug 
discovery, quantum chemistry and we believe they will continue to enable future predictive applications that 
revolve around sparsely structured data. However, sparse machine learning workloads have notoriously 
been difficult to scale due to its irregular nature. We believe novel optimizations both at the compiler and 
distributed framework level are needed to scale these models and enable the next generation AI 
applications that revolve around sparse data.  
 
Efficient use of hardware accelerators will become key to unlocking generalizable acceleration for all these 
machine learning models. NVidia’s GPU platforms have grown exponentially in popularity and mostly power 
the machine learning models of the current era. However, emerging classes of new tensor accelerators 
have shown promise including IBM’s AIU Spyre. We believe that the same programmability and compiler 
support that is available for more established hardware platforms such as GPUs and CPUs should become 
available to make emerging accelerators more mainstream. To achieve that, innovations on programming 
languages, models as well as novel compiler construction methodologies will be extremely important. 
 

4.5 Programming Model, Middleware, and Platform  
 

4.5.1 Introduction 
 
Modern computing applications span a diverse array of computing paradigms, platforms, and infrastructure 
requirements. Beyond classical simulations typically performed on dedicated HPC systems, there is now 
extensive use of AI/ML and big data analytics, which predominantly occur on cloud systems. Each 
application may demand specific platform support, with many requiring massively parallel distributed 
clusters or specialized hardware accelerators like GPUs, TPUs, and FPGAs to efficiently handle specific 
tasks. Consequently, these rapidly evolving applications necessitate a critical reassessment of how to 
develop and operate computer systems to meet a myriad of distinct requirements while delivering flexibility, 
performance, and security. This underscores the urgent need to innovate in platforms, middleware, and 
programming models to support the next generation of computing applications. 
 
Our long-term vision is to transform the hybrid cloud system that supports advanced programming models 
and incorporates intelligent middleware for workflow orchestration, as shown in Figure 6. This platform will 
be designed to enable emerging applications that span diverse architectures while delivering high 
performance. It will seamlessly integrate heterogeneous computing resources, offering elasticity, fault 
tolerance, and hardware abstraction, thereby enabling the efficient execution of intricate workflows across 
multiple computing environments. Implementing this vision requires developing a new programming 
paradigm encompassing a broad spectrum of parallel applications, not limited to traditional HPC or cloud-
native applications. We aim to create a model that offers high-level abstractions for parallel and distributed 
computing while ensuring performance and ease of use. 
 

4.5.2 Research Challenges, Opportunities and Future Directions 
 
At the platform level, a comprehensive suite of services and tools is essential to provide the infrastructure, 
software, and resources for developing, deploying, managing, and scaling applications and services over 
hybrid cloud systems. The platform-level software must support the collection of physical and virtual 
resources used to deliver efficient computing environments. This presents a number of opportunities to 
innovate at the platform level, including developing a unifying cloud-native runtime system, developing 
hardware abstraction layers, and providing a path for integration of emerging technologies. 

• Cloud-Native Runtime System that extends beyond traditional models like MPI. This runtime needs to 
support dynamic resource allocation, enable fault-tolerant execution, and manage communication 
across heterogeneous resources. Incorporating advanced scheduling algorithms and communication 
protocols to optimize performance is critical to enable such a runtime system.  
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• Hardware Abstraction Layer is needed to address the challenge of hardware heterogeneity. This layer 
needs to abstract the complexities of various accelerators and specialized devices as well as CPUs. 
This layer will present a unified interface to the runtime system, allowing applications to leverage GPUs, 
AI accelerators, DPUs, and quantum devices without requiring device-specific code.  Partitioning 
program execution appropriately among different computing units and continuously evolving sets of 
accelerators without having to involve the application programmer in tedious accelerator-specific code 
optimizations is going to become an increasingly critical challenge. Future platforms must export the 
benefits of heterogeneous acceleration affordances while retaining portability of application code and 
minimizing development cost. 

• Integration with Emerging Technologies such as quantum computing [58] and specialized accelerators. 
Examples of such specialized accelerators already include GPUs for high-end analytics processing, 
near-memory analytics accelerators that can be leveraged, for example, to reduce 
compression/decompression cost of memory snapshots and speed up VM cold starts, Data Processing 
Units (DPUs) that may enable secure and efficient data filtering near storage to improve the 
performance of query processing and reduce data transfer times, and optimized coherent host-NIC 
interfaces that allow hosts and network interfaces to exploit shared cache hierarchies for significantly 
accelerated data transfer [59]-[60].  
 

Middleware acts as an intermediary layer between different applications, services, and the underlying 
platform and infrastructure, facilitates communication, data management, and integration across various 
distributed cloud environments. User-facing tools are necessary to access the environment, deploy and 
manage applications, and monitor their states. Some of these need to be cross-layer to enable better 
visibility and coordination.  

• The inherent use of our integrated platform lies in its ability to merge various computing patterns across 
multiple clusters within a single application distributed in space and time. We envision AI-powered 
design tools for creating computational workflows, such as a conversational assistant for assembling 
workflows, as well as new AI-driven solutions for interactive workflow execution automation [61]. 
Typically, workflow languages are crafted with the presumption that workflows operate within a uniform 
environment. We foresee the emergence of advanced languages to articulate workflows that require 
heterogeneous computing resources, thereby enhancing programmability and adaptability.  

• Adaptive Execution Engine will pave the way for workflow automation, lifecycle management, and the 
seamless handling and optimization of data.  Within this framework, a new orchestration layer will 
facilitate workload adaptation and optimization while considering cost, performance, energy, and 
carbon efficiency. We have already demonstrated an adaptive HPC-cloud bursting system [62]-[63] 
that seamlessly places workloads across multiple compute systems. Our prior work on workflow-aware 
scheduling [64] enables tailoring orchestration and optimization processes to align with high-level goals 
and specific Service Level Objectives (SLOs), accommodating distinct phases of the workflow lifecycle 
and diverse user needs.  

• Unified Control Plane is needed to enable AI-empowered middleware and runtimes to interface with 
heterogeneous resource managers such as Kubernetes and LSF/Slurm. Given the heterogeneity of the 
resource management for different workloads (e.g., microservices versus HPC) and infrastructures 
(e.g., edge versus cloud), we envision that different resource managers will continue to exist and 
become more specialized for target workloads (e.g., Kubernetes for datacenter workloads and k0s for 
edge and IoT workloads); meanwhile, there is a strong need to further orchestrate them for 
heterogeneous computing jobs. A recent trend in edge-cloud continuum workloads is such an example. 
The core component of the unified control plane is the multi-cloud broker, which enables the 
decomposition of a given computing job (e.g., based on its specification) and maps each component to 
the corresponding resource manager(s). We envision that the decomposition and mapping (including 
resource allocation and configuration) is done automatically in an AI-assisted manner. At a  high level, 
the broker plays a similar role as that proposed in Sky Computing [174], which orchestrates workloads 
across multiple cloud providers. Differently, we envision a more generic and automated broker that 
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supports more diverse workloads, is more composable, and supports more dynamic resource allocation 
for higher efficiency and better cost. 

  
On top of this, flexible programming models are required to enable application developers to easily 
command the underlying hardware to perform complex computational tasks without needing to write 
excessive amounts of highly specialized and platform-dependent code. Even though our vision calls for 
LLMaaA, we still need to provide support for many existing programming models that are widely used on 
today’s systems.  

• High-Level Parallel Abstractions are needed to simplify the development of parallel applications. 
Inspired by the ease of use of languages like Python and the efficiency of C++, we investigate 
developing a programming interface that allows developers to express parallelism and data movement 
without delving into low-level details. One way to accomplish this is through high-level computational 
constructs that can be translated to specialized hardware by runtime systems, without revealing the 
complexities of the underlying hardware. 

• Autonomous Runtime Optimization is needed to address the challenge of hardware specialization. As 
common patterns and libraries arise, such as advanced architectures for distributed training, an 
autotuning runtime should be employed to encode optimizations for more efficient computing, while 
keeping the underlying complexity hidden from users.  This runtime will leverage machine learning 
techniques for autotuning and performance optimization. 

• Library of Optimized Computation Primitives are commonly used in AI/ML and simulation workloads. 
These primitives will be optimized for various hardware accelerators and accessible through the high-
level programming interface. These libraries can then be utilized with standard APIs, irrespective of the 
offloading mechanism behind them. 

 
Finally, cross-layer automation, integration, and observability are critical components needed to efficiently 
execute computations on the envisioned platform. Cross-layer automation enables the coordinated 
management of resources and workflows across different layers of the cloud stack. By automating the 
selection and configuration of Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) 
resources, cloud platforms can better meet application-specific Service Level Agreement (SLA) goals. This 
includes minimizing processing delays, maximizing availability, and optimizing throughput. Cloud 
applications often involve multiple heterogeneous processing frameworks and cross-layer automation can 
help to manage the vast configuration diversity among available cloud resources and big data processing 
frameworks, which is challenging to handle manually. Cross-layer Integration is important for coordinated 
scheduling and service delivery. By integrating the application layer with the networking layer, cloud 
systems can perform coordinated scheduling that optimizes both computational and network resource 
utilization. Cross-layer resource orchestration also enables seamless service delivery by providing service 
awareness through session control and integrating it with network control and management. Cross-layer 
observability is critical for performance monitoring and automated diagnostics. It enables comprehensive 
monitoring of applications across multiple cloud layers. This helps in identifying performance bottlenecks 
and optimizing resource usage. Various frameworks can be developed to provide automated, cross-layer 
instrumentation for diagnosing issues in deployed distributed applications. This capability is crucial for 
maintaining the health and performance of cloud-based systems. The integration of these components will 
lead to improved efficiency resulting in more optimal use of the resources, enhanced flexibility and 
adaptability and simplified management. 
 

4.6 Infrastructure and Hardware 
 

4.6.1 Introduction  
 
Generative AI, FM, and LLM workloads require significant systems infrastructure to deliver their full potential 
and democratize access to their capabilities [65]–[67]. At present, these AI models are growing 
exponentially, requiring AI infrastructure comprising numerous compute/storage boxes like Figure 17. 
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However, such high-end on-prem clusters are unsustainable for most organizations [68]. As discussed in 
earlier sections, the future hybrid cloud systems supporting such AI workloads must be affordable to ensure 
broad accessibility and adoption. Furthermore, a system co-design approach that incorporates end-to-end 
optimizations based on the unique characteristics of AI workloads will enable dramatic reductions in system 
cost, improved resource utilization, and development of energy-efficient systems. Some key emerging 
trends to be considered in this co-design approach include AI models with unlimited context windows, 
models that incorporate the mixture of experts paradigm, and models developed for multimodal datasets 
such as text, video, audio, images, and time series data [69]–[73]. 
 
As an example of such co-design, LLM inference needs multiple expensive GPUs because a single GPU 
with limited memory capacity cannot store hundreds of gigabytes of parameters and intermediate values 
generated during serving. As a cost-efficient alternative to using multiple expensive GPUs for LLM 
inference, the latest framework first stores (or offloads) all parameters and intermediate values to large 
CPU memory, and then transfers a subset of them that a single GPU can store and compute with at a time 
[74]. However, such CPU-GPU transfer over slow PCIe creates a bottleneck for low-latency and high-
throughput LLM inference [75]. To ease the bottleneck, the framework also offloads certain (empirically 
determined) computation to the CPU, which reduces the amount of CPU-GPU transfer but achieves limited 
success due to the CPU’s insufficient throughput. 

 
Figure 17: HCI Fusion Compute Infrastructure. 

 
A primary requirement for this hardware/software co-design is to dramatically improve cost-performance of 
AI workloads. As models grow larger and customers increasingly use multiple models, compute capacity is 
expanding by 2-3 times per generation [68]. However, memory capacity and memory bandwidth are not 
increasing at the same rate [76]. Consequently, multiple accelerators must work together to train and infer 
on these models. Tackling these challenges, emerging technologies like UALink, UltraEthernet, SmartNICs, 
acceleration on CPUs using technologies like AMX, emerging cache-coherent interconnects like CXL can 
be exploited to alleviate this memory wall problem and improve utilization of accelerator system [77]–[80]. 
 

4.6.2 Recent Advances and Developments 
 
LLM inference with Intel AMX and CXL.  The latest Intel CPU has integrated Advanced Matrix Extensions 
(AMX) for acceleration of AI/ML applications [79]. Our evaluation of AMX can offer significant matrix-
multiplication throughput, even comparable to that of some GPUs [75]. This allows us to offload more 
computation to the CPU (i.e., less CPU-GPU transfer) than past CPUs for LLM inference. Besides, the 
industry has introduced Compute Express Link (CXL) and supported by the latest Intel and AMD CPUs. 
CXL is built on the PCIe physical layer and allows Hyperscalers to recycle DDR4 DRAM for the latest CPUs 
supporting only DDR5 DRAM and expand memory capacity and bandwidth inexpensively [81]. Such an 
inexpensive memory capacity expansion capability becomes very useful for running large LLMs with large 
batch sizes which often require more than terabytes of memory capacity. 
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Unified GPU memory and storage architecture.  A promising and practical approach to expand the limited 
GPU memory is using flash memory, which provides larger memory capacity at a low cost. With this 
approach, a few architecture solutions have been developed in both academia and industry [82]–[84]. 
Unfortunately, the limited bandwidth of flash chips is still the performance bottleneck, in comparison with 
the high-bandwidth memory in GPUs. Although we can scale up the SSD bandwidth by using multiple SSDs 
or flash chips, the aggregated bandwidth is still limited by the PCIe interface. Even though we can employ 
faster interconnects such as NVLink, the data transfer bandwidth is still much lower than the GPU on-board 
memory bandwidth. To tolerate slow flash accesses, developers have to carefully manage the data across 
the heterogeneous memories to explore the data locality [85]–[88]. This inevitably complicates the GPU 
memory management and hurts the development productivity.  
 
We present a unified GPU memory and storage architecture named G10 driven by the fact that the tensor 
behaviors of deep learning workloads are highly predictable. G10 integrates the host memory, GPU 
memory, and flash memory into a unified memory space, to scale the GPU memory capacity while enabling 
transparent data migrations. Based on this unified GPU memory and storage architecture, G10 utilizes 
compiler techniques to characterize the tensor behaviors in deep learning workloads. Therefore, it can 
schedule data migrations in advance by considering the available bandwidth of flash memory and host 
memory. The cooperative mechanism between deep learning compilers and the unified memory 
architecture enables G10 to hide data transfer overheads in a transparent manner. 
 
Accelerators for LLMs. Currently, most LLM workloads run on GPU platforms. However, it is likely that 
inference accelerators will take over as the preferred platforms, following a model like Google's TPUs [89]-
[90]. How to integrate such accelerators with the CPUs is a matter of current research. Ideally, accelerators 
would be integrated as separate chiplets into a package with the CPUs. One possible model is Intel's 
integrated accelerators in the Sapphire Rapids platform, which target datacenter functions [91]. In such a 
model, the accelerators are not simply PCIe devices programmed via memory-mapped I/O operations. 
Instead, their ISA has instructions for dispatching work and for signaling; the accelerators operate with 
virtual addresses, exploiting the IOMMU for address translation; finally, the accelerators support 
virtualization to make them usable in a cloud environment. 
 
An important consideration in a CPU with integrated accelerators is how to organize the communication 
between the CPUs and the accelerators [92]. Currently, the designs involve a CPU core or a centralized 
hardware manager orchestrating the communication between the CPUs and the accelerators. Other 
proposals allow direct accelerator-to-accelerator coordination, either in hardware or software. This appears 
a reasonable approach going forward. 
 

4.6.3 Research Challenges, Opportunities and Contributions 
 
Research challenges and opportunities lie across the entire stack from cost-efficient LLM training to high 
performance LLM inference. Two key technologies are changing at the same time:  
 

1. AI model architecture, and thus their resource utilization characteristics are changing rapidly as 
they try to address needs in multi-model domains, support large context windows, and support 
emerging agentic use cases. 

2. Systems technology such as accelerator, accelerator interconnects, networking, storage, protocols, 
software stack are changing at the same time. So, a primary challenge for this cluster is to pick 
workload characteristics that are invariant and demonstrate prototype technology that addresses 
these workloads.  

 
Our representative contributions provide novel initial solutions to address these challenges. 
  
LIA: a full-system CPU-GPU-CXL cooperative computing framework for cost-efficient LLM inference. 
Tackling the cost and performance issues of the past solutions for LLM inference, we propose LIA, an AMX-
aware framework for CPU-GPU cooperative LLM acceleration. Specifically, it systematically determines 
what computation of a given model to offload to the CPU for lower latency and higher throughput of LLM 
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inference. It also extends Intel Extension for PyTorch (IPEX), currently implemented for CPU- or GPU-only 
LLM acceleration, to seamlessly facilitate CPU-GPU cooperative LLM acceleration. LIA is also implemented 
to effectively use CXL memory alongside DDR memory. LIA offloading parameters to CXL memory not only 
provides higher throughput than LIA using only DDR memory but also uncompromised latency for LLM 
inference. We demonstrate that LIA offers up to 12.4× lower latency and up to 6.0× higher throughput than 
the latest framework for latency- and throughput-driven inference of OPT-175B, respectively. 
 
G10: Breaking the GPU Memory Wall with Tensor Migrations via GPU Direct Storage. We present a unified 
GPU memory and storage architecture named G10 that enables smart tensor migrations for scaling the 
GPU memory transparently using flash memory, while tolerating the performance overheads of slow flash 
accesses. G10 [93] consists of three major components: (1) a tensor vitality analyzer for extracting the 
semantic knowledge of tensors in a deep learning model, (2) a tensor migration scheduler for planning the 
tensor migrations in advance, and (3) a unified memory system for simplifying the GPU memory 
management and enabling transparent tensor migrations. The tensor vitality analyzer works with deep 
learning frameworks like PyTorch to track all the tensors in a DNN model. It leverages the execution graph 
generated by the compiler to learn the size and lifetime of each tensor as well as its dependency on other 
tensors. Based on the extracted semantic knowledge of tensors, the tensor migration scheduler of G10 will 
plan the tensor migrations in advance before executing the model training process. To maximize the 
benefits of tensor migrations, G10 prefers to migrate large tensors that will be inactive for a long time to the 
flash memory. Therefore, the precious GPU memory can be best utilized for active tensors.  For the inactive 
tensors whose inactive time is short, G10 will make the best effort to keep them in the GPU memory to 
avoid unnecessary tensor migrations. G10 also plans intelligent data prefetching in advance with its tensor 
migration scheduler. To facilitate the tensor migration, G10 integrates the GPU memory, host memory, and 
flash memory as a unified memory space by extending the Unified Virtual Memory (UVM) of GPUs. G10 
extends the page table of UVM by storing flash page addresses in its leaf-level page table entries. The 
unified page table can point to an address in either host memory, GPU memory, or flash memory. The 
unified memory system will conduct the transparent address translation at runtime. This significantly 
simplifies the GPU memory management and the compiler optimizations. 
 
EcoFaaS: An energy-efficient framework for serving LLM inference requests. While most works focus on 
LLM performance, LLM energy- and power-efficiency are as important as performance. Inference requests 
execute in opaque virtualized sandboxes, and are co-located in a highly-dynamic manner with many other 
invocations of diverse properties. These features are a radical shift from more monolithic application 
environments and require a new approach to manage energy and power. EcoFaaS [94] takes a user-
provided end-to-end Service Level Objective (SLO) and tries to execute each request in the most energy 
and power-efficient manner without violating the SLO. Based on the computed deadlines of the different 
LLM invocations, EcoFaaS sets the optimal per-invocation core frequency using a prediction algorithm. The 
algorithm performs a fine-grained analysis of the execution time of each invocation, while taking into 
account the specific invocation inputs. To avoid the overhead of continuously changing the frequency of 
cores, EcoFaaS splits the cores in a server into multiple Core Pools, where all the cores in a pool run at the 
same frequency and are controlled by a single scheduler. EcoFaaS dynamically changes the sizes and 
frequencies of the pools based on the current system state. Our experiments show that EcoFaaS can 
reduce the total energy consumption of requests substantially while simultaneously keeping the tail latency 
of the requests within the SLO limits. 
 

4.6.4 Long-term Directions and Vision  
 
The future vision is to develop system co-design ideas, test and validate them to dramatically improve cost-
performance, utilization, and energy efficiency of AI systems. Specifically, it will be important to exploit new 
emerging hardware technologies such as CXL, AMX, GPUDirect, and various accelerators integrated with 
CPUs and NICs. Specifically, the latest Intel CPUs include Data Streaming Accelerator (DSA), Dynamic 
Loader Balancer (DLB), In-Memory Analytics Accelerator (IAA), and Advanced Matrix Extensions (AMX). 
They can greatly improve the performance of data movement between memory regions or devices, network 
packet distribution among CPU cores, data compression and decompression, and matrix operations. We 
have already demonstrated the benefit of using AMX in our collaborative work. In the future, the data 
compression and decompression capabilities can be used to reduce the system memory requirement for 
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running LLMs without hurting the latency or throughput of LLM services. In addition, we also have shown 
the potential of GPUDirect capability to provide an illusion of having large memory capacity for the GPUs 
which often suffer from the limited memory capacity. Our proposal provides a novel data transfer and 
orchestration algorithm that can greatly reduce the need for using more GPUs to train LLMs.  
 
To facilitate not only more efficient data transfer among these compute, network, storage, and memory 
devices but also easier and broader cooperative heterogeneous computing among the compute devices 
and network/storage/memory devices potentially with near-data processing (NDP) capabilities, we can 
exploit the emerging cache-coherent interconnect (CCI), such as Compute Express Link (CXL) and Ultra 
Accelerator Link (UAL). For instance, CXL can provide cache-coherent (CC) host-to-device (H2D) and 
device-to-host (D2H) memory accesses. This can simplify the programming effort for the data transfer 
among these devices as these devices can transfer data with simply load/store semantics, instead of 
cumbersome and inefficient DMA requiring manual cache coherence management under various 
constraints. Such H2D and D2H memory access capabilities give us unprecedented opportunities in 
revolutionizing the interface not only between the host and traditional storage and networking devices, but 
also among the compute, memory, storage, and network devices. Specifically, we can envision a system 
with memory, storage, and network devices with NDP capabilities and connect and use them through a 
CCI-driven software-defined interface (see Figure 6). Such a software-defined interface will not only 
improve the data transfer efficiency among compute, memory, storage, and network devices, but also 
enable efficient fine-grained cooperative heterogeneous computing among these devices, which will 
dramatically reduce the cost of AI/ML training and inference with combinations of the most cost-effective 
devices for specific compute requirements of individual layers of target AI/ML models. 
 

4.7 Enabling the Edge Transformation: An End-to-end Edge-Cloud Approach 
 

4.7.1 Introduction 
 
The rapid advances in foundation models, generative AI, and LLMs are fundamentally changing how we 
interact with computing at the edge; e.g., with immersive computing or extended reality (XR), robotics, 
autonomous vehicles, drones, etc. These new modalities for computing have the potential to transform 
most human activities. However, these new edge devices and applications are increasing in complexity, 
with stringent but heterogeneous and multidimensional performance requirements (e.g., heterogeneous 
compute, real-time latency, data bandwidth, power, and multidimensional quality of experience or QoE).  
Achieving their transformative impact will require a far greater integration and co-design of the edge with 
the cloud than we have today.  
  
For example, immersive computing or XR, including virtual, augmented, and mixed reality (AR/VR/MR), 
has the potential to change medicine, education and training, industrial maintenance, telepresence, 
entertainment, etc. in a fundamental way, from single user (a virtual personal assistant) to large 
collaborative scenarios (a mixed reality hybrid conference with thousands of attendees). However, this is 
still far from reality. As a powerful example of the advances made and the road still to be covered, we see 
that foundation models are enabling truly photorealistic reconstruction, rendering, and user speech directed 
editing of mixed reality environments [95], but today this is far from real time and from the power budget of 
a comfortable headset. For example, ideal headset power budget is in the range of 100s of milliwatts while 
today’s state-of-the-art expend 10s of Watts and are still not able to run the state-of-the-art neural models 
for rendering and reconstruction. Offloading computation and remote collaborative XR services and 
workflows have been difficult because of the stringent latency and bandwidth requirements. Further, 
generative AI is fundamentally changing the traditional vision and graphics XR pipelines, making today’s 
GPUs less than ideal for these requirements.  
 
Our goal is to develop the interfaces and underlying software and hardware implementations that will foster 
the needed co-design between the edge and cloud to enable the edge transformation. 
 

4.7.2 Research Challenges and Opportunities 
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A key source of opportunity (and challenge) arises from the heterogeneity and multimodality within even a 
single edge application (e.g., a rich XR experience includes speech, graphics, audio, haptics, perception, 
etc.) with heterogeneous, stringent, and multidimensional performance requirements for each, and the 
ability to trade off these different requirements based on the limits of human perception and the current 
resource availability. Thus, SLOs for these applications are a (currently ill specified) Pareto frontier of 
heterogeneous requirements. Exploiting this flexibility in a coordinated way throughout the hardware and 
software layers of the edge and cloud will be critical.  
  
The above observations open up a number of research challenges and opportunities as follows. How to 
specify flexible SLOs and how to distribute computation between edge and cloud so these SLOs are 
satisfied within the constraints of the edge? How to design accelerators for the diversity and evolution of 
emerging workloads, in an integrated edge-cloud ecosystem? How to design a uniform communication 
interface that serves the needs of diverse accelerators and cores in a system-on-chip (SoC), system-in-
package (SiP) or chiplets, and further systems of systems, while also exploiting energy efficiencies from 
specialization. How to co-design neural architectures, accelerators, and inferencing workflows; integrate 
online and offline model optimization techniques; and optimize online training coupled with inference for 
our integrated edge-cloud view with flexible SLOs. Exploiting the flexible SLOs and flexible systems 
described above will require an innovative compiler and scheduling infrastructure to orchestrate the 
computation and data movement among the available edge-cloud resources. Finally, such an integrated 
edge-cloud system view motivates novel prototyping infrastructure to evaluate the ideas. 
 

4.7.3 Representative Contributions  
 
UIUC faculty and IBM researchers have made many contributions already towards the vision described 
here, laying a strong foundation for future work. For example, the ApproxHPVM, ApproxTuner, and 
ApproxCaliper line of work [96]-[98] has explored quality-latency-power tradeoffs and developed compiler 
and scheduling infrastructure to properly leverage these tradeoffs for heterogeneous edge computing. 
Catan presents a scheduling framework to ensure all tasks in robotics and XR applications are provided 
adequate resources to achieve their latency goals [16]. Other work discusses and exploits energy, latency, 
and quality tradeoffs in scene reconstruction and eye tracked foveated rendering [99]-[101]. The ILLIXR 
work [102] has laid the foundation for distributed edge-cloud compute distribution. The Mozart project [103] 
explores composable disaggregated accelerators for an SoC, leveraging the Spandex coherence line of 
work [104]-[105] for coherence specialization with a familiar coherent address space in heterogeneous 
systems. Several projects within IBM and UIUC have prototyped complex end-to-end systems, e.g., the 
EPOCHS project [106], HPVM [107], ILLIXR [102], etc. 
 

4.7.4 Long-term Directions and Vision 
 
Our long-term vision is to develop a co-designed edge-cloud architecture where applications are oblivious 
to which component is being run where, and the hardware and software infrastructure is designed from the 
ground up to have an integrated view of the edge and the cloud. This will enable complex emerging edge 
applications, with stringent compute, latency, and bandwidth requirements to effectively exploit all 
resources, enabling a transformation of how we interact with computing at the edge. Specific research 
directions follow below. 
  
Specifying flexible SLOs: Emerging edge applications such as XR and robotics have complex workflows. 
Although there are objective metrics used for assessing the goodness of these systems, they often don’t 
correlate to the subjective end-user experience as determined from user studies. Furthermore, converting 
the end-user quality of experience metrics to clear SLO requirements is by itself difficult; e.g., end-to-end 
latency from head motion to display in XR can be compensated by prediction and warping techniques in 
XR; accuracy in image analysis in a robotics pipeline can be compromised in favor of latency if it can later 
be compensated by the motion control algorithm. Understanding the dependences between different 
application subsystems and pipelines and determining how to apportion latency, power, etc. across these 
different components is a challenging problem. Finally, as evident from the above examples, latency, 
accuracy, power, and quality offer tradeoffs that can be made based on current resources. Understanding, 
quantifying, and specifying end-to-end user-level goodness metrics, their relationship to system level and 
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component level requirements, and the tradeoff space is an important research question for emerging edge 
applications. Effectively conveying these requirements and the associated tradeoff space to the cloud, in a 
way that ensures appropriate services are provided and the requirements are met, poses an additional 
challenge. 

  
Distributing computation between edge and cloud: Fundamentally, there is a tension between high 
fidelity/accuracy compute on the cloud vs. low latency on the edge. How to distribute the computation 
across the edge and cloud and how to compensate for latencies incurred? For example, recent techniques 
consider using expensive generative models in the cloud to provide high quality frames to the client at a 
low frame rate, with cheaper models on the client filling the remaining frames for an effective high frame 
rate. Similarly, some modalities have higher latency thresholds than others, but considered as 
interdependent pipelines, it is unclear where to place what. 

  
Disaggregated and composable fine-grained acceleration: With increasing diversity in the workloads, rapid 
changes in models, and diverse sources of performance bottlenecks from infrastructure functionality to AI 
models [108]-[109], achieving energy efficiency through highly specialized monolithic accelerators is difficult 
to sustain – each new algorithmic advance entails a large new investment in specialization.  Further, various 
specialized components in current systems are already known to be under-utilized, wasting area and 
exacerbating leakage. We therefore advocate finer-grained accelerators for common primitives, and an 
architecture that enables them to be transparently composed to give the performance benefit of monolithic 
acceleration without their recurring design cost. Such an architecture must enable accelerators as first-
class virtualizable citizens that can directly communicate and synchronize with each other, without the need 
of CPU orchestration. Furthermore, the architecture must provide a uniform programming model that is 
transparent to whether a computation is being done on a monolithic accelerator, a CPU, or some subset of 
software-composed fine-grained accelerators.  This concept of composable disaggregated acceleration 
applies to SoC’s, emerging chiplet based ecosystems (systems in package), and other hierarchies of 
systems of systems, connected with appropriate interconnects. Our recent work on Mozart [103] for an SoC 
provides a foundation, but much work is required for modern foundation models, new chiplet/SiP, CXL, 
NDP types of technologies, and emerging applications. 

  
Data communication: Similar to the philosophy of disaggregated and composable accelerators for compute 
specialization above, we also advocate a similar vision for data communication. A coherence shared-
memory or a global address space has provided a portable popular programming model; however, more 
specialized communication models such as point-to-point messages, bulk transfer DMAs, and private 
memory structures such as scratchpads provide for higher efficiency through specialization. Can we have 
a uniform programing interface providing the ease of coherent shared memory but with the specializations 
as above? Our work on Spandex [104]-[105] and its use in Mozart provides a foundation but much needs 
to be done to adapt these ideas for modern AI models and their use for emerging applications. 
  
Co-Design of neural architecture, accelerators, and inferencing workflows. A key to efficiency will be co-
design methodologies where neural network architectures and accelerators are jointly optimized for 
specialized AI inferencing tasks in the cloud and on the edge. Fine-tuning AI inferencing workflows with 
tightly coupled software-hardware optimizations can enable significant performance and energy efficiency 
gains across both edge and cloud environments. 

  
Integrated offline and online model optimization techniques. Creating a hybrid optimization framework that 
integrates offline techniques (e.g., model pruning, quantization, graph fusion) with online techniques (e.g., 
multi-user/multi-request management, adaptive batching) has the potential to expose new opportunities for 
performance improvement.  The goal is to establish seamless model management that adapts to real-time 
user requests while simultaneously maintaining model efficiency and accuracy across edge and cloud 
infrastructures. This system should include AI-driven mechanisms that adaptively choose the optimal 
optimization path, depending on the hardware, workload, and model type. 

  
Compiling and scheduling with flexible SLOs on flexible systems. We have advocated for a vision where 
there is flexibility in the end-application requirement specification, model architecture, hardware 
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architecture, and variation in workload. Underlying such a system is a compiler and scheduling runtime that 
can find the correct mapping of an application request to a model architecture and hardware.  

  
Call for end-to-end system prototypes and benchmarking: Many of the above problems are inter-related. 
We believe that systems research that seeks to break entrenched barriers and interfaces must go hand in 
hand with end-to-end system prototypes and benchmarking.  
  
The above outlines a rich, long-term research agenda to enable transformative impact on the edge. It 
requires collaboration and co-design between all layers of the system stack across the edge and cloud, 
with a final outcome of enabling new classes of applications that transform most human activities. 
 

4.8 System-level Optimizations  
 

4.8.1 Robustness, Dependability, and Security 
 
Robustness, dependability, and security are essential pillars of large-scale computing systems, and have 
been the grand challenges for many decades due to the ever-increasing complexity, dynamics, and 
heterogeneity of cloud systems. Emerging computing paradigms like microservices and serverless 
computing, deployment patterns like hybrid cloud and edge-cloud continuum, and drastically increased 
scale and heterogeneity of AI-oriented infrastructures, expand existing challenges and introduce new 
challenges. Traditional techniques, which focus on individual programs/systems, are no longer effective. 
 
Another important trend is to develop novel infrastructure for trusted and confidential computing. As many 
applications targeting AI workloads, scientific discovery, and classical supercomputing applications are 
being moved to cloud environments, the end user relegates many security and trust related functions to the 
cloud provider, and hence has to rely on that the cloud provider does not intentionally or unintentionally 
violate that trust. However, such blind trusts are no longer viable given that a whole class of applications 
and use cases emerges that requires a higher degree of verifiable trust, confidentiality and integrity, largely 
driven by regulatory or business requirements to keep data confidential. Overall, we identify the following 
challenges: 
 
● Correctness and fault-tolerance of scalable infrastructures is difficult. Modern cloud infrastructures like 

Kubernetes are composed of loosely coupled microservices (called controllers), each independently 
reconciling the system to its desired state. However, without strong consistency for scalability, 
implementing correct, fault-tolerant controllers is challenging [110]-[111]. Our work [112]-[114] 
discovered hundreds of critical bugs in existing controllers.  

● Software dependencies and cross-system interactions are of immense complexity. Cloud platforms are 
orchestrations of independent, interacting systems. The reliability of their interactions is critical to whole-
system dependability, yet are hard to validate. Traditional testing and verification techniques can hardly 
reason about interdependent systems collectively. Cross-system interaction failures become dominating 
failure patterns today [115]. 

● New fault domains are exposed to cloud-based applications. Although the cloud-based, serverless 
programming model significantly simplifies application development, it makes application reliability much 
more challenging due to more complex fault domains [116]. Seatbelts and airbags are needed by 
emerging applications. 

● Automated system operations become single points of failures. Management of large-scale production 
systems are automated by programs (e.g., Ansible playbooks and Kubernetes operators) and 
increasingly with AI-based policies. Their reliability is concerning – software bugs and misconfigurations 
can easily lead to disastrous consequences [113,114,117,118]. 

● AI/ML robustness and interpretability are critically important when used for critical operations or system 
components. With AI being increasingly used to make runtime policies (AI4Systems) and to automate 
operations (AIOps), their robustness becomes critical.  

● With the complexity of the system and their interactions, security and confidentiality continue to be grand 
challenges. Bandages like bug fixes may not yield a trustworthy system. 

● Traditional reliability and security problems are still unsolved and become more so under AI-generated 
code and configurations. Software correctness like safety and liveness are still highly desired building 
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blocks for modern systems and infrastructures [119]. IBM and Illinois have worked together for system-
level security with AI accelerators [125]-[126]. However, security challenges still remain when various 
workloads of diversified types and sizes need to share the multi-cloud system efficiently in a dynamic 
fashion. Sophisticated sharing scenarios, such as a large foundation model shared across different 
users with different down-stream tasks, make the situation even more complicated.   

● Multi-cloud systems pose new challenges. While attestation and integrity measurements only establish 
trust at load in time, multi-cloud systems pose new challenges to provide continuous attestation 
capabilities and handling unreliable connections to remote systems. Attestation of dynamic systems 
usually leads to a large number of false positive alerts. Practicality of whole-stack integrity attestation at 
scale depends on our ability to drastically reduce false positives while maintaining high detection rate of 
true security threats. 

 
Our long-term vision is to build truly reliable and secure cloud systems and infrastructures that can meet 
the robustness, dependability, and security requirements of next-generation cloud computing paradigms. 
We construct the following research directions: 
 
● Formally verified, provably correct cloud infrastructures. Formal verification of software and hardware 

systems was considered moonshots, but has become increasingly practical not only due to the maturity 
of the toolchains but also thanks to modular architectures that enable us to verify components 
individually and compositionally. In the Anvil project [121], we show that it is possible to develop formally 
verified Kubernetes controllers with feature and performance parity to existing controllers. We believe 
that compositional verification techniques can be developed to verify the interactions and dependencies 
of interacting controllers. Certainly, it is impractical to replace all existing systems with a formally verified 
form at once. We envision using model checking and principled testing to continue hardening existing 
components as what we have been doing in projects [112]-[114][122]. We believe that it is possible to 
reason about compositions of formally verified components and model-checked/tested ones. 

● Cloud-native applications made reliable. We have shown in the Rainmaker project [116] that modern 
cloud-based applications are not ready for cloud-native environments and programming models due to 
new fault domains, error-propagation patterns, and state management. Moreover, existing cloud service 
APIs make application reliability harder, e.g., the lack of idempotency leads to inevitable semantic 
violations. Rainmaker only shows a specific type of cloud-based applications (applications that use cloud 
services) and modern cloud-native applications are much more diverse with a broader scope. 
Unfortunately, the system principles of reliable cloud-native applications are unclear and require 
research. We envision research efforts that holistically understand the reliability challenges of cloud-
native applications and automated tooling to check the reliability of such applications. 

● Safe and reliable automated and AI-based operations. The vision of self-driving infrastructures relies on 
safe and reliable operation programs. In the Acto and Sieve projects [112]-[114], we show that today’s 
operation program, as exemplified by Kubernetes operators, are significantly lacking in reliability and 
fault tolerance. Similar results are reported by other studies [117] as well as studies on Ansible Playbook 
[118]. We believe that the problem will become even more emergent given the trend of AIOps and AI-
based codegen. We envision principled techniques to validate (if not verify) the safety and reliability of 
operator programs including those with AI-based policies. Besides ongoing efforts on testing and model 
checking like Acto and Sieve, we envision research on AI/ML that is specialized for safe and reliable 
AIOps with robust and interpretable models. 

● Agents and LLMs for incident management. With the advance of AI technologies such as LLMs, agent-
based incident management is a promising direction. We envision to use LLM/agent-based techniques 
throughout the cycle of incident management, such as fault detection, root-cause analysis, and failure 
mitigation. Innovations are needed to effectively leverage the power of LLMs (Section 4.2). The key 
challenges include effective prompt engineering to provide useful input data such as logs, traces, and 
metrics and to constrain the search space as well as to validate the correctness and safety of AI-
generated code and policies. 

● Security from the ground up. We will take security as a first principle throughout system design and 
implementation, instead of fixing bugs and vulnerabilities with bandages. We plan to continue 
investigating safe, expressive extensibility of existing systems and infrastructure such as kernel 
extensions and controller extensions. We also plan to investigate confidential computing technologies 
to harden the interactions of different systems across software-hardware boundaries for different tenants 
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and protection domains. We anticipate that new hardware features will provide stronger isolation through 
hardware reconfiguration and partitioning and plan to attest the entire software stack on top of secured 
hardware in a continuous fashion to ascertain that each software component is indeed the one intended 
to run and that it has been verified through the software supply chain. This also requires secure 
interactions between hardware and software in the cloud system.  

● Confidential computing with dynamic workload distribution. Distributed applications require orchestration 
of multiple security capabilities in compute, networking, storage, key management, and access control. 
Therefore, confidentiality must be considered as a workload abstraction/orchestration artifact to be built 
on top of our transformed hybrid cloud system. Finally, we need to develop new security and confidential 
computing solutions to work with workloads of diversified types and sizes that share the multi-cloud 
system in a dynamic fashion, aiming for guaranteed security and SLOs. 

 
Figure 18 illustrates our vision. We take an incremental approach towards a verified cloud platform starting 
from existing ones (Kubernetes). We will verify and validate individual components of Kubernetes. For 
controllers that follow the state-reconciliation principle, we will write formally verified ones to replace the 
existing ones using the technique described in [120,121,123]. Certain controllers like the scheduler may 
need more advanced approaches for verification and we will continue validating the existing ones using 
approaches similar to [112]-[114]. For components like etcd, we will use model checking to verify them (see 
[122]). We will then investigate compositional verification to verify multiple controllers and the entire platform 
collectively. The managed applications will be done in a similar fashion and the key is to model and specify 
the application-platform interface. A key challenge is to accommodate code and policies generated by LLMs 
(e.g., using LLMs to generate simple operators). We will test and model check the code and investigate 
ways to generate formally verified code with proofs. Finally, we will build hardware-software solutions to 
support continuous run-time integrity monitoring and attestation (see [124]) to ensure trustworthy software 
and environment.  
 

 
Figure 18: A roadmap towards a truly reliable and secure cloud infrastructure. 

 
4.8.2 Energy Optimization and Sustainability 

 
Datacenters today consume more than 2% of the total U.S. power and emit even more carbon than the 
aviation industry. Hence, it is of crucial importance that datacenters, consisting of hybrid multi-cloud 
infrastructures, look for energy-optimized and sustainable solutions. The grand challenge is to develop 
holistic, integrated, and sustainable solutions under highly dynamic and constantly changing AI workloads’ 
demands, running on large scale heterogenous hybrid multi-cloud systems, and powered by a mixture of 
renewable and non-renewable energy sources. We are exploring multiple solutions ranging from energy 
optimization and sustainability solutions of individual servers, single and multi-cloud systems within 
datacenters to renewable-energy-based data centers.  
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Research Challenges: To solve the grand challenge, we need to dissect the challenge into sub-challenges, 
using the ‘divide-and-conquer’ approach ranging from enabling highly efficient energy optimization on 
individual servers of the hybrid cloud, energy optimization on multi-cloud systems and energy-carbon 
optimization among datacenters.  
 
The individual serving nodes in hybrid cloud are facing a significant challenge of heterogeneous hardware 
including multiple CPUs, GPUs, and complex memory structures that run AI workloads such as Gen-AI, 
and federated learning and consume large amounts of energy during their training phases. Individual 
servers’ AI model training involves intensive cooperation across multiple hardware processing units, i.e., 
CPU, GPU, and memory controllers, hence we need optimized local training control for energy-efficient 
learning workloads.  
 
The hybrid multi-cloud systems are facing a significant challenge in terms of holistic resource management 
that needs to integrate workload scheduling, placement, server power state control, datacenter cooling 
system controls, and renewable versus non-renewable managements to optimize various multi-cloud 
systems adaptively at different scales due to a huge solution space.  
 
The challenge of using renewable energy for datacenters is their variability across time and space. For 
example, solar power production varies across time and geographical locations. To address this issue, the 
community proposed to co-locate data centers with renewable farms and powering datacenters with 
renewable energy. However, this approach also has its own challenges such as achieving stable energy 
production of renewable energy farms for co-located datacenters and efficient placement and migration of 
computational workloads. 
 
Failure mitigation and service recovery protocols in cloud systems are developed to handle various 
hardware and software failures (e.g., network link failures and power outages). However, classic system 
resilience introduces disruptions to power optimization by incurring additional energy consumption (due to 
redundancy, migration, and checkpointing). In addition, classic system resilience does not consider the 
impact of errors of ML inference, out-of-distribution situations, and data/model uncertainties in the ML 
inference engines that are increasingly integrated with today’s cloud systems. Co-designing power and 
resilience management is required to provide fast failure recovery and differential treatment to critical/non-
critical services to minimize disruptions while optimizing carbon footprint. 
 
Representative Contributions: We have multiple representative contributions within the Hybrid Cloud Thrust 
of the IIDAI institute.  
 
Bayesian Optimized Local Training Pace Control for Energy-Efficient Federated Learning: To overcome the 
challenge of individual node’s heterogeneous processing units (GPU, CPU, memory, and their expensive 
energy usage during AI models training phases, we investigated an energy-efficient training pace control 
framework, called BoFL, of federated learning (FL) workloads over multi-axes of DVFS (Dynamic Voltage 
and Frequency Scaling) configurations [130] and with energy-efficient FL straggler handling (FedCore) 
[131]. The training speed and energy efficiency can be drastically affected by different operational 
frequencies of CPU, GPU, and memory controller. BoFL develops three techniques to reach proper DVFS 
configurations: (1) BoFL operates in an explore-then exploit manner, i.e., in limited rounds of FL tasks, 
BoFL first explores the DVFS configuration space with a few trials, and then exploits the remaining rounds 
with the best configurations observed; (2) BOFL strategically explores the large configuration space with 
multi-objective Bayesian optimization (MBO) framework which searches for a set of Pareto tradeoffs in the 
energy-latency performance space efficiently in just a few steps; (3) BoFL uses a safe exploration algorithm 
to make sure every training deadline is being met. Experiments on multiple real-world hybrid cloud edge 
nodes with different FL tasks show that BoFL reduces energy consumption of model training by 26% and 
achieves near-optimal energy efficiency.  
 
Deep Graph Reinforcement Learning-based Holistic Multi-Cloud Resource Management: To overcome the 
challenge of providing a holistic multi-cloud resource management, we investigated a hierarchical resource 
management framework [127]. This framework utilizes a two-level graph combinatorial optimization. The 
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top level involves job-to-datacenter graph mapping and datacenter cooling management. The bottom level 
includes pod-to-server graph mapping, server, or rack power state controls and renewable versus non-
renewable energy usages. Graph neural network (GNN) and reinforcement learning (RL) solvers are 
employed at both levels to collaboratively optimize the overall multi-cloud system. Furthermore, state-of-
the-art (SOTA) RL-safe techniques are applied to establish safety decision boundaries towards minimizing 
risk of suboptimal decisions and maximizing overall reliability. The GNN-RL framework has been validated 
through simulations and real-world K8 experiments using AI workloads such as LLM and diffusion models. 
The preliminary results on single cloud without cooling system control show savings by 2.13 times when 
compared to previous solutions on 100-1000 server systems.  
 
Towards Building Scalable Modular Data Centers with Renewable Energy: To overcome the challenge of 
renewable energy-datacenters co-locations, we defined renewable energy-based modular data centers 
(MDCs) where MDCs can elevate the heavy use of batteries and power transmission lines and potentially 
achieve zero carbon emissions [128]. The MDCs deploy the SkyBox novel solution, a framework that uses 
a holistic and learning-based approach to enable efficient use of renewable energy at scale. SkyBox 
develops three important techniques: (1) SkyBox quantifies the coefficient of variation of the power 
production of renewable energy farms based on historical traces. This allows the system to identify sites 
with relatively stable energy supply and capacity; (2) SkyBox includes a dynamic subgraph identification 
algorithm that groups individual renewable energy sites into subgraphs with complementary power 
production patterns within the same subgraph. Each subgraph then represents a stable aggregated power 
production as a whole and allows datacenter operators to decide the sites where MDCs will be deployed; 
(3) SkyBox includes a Mixed-Integer-Programming model for enabling optimized placement and migration 
of workload, encapsulated within virtual machines (VM) [129]. The evaluation results of SkyBox show that 
the carbon footprint of MDCs can go down by 46% with low VM migration frequency in comparison to 
conventional datacenter deployment approaches.  
 
Long-Term Directions and Vision: Hybrid multi-cloud systems must be considered within a holistic 
framework if efficient energy optimization, sustainability, and robustness should be achieved. The grand 
challenge still stands since  
 

1) We need to consider energy and carbon emission optimization within (a) the individual server nodes 
with their heterogeneity of hardware and system platforms supporting diverse workloads, (b) 
clusters of heterogeneous nodes forming datacenters, (c) multiple datacenters geographically 
distributed.  

2) We need to consider very different and fast changing AI models that are used (a) by diverse cloud 
applications ranging from federated learning, CNNs, Deep Learning to transformers, attention 
models and others, and (b) by underlying systems themselves ranging from Graph Neural Networks 
(GNN), Reinforcement Learning (RL) and others.  

3) We need to consider diverse energy sources ranging from renewable sources to non-renewable 
energy sources which bring a major challenge of variability in energy supply and need for efficient 
migration of workloads.  

4) We need to co-design power and resilience management to provide fast failure recovery and 
differential treatment to critical/non-critical services to minimize disruptions while optimizing carbon 
footprint.  
 

Hence the long-term direction and vision should be to investigate: 
 

• Cooperative energy-optimization approaches between techniques: (a) AI for Systems: AI 
techniques used for hybrid cloud systems that aim to optimize energy usage for AI workloads (e.g., 
GNN-RL within cloud resource management) and (b) Systems for AI: system techniques used for 
AI workloads in cloud applications and their energy optimization (e.g., DVFS for FL training 
workloads). At this point the community optimizes mostly the AI workloads in cloud applications 
and develops systems for AI but discards the usage of energy in AI algorithms used within cloud 
systems.  
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• Energy optimization and sustainability when AI workloads such as LMM bring exponential growth 
of data and model sizes and infrastructures: We will need energy-aware AI model compression, 
distillation, and other reduction techniques.  

• Fine-grained energy/ carbon measurement tools: Kepler provides energy usage measurements at 
coarse level of cloud systems, but as some of the studies show, finer-grained energy optimizations 
of hardware-software configurations could yield further energy savings. Carbon tools are almost 
non-existent and available only at very coarse levels of the datacenters [132]-[133].  We need new 
energy/carbon tools.  

• Sustainable modular hardware and software: (a) high churn in the supply chain increases carbon 
footprint of devices causes throw-away mentality and repair and replacement of computing 
components becomes difficult; (b) mismatches between software component upgrades and 
between software and hardware lifecycles cause that devices are often retired or put offline 
because software support has ended even though the hardware has significant usable lifespan left 
[134]. We need modular and energy efficient hardware/software architectures and tools to assist 
with aging components in an energy-efficient manner.  

• Split reward models and failure recovery acceleration for SLO-aware energy optimization: Split 
reward functions allow the ML models to learn differential policies under various failure recovery 
procedures and for applications with diverse levels of criticality. We need to coordinate power 
management and resilience management to minimize disruption to energy optimization. This 
requires multidisciplinary work that brings together power systems and cloud systems engineering 
to achieve significant progress towards dependable green computing. 

• Access to cloud testbeds with renewable energy and access to corresponding datasets/traces: We 
need to get access to testbeds and corresponding datasets/traces of AI workloads, system 
resource usage, carbon usage from cloud providers to develop realistic solutions for energy 
optimization and sustainability.  
 

4.9 Application-Adaptive Cloud System for Dynamic AI Workloads 
 

4.9.1 Introduction and Challenges  
 
Inspired by the application-specific design paradigm such as ASIC (Application-Specific IC) or FPGA (Field-
Programmable Gate Array), one bold strategy is to build an application-adaptive hybrid cloud system. Just 
like how an ASIC or an FPGA design can beat the general-purpose CPU in terms of performance and 
energy efficiency by a large margin (sometimes by 100-1000x), we envision that an application-adaptive 
cloud system would demonstrate a large advantage over the conventional general-purpose system as well. 
However, such a system should still be flexible enough to serve different types of workloads, being highly 
adaptive to their different characteristics, priorities, and demands. The key idea to achieve both application-
specificity and flexibility is through reconfiguration and programmability at different levels of the new cloud 
system (Figure 6). 
 
The current cloud system has some limited ability for reconfiguration and programmability. We propose 
new reconfiguration and programmability capabilities at different levels of the cloud system and significantly 
improve future cloud’s capabilities to reconfigure, reprogram, and adapt itself to serve dynamically changing 
workloads. Such design innovations would range from a single node, to a single rack, to the entire 
infrastructure, including interconnections of different levels, and all the way to cloud platform, middleware 
and programming models. The goal is to provide specialized solutions adaptive to the specific needs of a 
workload, delivering high computation and data management efficiency, high resource utilization, shortened 
latency, and higher level of SLO guarantees, leading to reduced cost and improved affordability.  
 
The critical challenges to achieve this vision will include overcoming the limitations of current reconfiguration 
and programmability capabilities in cloud systems. Achieving the desired balance between application 
specificity and flexibility will require innovations across multiple layers of the cloud stack. At the hardware 
level, ensuring the seamless integration and co-design of technologies like CXL, programmable SmartNICs, 
and reconfigurable accelerators will be key. At the higher cloud system levels, managing dynamically 
changing workloads while optimizing for energy efficiency, resource utilization, and performance will require 
advanced orchestration and scheduling algorithms. Furthermore, enabling cross-layer programmability and 
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reconfiguration across compute/storage/networking devices and platform/middleware frameworks will be 
essential to creating a system that can adapt in real-time to workload requirements. Finally, security, 
robustness, and maintaining SLOs across diverse applications, ranging from lightweight services to large-
scale AI tasks, will present additional challenges that need to be addressed for sustainable, scalable, and 
adaptable cloud systems.   
 

4.9.2 Existing Solutions and Contributions  
 
In previous sections, we have already demonstrated advantages through specialization and adaptivity, such 
as those described in LLMaaA (Section 4.3), foundation model optimization (Section 4.4.4), and edge 
transformation (Section 4.7). We will introduce application-adaptive solutions and contributions focusing on 
other system layers in this subsection.  
 
At the programming model/platform levels, we have already demonstrated an adaptive HPC-cloud bursting 
system [62]-[63] that seamlessly places workloads across multiple compute systems. In [62], our system 
integrates automated data management with learning-based scheduling at the function level, using a 
dynamic label-based design. It automatically prefetches data files based on demand and detects data 
movement and execution patterns for future scheduling decisions. In [63], our framework demonstrates 
advantages in several aspects: users can provide their own cloud resource; the framework provides the 
Python-level abstraction that does not require users to interact with job submission systems, and allows a 
single Python-based parallel workload to be run concurrently across an HPC cluster and a cloud system. 
In [64], we develop task splitting rule to set the level of parallelism dynamically depending on task duration, 
cluster capacity and carried load at the time of task arrival. Our experiments demonstrate a better balance 
of weighted workflow completion time and resource utilization compared to the existing heuristics.  
 
At the middleware/runtime level, multiplexing of compute resources across microservices is still challenging 
in production because contention for shared resources can cause latency spikes that violate the SLOs of 
user requests. We offer a new solution, FIRM, an intelligent fine-grained resource management framework 
for predictable sharing of resources across microservices to drive up overall utilization [144]. FIRM 
leverages online telemetry data and machine-learning methods to adaptively (a) detect/localize 
microservices that cause SLO violations, (b) identify low-level resources in contention, and (c) take actions 
to mitigate SLO violations via dynamic reprovisioning. Experiments across four microservice benchmarks 
demonstrate that FIRM reduces SLO violations by up to 16x while reducing the overall requested CPU limit 
by up to 62%. Moreover, FIRM improves performance predictability by reducing tail latencies by up to 11x.  
 
To delve deeper into the cloud infrastructure, reconfiguration and adaptivity can take place at the top-of-
rack (ToR) Switch [135]-[136]. Meanwhile, as the backbone technology, software-defined networking (SDN) 
allows network operators to configure and manage network resources through programmable switches. 
The programmable switch usually has reconfigurable hardware such as a programmable ASIC that 
supports domain-specific languages like P4. Similar to SDN, software-defined flash (SDF) enables upper-
level software to manage the low-level flash chips for improved performance and resource utilization, and 
a programmable SSD can be virtualized into two types of vSSDs: hardware-isolated vSSDs, and software-
isolated vSSDs. Both SDN and SDF share a similar architecture – the control plane is responsible for 
managing the programmable devices, and the data plane is responsible for processing I/O requests. As an 
initial study, we envision to integrate and co-design both SDN and SDF and redefine their functions in a 
coordinated fashion to improve the efficiency of the entire rack-scale storage system. Our initial results 
demonstrate a reduction of the tail latency of I/O requests by up to 5.8× over state-of-the-art rack-scale 
storage systems [135].  
 
RDMA and SmartNIC highlight the reconfiguration potential of inter-host connections in the cloud. While 
RDMA emphasizes low-latency memory access protocols, SmartNIC [137] concentrates on near-NIC 
computations. The former prioritizes data transfer performance, while the latter offloads computations from 
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the CPU to dedicated hardware near the NIC. These distinctions influence the configurations that the cloud 
adopts for various workload purposes. In our initial study, we have developed UniNet [60], a SmartNIC-
based solution that offloads network functions efficiently and is able to support all the major Container 
Network Interfaces (CNIs). UniNet boosts CNI throughput by an average improvement of 7.08×, cuts tail 
latency by 41.6%, and reduces CPU usage by up to 5.6× for RX and 4.02× for TX.  
 
At the accelerator level, GPU-FPGA and GPU-GPU P2P protocols and GPU-SmartNIC direct connections 
[138] are pivotal. They empower the accelerator communications with reconfigurability, ensuring 
adaptability especially when faced with intra-host data transmission bottlenecks. Tools like DPDK further 
reduces latency by bypassing the Linux kernel, and MIG (Multi-Instance GPU) has made GPU virtualization 
and reconfiguration more achievable with potentially large benefits on performance gains through adaptivity 
[139]. A recent work [126] introduced reconfigurable TPUs based on switchbox-enabled systolic arrays to 
support rapid dynamic partitioning and re-partitioning of the TPU to adapt to changing ML workload 
characteristics, achieving up to 42.1% higher performance for realistic ML inference workloads. 
 
FPGA accelerators can be dynamically reconfigured. Our recent work demonstrated their great adaptivity 
in a cloud setting through FPGA virtualization [140] and shared virtual memory system [141]. Our work 
described in [142]-[143] represents an exciting new direction for high-level synthesis (HLS) that raises the 
design abstraction level even higher than what conventional high-level languages can offer. For the first 
time, we could directly take large PyTorch models, go through multiple levels of optimizations, and generate 
high-quality hardware designs to be mapped to FPGA accelerators that even outperform RTL-based 
designs, thus significantly improving programmability and design quality of FPGAs. Such a new framework 
represents a transformative and automated compilation methodology for the future to map various AI 
models quickly and flexibly to different types of accelerators in the cloud. 
 

4.9.3 Future Vision and Directions  
 
The future of adaptive cloud systems lies in creating even more adaptive and intelligent platforms capable 
of dynamically distributing workloads based on demand, resource availability, and real-time performance 
metrics. Key research areas could include the development of more advanced data management systems 
that go beyond prefetching, incorporating predictive analytics for optimal workload and data placement, and 
enhancing the ability of platforms to operate across hybrid infrastructures seamlessly.  
 
Moreover, exploring how such frameworks can adapt to varying task complexities, task arrival times, and 
hardware heterogeneity could lead to more efficient resource utilization and improved completion times for 
complex workflows. Advancing these frameworks to support the newly proposed LLMaaA abstraction could 
change the whole application programming landscape and significantly improve the development 
productivity. Additionally, further innovations could focus on scaling these platforms for handling highly 
parallel AI/ML workloads, allowing them to split tasks intelligently between various hybrid-cloud resources 
based on workload types, priorities, and cost-efficiency. 
 
Future research could also investigate more granular levels of resource management, integrating unified 
software-hardware and cross-layer control technologies to adapt the allocation of not only CPUs and 
accelerators but also memory, network, and storage resources in real time. Additionally, designing 
middleware systems that can balance SLO guarantees for diverse, co-located workloads, including AI and 
data-intensive tasks, will be crucial for improving utilization without compromising performance. Extending 
these solutions to handle edge-cloud continuum environments, where resource variability and latency 
tolerance are even more critical, represents another exciting area of research. 
 
Scaling up SmartNiC, cache-coherent-interconnect, and software-defined-interface solutions to large-scale 
cloud systems will be an important next step. One specific idea is to extend the SmartNiC’s functionality so 
it behaves as a smart and distributed controller with compute capabilities for connecting and managing 
different ranges of hardware resources dynamically to meet the changing workload demands. Specifically, 
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one focus area could be on foundation model workloads where a wide range of users may have different 
requirements in terms of throughput, latency, and security with diverse cost preferences and constraints. 
 
In addition to compute nodes, storage nodes also present numerous reconfiguration opportunities. 
Innovations like SmartSSD and vSSD introduce programmability and configurability, allowing SSDs to be 
more byte addressable and with better provisioning capabilities. Moreover, they provide better flexibility and 
facilitate integration with cross-level acceleration opportunities in the cloud. 
 
In summary, we envision to transform the future hybrid cloud into a dynamic, adaptable, and smart system, 
being able to coordinate different levels of reconfigurations in a coherent way for achieving up to 100x 
higher performance gains. This new capability will keep future cloud systems at the cutting edge, allowing 
them to meet the changing needs of AI-driven workloads. Its flexibility enables the cloud to easily shift from 
handling lightweight ML models to managing more intensive tasks, such as LLMs. 
 
5 Applications Powered by Our Vision 
 
Applications drive requirements for the future hybrid cloud platform for emerging AI workloads. From the 
need for training and fine-tuning of foundation models with different modalities, to infusing AI in simulations, 
and combining other HPC computations, these applications shape the capabilities of the cloud system to 
enable advances in multiple domains. In this section, we specifically target two important AI-driven scientific 
computing applications: material discovery and climate and sustainability. 
 

5.1 Materials Discovery 
 

5.1.1 Introduction 
 
Materials discovery is pivotal in a wide range of industries, from renewable energy to electronics and 
pharmaceuticals. For example, solar cells require materials with high light absorption efficiency, mechanical 
durability, and low environmental toxicity. These characteristics stem from the material's atomic and 
molecular structures at both microscopic and macroscopic scales. Traditionally, the design of such 
materials has been a labor-intensive and time-consuming process, largely driven by trial and error and the 
intuition of material scientists. The parameter space for designing new materials is vast, with only a fraction 
of potential configurations yielding desirable properties. Consequently, developing new materials can take 
10-20 years and cost between 10 to 100 million US dollars [146]. These conventional methods struggle to 
cope with the expansive design space, making the process of materials discovery ripe for disruption through 
the integration of artificial intelligence (AI) and machine learning (ML). 
 
In recent years, AI has emerged as a powerful tool to accelerate various stages of materials discovery, 
including property prediction, material synthesis, and even the generation of new material structures. For 
instance, predicting properties such as electrical conductivity is crucial when developing materials for 
electronic devices like organic light-emitting diodes (OLEDs). These prediction tasks are typically framed 
as regression problems, where neural networks are employed to predict continuous values of specific 
material properties. Appropriate representations of material structures, such as molecular graphs, crystal 
structures, or polymer chains, are critical for these tasks [154]. Molecular graphs, for example, map atoms 
as nodes and bonds as edges, while crystal structures capture atomic configurations within a lattice. These 
structural representations, combined with spectroscopic signatures, provide essential input data for 
predicting the physical and chemical properties of materials. 
 
The emergence of foundation Models (FMs) presents a new frontier in materials science by offering the 
ability to generalize across multiple tasks using multimodal datasets. Unlike conventional machine learning 
models that are task-specific and typically trained on unimodal datasets, FMs are pretrained on large, 
diverse datasets and can be fine-tuned for various downstream applications with minimal additional training 
[153]. In the domain of materials science, data comes in many forms, including molecular graphs, three-
dimensional atomic configurations, and spectroscopic data, among others. By training FMs on this rich 
array of multimodal data, the models can learn more generalized and transferable feature representations, 
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which can be applied to a wide range of tasks, such as property prediction, inverse material design, and 
chemical synthesis. 
 
One of the key advantages of FMs is their ability to transfer knowledge across domains. Materials science 
encompasses a vast array of disciplines, from chemistry to physics, and FMs trained on multimodal data 
can bridge these domains, creating opportunities for cross-disciplinary innovations. The promise of FMs 
lies in their ability to unify disparate data types and tasks, thereby accelerating innovation across industries 
that rely on materials discovery. 
 

5.1.2 Recent Advances 
 
Several advancements in AI have contributed to the growing significance of FMs in materials discovery. 
The development of toolkits such as the Generative Toolkit for Scientific Discovery (GT4SD) [147] and the 
Open MatSci ML Toolkit [144] have laid the foundation for combining models specialized in single tasks 
into more comprehensive FMs. Both toolkits provide a modular framework that enables the integration of 
large materials datasets with state-of-the-art AI models. These frameworks support high-throughput 
experimentation and the training of models that have demonstrated considerable success in tasks like 
property prediction. By leveraging diverse datasets and advanced architectures, both toolkits facilitate a 
wide range of materials science applications, from predicting material properties to classifying materials 
based on their structural and chemical characteristics.  
 
The introduction of MolFormer [149], a transformer-based molecular embedding model, was inspired by 
advancements in unsupervised transformer models in natural language processing and for chemical 
reaction predictions [150]-[152]. This model utilizes rotary positional embeddings and a linear attention 
mechanism, training on large-scale datasets such as SMILES sequences of 1.1 billion unlabeled molecules 
from PubChem and ZINC. MolFormer demonstrated higher performance compared to existing baselines, 
and the attention-based analyses revealed that the transformer architecture was able to learn spatial 
relationships between atoms within a molecule, providing strong predictive capability for various molecular 
properties, including quantum-chemical properties. 

 
Figure 19: Prototypical Architecture for a FM for Materials Design (reproduced from Takeda et al., 

"Foundation Models for Materials Science" AAAI-23). 
 
Born et al. [154] extend the application of transformers by introducing the Regression Transformer. This 
transformer relies on hybrid sequence representations combining chemical structure and properties into a 
unique textual representation, casting regression as a language modeling task. This entangled 
representation trains models via an alternate scheme to learn the molecular structure and its link to 
chemical properties concurrently, allowing seamless, controlled generation of materials from small 
molecules to polymers [155]. Takeda et al. [145] argue that a foundational approach for materials science 
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must incorporate these diverse representations into a unified latent space, allowing for cross-disciplinary 
insights and overarching modeling across different materials science disciplines, much like how human 
scientists approach materials research. As shown in Figure 19, the model they propose aims to bridge the 
gap between various data modalities and materials domains, making it possible to apply the learned 
knowledge across tasks and contexts. 
 

5.1.3 Research Challenges and Opportunities 
 
While FMs offer significant promise, several challenges still hinder their broader adoption in materials 
discovery. One major challenge is the availability of high-quality and diverse datasets, which are necessary 
to train these models effectively. The vast design space of materials requires models that can generalize 
across many types of data, yet most existing datasets are limited to specific material domains or properties 
[145]. This leads to the challenge of integrating disparate datasets into coherent models that can provide 
meaningful insights across different types of materials. 
 
Another challenge lies in the complexity of material representations. FMs need to handle various types of 
material data, including molecular graphs, point clouds, and even multimodal data from different scientific 
domains. Developing new algorithms that can capture the intricate properties of materials is essential [147]. 
Despite these challenges, the opportunities for FMs in materials discovery are vast. Future research should 
focus on expanding the available datasets and improving the architectures used to model complex material 
properties. Additionally, techniques like active learning and high-throughput simulations may help mitigate 
the scarcity of data, allowing for more accurate predictions and faster discovery processes [147]. 
 

5.1.4 Representative Contributions 
 
Researchers at both IBM and UIUC have made significant contributions to the field of materials discovery 
through their work on foundation models. The Framework for Accelerated Materials Development (FAMD) 
represents an innovative platform integrating data mining, artificial intelligence, and machine learning to 
address the challenges of electrochemical materials for energy storage and sustainable separations. The 
FAMD workbench is designed to gather and process critical unsorted data from the literature and feed it 
into generative models for materials discovery. One of its promising applications is in the discovery and 
development of electroactive materials with high longevity and capacity, essential for next-generation 
batteries and energy-efficient ion separations. This platform also aims to tackle the challenges facing redox-
flow batteries, such as finding materials with high solubility, fast electrode kinetics, and increased chemical 
and electrochemical stability. By employing customized material discovery large language models (MD-
LLMs), the FAMD workbench enhances the ability to extract relevant information from scientific literature, 
supporting the accelerated discovery of materials for energy and environmental sustainability. 
 
A significant contribution within the activities of the institute to advancing materials discovery is the 
augmentation and extension of IBM’s RXN [153] foundation model to cover a broad class of step-growth 
polymerization reactions. This project leverages the Open Macromolecular Genome (OMG), a 
comprehensive database developed in a previous funding cycle, to generate a dataset of synthesizable 
polymerization reactions. These reactions are coupled with high-throughput density functional theory (DFT) 
characterizations of reaction energetics, providing critical physics-based data that was previously absent 
from IBM’s RXN model, probably one of the very first foundation models in material science specialized on 
predicting chemical reaction and synthesis. By integrating this dataset, the project aims to enhance RXN's 
predictive capabilities, allowing it to better handle the complexities of polymer chemistry, including steric 
interactions and reaction free energy profiles. This work significantly expands the scope of RXN, enabling 
it to predict general step-growth polymerization reactions and thereby facilitating the design of polymer-
based materials for diverse industrial applications. The project is well-aligned with IBM’s goal of developing 
generalizable AI models for closed-loop materials discovery and has the potential to benefit the broader 
polymer materials community.  
 
Building on the subsequent development of RXN [153], an innovative project proposed the development of 
foundation models to generate accurate retrosynthetic pathways and experimental procedures, integrating 
chemical synthesis tools with advanced language models, such as Text+Chem T5 and LLaMA2, to enable 
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the seamless generation of both single- and multi-step retrosynthetic pathways for target molecules. As 
illustrated in Figure 20, the approach combines chemical structure and transformation knowledge from 
synthesis tools with the contextual understanding of language models to predict experimental procedures 
with high accuracy. Reinforcement learning from human feedback (RLHF) is employed to improve the 
quality of generated retrosynthetic pathways, allowing the model to produce results that are competitive 
with, or even surpass, those generated by human experts. By incorporating retrosynthetic search algorithms 
such as Retro* and Monte Carlo Tree Search (MCTS), the model can extend its capabilities to multi-step 
retrosynthesis, thus broadening its application to complex molecule synthesis. 
 

 
Figure 20: Overview of foundation models for generating faithful retrosynthetic pathways and 

experimental procedures. 
 

5.1.5 Long Term Vision 
 
The long-term vision for FMs in materials discovery is to create a unified, overarching framework capable 
of handling a wide array of material tasks, from property prediction to material generation. This ambitious 
goal requires the development of FMs that can be trained on vast, multimodal datasets that not only include 
chemical and physical properties but also structural information, spectroscopic data, and simulations from 
various domains. By integrating these diverse sources of information through sophisticated fusion 
methods—ranging from early fusion, where data from different modalities is combined at the input level, to 
late fusion, where results from individual modalities are merged at the decision-making stage—FMs can 
unlock a more holistic understanding of materials. This multimodal approach would allow researchers to 
build models that account for complex interactions between different material properties and design 
constraints, ultimately enabling the creation of new materials with tailored characteristics such as enhanced 
electronic conductivity, improved mechanical strength, or superior environmental sustainability. 
 
Additionally, FMs are expected to play a pivotal role in inverse design, a particularly challenging task in 
materials science where researchers aim to generate novel materials that meet predefined properties. The 
vast chemical space of possible materials—estimated to include up to 10^60 potential molecular 
configurations—presents a significant hurdle. However, by leveraging the power of FMs, researchers can 
explore this space more effectively, narrowing down promising candidates and accelerating the discovery 
of breakthrough materials. 
 
The development of FMs for materials science is likely to give rise to a range of models designed for 
different tasks or material domains, such as energy storage materials, polymers, or quantum materials. 
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These specialized models would coexist, complementing one another and collectively contributing to the 
accelerated pace of discovery. 
 
Another critical aspect of the long-term vision includes the development of intelligent agents that learn to 
make use of external computational tools and environments—systems that can handle tasks that FMs alone 
may not be equipped for. These agents could autonomously recognize when problems require techniques 
beyond the capabilities of a standalone FM, such as combinatorial optimization, formal verification, or high-
fidelity simulations. By integrating these capabilities into the materials discovery workflow, agents could 
augment the problem-solving capacity of FMs, improving efficiency and accuracy in areas such as the 
synthesis of novel compounds, the optimization of material properties, and the verification of material 
behavior in real-world conditions. 
  
Finally, as the scope and complexity of FMs continue to grow, the need for scalable and distributed 
approaches to model development becomes increasingly apparent. Much like open-source software 
development, the creation of large-scale FMs will likely benefit from distributed collaborative efforts, where 
teams across the globe contribute to model development, fine-tuning, and validation. This distributed model 
of collaboration could accelerate innovation and ensure that models are continuously updated and refined 
with the latest scientific advancements and real-world data. By fostering an open development ecosystem, 
the materials science community can ensure that FMs remain relevant, robust, and adaptable to the rapidly 
evolving demands of materials research. 
 

5.2 Climate and Sustainability 
 

5.2.1 Introduction 
 
Climate and sustainability represent a very broad topic. As a matter of focus, the Institute has a particular 
interest in research for climate and sustainability applications which involve geospatial information and data. 
That is because geospatial is highly relevant for enabling a broad set of climate and sustainability solutions 
in three key application areas, which are mitigation, adaptation, and measurement & quantifications.  
 
Examples for such geospatial applications in these three areas are nature-based carbon sequestration, 
flood or wildfire risk and greenhouse gas monitoring for mitigation, adaptation, and measurement & 
quantification, respectively. To enable these applications, the joint research has been focusing on 
geospatial foundation models (FMs). Examples of geospatial FMs are by now plentiful. However, IBM 
Research pioneered jointly with NASA, an initial geospatial FM, which was trained on Harmonized Landsat 
Sentinel (HLS) satellite data [157]. The work has been extended to include weather data. Different 
applications and use cases of finetuned geospatial FMs for both satellite and weather data are shown in  
Figure 21. 
 

 
 

Figure 21: Use Cases of Geospatial Foundation Models. 
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5.2.2 Research Challenges and Opportunities 
 
Next, we would like to introduce the identified challenges regarding the design of multi-modal geospatial 
FMs. Significant efforts have been invested in developing large-scale, data-driven weather models. Current 
weather FMs, such as GraphCast [158], Prithvi [159], ClimODE [160], SEEDS [161], and FourCastNet 
[162], are mainly designed to handle single-modal weather data, which leaves room for improvement, as 
capturing correlations among multi-modal data could further enhance forecasting accuracy. For example, 
Prithvi focuses on satellite imagery, enabling it to predict masked satellite image regions, but it cannot 
forecast specific weather conditions in a given location. Similarly, GraphCast, trained on climate reanalysis 
data, can forecast weather but lacks the capability to extract information from satellite images that might be 
complementary to the climate reanalysis data. However, integrating multi-modal data is challenging due to 
the varying spatial and temporal resolutions. GraphCast, for instance, operates on a 0.25° latitude-longitude 
grid, corresponding to approximately 25×25 kilometers at the equator, whereas the National Water Model 
provides high-resolution data at grids of 30m/50m/70m. This disparity in resolution presents difficulties in 
effectively integrating multi-modal data. 
 

5.2.3 Representative Contributions 
 
As shown in Figure 22, the initial geospatial FM from IBM Research was pretrained with satellite data using 
a masked auto-encoder (MAE) [163]. The MAE reconstructs masked images using an asymmetric encoder-
decoder architecture with a ViT backbone. Each input image is divided into non-overlapping patches of the 
same size, and a subset of the patches is randomly masked. The encoder receives only the unmasked 
patches generating their latent representation. The decoder then receives the latent and masked tokens in 
order to perform the image reconstruction task. The pre-training task is the reconstruction of masked 
tokens, for which the loss function is the mean squared error (MSE) between the masked and predicted 
tokens in the pixel space. To account for the 3-dimensional nature of the input data, 3D positional 
embedding and the 3D patch embeddings are used. 
 
The initial FM, which was developed by IBM and NASA, was also tuned, to a range of Earth observation 
tasks that have not been tackled by previous work on FMs involving multi-temporal cloud gap imputation, 
flood mapping, wildfire scar segmentation, and multi-temporal crop segmentation. Three scenarios were 
compared, namely 1) fine-tuning the entire model, 2) fine-tuning solely the decoder for the downstream 
task, and 3) training the model without utilizing the pre-trained weights. The experiments demonstrated that 
the pre-trained model accelerates the fine-tuning process compared to leveraging randomly initialized 
weights. In addition, the pre-trained FM compares well against the state-of-the-art on downstream tasks, 
e.g., outperforming a conditional GAN model [164] in multi-temporal cloud imputation in the structural 
similarity index. Efficiency of label data was also investigated where the quantity of available labeled data 
for fine-tuning the model was gradually reduced, which demonstrated that data can be decreased 
significantly without affecting the model’s accuracy.  
 
Based on this initial IBM-NASA work the Institute focusses on three related research questions include 
 

• Novel architectures to address pre-training across all dimensions (i.e., x, y, t, channels).  
• Approaches to multi-modal geospatial (vector, raster, text etc.), especially when dealing with large 

numbers of modalities and channels. 
• Composability of geospatial FMs (e.g. how to best compose and combine geospatial FMs such as 

weather and satellite FMs).  
 
The Institute has researched and developed a framework, which is called Multi-modal Masked AutoEncoder 
(MM-MAE) which is flexible with the number of input modalities and channels of the geospatial data, as 
described in Figure 23. This framework entails a variant of a vision transformer (ViT) [165] and a novel 
model architecture with low-rank spatial-spectral attention blocks which enables effective learning of the 
relations between spatial and channel information efficiently, as illustrated in Figure 24.  
 
Experimental results demonstrate that the framework surpasses current state-of-the-art multi-modal 
geospatial FMs, achieving superior performance with less computation and fewer parameters. The flexibility 
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and extensibility of our framework make it a promising solution for future geospatial data analysis tasks that 
involve a wide range of modalities and dimensions. 
 
To address the resolution mismatch in multi-modal data, we propose to use novel generative models to 
obtain the unobserved data. However, applying traditional generative models directly can result in 
suboptimal performance, as these models often assume Independent Identically Distributed (IID) data, 
overlooking the spatial and temporal dependencies inherent in non-IID geo-spatial data.  
 

 
Figure 22: Masked autoencoder (MAE) for pre-training a geospatial foundation model and finetuning for 

various downstream tasks. 
 
To account for these dependencies, we encode the relationships between a geo-location with a low 
resolution and its spatial and temporal neighbors within the generative model. Unlike traditional generators, 
which rely on random variables, our proposed generator uses the features of neighboring spatial and 
temporal locations as well as the representation from another modality to exploit these correlations as 
shown in Figure 25(a). To ensure the generated features reflect the true distribution, we minimize the 
difference between the generated and real features based on various discrepancies.   
 
With multi-modal data of the same resolution, the next step involves learning the neural representation of 
each geo-location. A straightforward method is to use a CLIP-style [166] contrastive loss to maximize the 
similarity of neural representations across different modalities for a given location. However, this approach 
overemphasizes the common information shared by different modalities while neglecting their unique 
contributions to specific weather events. To balance the commonality and uniqueness across modalities, 
we propose using two projection networks for each modality: one to map the data to a shared representation 
and the other to map it to a unique representation as shown in Figure 25(b). Contrastive loss [167] is applied 
only to the shared representations, while an orthogonal constraint is introduced to ensure no redundancy 
between shared and unique representations. 
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Figure 23: (a) Our proposed MM-MAE framework. The hyperspectral patch embedding block addresses 
the inter-channel relationships. The S2-ViT fuses multi-modal features. The decoder will reconstruct all 

the channels and modalities. The decoder will be discarded after the SSL training. (b) An illustration of the 
hyperspectral patch embedding block. The block takes in hyperspectral images as the inputs and 

generates spatial-spectral tokens. 
 

 
Figure 24: The three component blocks of our S2-ViT architecture. The blocks are cascaded, with the 

output of each block serving as the input to the next. The balance between spatial and spectral attention 
can be adjusted by selecting the number of blocks of each type, allowing for a trade-off between 

capturing spatial context and spectral dependencies in the input data. 
 
 
We conducted experiments to evaluate the performance of our proposed techniques on two tasks: 
forecasting 2m temperature and predicting masked regions in satellite images. The results in the table 
below demonstrate a significant reduction in Mean Squared Error with our proposed techniques.  
 

Tasks Prithvi + GraphCast Our Techniques 
Weather Forecasting (2m temperature) 0.0112 0.0067 
Masked Region Prediction 0.4142 0.3526 
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(a)                                                                     (b) 

Figure 25: (a) Generative Module of Multi-modal Geospatial Foundation Models; (b) Multi-modal Climate 
Foundation Models. 

 
5.2.4 Long-term Directions and Vision 

 
The long-term directions of the climate and sustainability theme will continue to be pre-dominantly focused 
on FMs, as follows: 
 

• Continue to explore scalable and efficient architectures and approaches for developing FMs, which 
can deal with the multi-modal and high dimensional data (as required for climate and sustainability 
applications); this includes model size, FM composability, loss functions, and efficient strategies for 
pre-training content generation. 

• Explore limits of physics AI emulators (e.g., for weather, power flow, etc.) targeting out-of-sample 
performances; different forecast horizons; data leakage; and model content. 

• Applications of fine-tuned FMs in the area of climate and sustainability with special emphasis on 
scientific discovery; application areas include climate impacts (physical, economic, etc.), climate 
mitigation (carbon sequestration, etc.), and greenhouse gas emission quantification. 

• Climate and sustainability solutions enabled through quantum computing. 
 

6 The Role of Quantum Computing 
 

6.1 Why Quantum? 
 
Quantum computation has the potential to solve problems with high algorithmic complexity, which could 
take millions of years to run on classical computers, helping us explore fundamental concepts of the 
physical and mathematical sciences. In its essence, a quantum computer is a novel kind of computer, one 
which harnesses the fundamental quantum-mechanical properties of nature (namely, superposition, 
interference, and entanglement) and puts these properties to use for the purposes of storing and processing 
information. As such, quantum computers represent a genuine divergence in the history of computation: 
prior to their development and deployment, all classical compute – be it CPUs, GPUs, TPUs, or other ASICs 
– relied on purely-classical means of storing and processing information. Quantum computation is an 
entirely new paradigm for information processing. 
 
Incredibly, quantum computation offers the possibility of turning heretofore-intractable problems into ones 
which are much more tractable. Quantum computers are the first credible example  of a realistic model of 
computation that can solve some class of problems exponentially faster than a standard classical device. 
Quantum computing is at the precipice of enabling breakthrough advancements in various fields: quantum 
chemical simulation (useful in the pharmaceutical industry), mathematical optimization techniques (useful 
for a variety of industries), and speedups for search and factoring problems (which could impact current 
data encryption schemes), to name a few. 
  

6.2 IBM and UIUC’s Roles in the Field of Quantum Computing and Quantum Technology 
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Both IBM and the University of Illinois Urbana-Champaign have been deeply involved in the field of quantum 
computing. In 2018, with an initial $15 million investment, the University started its own quantum technology 
center, the Illinois Quantum Information Science and Technology Center (IQUIST), to advance the 
exploration of fundamental science while implementing novel quantum algorithms and state-of-the-art 
equipment for the fabrication of quantum materials and devices. The Urbana campus is primed to take a 
leadership role in the coming quantum information revolution as IQUIST develops QIS-focused educational 
programs for the next-generation quantum workforce. 
  
IBM has a long, well-established history of quantum computing research, starting with Nuclear Magnetic 
Resonance based systems in the early 2000s, and moving on to superconducting qubits around 2010. In 
2016, IBM became the first company in the world to host its quantum computer on the cloud. This helped 
accelerate the field by allowing anyone around the world – students, practitioners, enthusiasts – to learn 
and use a real quantum computing system. By open sourcing its software framework, Qiskit, IBM has further 
opened the doors of quantum technology research for people around the world. 
  

6.3 IBM Quantum Development Roadmap and the Era of Utility 
 
Over the years, IBM Quantum has expanded its development roadmap (see Figure 26) to include the 
software development that must go in conjunction with improvements in hardware. Present-day devices 
are greatly limited by a variety of errors that deleteriously affect the system.  
 

 
Figure 26: At IBM Quantum Summit 2023, IBM extended its Quantum Development Roadmap to 2033, 

and has established an IBM Quantum Innovation Roadmap through 2029. (Credit: IBM). 
 
In the past decade alone, IBM has greatly improved the state of quantum systems, going from 5-10 qubits 
to a whopping 1121+ qubits (the Condor processor) not only through cutting-edge research in transmon 
processor design, but also through software, transpiler optimization, and advancing error mitigation 
schemes such as Probabilistic Error Cancellation (PEC) and Zero-Noise Extrapolation (ZNE). 
  
These efforts lead to IBM demonstrating the utility of near-term quantum computers through an experiment 
of unprecedented size and complexity in June of 2023 [168]. This experiment – simulating how a system 
of interacting spins would evolve in time – validated both that large-scale quantum circuits could be run on 
its hardware (namely, a 127-qubit IBM Quantum Eagle processor), and that the theory and approach that 

https://www.ibm.com/quantum/technology#roadmap
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IBM had developed for doing so were competitive with best-in-class, purely-classical methods known at the 
time. In particular, by benchmarking the performance of the Eagle processor against a supercomputer 
hosted by the Lawrence Berkeley National Lab, researchers found extremely competitive performance 
between both the quantum and classical methods in most experimental regimes. Subsequent work by IBM, 
the collaborators on the project, and the broader quantum computing community showed that additional 
purely-classical methods could be benchmarked against IBM’s experimental results. These additional 
results obtained on the quantum system were also competitive with best-in-class classical methods. 
 
In summary, this work opened up the door to the era of quantum utility. Quantum computers have matured 
to the point of being novel research tools unto their own right, and are capable of producing competitive 
results on challenging problems. Based on this remarkable accomplishment, IBM has charted a roadmap 
towards realizing Quantum-Centric Supercomputing.  As the first step towards building and deploying a 
100,000+ qubit system within the decade, IBM has upgraded its entire fleet to systems of 100+ qubits, 
namely the Eagle (127) and Heron (133 qubits) processors.  
 

6.4 Going Forward: Quantum Supercomputing 
 
Previous quantum systems were monolithic in nature. Scaling these systems required scaling all 
components simultaneously, which is, long term, not a feasible approach. Quantum-centric supercomputers 
(QCSCs) represent the next generation of scalable quantum systems, ones which will leverage best-in-
class capabilities (both quantum and classical) to perform otherwise-intractable computations. QCSCs 
utilize a modular architecture to enable scaling. They combine quantum communication and computation 
to increase the computational capacity of the system and use a hybrid cloud middleware to seamlessly 
integrate quantum and classical workflows. Developing, prototyping, and fielding such systems represent 
one of the most important tasks the quantum computing industry must do in the next decade. 
  

 

 
 Figure 27: IBM Quantum systems with error mitigation and error correction capabilities. 

IBM recognizes that the path to developing fault-tolerant quantum computation and quantum-centric 
supercomputing is not one that it can walk alone. IBM has a multitude of research collaborations with 
institute partners, including the IIDAI Quantum Thrust. Going forward, the focus of our research will be in 
the regime of quantum utility.  
  
With advanced quantum processors and quantum algorithms in place, quantum utility is within practical 
reach and current research challenges center around (i) expanding the realm of application problems that 
benefit from quantum utility scale systems and (ii) pushing the envelope for error correction as well as error 
mitigation to reduce noise. The difficulty in the former lies in both identifying and developing quantum 
algorithms that can be more efficient, in practice, for solving certain problems, than the best classical 
alternatives. This will require improvements on all aspects of the quantum computation including efficient 
state preparation, fast algorithms, and intelligent classical post-processing of quantum output (possibly 
supplemented by using a hybrid cloud system with AI models). Real-world quantum computation is error-
prone, statistically noisy, and rate limited in terms of gate speed. To get to the point of a practical advantage, 
significant experimentation to solve problems on quantum computers, to figure out the details of how to 
best trade-off between worse computational complexity and limited coherence, will be required. Algorithms 
such as variational quantum eigensolvers give approximate solutions without the need for deep circuits at 
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the cost of expensive and difficult optimizations; approaches such as qubitization have robust guarantees 
but require significant improvements to make the circuits practical. Where this space of algorithms 
competes favorably against the backdrop of strong classical approximations is still very much open. Striking 
a balance between application needs and algorithms that are beneficial for quantum hardware, involves 
exploring algorithms such as propagating quantum dynamics, quantum embedding techniques, and 
variational quantum eigensolvers. Classical simulation workflows heavily rely on linear algebra, such as 
matrix diagonalization and Fourier transforms. While quantum computers have demonstrated advantages 
in these areas (e.g. qsvt, qft), the scaffolding using these subroutines need to be quantum optimized to 
build out full applications. Alternatively, classical simulation workflows need to be structured exclusively or 
more prominently around efficient quantum algorithms altogether. To best understand the limits of current-
day quantum computers, we must focus on applications research on present-day devices that includes 
running large, high-depth circuits. 
 
Research challenges in point (ii) above are two-fold (see Figure 27): Error correction requires developing 
and deploying robust, reliable, and high-rate error correcting codes with rapid syndrome measurements 
and decoding. This requires a multitude of advancements in superconducting couplers, fast decoding 
schemes, and mid-circuit measurement capabilities, to name a few. Also, decoding in quantum error 
correction is an exciting usecase in HPC or hybrid cloud in combination with quantum hardware, since 
efficient decoding is crucial for error correction in the regimes of interest. Error mitigation schemes 
developed by IBM, such as Zero Noise Extrapolation and Probabilistic Error Cancellation are the best 
current methods of handling noise on present-day systems without the need for error correction. IBM 
Quantum is focused on best integrating these methods into Qiskit Primitives, which will allow users and 
researchers to get the most out of present-day hardware.  
  
Developing these is an ongoing research challenge that attracts the interest of the quantum computing 
community. The research challenges (i) and (ii) are an immense opportunity for the Quantum Thrust of 
IIDAI as exploring these leverages respective and mutual expertise and is an ideal path for industry-
academia collaboration with great fundamental and applied interest. 
  

6.5 Quantum Thrust: The Past Five Years 
 
Since the beginning of the institute in 2021, the quantum thrust has focused on key areas in further 
advancing and developing quantum computing technology. Previous projects spanned hardware 
experimentation, applications research, and foundations of quantum information processing. 
 
Major technical and education accomplishments from the technical projects include: A de-mateable cable 
connection between separated transmon qubits housed in a single dilution refrigerator was demonstrated. 
A fast (100 ns) and high fidelity (95%) SWAP gate was achieved through the connection. This result is in 
preparation for publication. Significant progress has been made on making a new qubit platform involving 
high kinetic-inductance devices. Resonators with inductors greater than 100 nH were characterized, and 
phase slip rates in 100 nm-wide wires were made.  
 
A paper describing the discovery of a new duality between teleportation and dense coding was published 
[169], and a paper on exponential separation between quantum statistical query learning and quantum 
probability approximately correct learning was published [170]. A novel error mitigation technique involving 
deep learning was developed and used to predict noiseless results for materials simulations. Furthermore, 
work on quantum computing used for material simulations was published [171], as well as more 
foundational quantum information theoretic work on multipartite entanglement [172]. 
   

6.6 Quantum Thrust: Vision and Long-Term Directions 
 
Given the current state of technological and algorithm development, the vision of this thrust going forward 
centers around the development of scientific use cases as demonstrations for quantum utility. We aim for 
these to be diverse problems that illustrate to a broad computational community the utility of quantum 
computers for their work. The vision is to focus on domain science problems, for which a successful use of 
quantum utility can be generalized to other applications. Naturally, this will start with applications in quantum 
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chemistry, materials science, and physics, but eventually, the impact must be broader across computational 
fields. This will require implementation of quantum computing aspects into computational workflows as 
those described in Figure 6, replacing those algorithms that most benefit from quantum computation. This 
thrust will also work towards building such knowledge and a structured guide of what mathematical 
operations are best suited for quantum implementations, and under what conditions, such as problem size, 
error tolerance, etc. Part of this thrust will explore development of new algorithms that can achieve better 
performance. Numerous adaptive algorithms for measuring observables on a quantum computer might 
benefit from assisting cloud-computing techniques. Combining cloud-computing techniques with 
randomized measurement techniques is another interesting avenue [173]. In addition, the development and 
especially the testing of error mitigation approaches will be critical for this thrust in the future, and will be 
explored in the context of specific scientific problems and workflows. Finally, this thrust will keep pushing 
the training of a qualified quantum workforce, starting at the high-school level, but focusing on 
undergraduate and graduate students, as well as postdocs. The vision is to develop quantum literacy in 
computational domain scientists, to enable future development of computational software packages with 
quantum integration. 
 
7 Summary 
 
This paper, prepared by the technical leadership of the IBM-Illinois Discovery Accelerator Institute (IIDAI), 
outlines our vision for the future of hybrid cloud systems in relation to emerging AI workloads, novel AI-
driven scientific applications, and quantum computing. We identify key priority focus areas for the technical 
thrusts of the Institute. Through the launch of a new research program, IIDAI is determined to tackle the 
challenges facing current hybrid cloud systems and change their trajectory to become more affordable, 
programmable, adaptive, resilient, and accessible, empowering the next generation of AI-centric 
applications for novel scientific discoveries. 
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