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Abstract

We consider models for inference which involve observers which may have mul-

tiple copies, such as in the Sleeping Beauty problem. We establish a framework for

describing these problems on a probability space satisfying Kolmogorov’s axioms,

and this enables the main competing solutions to be compared precisely.

1 Introduction

This paper is concerned with inference by observers whose existence and multiplicity is
affected by the outcome of the random experiment which they are observing. One can
argue that implicit in the classical model of a random experiment is the assumption that
there is an Observer (which I will call a Classical Observer or CO) which makes obser-
vations and inferences, exists before the experiment is performed, and whose existence is
not affected by the outcome of the experiment. Since these conditions are nearly always
satisfied in practice, little attention has been paid to this requirement by the statistics
community.

However there are some problems in physics and philosophy which involve non Clas-
sical Observers. One example comes from cosmology. The Standard Model gives a very
complete description of physical systems in which relativistic effects can be ignored, but
has 19 or so free parameters. (The exact number depends on the version of the Standard
Model.) Writing Θ for this parameter space, it appears (see for example [1, 4, 37]) that
only a small subset ΘL of Θ gives rise to universes with complex chemistry. For the sake
of our illustration, let us make the simplifying assumptions that complex chemistry is
necessary for observers, that there is a natural probability measure µ on Θ, and that
µ(ΘL) ≪ 1. Since we have to be in a universe with observers, when we measure θ we find
that θ ∈ ΘL. The point which is disputed is whether this observation, which could not
have been different from what it was, can give any information. For more background on
this see [8, 18]. This example will be discussed briefly below in Section 7.5.

The cosmological problem outlined above has conditional observers. Following the
literature, and the terminology introduced by Brandon Carter in [10], I will call these
Anthropic Observers or AO. (The term is flawed as these observers do not have to be
human.) Some cosmological models also involve the possibility of multiple observers, and
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one needs to know how the multiplicity of these observers affects inferences. (For an
example of a recent paper in this area see [39].)

A ‘toy model’ one can use to investigate these questions is the Sleeping Beauty problem,
described by A. Elga in [16]. The name is due to Robert Stalnaker, an earlier version of
the problem is due to A. Zuboff (see [48]), and an essentially identical problem is given
in Example 5 of [36], a paper on the Absentminded Driver problem in decision theory. It
is worth noting that Elga’s motivation for introducing the problem was to examine how
observers update probabilities in centered and uncentered worlds – see Section A.3.

On Sunday the experiment, as described below, is explained to Sleeping Beauty (SB).
On Sunday night she goes to sleep in an isolated cell. A fair coin is tossed. Whatever
the outcome she is awakened on Monday morning, and then on Monday evening is given
a potion which puts her to sleep and causes her to forget everything that occurred on
Monday. If the outcome of the toss was Tails she is then woken on Tuesday, while if the
outcome was Heads then she is not woken on Tuesday. We ask two questions:

Question 1. When SB wakes in her cell during the experiment, what probability should
she assign to the event that the coin landed Heads?

Question 2. If she is then told that it is Monday, what probability should she now assign
to Heads?

Philosophers’ use the term credence to denote a subjective probability. I will frequently
use that term as shorthand for “the probability law that SB uses”, but without wishing
to be tied to any particular philosophical interpretation of probability. There are four
positions in the philosophy literature. Halfers claim that the answer to Question 1 is 1

2
.

The Halfer camp then divides according to the answer to Question 2. Standard Halfers
claim that the answer to Question 2 is 2

3
, while Double Halfers argue that (somehow) the

information that it is Monday makes no difference to SB’s credence that the coin landed
Heads, so that the answer to Question 2 is still 1

2
. Thirders argue that the answer to

Question 1 is 1
3
, and then deduce that the answer to Question 2 is 1

2
. A final group argue

that the problem as stated is ambiguous, inappropriate or undetermined, or that some
other answer is correct. In his excellent review [46] Winkler suggests that the Thirder
view is the majority position among philosophers, but that this is not reflected in the
literature due to publication bias: people who believe the question is settled are less likely
to write papers on the topic.

As well as the answers to the questions above, another area of disagreement is whether
or not the problem is easy. Examples of papers which tend towards the ‘easy’ view include
[20, 38], but the majority of papers appear to regard the problem as hard, involving some
deep and difficult issues. That is certainly the view of this author: the problem probes
what we mean by observers and observations, with possible issues of identity lying in the
background.

A third area of uncertainty is whether the problem can be adequately described using
Kolmogorov’s axioms for probability. The main goal of this paper is to argue that it can.
The framework we construct then allows the competing views of Halfers and Thirders to
be evaluated in precise mathematical terms.

The original SB experiment involves fanciful and unavailable technologies: forgetfulness
potions and, in some versions, duplication machines. For the purposes of this paper, and

2



to clarify what is meant by an ‘observer’, we consider inference by artificial intelligences
(AI). We assume that we have an AI program which is able to make Bayesian inferences
as well as the most accomplished humans. (Current chatbots are not at that level, but it
would be hard to maintain that no AI can ever achieve this.) I will refer to the AI as a
shabti – this is an ancient Egyptian automaton. A shabti is a robot with the AI program
described above written on ROM; it is able to receive limited sensory information from
its environment. The ROM also contains the procedure for the current experiment. The
shabti has no internal RAM, but has a number of external slots into which, like USB
keys, RAM can be inserted. Without a RAM the shabti cannot function. When a RAM
(the RAM of the day) is inserted, the shabti is able to compute, and record data and
experiences. At the end of each day a hardware switch converts the RAM of the day into
ROM. All shabti have the same program in their ROM. When I say a shabti is woken I
will mean that a new RAM is inserted, and the shabti is switched on.

To implement the Sleeping Beauty experiment with a shabti, a shabti is placed in an
isolated cell. The coin is tossed. Whatever the outcome, on Monday morning the shabti
is woken. On Monday at midnight, Monday’s RAM, now a ROM, is removed, and the
shabti is switched off. If the coin was Heads the experiment ends there, while if it was
Tails then on Tuesday the shabti is woken a second time. Whenever the shabti is woken
we ask Questions 1 and 2 as above.

Replacing humans by a deterministic AI allows us to be certain that different anthropic
observers with the same information will make the same decisions. For the sake of conti-
nuity with earlier formulations of the problem we have kept the concept of physical entities
isolated in cells. Improvements in AI mean that it is entirely possible that experiments
equivalent to the original SB experiment could be performed in the next few decades.

Elga outlined a straightforward solution of the SB problem using conditional probabil-
ities. He claimed, using a “highly restricted” principle of indifference, that if SB is told
the toss was Tails, then she should view it is equally likely to be Monday or Tuesday, so

P(Mon|Tails) = 1
2
. (1.1)

Next, as SB is always woken on Monday morning the coin toss can be deferred until
Monday afternoon. If SB is told at midday on Monday that it is Monday, then the (fair)
coin toss is still in the future, and so SB should assign probability 1

2
to Heads. (We can

even ask SB to toss the coin.) Thus

P(Heads|Mon) = 1
2
. (1.2)

Since P(Heads|Tue) = 0 and P(Mon|Heads) = 1, we have

P(Heads) = P(Heads|Mon)P(Mon) = 1
2
P(Mon),

while writing P(Mon &Tails) in terms of conditional probabilities gives

P(Mon|Tails)P(Tails) = P(Tails|Mon)P(Mon). (1.3)

Using (1.1) and (1.2) we obtain P(Tails) = P(Mon), and a little algebra gives that
P(Heads) = 1

3
.
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This argument is simple enough that it seems surprising that the conclusion should
be disputed. Nevertheless Standard Halfers reject (1.2), while Double Halfers wish to
redefine what is meant by conditional probability.

The starting point for this paper is to ask what probability space the calculations above
take place in. Recall that in the the standard SB model there is only one randomization,
the toss of a fair coin, which suggests that it should be possible to define the model on
the space ΩO = {H, T} with P({H}) = P({T}) = 1

2
. However it is clear this cannot be

the space used in the calculation above: no event in ΩO has probability 1
3
. Further the

events {Mon} and {Tue} do not lie in this space. These events also appear ambiguous –
an outside observer of the experiment will experience both Monday and Tuesday.

The set of days is ΩA = {Mon,Tue}, and so the state of SB on waking is described by
the pair

ω = (ωo, ωa) ∈ Ω = ΩO × ΩA.

In the terminology of the philosophy literature elements of ΩO describe ‘possible worlds’,
while elements of ΩA give the observer’s location in the world. The general tendency there
is to regard these two components as being at fundamentally different levels, a point most
clearly indicated by the introduction in [22, 33, 7] of a new form of conditioning which
acts in different ways on the two components of Ω.

However, when SB is woken, she is uncertain both about ωo and ωa, and it is natural
to place her ignorance about these at the same level. Thus in this paper we will regard
the space Ω = ΩO × ΩA as the primary object. It is viewed by two observers. The
classical observer CO essentially only sees the space ΩO with its ‘objective’ probability
PO. The AO sees the space Ω, and the primary problem for the AO is to define a suitable
probability PA on Ω. This is not an ‘extension problem’ since we will not require that
PA(F × ΩA) = PO(F ) for F ⊂ ΩO. As we cannot expect to derive PA from PO using the
axioms of probability our task divides into two parts.

The first is to formulate reasonable properties (or ‘Principles’) which restrict the pos-
sible class of measures PA; these Principles have to come from our real world intuitions.
In mathematical terms these Principles provide links between the space (ΩO,PO) seen
by the CO and the space (Ω, PA) seen by the AO. The second and easier mathematical
problem is to identify the class of measures allowed by these Principles, and work out
their properties.

One Principle mentioned in the philosophy literature is Lewis’ Principal Principle (see
[32]) which roughly states that unless SB has additional evidence she should keep to the
objective probability P. We will see below strong reasons for rejecting a straightforward
use of this Principal Principle.

The remainder of this paper is as follows. In Section 2 we introduce a generalised Sleep-
ing Beauty problem (GSB). We set up the extended space Ω and define a random variable
S which gives the location of the Anthropic Observer. We then formulate three Principles
which, if accepted, determine PA uniquely. The first, denoted (PN), is a mild condition
on null sets, and will be assumed throughout this paper. The next, the Principle of Indif-
ference (PI) is an extension of (1.1). The third, the Principle of Equivalent Information
(PEI), generalises (1.2). This principle states roughly that a Classical Observer and an
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Anthropic Observer who are in communication and have shared all the information they
have available should assign the same probabilities to events in the space ΩO.

Theorem 2.4 states that these determine PA uniquely. We write PE for this probability,
and PL for the main alternative, which is based on Lewis’ Principal Principle. In Example
2.7 we look at the standard Sleeping Beauty problem and show that PE(Heads) =

1
3
and

PL(Heads) =
1
2
; we will therefore refer to PE and PL as the Thirder and Halfer measures

respectively. In Section 2.3 we show (see Theorem 2.19) that (PEI) is essentially equivalent
to the assertion that SB should assign the objective probability to random events which
are still in her future.

As the GSB model does not cover situations where observers are placed randomly in
some space, in Section 3 we extend the model and three Principles to set valued processes.

The ‘Halfer’ measure PL has counterintuitive properties as soon as one looks at con-
ditional events such as (1.1) and (1.2). Double Halfers need to find a new approach to
conditioning, and in Section 4 we examine what seems to be the most mathematically
developed proposal, HTM conditioning, as given in [22, 33, 7]. An example of [40] shows
that it takes into account what ought to be irrelevant information, and fails to satisfy
the law of total probability. Another very serious flaw is that it is sensitive to the partic-
ular formulation of the probability space used to describe the random experiment – see
Example A.3.

Section 5 discusses betting arguments, and we find that they do give an argument for
(PEI). Further, if the AO is able to make suitable additional observations, then betting
arguments suggest that the AO should use PE.

Section 6 considers repeated experiments. While it is straightforward to find the limit
of the proportion of awakenings associated with (say) Heads, it is not clear how to connect
this in a mathematically precise way with the probability law PA.

Section 7 gives some examples. Sections 7.1 looks at how SB updates her probabilities.
Section 7.2 shows that one needs to be careful when one conditions on SB’s observations,
and Section 7.3 reviews an example of Hartle and Srednicki [23] from the physics literature
where insufficient care was taken. As mentioned at the start of this paper, a key issue is
how we handle the concept of ‘existence’. Is Existence or Non existence of an observer an
event of the same kind as an observer learning the value of a random variable which takes
the values E or N? We consider a variant of the SB problem Section 7.4, and show in
this case at least that if we accept (PEI) then existence is not a special property. Section
7.5 makes a model for a simple example of Peter van Inwagen [44] designed to illuminate
the fine tuning problem. We look at the related Doomsday argument in Section 7.6, and
Bostrom’s example of the Presumptuous Philosopher (see [8, p. 124]) in Section 7.7.

The very extensive literature contains many ideas, examples and calculations. In some
cases a probability space such as our extension Ω = ΩO×ΩA is implicit, but the framework
given here does not seem to have been set out precisely before, and the formulation of
the key principle (PEI) seems to be new. The preprint [21] does consider probability laws
on the sample space Ω = ΩO × ΩA, but rejects, at least for some probability laws on Ω,
the possibility of conditioning on events like {Mon}. Thus (PEI) would be regarded as
inadmissible in the setup given there. The approach of this paper, which is natural from
a probabilistic viewpoint, concentrates on information and conditional probabilities, and
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owes much to Elga’s paper [16]. An alternative approach, as seen in for example Bostrom’s
book [8], is to start with the idea of an observer randomly chosen from some collection
of observers. Bostrom’s Self Sampling Assumption (SSA) tends to lead to Halfer type
conclusions, while his Self Indication Assumption (SIA) tends to give Thirder answers.

One reason philosophers do not agree on the solution to the Sleeping Beauty problem is
that all the approaches seem to lead to bad or paradoxical conclusions. For the Halfers the
problems arise quickly – see Example 2.7 for details. Very roughly, Standard Halfers find
themselves holding that the SB’s position gives her information about the future, while
Double Halfers have to redefine conditional probabilities. I suspect that few probabilists
or statisticians would be willing to drop Kolmogorov’s definition of conditional probability
without seeing much stronger evidence for its inadequacy than has been presented so far.

The difficulties for Thirders do not arise so immediately. However, the example of
the Presumptuous Philosopher suggests that the methods of inference used by Thirders,
together with some reasonably plausible extensions, lead to the conclusion that, without
needing to perform any measurements at all, we can assign a credence of 1 to the event
that the universe is infinite. We note that while the problem is most severe for Thirders,
Section 7.7 shows that a milder version of the same difficulty arises for Double Halfers.

2 The generalized Sleeping Beauty model

2.1 Probability spaces and observers

We generalize the Sleeping Beauty problem as follows. Let (ΩO,FO,PO) be a probability
space which carries a bounded integer valued r.v. XO : ΩO → {0, . . . ,M} with

PO(X
O = k) = qk, k = 0, . . . ,M.

We will call this the objective probability space. We can assume that qM > 0; if not we
redefine M to be max{k : qk > 0}. Most of our arguments generalize to the case when XO

is an unbounded random variable with finite expectation. But since the main challenges
of the problem are already present in the case when XO is bounded, we will restrict to
that case.

We have available M identical cells C1, . . . , CM . The cells are labelled, but on the
outside, so that an occupant does not know its cell label. Each cell is also equipped with
a telephone which permits only incoming calls. If XO ≥ 1 then XO shabti or ‘anthropic
observers’ (AO) are deployed, each one being placed and set running in a distinct cell,
starting with cell 1 and continuing until cell CXO is filled. A shabti knows the distribution
(qk) but not the value of XO or what cell it is in. If XO = 0 then no shabti are deployed.
A Classical Observer (CO) is situated outside the collection of cells, and does not initially
know the value of XO. The CO has a telephone which can be used to call cell Cj for any
j ∈ {1, . . . ,M}. (The shabti have uneventful lives, and always answer the telephone.)

We can consider three variants of this GSB model.

Simultaneous Duplicated shabti. This is the version described above: the whole experiment
takes place on one day, and the cells are occupied by distinct shabti. (This version is
almost identical with the Incubator problem given in [8, p. 64].)
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Serial Single shabti. The experiment takes place over a period of M days, with just
one shabti, which is successively placed in cell Ck on day k, for 1 ≤ k ≤ XO, and by
appropriate removal of RAMs has no memory of previous days. (This is the original
Sleeping Beauty problem.)

Serial Duplicated shabti. This is the same as Serial Single shabti, except that distinct
shabti are used on each occasion.

Yet another disputed point in the philosophy literature is whether or not these three
problems have the same answer. See [29, Section 4] for the view that the single and
duplicated problems differ. It may appear that the Duplicated problem requires some
further randomization. This would be the case if there were a warehouse containing M
shabti, XO of which are then deployed in the experiment. Even though the shabti are
identical, one still has to decide which shabti will be deployed in which cell. However, one
can instead suppose that one has a shabti fabricator, which makes a new shabti in each
of the cells Cj for j = 1, . . . , XO.

The question as to whether these different versions of the experiment have different
solutions probes hard questions on the meaning of observers and identity, which are
beyond the scope of this paper. See Remark 2.20.

To handle the experience of the AO we extend the probability space, and define

ΩA = {1, . . . ,M} ∪ {∂}, Ω = ΩO × ΩA.

Let S : Ω → ΩA be defined by S((ω, x)) = x for ω ∈ ΩO, x ∈ ΩA. Set

FW = {F × ΩA, F ∈ FO}, F = σ(FW , S) = σ(F × {x}, F ∈ FO, x ∈ ΩA). (2.1)

It is straightforward to check that F ∈ F if and only if there exist Fx ∈ FW such that

F =
⋃

x∈ΩA

{S = x} ∩ Fx. (2.2)

We call FW the objective σ-field, and events in FW objective events. In terms of the
terminology in the philosophy literature, events in FW tell us about possible Worlds. We
extend PO to a probability measure P on (Ω,FW ) by setting P(F×ΩA) = PO(F ) and write
X for the obvious extension of XO to (Ω,FW ), given by X((ω, j)) = XO(ω). Throughout
this paper we will use a superscript ‘O’ to denote random variables on the base space ΩO,
and remove it to denote the extension of the random variable to Ω.

Definition 2.1. Given a probability space (ΩO,FO,PO), and a random variable XO :
ΩO → {0, . . . ,M}, we call the collection (Ω,F ,FW ,P, X, S) the anthropic extension of
(ΩO,FO,PO, X

O).

The space (Ω,FW ,P) describes the experience of the classical observer. (It is simplest
here to consider the Simultaneous Duplicated version of the problem.) If multiple cells
are occupied the CO does not confer a distinguished status to any particular occupied
cell, so that the random variable S is not observed by the CO.
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We now look at the viewpoint of an AO, which wakes in an initially unknown cell. If
G ∈ FO and j ∈ {1, . . . ,M} then the interpretation of the event G× {j} ∈ F is that the
objective event G occurs, and the AO is situated in cell Cj. As S((ω, j)) = j we see that
the random variable S gives the location of the AO. The point ∂ is needed to give the
value of S when X = 0, and there are no anthropic observers.

Let PA be a probability on (Ω,F). In the theory of Markov chains on a countable state
space I one can derive the law P

x of the process started at any point x ∈ I by conditioning
from a single probability P

µ where µ is a probability measure on I with µ({x}) > 0 for
each x ∈ I. Similarly the law PA can cover all possible locations of the AO, and the laws
PA(·|S = j) give the credences of the AO if it learns that it is in cell Cj. This definition
does not impose any constraint on how the law PA should be chosen. One straightforward
choice is the probability PL which, when ΩO is countable, divides the P-probability of
a point ω ∈ ΩO equally among the atoms (ω, j), 1 ≤ j ≤ XO(ω). More precisely for
F ∈ FW let

PL(F ∩{X = k}∩{S = j}) =

{
k−1

P(F ∩ {X = k}|X ≥ 1) for 1 ≤ j ≤ k ≤ M,

0 for j > k.
(2.3)

This probability agrees with P conditioned on {X ≥ 1} on the σ-field of objective events,
so is certainly in the spirit of the Principal Principle. We have PL(Heads) = 1

2
in the

original SB problem, so we will refer to PL as the ‘Halfer measure’. (However, not all
Halfers would agree that this is always the appropriate credence – see Footnote 5 on p.
2891 of [12].) While this measure may seem a natural choice, we will see below that it
has some significant flaws.

We now give three ‘Principles’ which specify apparently desirable properties of PA. The
first, which places restrictions on null sets, is quite mild, while the last two give extensions
of (1.1) and (1.2). The law PL satisfies the first two but not in general the third.

Definition 2.2. We define the following three principles.

Principle of null sets. (PN).
(a) If F ∈ FW has P(F ) = 0 then PA(F ) = 0.
(b) PA(S > X, S ∈ N) = 0.
(c) PA(S = ∂) = 0.

Principle of Indifference. (PI). For k ∈ {1, . . . ,M} with PA(X = k) > 0,

PA(S = j|X = k) =
1

k
for j = 1, . . . , k. (2.4)

Principle of Equivalent Information. (PEI). Let F ∈ FW . For k ∈ {1, . . . ,M} with
PA(S = k) > 0,

PA(F |S = k) = P(F |X ≥ k). (2.5)

We will assume (PN) throughout, usually without further mention. Condition (b)
states that an AO cannot find itself in an empty cell. This does not follow from (a), since
the random variable S is not FW -measurable. It follows immediately from (b) and (c)
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that PA(X = 0) = 0.

The intuition for (PI) is that if an AO is told the value of X , and has no other
information, then it should decide it is equally likely to be in each of the possible cells
C1, . . . , CX . It is difficult to formulate any reasonable alternative distribution.

To see the motivation for (PEI), we fix k ∈ {1, . . . ,M} before the start of the experi-
ment; this value is known to the AO. Note that cell Ck is occupied if and only if X ≥ k.
After the cells have been populated the CO phones cell Ck. If the phone is answered
than the CO knows that the event {X ≥ k} occurs. If the AO receives a phone call, it
knows that it is in cell k. The AO and CO are in contact, and are allowed to share any
information they have on the experiment. (In fact neither has anything to add to what
the other already knows.) Since they then have the same information they should have
identical views on the probability of any FW -measurable event F , and hence (2.5) should
hold. We note that the point of the phone conversation is just to emphasize the fact that
the CO and AO have the same information, and it is still reasonable to assume (PEI) in
contexts when such a conversation does not occur. We also note that both [22, 35] reject
assertions similar to (PEI).

The restriction in (PEI) that F ∈ FW is necessary, since otherwise the right hand side
is undefined. Note that while the events {S = j} are disjoint, the events {X ≥ j} are
not. This asymmetry may cause one to ask whether (PEI) is the correct mathematical
formulation to describe the equivalent information of the CO and AO, but we will see
below that there are some strong additional reasons for accepting (PEI).

Definition 2.3. An anthropic probability is a probability PA on (Ω,F) which satisfies
(PN).

Set

Qn =
M∑

r=n

qr = P(X ≥ n) for 0 ≤ n ≤ M. (2.6)

Since QM > 0 we have Qj > 0 for each j ∈ {0, . . . ,M}.
We follow the same procedure as was used by Elga in [16], and use these Principles to

describe PA.

Theorem 2.4. (a) There is a unique anthropic probability PE on (Ω,F) which satisfies
(PI) and (PEI). Writing λ = 1/E(X), if F ∈ FW , 1 ≤ j ≤ r ≤ M , then

PE(F ∩ {X = r} ∩ {S = j}) = λP(F ∩ {X = r}), (2.7)

PE(F ∩ {S = j}) = λP(F ∩ {X ≥ j}). (2.8)

In particular for 1 ≤ r ≤ M ,

PE(S = r) = λQr, PE(X = r) = λrqr. (2.9)
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(b) If F ∈ FW then

PE(F ) =
E(X1F )

E(X)
, (2.10)

and so if F is independent of X then PE(F ) = P(F ).

Proof. (a) Let PE satisfy the hypotheses, and write

sj = PE(S = j), tr = PE(X = r). (2.11)

(PN) implies that t0 = s∂ = 0, and so

M∑

j=1

sj =
M∑

r=1

tr = 1. (2.12)

Let 1 ≤ j ≤ r ≤ M . We claim that

tr
r
=

qrsj
Qj

whenever 1 ≤ j ≤ r ≤ M. (2.13)

Using (PI) and (PEI) we have

PE({X = r} ∩ {S = j}) = PE(S = j|X = r)tr =
tr
r

if tr > 0, (2.14)

PE({X = r} ∩ {S = j}) = PE(X = r|S = j)sj

= P(X = r|X ≥ j)sj =
qrsj
Qj

, if sj > 0. (2.15)

Thus (2.13) holds if either tr > 0 and sj > 0, or if tr = sj = 0. If tr > 0 then (2.14)
implies that sj > 0, and if sj > 0 then (2.15) implies that tr > 0. Thus (2.13) holds in all
cases.

Since qM > 0, setting c0 = tM/(MqM ) it follows that sj/Qj = c0 for each j. Hence
tr = c0rqr for each r, and the condition (2.12) implies that c0 = λ.

Using (PEI) and sj = λQj ,

PE(F ∩ {X = r} ∩ {S = j}) = PE(F ∩ {X = r}|S = j)sj

= λP(F ∩ {X = r}|X ≥ j)Qj = λP(F ∩ {X = r}),

proving (2.7). It follows immediately that PE is unique. Summing (2.7) over r ≥ j gives
(2.8).

(b) Summing (2.7) first over j and then over r we have

PE(F ) =

M∑

r=1

λrP(F ∩ {X = r}) = λ

M∑

r=1

E(1FX1(X=r)) = λE(X1F ).

The final assertion is immediate from (2.10). �
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Notation. We will write (sj), (tr) for the probabilities given by (2.11).

Remark 2.5. (2.9) implies that for an anthropic observer (AO) which accepts (PI) and
(PEI) the PE-law of X is the size-biased distribution associated with (qr). This reweight-
ing of the law of X is well known – see for example [8, p. 122]. For the standard SB
problem the calculations are the same as in [16], and we have PE(Heads) =

1
3
. We will

therefore refer to PE as the Thirder measure.

Remark 2.6. In some contexts it might be reasonable to replace the uniform distribution
given by (PI) with a weighted distribution. Let a1, . . . , aM be strictly positive, write
Ak =

∑k

j=1 aj, and suppose PA satisfies

PA(S = j|X = r) =
aj
Ar

whenever qr > 0. (2.16)

Then as in Theorem 2.4 we have

PA(X = r) =
qrAr∑M
k=1 qkAk

, PA(S = j) =
ajQj∑M
k=1 qkAk

. (2.17)

In particular if we discount the future at rate e−b and so set aj = e−bj then (Ar) are
bounded, and we no longer have size-biasing in the PA-law of X .

Example 2.7. The original Sleeping Beauty problem. We take M = 2 and q1 = q2 =
1
2
.

We set ΩO = {1, 2}, with P({1}) = P({2}) = 1
2
, and Ω = {(i, j) : 1 ≤ i, j ≤ 2}. We

set X((i, j)) = i, S((i, j)) = j. Let PA be an anthropic probability; (PN) gives that
PA(X = 1, S = 2) = 0. Let

a = PA({(1, 1)}), b = PA({(2, 1)}), 1− a− b = PA({(2, 2)}), (2.18)

and write Heads = {X = 1}, Tails = {X = 2}, Mon = {S = 1}, Tue = {S = 2}. Then

PA(Heads|Mon) =
a

a + b
, and PA(Mon|Tails) =

b

1− a
. (2.19)

If we assume (PEI) then PA(Heads|Mon) = 1
2
, which implies a = b. If we assume (PI) then

PA(Mon|Tails) = 1
2
, so that a + 2b = 1. Thus (PI) and (PEI) together imply a = b = 1

3
.

Each of (PI) and (PEI) imposes a linear relation between a and b, and the two principles
together fix a and b. It is clear from this example that the two conditions (PI) and (PEI)
are independent, that is neither implies the other.

The probability measure for the standard Halfer position is the probability PL defined
by (2.3), which satisfies a = 1

2
, b = 1

4
. We have PL(Heads|Mon) = 2

3
, so this measure

does not satisfy (PEI). Even though the coin toss can take place on Monday afternoon,
on the standard Halfer view SB at midday on Monday should hold that this coin toss has
probability 2

3
of coming down Heads, while the CO still views it as 1

2
. We can imagine that

the CO meets SB in her cell for this coin toss; they appear to have the same information
but they have different views on the probability of Heads. One can then ask a standard
Halfer which of the two has the better insight? If it is the CO, why does SB choose
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an inferior credence? And if it is SB, how is that her forgetfulness potion, to be taken
on Monday evening, gives her superior insight into a coin toss taking place on Monday
afternoon?

The Double Halfer position is that PA(Heads) =
1
2
, and the probability of Heads given

that it is Monday is also 1
2
. If we use (2.18) and (2.19) then we obtain a = 1

2
and

a/(a+ b) = 1
2
, so that a = b = 1

2
and PA(Tue) = 0. Thus Double Halfers would appear to

be committed to the view that on waking SB is certain that it is Monday: [24] does adopt
that position. But most Double Halfers wish to allow PA(S = 2) > 0, and some wish to
keep (PI) and hold that PA(S = 1|Tails) = 1

2
. (Thus they are really ‘Triple Halfers’). It

is clear from the calculations above that this position cannot be described by the usual
axioms of probability. Double Halfers are well aware of this difficulty, and the literature
contains a number of strategies for dealing with it. One of these, a revised definition of
conditional probability, is discussed in Section 4 below.

2.2 Auxiliary processes and Technicolour Beauty

It is important to allow the AO to be able to make additional observations. Let Z =
(Zj, 1 ≤ j ≤ M) be an FW measurable process taking values in a finite set Z: we will
call this an auxiliary process. We call Zi the colour of cell Ci and assume that it is visible
somewhere in the cell Ci, so that (maybe after a short pause) the AO is able to see this
value. This model is often called Technicolour Beauty – see [40, 11, 38]. For y ∈ Z let

Ly = |{i ≤ X : Zi = y}| =
M∑

j=1

1(j≤X)1(Zj=y) (2.20)

be the number of occupied cells with index y. Set

Gy = {Ly ≥ 1} =
M⋃

i=1

{Zi = y, i ≤ X}; (2.21)

this is the event that at least one of the AO sees the index y. The event that the AO sees
the value y in its cell on the particular awakening modelled by S is

Hy = {ZS = y} =
M⋃

i=1

{Zi = y, S = i}. (2.22)

Clearly Hy ⊂ Gy, Gy ∈ FW , and in general Hy 6∈ FW .

Lemma 2.8. For F ∈ FW and y ∈ Z, PE(Hy) = λE(Ly) and

PE(F |Hy) =
E(1FLy)

E(Ly)
. (2.23)
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Proof. We have using (2.8)

PE(F ∩Hy) =
M∑

j=1

PE(F ∩ {Zj = y} ∩ {S = j})

= λ

M∑

j=1

P(F ∩ {Zj = y} ∩ {X ≥ j}) = λE(Ly1F ).

Setting F = Ω gives PE(Hy) = λE(Ly), and (2.23) follows. �

Definition 2.9. We say that an auxiliary process Z is injective if P(Ly ≤ 1) = 1 for each
y ∈ Z. Setting Zj = j for j = 1, . . . ,M gives an injective auxiliary process, so such a
process always exists.

Lemma 2.10. Suppose that Z is injective. Then

PE(F |Hy) = P(F |Gy) for all F ∈ FW . (2.24)

Proof. As Z is injective Ly = 1Gy
and (2.24) follows from (2.23). �

Definition 2.11. Suppose that Z is injective. We say that an anthropic probability PA

satisfies (PZ) if
PA(F |Hy) = P(F |Gy) for all F ∈ FW . (2.25)

(PZ) can be justified in a similar fashion to (PEI). The CO has a device which phones
the cell j with Zj = y if it exists and is occupied. If the call takes place then the CO
knows that Gy occurs, and the AO knows that Hy occurs. The equation (2.25) states that
they then have the same credence for events in FW . We will also see below a justification
for (PZ) using betting arguments.

Remark 2.12. Note that if Zj = j for each j then (PZ) is the same as (PEI).

Example 2.13. Technicolour Beauty. (See [40].) We attach to the standard SB model
an independent auxiliary process Z = (Z1, Z2) which is a random permutation of {0, 1}.
We set

ΩO = {1, 2} × {0, 1},

and as usual we take ΩA = {1, 2} and Ω = ΩO × ΩA. If (i, j, k) ∈ Ω then we define
X((i, j, k)) = i, Z1((i, j, k)) = j, Z2 = 1−Z1, and S((i, j, k)) = k. We can write Ω as the
disjoint union Ω = {X = 1, S = 2}∪H0∪H1, where the first set contains two points, and
|Hk| = 3 for k = 0, 1.

Now let PA be an anthropic probability which satisfies (PZ). Since (PN) holds we have
PA(X = 1, S = 2) = 0. Set pk = PA(Hk) so that p0 + p1 = 1. Easy calculations give that
P(Gk) =

3
4
for k = 0, 1. Then {X = i, Z1 = k, S = 1} = {X = i, Z1 = k} ∩Hk ⊂ Gk and

so using (PZ)

PA(X = i, Z1 = k, S = 1) = pkP(X = i, Z1 = k|Gk) =
pkP(X = i, Z1 = k)

P(Gk)
= pk/3.

13



A similar calculation gives PA(X = 2, Z1 = k, S = 2) = p1−k. Thus for k = 0, 1 each
of the three points in Hk have probability pk. Furthermore, any probability of this form
satisfies (PZ), so that (PZ) is not enough to determine PA.

Let Z be an injective auxiliary process. By reducing the set Z if necessary we can
assume that P(Gy) > 0 for all y. Since P(Zj = y,X ≥ j) = P(Zj = y, Ly = 1) it follows
that

P(Zj = y|X ≥ j)Qj = P(Zj = y|Gy)P(Gy). (2.26)

Write a(j, y) = P(Zj = y,X ≥ j). Set IM = {1, . . . ,M} and define the graph (IM , EM)
by {i, j} ∈ EM if there exists y ∈ Z with a(i, y)a(j, y) > 0.

Definition 2.14. We say the auxiliary process Z is spanning if the graph (IM , EM) is
connected.

Theorem 2.15. Let Z be an injective spanning auxiliary process. If PA satisfies (PN),
(PEI) and (PZ) then PA = PE.

Proof. Set s̃j = PA(S = j), h̃y = PA(ZS = y). Since Ly ≤ 1 we have

PA(Zj = y, S = j) = PA(Zj = y, ZS = y) for all j and y. (2.27)

Suppose that a(j, y) > 0. If s̃j > 0 then using (PEI) the left side of (2.27) can be written
as

PA(Zj = y|S = j)s̃j = P(Zj = y|X ≥ j)s̃j, (2.28)

while if h̃y > 0 then using (PZ) the right hand of (2.27) equals

PA(Zj = y|Hy)h̃y = P(Zj = y|Gy)h̃y. (2.29)

If follows that either s̃j = h̃y = 0 or that both s̃j and h̃y are strictly positive. In both
cases we obtain

P(Zj = y|X ≥ j)s̃j = P(Zj = y|Gy)h̃y,

and comparing with (2.26) we deduce that

Qj h̃y = s̃jP(Gy) whenever a(j, y) > 0.

Since both Qj and P(Gy) are strictly positive it follows that

s̃j
Qj

=
s̃i
Qi

whenever {i, j} ∈ EM ,

and so as (IM , EM) is connected we have s̃j = θQj for all j ∈ {1, . . . ,M} and some θ > 0.
Since

∑
j s̃j = 1 we have θ = λ, and so PA(S = j) = PE(S = j) for all j. Since PA and

PE both satisfy (PEI) it follows that PA(F ∩{S = j}) = PE(F ∩{S = j}) for all F ∈ FW

and 1 ≤ j ≤ M , and thus PA = PE. �
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2.3 Future information

In the introduction we noted that for the standard SB problem, one argument for (1.2) is
that as the coin can be tossed on Monday evening, on Monday morning it is a future event,
and so the AO and CO should assign it the same probability. We now show that, subject
to a mild restriction on the probability space, (PEI) is equivalent to a condition which
states that the AO and CO have the same views on the probability of future events. In
essence this argument proceeds by pushing every event not needed to determine whether
or not X = n for some time n into the post-n future.

We consider a serial variant of the model. To avoid measure-theoretic technicalities, we
make the assumption that the objective probability space (ΩO,FO,PO) has the following
structure.

Assumption 2.16. (1) There exist independent Bernoulli random variables (V O
n , 0 ≤

n ≤ M) and UO, such that UO is uniform on [0, 1] and

PO(V
O
n = 1) = 1− PO(V

O
n = 0) = qn/Qn, 0 ≤ n ≤ M. (2.30)

(2) FO = σ(UO, V O
n , 0 ≤ n ≤ M).

(3) The r.v XO satisfies
XO = min{n : V O

n = 1}. (2.31)

Remark 2.17. This assumption is much less restrictive than it might appear. A standard
probability space is a space which is isomorphic to the unit interval with Lebesgue measure.
In [26, p. 61] Itô remarks that “all probability spaces appearing in practical applications
are standard”, which can be restated as saying that any stochastic process appearing in
practical applications can be defined as a measurable function of a single r.v. U with
uniform distribution on [0, 1]. In particular, if X̃ is a random variable taking values in

{0, . . . ,M} and Z̃ = (Z̃1, . . . , Z̃M) is a stochastic process taking values in a complete
separable metric space K, then there exists a probability space (ΩO,FW ,PO) satisfying
Assumption 2.16 carrying XO, ZO such that (XO, ZO

1 . . . , ZO
M) has the same distribution

as (X̃, Z̃1, . . . , Z̃M). See [26] for more details.

We write (Vn), U for the extensions of (V O
n , n ∈ Z+) and UO to the space (Ω,F ,P).

Assumption 2.16 implies that FW = σ(U, Vn, 0 ≤ n ≤ M). From (2.31) we have

{X ≥ n} = {Vk = 0, 0 ≤ k ≤ n− 1}.

We regard the randomization Vk as being made at the end of day k, and the randomization
U being made at the end of day M . Note that P(VM = 1) = 1.

Definition 2.18. Principle of no future information. (PNFI).
Let 0 ≤ n ≤ M . Then if G ∈ σ(Vn, . . . , VM , U)

PA(G|S = n) = P(G). (2.32)
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We assume that the CO is able to observe the random variables Vk as they occur.
The value n is fixed at the start of the experiment. On day n the CO knows the values
of V0, . . . , Vn−1, and thus whether or not X ≥ n. If X < n the CO takes no action.
If V0 = · · · = Vn−1 = 0, so that X ≥ n, then as G is independent of V0, . . . , Vn−1 we
have P(G|X ≥ n) = P(G), and the right hand side of (2.32) gives the CO’s conditional
probability that G will occur. If X ≥ n then the CO telephones cell n and talks to the
AO there. The AO thus knows that the event {S = n} holds, and hence also knows that
{X ≥ n}. The event G lies in the future for the AO also, and the left side of (2.32) is the
AO’s conditional probability that it will occur. (PNFI) then states that the two observers
agree on the probability of this future event.

Theorem 2.19. Suppose that Assumption 2.16 holds. Then (PEI) and (PNFI) are equiv-
alent.

Proof. Suppose that (PEI) holds, and let G ∈ σ(Vn, . . . , VM , U). Then G ∈ FW and is
independent of {X ≥ n}. Hence (2.32) follows immediately from (PEI).

Now suppose that (PNFI) holds. Let (e0, . . . , en−1) ∈ {0, 1}n, H = {Vk = ek, 0 ≤ k ≤
n − 1}, and write H1 = {Vk = 0, 0 ≤ k ≤ n − 1}. Let G ∈ σ(Vn, . . . , VM , U). If the AO
knows that {S = n} then it knows that H1 has occurred, and so PA(G∩H|S = n) = 0 if
H 6= H1, while

PA(G ∩H1|S = n) = PA(G|S = n). (2.33)

Similarly we have P(G ∩ H|X ≥ n) = 0 if H 6= H1, and P(G ∩H1|X ≥ n) = P(G). We
therefore deduce that

PA(G ∩H|S = n) = P(G ∩H|X ≥ n). (2.34)

Using the π-λ Lemma (see [15, p. 447]) and property (2) of Assumption 2.16 it follows
that (PEI) holds. �

Remark 2.20. At the beginning of this Section we described three distinct variants of
the GSB model. All can be described by the anthropic extension (Ω,F , PA), but the
strengths of the arguments for (PEI) and (PI) differ according to the variant. The ‘future
information’ argument for (PEI) given above is most persuasive in the context of a serial
model, while the justification for (PI) is clearest for the simultaneous model.

3 A set valued GSB model

In the model given above, the cells were filled starting with cell C1 and continuing to
cell CX . In some examples, such as the one considered in Section 7.3, one needs to allow
more general possibilities for the filled and unfilled cells, and in this section we extend
our model to cover this situation.

Let K be a finite set; each x ∈ K is associated with a cell Cx which is the possible
location of an AO. Let P(K) be the set of all subsets of K, and let (ΩO,FO,PO) be a
probability space with a random variable XO : ΩO → P(K). (Thus XO(ω) ⊂ K for each
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ω). We assume that 0 ≤ PO(X = ∅) < 1. We now proceed very much as before. Let ∂ be
a point not in K, ΩA = K ∪ {∂}, and Ω = ΩO × ΩA. Set FW = {F × ΩA, F ∈ FO}, and
extend PO to a probability measure P on (Ω,FW ) by setting P(F × ΩA) = PO(F ). We
write X ((ω, x)) = XO(ω), and define S : Ω → ΩA by S((ω, x)) = x for ω ∈ ΩO, x ∈ ΩA.
Finally we set F = σ(FW , S). As in Section 2 we call (Ω,F ,FW ,P,X , S) the anthropic
extension of (ΩO,FO,PO).

Now set

qB = P(X = B), for B ⊂ K, (3.1)

Qx = P(x ∈ X ) =
∑

B:x∈B

qB. (3.2)

We now rewrite our principles for this more general setup. For clarity we label these
principles as (SP...).

Principle of null sets. (SPN).
(a) If F ∈ FW and P(F ) = 0 then PA(F ) = 0.
(b) PA(S ∈ K \ X ) = 0.
(c) PA(S = ∂) = 0.

(SPN) gives that

PA(X = ∅) = PA(X = ∅, S = ∂) + PA(X = ∅, S ∈ K) = 0.

Principle of Indifference. (SPI). For x ∈ K, B ⊂ K, with PA(X = B) > 0,

PA(S = x| X = B) = |B|−11B(x). (3.3)

Principle of Equivalent Information. (SPEI). If F ∈ FW and PA(S = x) > 0 then

PA(F |S = x) = P(F |x ∈ X ). (3.4)

As before we will always assume that (SPN) holds. We continue to use the term
anthropic probability to mean a probability on (Ω,F) which satisfies (SPN).

We define a graph structure on K by defining {x, y} to be an edge if there exists a set
A ⊂ K with qA > 0 such that x, y ∈ A. Let E be the set of edges.

Theorem 3.1. Suppose that (K,E) is connected. There is a unique anthropic probability
PE on (Ω,F) which satisfies (SPN), (SPI) and (SPEI). Writing λ = 1/E(|X |) we have

PE(F ∩ {X = B} ∩ {S = x}) = λP(F ∩ {X = B}) for F ∈ FW , B ⊂ K, x ∈ B. (3.5)

In particular

PE(S = x) = λQx, PE(X = B) = λ|B|qB, for x ∈ K, B ⊂ K, (3.6)

and if F ∈ FW then

PE(F ) =
E(1F |X |)

E(|X |)
. (3.7)
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Proof. Let PE be a probability which satisfies the hypotheses, and write

tB = PA(X = B), for B ⊂ K, sx = PA(S = x). (3.8)

The conditions on K and X imply that Qx > 0 for each x ∈ K.
Let B ⊂ K and x ∈ B. If tB > 0 then by (SPI)

PE(S = x,X = B) = PE(S = x|X = B)tB =
tB
|B|

. (3.9)

If sx > 0 then by (SPEI)

PE(S = x,X = B) = PE(X = B|S = x)sx = P(X = B|x ∈ X )sx =
sxqB
Qx

. (3.10)

Thus we have
tB

qB|B|
=

sx
Qx

(3.11)

for any pair (x,B) with qB > 0 and x ∈ B. If {x, y} is an edge in the graph (K,E) then
it follows that sx/Qx = sy/Qy. As the graph (K,E) is connected, the function sx/Qx is
equal to a constant λ on K. We then have tB = λ|B|qB and since

∑
B⊂K tB = 1 it follows

that λ−1 = E(|X |).
A further application of (SPEI) proves (3.5), which gives the uniqueness of PE. �

The case when (K,E) is not connected does not arise much in applications, but for
the sake of completeness the details are given in the Appendix.

Example 3.2. Four Beauties. This elegant example is due to Pittard [35]. The experi-
ment lasts for one night only, with four participants (‘Beauties’) A, B, C, D. One of the
four will be chosen at random to be the ‘victim’. The four participants all go to sleep.
Three times in the night a pair of participants are woken at the same time for a period
(say 15 minutes) during which they can converse. Then they go back to sleep, and as
usual are given a memory erasing drug so that they forget the awakening. The victim is
woken all three times, and paired with each other participant exactly once.

To analyse this model we need to describe the awakenings of a particular participant,
A say. We take ΩO = {A,B,C,D}, and let K = ΩA = {B,C,D} be the set of possible
partners of A during an awakening. We write ω = (v, x) for points in Ω, and with ω of
this form we define V (ω) = v, S(ω) = x ∈ K. So V gives the victim, and S describes A’s
partner for that awakening. P is the probability which makes V uniform on ΩO, and X
is defined by X = K if V = A, and X = {V } if V 6= A.

As P(X = K) > 0 the model satisfies the hypotheses of Theorem 3.1. We have Qx = 1
2

for x = B,C,D, and E|X | = 3
2
, so that λ = 2

3
. Thus PE(S = x) = λQx = 1

3
for

x = B,C,D. Suppose that A wakes and sees that the other person woken is B. Then,
using (SPEI) the probability that A is the victim is

PE(V = A|S = B) = P(V = A|B ∈ X ) =
P(V = A)

P(B ∈ X )
= 1

2
.
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This answer accords with common sense – A and B are in the same situation and by
symmetry each regards herself as equally likely to be the victim.

On the other hand, if we use the Halfer measure PL then PL(V = A) = P(V = A) = 1
4
,

while by symmetry PL(S = B) = PL(S = B|V = A) = 1
3
. Hence

PL(V = A|S = B) =
PL(S = B|V = A)PL(V = A)

PL(S = B)
= 1

4
.

Thus if A and B are woken together then as A has credence 1
4
that she is the victim, she

must have credence 3
4
that B is the victim. B, of course, has the opposite credences. A

and B appear to have the same information, and can share all they that know, but still
have different credences for an objective event. Although this example would seem to
pose a severe challenge for Halfers, [35] does nevertheless adhere to the Halfer position.

Some experiments may have more than one natural choice for the collection of states
(or cells) for the AO. For example [11] studies the standard Sleeping Beauty problem, but
include her states on Sunday, before the experiment begins, and on Wednesday when it
is finished.

It is thus natural to look at model restriction. We start with a r.v. XO : ΩO → P(K);
we then define (Ω,F ,FW ,P,X , S) as above. Note that ΩA = K ∪{∂}, and Ω = ΩO×ΩA.
We assume that the graph (K,E) is connected, and write PE for the unique anthropic
probability which satisfies (SPI) and (SPEI). Let K ′ ⊂ K, and suppose that the AO
knows that it is K ′. We can consider restriction to K ′ in two ways.

The first is by conditioning on the observer being in K ′, and so to look at

P̃E(F ) = PE(F |S ∈ K ′), F ∈ F . (3.12)

The second is by looking at a reduced model. Define X ′O = XO ∩ K ′, and let
(Ω′,F ′,F ′

W ,P′,X ′, S ′) be the anthropic extension of (ΩO,FO,PO,X
′O). Note that Ω′ =

ΩO × Ω′
A, where Ω′

A = K ′ ∪ {∂}. If F ∈ FW then there exists G ∈ FO such that
F = G× ΩA. We define F ′ = G× Ω′

A, and note that

P
′(F ′) = PO(G) = P(F ).

Let (K ′, E ′) be the graph obtained by taking {x, y} ∈ E ′ if x, y ∈ K ′ and there exists
A ⊂ K ′ with x, y ∈ A and P

′(X ′ = A) > 0. The graph (K ′, E ′) need not be connected,
but if it is then we write P ′

E for the unique anthropic probability associated with this

system which satisfies (SPI) and (SPEI). P̃E and P ′
E cannot be the same, since they are

defined on different spaces. But they do give rise to the same probabilities for objective
events and for the location of the AO.

Proposition 3.3. Assume that (K ′, E ′) is connected, and let x ∈ K ′, G ∈ FO. Then
writing F = G× ΩA, F

′ = G× Ω′
A,

P̃E(F ∩ {S = x}) = P ′
E(F

′ ∩ {S ′ = x}). (3.13)
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Proof. If y ∈ K ′ then Q′
y = P

′(x ∈ X ′) = Qy. Let λ
′ = 1/E′(|X ′|), and note that

1

λ′
=

∑

y∈K ′

Qy.

Then using (SPEI) we obtain

P̃E(F ∩ {S = x}) = PE(F ∩ {S = x}|S ∈ K ′) =
PE(F ∩ {S = x})

PE(S ∈ K ′)

=
PE(F |S = x)sx∑

y∈K ′ sy
=

P(F |x ∈ X )Qx∑
y∈K ′ Qy

= λ′
P(F ∩ {x ∈ X}) = λ′

PO(G ∩ {x ∈ XO}).

Noting that P ′
E(x ∈ X ) = λ′Qx, we have using (SPEI)

P ′
E(F

′ ∩ {S ′ = x}) = P
′(F ′|x ∈ X ′)λ′Qx = λ′

PO(G ∩ {x ∈ X ′O}).

If x ∈ K ′ then {x ∈ X ′O} = {x ∈ XO}, so we obtain (3.13). �

Remark 3.4. Not all the models in the philosophy literature satisfy this natural property.
See for example [9] and Section 6.

4 Double Halfer conditioning

We now review one explicit proposal from Double Halfers for a new definition of condi-
tioning – see [22, 33, 7]. This is called the Halfer rule in [7], and HTM conditioning in
[33]. For simplicity we will just look at the GSB model in Section 2 with q0 = 0, and will
assume further that ΩO, and hence Ω, is countable.

Let PA be an anthropic probability on Ω. We define the projection of PA onto ΩO by

PA(Go) = PA(Go × ΩA) for Go ∈ FO.

To avoid unnecessary clutter we will write PA(ω) for PA({ω}), etc. For F ∈ F , ω ∈ ΩO,
set

Fω = F ∩ ({ω} × ΩA),

S(F, PA) = {ω : PA(Fω) > 0}.

Note that Ωω = {ω} × ΩA and

PA(Fω) ≤ PA(Ωω) = PA(ω).

Hence
PA(S(F, PA)) =

∑

ω∈S(F,PA)

PA(ω) ≥
∑

ω∈S(F,PA)

PA(Fω) = PA(F ). (4.1)
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Definition. Let F ∈ F satisfy PA(F ) > 0. Let (ω, k) ∈ Ω. We define the Double Halfer
(DH) conditioning PA((ω, k)||F ) as follows.
Case 1. If PA(Fω) = 0 we set PA((ω, k)||F ) = 0.
Case 2. If PA(Fω) > 0 we set

PA((ω, k)||F ) = PA(ω|S(F, PA))PA((ω, k)|Fω). (4.2)

Note that in Case 2 we have PA(S(F, PA)) ≥ PA(ω) ≥ PA(Fω) > 0, so that both condi-
tional expectations in (4.2) are defined. We then write for G ∈ F ,

PA(G||F ) =
∑

(ω,k)∈G

PA((ω, k)||F ). (4.3)

If PA(Fω) > 0 we can write

PA((ω, k)||F ) =
PA(Ωω)

PA(S(F, PA))

PA((ω, k) ∩ F )

PA(Fω)

= PA((ω, k)|F )
PA(F )

PA(S(F, PA))

PA(Ωω)

PA(Fω)
. (4.4)

Remark 4.1. (a). The definition looks (and is) cumbersome, but it arises naturally if one
regards the two coordinates of a point (ω, k) ∈ Ω = ΩO × ΩA as being at fundamentally
different levels. In the terminology of philosophers, elements ω ∈ ΩO are regarded as
‘possible worlds’, while k ∈ ΩA gives the observer’s location in that world.

Suppose that an AO with initial credence PA on (Ω,F) learns that the event F ⊂ Ω
holds. HTM conditioning gives priority to the new information F gives about possible
worlds, so the first step is to reduce to the set of possible worlds which are compatible with
the observation F , and up to a null set this is S(F, PA). HTM conditioning proceeds by
first conditioning on S(F, PA), and then dividing the probability PA(ω|S(F, PA)) among
the points in Fω in proportion to their original PA-probabilities.
(b) If ΩO is uncountable one would need a different definition. Given the questionable
utility of HTM conditioning we will not explore that issue.

We now explore the properties of this definition.

Lemma 4.2. Let PA(F ) > 0.
(a) PA((ω, k)||F ) > 0 if and only if PA((ω, k)) > 0 and (ω, k) ∈ F .
(b) We have

PA(Fω||F ) = PA(Ωω||F ) = PA(ω|S(F, PA)). (4.5)

(c) PA(·||F ) is a probability measure on (Ω,F).

Proof. (a) This is immediate from (4.4).
(b) This follows immediately on summing (4.2) over k.
(c) Using (b) we have

∑

ω∈S(F,PA)

∑

k∈ΩA

PA((ω, k)||F ) =
∑

ω∈S(F,PA)

PA(Fω||F ) =
∑

ω∈S(F,PA)

PA(ω|S(F, PA)) = 1.
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The countable additivity of PA(·||F ) is immediate from (4.3). �

The next Lemma, which is a straightforward consequence of Definition 4.2, shows that
HTM conditioning iterates correctly.

Lemma 4.3. If F,G ∈ F with PA(F ∩G) > 0, then writing P̃A(·) = PA(·||F ), we have

P̃A(H||G) = PA(H||F ∩G) for H ∈ F . (4.6)

HTM conditioning takes a simpler form if one of the events is in FW .

Lemma 4.4. Let F,G ∈ F with PA(F ) > 0.
(a) If G ∈ FW then

PA(G||F ) = PA(G|S(F, PA)× ΩA).

(b) If F ∈ FW then
PA(G||F ) = PA(G|F ).

Proof. (a) We can write G = Go × ΩA where Go ∈ FO. So Gω = Ωω for ω ∈ Go and

PA(G||F ) =
∑

ω∈Go

PA(Gω||F ) =
∑

ω∈Go

PA(ω|S(F, PA))

= PA(Go|S(F, PA)) = PA(G|S(F, PA)× ΩA).

(b) If F ∈ FW then F = (S(F, PA) × ΩA) ∪ D, where D ∈ FW and PA(D) = 0. Then
PA(F ) = PA(S(F, PA)) and Fω = Ωω for all ω ∈ S(F, PA). The result then follows from
(4.4). �

Rather remarkably, in a number of important cases HTM conditioning of the law PL

gives the same answer as standard conditioning of PE.

Proposition 4.5. Consider a countable probability space (Ω,F ,FW ,P) carrying a GSB
model together with an auxiliary process Z = (Zj , 1 ≤ j ≤ M) which takes values in a
finite set Z.
(a) If F ∈ FW and 1 ≤ j ≤ M then

PL(F ||S = j) = PE(F |S = j). (4.7)

(b) If F ∈ FW , 1 ≤ j ≤ M , y ∈ Z and P(Zj = y,X ≥ j) > 0 then

PL(F ||ZS = y, S = j) = PE(F |ZS = y, S = j). (4.8)

(c) If Z is injective, P(Gy) > 0, and F ∈ FW then

PL(F ||ZS = y) = PE(F |ZS = y). (4.9)
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Proof. We can assume that P(Ωω) > 0 for all ω ∈ ΩO. Recall that PL(F ) = P(F ) for
F ∈ FW .
(a) As qM > 0 and PE and PL both satisfy (PI) it follows that PL(S = j) > 0 and
PE(S = j) > 0. We have ω ∈ S({S = j}, PL) if and only if XO(ω) ≥ j. So by Lemma
4.4(a) PL(F ||S = j) = PL(F |X ≥ j) = P(F |X ≥ j). As PE satisfies (PEI) this equals
PE(F |S = j).
(b) Set D = {S = j, Zj = y}. Then S(D,PL) × ΩA = {X ≥ j, Zj = y}. It follows that
PL(Zj = y, S = y) > 0. Hence

PL(F ||Zj = y, S = j) = P(F |Zj = y, S = j).

Similarly we have PE(Zj = y, S = y) > 0, and using (PEI) we obtain PE(F |ZS = y, S =
j) = P(F |Zj = y,X ≥ j), which proves (4.5).
(c) This does not follow from (b), since, as we will see below, HTM conditioning does
not in general satisfy the law of total probability. Recall the definition of Gy and Hy

from Section 2. Then S(Hy, PL) = Gy, and the condition on Ly implies that PL(Hy) > 0.
Hence

PL(F ||Hy) = PL(F |Gy) =
P(F ∩Gy)

P(Gy)
. (4.10)

As Z is injective Ly = 1Gy
and the right side of (4.10) equals E(1FLy)/E(Ly), which by

Lemma 2.8 is equal to PE(F |Hy). �

We now look at some examples

Example 4.6. Sleeping Beauty. Using the notation of Example 2.7, by Proposition 4.5(a)
we have

PL(Heads||Mon) = PL(X = 1||S = 1) = PE(X = 1|S = 1) = 1
2
.

Thus HTM conditioning does indeed do its desired job in this case.

Example 4.7. Technicolour Beauty. We use the notation of Example 2.13, and recall

that Ω = ΩO ×ΩA =
(
{1, 2} × {0, 1}

)
× {1, 2}. The probability PL on this space assigns

probability 1
4
to the points (1, j, 1) for j = 0, 1, probability zero to (1, j, 2) for j = 0, 1,

and probability 1
8
to the remaining points (2, j, k) for j = 0, 1, k = 1, 2. We have

PL(X = 1) = 1
2
, PL(X = 1|S = 1) = 2

3
, PL(X = 1||S = 1) = 1

2
.

The first two equalities above come from straightforward computations, while the final
one comes from Proposition 4.5(a). However by Proposition 4.5(c)

PL(X = 1||ZS = 0) = PE(X = 1|ZS = 0) = 1
3
.

This example, which shows that HTM conditioning is sensitive to what should be irrele-
vant information, is given in [40]. Further, it is easy to verify that PL(ZS = 0) = PL(ZS =
1) = 1

2
, so that

1
2
= PL(X = 1) 6=

1∑

j=0

PL(X = 1||ZS = j)PL(ZS = j) = 1
3
.
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Thus HTM conditioning fails to satisfy the law of total probability. According to the
Double Halfer, after she wakes up, but before she opens her eyes, SB assigns a credence
of 1

2
to Heads (i.e. X = 1). She then opens her eyes, observes ZS, and whatever she sees

she then changes her credence to 1
3
.

Example 4.8. A large universe version of Technicolour Beauty. This example will be
used again in Section 7.7. Let 1 ≪ N1 ≪ M ≪ N2, and consider the GSB model with
qN1

= qN2
= 1

2
, and an auxiliary process Z = (Z1, . . . , ZN2

) where Zj are i.i.d., independent
of X , and uniformly distributed on a space Z with |Z| = M . (Note that this auxiliary
process is not injective.) Let y ∈ Z. We wish to calculate

PL(X = N1||ZS = y).

We therefore set ΩO = {1, 2} × ZN2 , and write points in ΩO as ω = (ωO, z), where
z = (z1, . . . , zN2

) ∈ ZN2 . We take ΩA = {1, . . . , N2}, and write points in Ω as (ωO, z, k).
We define the random variables X,Zj, S by X(ωO, z, k) = NωO

, Zj(ωO, z, k) = yj and
S(ωO, z, k) = k. PL is the probability such that

PL(ωO, z, k) =





1
2
M−N2N−1

1 if ωO = 1, 1 ≤ k ≤ N1,

0 if ωO = 1, N1 ≤ k ≤ N2,
1
2
M−N2N−1

2 if ωO = 2, 1 ≤ k ≤ N2.

Fix y ∈ Z. The proof of (4.10) in Proposition 4.5 does not require that Ly ≤ 1, so we
obtain

PL(X = N1||ZS = y) =
P({X = N1} ∩Gy)

P(Gy)
=

P(Gy|{X = N1})

P(Gy)
.

Since P(Gy|X = Ni) = 1− (1− 1/M)Ni, we have P(Gy|X = N1) ≃ N1/M and P(Gy|X =
N2) ≃ 1. Thus

PL(X = 1||ZS = a) ≃
N1

M
. (4.11)

Since PL(X = N1) = 1
2
, the observation ZS = y by SB causes a huge decrease in her

credence that X = N1, irrespective of the value of y. (This calculation still works if for
each j the random variable Zj is uniformly distributed on a set Zj with |Zj | = M .)

HTM conditioning has two further undesirable properties. It is not not stable un-
der convergence in total variation norm, and it is sensitive to ‘hidden’ properties of the
probability space. For details see Appendix A.2.

Remark 4.9. Suppose that SB has woken up in her cell and chosen her credence PA.
She has to decide how she will update her credence for Heads if she is told later that it
is Monday. She could use either PA(Heads|Mon) or PA(Heads||Mon). But, as we have
seen, the second quantity behaves badly in a number of ways, and it is hard to see why
she should prefer it to the classical definition of Kolmogorov.
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5 Betting

One way to determine credences is to use betting arguments. We consider bets of the
following form between two observers A and B. Let F1 and F2 be disjoint events, and let
a, b ∈ R+ with a+ b > 0. If F1 occurs then B pays A $a, and if F2 occurs then B pays A
$b. The gain of A is

W (A) = a1F1
− b1F2

, (5.1)

and the bet is (weakly) favourable for A if E(W (A)) ≥ 0. The bet is fair if the expected
gain is zero, so that

aP(F1) = bP(F2). (5.2)

If this bet such is fair, then it is fair for both players. (This might not occur if A and B
have different information, or use different probability measures.) It is easy to check that
the condition in (5.2) is equivalent to

P(F1|F1 ∪ F2) =
b

a+ b
. (5.3)

All the bets will be between the CO and an AO, and will be proposed by the CO. We
write W (CO) for the payout to the CO – the payout to the AO is −W (CO). We will need
to be careful that the arrangements for the bet do not lead to any information disparity
between the CO and AO. To simplify terminology by favourable I will mean favourable
or fair, and to avoid the need for small perturbations of bets, I will assume that the AO
is a compulsive gambler and so will accept any bet which it perceives to be favourable. I
also assume linear utility for both the CO and AO.

There is a substantial literature on betting arguments for the Sleeping Beauty problem,
which includes [3, 25, 6, 14, 7, 12, 2, 47], and the size of this literature is in itself an
indication that betting arguments are not conclusive in resolving the problem. Several
issues arise, the first of which is the possible need for multiple bets.

The simplest bet in the standard SB problem is for the CO to phone the AO and
offer the bet B1 with payout W

(CO)
1 = a1(Heads) − b1(Tails). But this bet immediately faces

difficulties. If the bet is offered just once (say on Monday) then the offer of the bet will
give the AO further information. The CO therefore has to offer the bet every time the
AO wakes, and in this case one needs to decide how the CO and AO will take those other
possible bets into account.

On Heads the CO gains a, but on Tails the CO has to offer the bet twice, so will lose
2b. Thus the CO’s gain over the week is W

(CO)
2 = a1(Heads)− 2b1(Tails), and so the CO will

regard the bet as fair if a = 2b. (A minor difficulty is that the CO may have to offer the
bet on both Monday and Tuesday, but without knowing the day: see [25] for one way of
dealing with this problem.)

In the context of this paper, where the AO is a shabti, we have seen that there are
Single shabti or Duplicated shabti versions of the problem. For the bet B1 one needs
to ask how a shabti regards possible gains by itself in the past or future, or by another
shabti.
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In the single shabti case one can ask if it is an evidential decision theorist (EDT) or a
casual decision theorist (CDT). A shabti knows that its past or future self will make the
same decisions as it does. An EDT will take the effect of those decisions into account,
while a CDT will not. Briggs [7] argues that SB should be a Thirder or Halfer according
to whether she is a CDT or an EDT, though Arntzenius in [3] had already remarked that
“it seems rather odd that SB’s degrees of belief would depend on the decision theory that
she accepts”. Armstrong [2] looks further into the decision theory problem, and identifies
five different types of possible agents.

Given these difficulties we will only consider bets which are offered at most once during
the experiment.

The argument we use is based on the ‘Late bet’ in [47]. We consider the GSB ex-
periment in the single serial shabti version. Write IM = {1, . . . ,M}, and recall that
ΩA = {∂} ∪ IM .

Definition 5.1. Let F ∈ FW , and T : Ω → ΩA be a FW -measurable random variable
which satisfies P(T ∈ IM) > 0 and T ≤ X whenever T ∈ IM . Set DT = {T ∈ IM}, let
a, b ∈ R+ with a+ b > 0 and set

W = W (F, T, a, b) = a1F∩DT
− b1F c∩DT

. (5.4)

The bets B0(W (F, T, a, b)) and BT (W (F, T, a, b)) both have payouts W to the CO. The
bet BO is offered by the CO before the experiment – we have to assume that the AO has
a pre-experimental existence. The bet BT is offered by the CO to the AO at time T if DT

occurs. Note that the conditions on T imply that the cell CT is occupied if DT occurs.
We call B0 and BT betting proposals, and will say that they are P-fair if E(W ) = 0.

Note that as the bet BT and the time that it is offered is offered is fixed in advance,
the CO cannot take advantage of the AO by using information, such as the value of T ,
which it may have gained during the experiment.

To use this bet to give information on the AO’s credences, we need two steps:
(1) Determine for which a, b the AO will regard this bet as fair,
(2) Use these values of a, b to give information on PA.

(1) We proceed, as in [47], by a diachronic Dutch Book argument. (This differs from the
standard Dutch Book argument as given in [28].) This takes place in three time periods:
Before, During and After the experiment. Bets are settled the the third (After) period.
Let F, T, a, b be as in Definition 5.1, and suppose that E(W (F, T, a, b)) = 0. Before the
experiment the CO offers the AO the bet B0(W (F, T, a, b)). It is almost universally agreed
(see [42, p. 1004]) that at this point the AO should have the same credences as the CO,
and so both will regard this bet as fair.

Now let a′ < a and choose 1 < λ < a/a′. During the experiment, if DT occurs, the CO
offers the bet BT (−W (F, T, λa′, λb)) at time T . Suppose that the AO will regard this bet
as fair. Then the final payout After the experiment will be

W (CO) = W (F, T, a, b)−W (F, T, λa′, λb) = (a− λa′)1F∩DT
+ b(λ− 1)1F c∩DT

.

This satisfies W (CO) ≥ 0 and E(W (CO)) > 0: the CO cannot lose and may gain, and this
suggests that the AO should not regard the bet BT (−W (F, T, λa′, λb)) as fair. Using lin-
earity the AO should also regard the bet BT (W (F, T, a′, b)) as unfair. A similar argument
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handles the case a′ > a, and it follows that the AO should regard BT (W (F, T, a, b)) as
fair.

(2) Suppose that the AO regards the bet BT (W (F, T, a, b)) as fair. We wish to use this
to obtain information on the AO’s credence PA. When the bet is offered the AO knows
that S = T but has no other information. The natural criterion is that PA should satisfy
EA(W (F, T, a, b)|S = T ) = 0. We will assume that this is the case, but one should note
that some papers, such as [3, 6], dispute the connection between fair bets and credences.

These arguments support the following Principle.

Principle of Fair Betting (PFB). Let PA be an anthropic probability. We say that
(PFB) holds for PA if whenever F, T, a, b are as in Definition 5.1, and BT (W (F, T, a, b))
is a P-fair betting proposal, then EA(W (F, T, a, b)|S = T ) = 0.

Theorem 5.2. Let PA be an anthropic probability which satisfies (PFB).
(a) PA satisfies (PEI).
(b) If an injective spanning auxiliary process Z exists then PA satisfies (PZ) and hence
PA = PE.

Proof. Let Z be an injective auxiliary process with values in a set Z. We can assume
that P(Gy) > 0 for each y ∈ Z. For y ∈ Z let Ty = ∂ on Gc

y, and

Ty = min{j ≥ 1 : Zj = y} on Gy.

Then DTy
= Gy and {S = Ty} = Hy.

Fix y and let F ∈ FW , and choose a, b so that BT (F, Ty, a, b) is P-fair. By (PFB) we
have

EA(W (F, Ty, a, b)|S = Ty) = EA(a1F∩Gy
− b1F c∩Gy

|Hy) = 0. (5.5)

It follows that aPA(F |Hy) = b/(a+ b) and hence that PA(F |Hy) = P(F |Gy), so that (PZ)
holds.
(a) Taking Zj = j for 1 ≤ j ≤ M and using Remark 2.12 we deduce that (PEI) holds.
(b) As Z is spanning and (PZ) holds we have PA = PE by Theorem 2.15. �

Remark 5.3. The Theorem above shows that betting arguments support (PEI) and (if
a suitable spanning process Z exists) that the AO should take PA = PE. Note though
that the Dutch Book argument given here relies on the AO having a pre-experimental
existence.

6 Long run frequencies

Suppose that the SB experiment is repeated over a period of N weeks. We assume that
when SB is awoken she is ignorant both of the week and the day. We need to use the
model in Section 3, and take ΩO = {H, T}N , FO to be the set of all subsets of ΩO

and PO to be the probability which assigns mass 2−N to each point in ΩO. We take
ΩA = {1, . . . , N} × {1, 2} and let (Ω,F ,FW ,PN ,X , S) be as defined in Section 3: we
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write P
N to emphasize the dependence on N . We write the r.v. S = (SW , SD); here SW

specifies the week and SD the day. Let Xj ⊂ {(j, 1), (j, 2)} be the set of occupied cells in
week j, and X = ∪N

j=1Xj.
Write Xj ∈ {H, T} for the outcome of the jth toss; under PN the r.v. Xj are indepen-

dent and identically distributed with P
N (Xj = H) = P

N(Xj = T ) = 1
2
. With Qx as given

by (3.2), we have Q(j,1) = 1, Q(j,2) =
1
2
. Since E

N (|X |) = 3N/2 we have λ = 2/3N .
We say that week n is a Heads week if Xn = H , and let

ZN =

N∑

n=1

1(Xn=H)

be the number of Heads weeks. We say that an awakening by the AO on day j of week
n is a Heads awakening if Xn = 1 (and so one must have j = 1). The total number of
awakenings is is 2N − ZN , the number of Heads awakenings is ZN , and ZN/(2N − ZN)
and ZN/N are respectively the proportions of Heads awakenings and Heads weeks. The
weak law implies that

ZN

2N − ZN

→
1

3
,

ZN

N
→

1

2
in P

N - probability as N → ∞. (6.1)

(If we had an infinite sequence of experiments then the weak limits in (6.1) could be
replaced by a.s. convergence.)

The existence and values of these limits is not disputed in the literature. What is
disputed is how to use (6.1) to find the PA probability of Heads. Do we use the proportion
of Heads-awakenings, or of Heads-weeks? Since we are asking for the credences of the AO
on an awakening, I agree with [46] in thinking that the first is more reasonable, but I do
not regard this argument as overwhelming.

The connection between probabilities and long run frequencies is made precise in the
classical theory by the weak (or strong) laws of large numbers. In the context here one
would like to connect the limits in (6.1) with the law PA in a mathematically precise way.

Unfortunately this does not seem to be easy. To explore the difficulties we look at the
Halfer and Thirder measures for this model. If a = (a1, . . . , aN) ∈ {H, T}N and B ⊂ ΩA

then the Halfer probability is defined by

P
(N)
L ({a} × B) = 2−N |B ∩ XO(a)|

|XO(a)|
. (6.2)

Since P
(N)
L (F ) = P

N(F ) for any F ∈ FW , it is immediate that under P
(N)
L the random

variables (Xi, 1 ≤ i ≤ N) are independent with P
(N)
L (Xi = H) = 1

2
. Hence

ZN

2N − ZN

→
1

3
,

ZN

N
→

1

2
in P

(N)
L - probability as N → ∞. (6.3)

Let P
(N)
E be the unique probability such that (SPN), (SPEI) and (SPI) hold. Since

P(X = ΩA) = 2−N > 0 the graph (K,E) given in Section 3 is connected, and by Theorem
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3.1 we have

P
(N)
E (S = (j, 1)) =

2

3N
, (6.4)

P
(N)
E (S = (j, 2)) =

1

3N
, for 1 ≤ j ≤ N, (6.5)

P
(N)
E (F ) =

E(|X |1F )

E(|X |)
for F ∈ FW . (6.6)

Lemma 6.1. Assume that (SPN), (SPEI) and (SPI) hold. Then

P
(N)
E (Xj = H) =

3N − 1

6N
, (6.7)

P
(N)
E (XSW

= H) = 1
3
, (6.8)

P
(N)
E (Xj = H|SW 6= j) = 1

2
. (6.9)

Proof. Setting F = {Xj = H) we have E(|X |1F ) = (3N − 1)/4, so (6.7) follows immedi-
ately from (6.6). Using (SPEI) and (3.6) we have

P
(N)
E (Xj = H,SW = j) = P(Xj = H|(j, 1) ∈ X )P

(N)
E (S = (j, 1)) =

1

3N
.

Summing over j gives (6.8). Since P
(N)
E (Xj = H,SW 6= j) = P

(N)
E (Xj = H)− P

(N)
E (Xj =

H,SW = j), a little algebra gives (6.9). �

This Lemma shows that in the N week experiment with the law P
(N)
E the AO is a

Thirder for the current week and a Halfer for the experiments in all the other weeks. It
follows from (6.7) that EE(|X |) = 3N/2 + 1

6
, so that the size-biasing effect from using

P
(N)
E rather than P is very mild.

A straightforward calculation using (6.6) gives that under P
(N)
E the r.v. X1, X2 are not

independent. However, Xj for j 6= SW are independent.

Lemma 6.2. Let a = (a1, . . . , aN) be a sequence in {H, T}N . Then

P
(N)
E (Xi = ai, i 6= j|SW = j) = 2−(N−1). (6.10)

Consequently

ZN

2N − ZN

→
1

3
,

ZN

N
→

1

2
in P

(N)
E - probability as N → ∞. (6.11)

Proof. Since X \ Xj is independent of Xj under P, we have by (SPEI) that

P
(N)
E (Xi = ai, i 6= j|SW = j, SD = k) = P(Xi = ai, i 6= j|(j, k) ⊂ Xj) = 2−(N−1),

and (6.10) is immediate.
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Let Z ′
N = ZN − 1(XSW

=H). Then by the weak law of large numbers (N − 1)−1Z ′
N → 1

2

in P
(N)
E -probability. As |ZN − Z ′

N | ≤ 1 (6.11) follows. �

As the limits in (6.3) and (6.11) are the same, we cannot use them to distinguish

between the probabilities P
(N)
E and P

(N)
L .

Finally, let us calculate SB’s credence that the coin toss in the current week is Heads
under P

(N)
L . Write NT (a) = |{j : aj = T}| be the number of tails in the sequence a. If

NT (a) = k then P
(N)
L (XSW

= H|X = a) = (N − k)/(N + k), and so

P
(N)
L (XSW

= H) =
N∑

k=0

2−N

(
N

k

)
N − k

N + k
. (6.12)

Using symmetry we also have

P
(N)
L (XSW

= H) = P
(N)
L (X1 = H|SW = 1) = NP

(N)
L (SW = 1, X1 = H).

Writing yN for the left side of (6.12) we find, as in [9], that y1 = 1
2
, y2 = 5

12
and that

yN → 1
3
as N → ∞. Since P

(N)
L (X1 = H|SW = 1) depends on N the model restriction

property described in Section 3 fails for P
(N)
L .

7 Examples

7.1 Sleeping Beauty: life outside the experiment

A variant [11] of Sleeping Beauty looks at her history over the four days Sunday to
Wednesday; for convenience let us label these days 1 to 4. If the coin is Heads she sleeps
through Tuesday, and is not given the forgetfulness potion. If it is Tails she is woken
on both Monday and Tuesday, and given the potion once, on Monday evening. Thus on
waking on Wednesday she recalls events on Sunday, as well as one day in a cell, which
might be either Monday or Tuesday.

We can analyse this using the set version of the model from Section 3, by taking
K = {1, . . . , 4} and taking X = {1, 2, 3, 4} on {Tails}, X = {1, 2, 4} on {Heads}. We
assume that (SPN), (SPEI) and (SPI) hold. The probability PE describes the credence of
SB on waking, and before she receives any information at all. So in this case we assume
that when she wakes each day there is a short period before she can access her memory
from previous days.

Using Theorem 3.1 we deduce that λ−1 = E(|X |) = 7/2, and PE(S = j) = 2
7
for

j = 1, 2, 4 and PE(S = 3) = 1
7
. By Proposition 3.3 if we condition on S ∈ {2, 3} we

obtain the measure for the standard Monday–Tuesday SB model.
Easy calculations give that PE(H|S ∈ {2, 3}) = 1

3
, PE(H|S = j) = 1

2
for j = 1, 2, 4,

and PE(H|S = 3) = 0. If we follow SB through the experiment, on day 1 she knows
{S = 1}, on days 2 and 3 she knows {S ∈ {2, 3}}, and on day 4 she knows {S = 4}. Her
credence for Heads on days 1,2,4 follows the sequence (1

2
, 1
3
, 1
2
). In standard probability
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theory the probability of an event for an observer follows a martingale, but this sequence
is not a martingale – for one thing it is deterministic and non-constant.

It is straightforward to calculate PL for this model. Since PL(H) = 1
2
, we obtain

PL(H,S = j) = 1
6
for j = 1, 2, 4, and PL(T, S = j) = 1

8
for j = 1, . . . , 4. Thus

PL(H|S ∈ {2, 3}) =
PL(H,S = 2)

PL(S = 2, 3)
=

4

10
.

Hence the model restriction property described in Section 3 fails for PL if we use standard
conditioning.

One of Lewis’ main arguments in [32] for the standard Halfer position is that SB has
the same information when she wakes on Monday as when she went to sleep on Sunday.
Thirders such as [25, 45, 13] have argued that she loses information: on Sunday she
knows her location, and on Monday she does not. In the model in this paper the change
is described not by a change in information, but by a change in the conditioning event:
on Sunday SB uses the probability PA(·|S = 1), and during the experiment she uses
PA(·|S ∈ {2, 3}).

For more on updating in centred worlds see Section A.3.

7.2 Improper conditioning events and symmetry breaking

Let (Ω,F ,P) be with a a probability space, and F,G,H be events with H ⊂ G and
P(G \H) > 0. The usual conditional probability of F given H is

P(F |H) =
P(F ∩H)

P(H)
, (7.1)

which is often informally described as being “the probability that F will occur given that
the observer knows that H occurs”. However if H occurs then G also occurs, so that
the informal description suggests that it would also be valid to use P(F |G). This is so
obviously incorrect that few if any introductions to conditional probability consider this
possibility. (Some works are quite careful in their explanations of conditional probability
and avoid the informal description above – see [17, p. 115].) In terms of Kolmogorov’s
definition of conditional expectation, one wants to look at

E(1F |σ(1H)) = 1HP(F |H) + 1HcP(F |Hc). (7.2)

If one replaces H by G in (7.2) then the resulting random variable is not measurable
with respect to the agent’s observation, which is of 1H . I will call conditioning events
of the kind that G is here improper conditioning events. Easy examples show that using
improper conditioning events can give wildly incorrect answers.

In the standard SB experiment she has identical awakenings on Monday and Tuesday,
and we have seen how one can break this symmetry by introducing an auxiliary process
Z as in Section 2.2. This suggests that one can describe SB’s experience simply by using
the objective probability P. One paper which adopts this approach is [11]. Using the
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notation of this paper, and recalling from Section 2 the definitions of Gy and Hy, they
define

PZ,y(F ) = P(F |Gy) for Gy ∈ FW . (7.3)

The interpretation in [11] is that if the AO observes that the process Z in its cell takes
the value y (i.e. the event Hy) then it knows that Gy occurs, and so (7.3) gives the AO’s
credence that F occurs. Since Gy is an improper conditioning event this procedure is of
questionable validity. If Z is injective then PE satisfies (7.3) by Lemma 2.10, but as [11]
allows more general Z it is not surprising that by varying the process Z they are able
obtain a variety of values for PZ,y(Heads). The framework of [11] does not allow them to
combine the laws PZ,y into a single probability PZ which gives SB’s credences before she
makes an observation. As the authors of [11] remark, they cannot use the law of total
probability since the events Gy are not disjoint.

The next section looks at an example of the use of improper conditioning events in the
physics literature.

7.3 A model of Hartle and Srednicki

The paper [23] questions arguments, such as those in [34], which assume that we are
‘typical’ observers. To help clarify the issues they introduce a model of a universe which
has N successive cycles, and assume that observers in cycle i have no knowledge of the
state of the universe in any other cycle. Each cycle has one of two global properties: red
(R) or blue (B). In each cycle the probability that an ‘observing system’ (such as ‘us’)
exists is p ∈ (0, 1), and is independent of whether the global state is red or blue.

There are two theories of the universe, which are equally likely. The first, AR is that
all the cycles are red, and the second, SR, is that exactly M of the cycles are red, and
N − M are blue. Here 1 ≤ M ≤ N − 1. Hartle and Srednicki do not specify which
cycles are red or blue in the SR case; for simplicity we will assume that under SR each
possible arrangement of M red and N − M blue is equally likely. For each theory we
write NR(T ) and NB(T ) for the number of red and blue cycles according to the theory T .
(Thus NR(AR) = N and NR(SR) = M .)

The authors of [23] wish to calculate the probability of SR given that ‘we’ (situated in
one of the cycles) observe that our cycle is red. Writing HER for the event “we exist and
observe red”, and HE for the event “we exist”, they claim that

P (HER|T ) = 1− (1− p)NR(T ), (7.4)

and then use Bayes’ formula to compute P (T |HER). Writing f(p, n) = 1− (1− p)n, they
obtain

P (SR|HER) =
f(p,M)

f(p,N) + f(p,N)
. (7.5)

This conclusion is counterintuitive. If for example M = 1, N = 1000 and p is very close
to 1, then (7.5) gives that P (SR|HER) ≈

1
2
: our observation of red has given very little

information even though, on the hypothesis SR, red universes are very rare.
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However (7.4), and hence (7.5), are incorrect. To see that (7.4) cannot be true, note
that by red/blue symmetry we would also have P (HEB|T ) = 1 − (1 − p)NB(T ). Since
P (HER|T ) + P (HEB|T ) = P (HE|T ) ≤ 1, we obtain

2− (1− p)NR(T ) − (1− p)NB(T ) ≤ 1, (7.6)

and this fails for many values of p, NR(T ) and NB(T ).
The error which led to (7.4) is confusion between the events HER = {we exist and

observe red} and GER = {there is a cycle in which an observer exists and observes red}.
Since HER ⊂ GER if we observe that HER occurs then we also observe that GER occurs.
The events GER and GEB are not disjoint, which is why the sum on the left hand side of
(7.6) can be greater than 1. I suspect that the cause of this error is that the authors of
[23] were (rightly) uneasy about the event HER, and wished to find a suitable objective
event which they could work with. In the terminology of the previous section, GER is an
improper conditioning event.

We now apply our formalism to this problem. We define

ΩO = {AR, SR} × ({R,B} × {0, 1})N .

An element ω ∈ ΩO is a sequence

ω = (y, a1, n1, a2, n2, . . . , aN , nN), (7.7)

where y ∈ {AR, SR}, and for 1 ≤ i ≤ N we have ai ∈ {R,B} and ni ∈ {0, 1}. Thus
aj gives the state (red or blue) of cycle j, and nj = 1 if there are observing systems
in cycle j, and nj = 0 otherwise. This model is in the framework given in Section 3,
with K = {1, . . . , N}. Since it is possible in this model to have no observers, we define
ΩA = {∂, 1, . . . , N}. With ω given by (7.7) we define random variables on Ω = ΩO × ΩA

by

U(ω, k) = y, S(ω, k) = k, Zi(ω, k) = ai, ξi(ω, k) = ni, for 1 ≤ i ≤ N. (7.8)

The random set of occupied universes is X = {i : ξi = 1}. Under the objective probability
law P the random variables U , (ξj, 1 ≤ j ≤ N) are independent with P(U = AR) = P(U =
SR) = 1

2
, and P(ξj = 1) = 1 − P(ξj = 0) = p. If U = AR then Zi = R for all i, while

if U = SR then exactly M of the Zi are equal to R, and the remainder are equal to B,
with each ordering of reds and blues being equally likely. We assume that (SPN), (SPI)
and (SPEI) hold and write write PE for the anthropic probability which satisfies these
conditions. Note that HER = {ZS = R}. For y ∈ {R,B} let

Ly = |{j : ξj = 1, Zj = y}| = |X ∩ {i : Zi = y}|.

The set analogue of Lemma 2.8 gives

PE(F |ZS = y) =
E(1FLy)

E(Ly)
. (7.9)
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Taking F = {U = SR} we have E(1FLy) = 1
2
E(Ly|U = SR) = 1

2
pM , and similarly

E(Ly) =
1
2
p(M +N). Hence

PE(U = SR|ZS = R) =
M

M +N
. (7.10)

In the case noted above, when M = 1, N = 1000, we obtain the natural and unsurprising
result that PE(U = SR|ZS = R) = 1/1001.

7.4 Is existence a special property?

As mentioned in the Introduction, one reason to study the SB problem is to understand
how inference should be handled in situations where observers may not exist, or may have
multiple copies. One can just proceed anyway, treating existence or non existence of an
observer as the same kind of event as whether an observer sees ‘e’ or ‘n’ written on a
randomly selected card. However it does not seem evident that it is correct to do this.
An observer can see ‘n’ on the card, but cannot observe that it doesn’t exist.

Consider two experiments.

Model 1. This is the standard SB problem; a fair coin is tossed and if the result is H then
a shabti is woken once, while if it is T then it is woken twice. Using the superscript M1 to
indicate that these probabilities are for Model 1, we have PM1

E (H) = 1
3
and PM1

L (H) = 1
2
.

Model 2. In this case a fair coin is tossed, with outcomes H and T . Whatever the
outcome, SB is woken twice, so that P(X = 2) = 1. An auxiliary process ZO with values
in Z = {e, n} is defined by setting ZO

1 (H) = ZO
2 (T ) = ZO

2 (T ) = e, ZO
2 (H) = n. The AO

wakes in its cell and is able to observe the value ZO
S . Is seeing ‘e’ in Model 2 the same

as existing in Model 1? (A similar model is considered in [27] and is used to support a
Thirder conclusion.)

Model 2 is described by taking M = 2 and q2 = 1. Let L· be as in (2.20); we have
E(Le) =

3
2
. Since E(Le1H) =

1
2
, by Lemma 2.8

PM2
E (H|ZS = e) = 1

3
. (7.11)

Thus an AO which uses PE in Models 1 and 2 will assign the same probability to Heads.
This is not a surprise: (PEI) states that a CO which observes that cell Cj is occupied
assigns the same probabilities to objective events as an AO which knows it is in cell Cj.

We can contrast this with what happens with the Halfer measure. The space Ω =
{H, T} × {1, 2} consists of four points, and PM2

L assigns each of these a probability of 1
4
.

Thus PM2
L (ZS = e) = 3

4
, and so for Model 2

PM2
L (H|ZS = e) = 1

3
.

As PM2
L (H) = 1

2
, the measure PL (with standard conditioning) does distinguish between

the two models.

34



7.5 Fine tuning and a single conditional observer

The following is based on an example of Peter van Inwagen – see [44, p. 135] and [8, p.
25-28], which was given to clarify issues in the fine tuning debate. A model of this kind
is also a component in the argument of [38].

Reframing the model in terms of shabti, rather than the colourful story of an execution
given in [44], it is described as follows. We have two r.v. Y O

j ∼ Ber(pj), j = 1, 2 and we
assume that p2 ≪ p1 < 1. We set XO = max(1, Y O

1 + Y O
2 ), so that XO ∈ {0, 1}, and

if XO = 1 a single shabti is placed in cell 1 and woken. If XO = 0 then no shabti is
woken. If the AO exists there are two possible causes for its existence: either Y O

2 = 1 and
Y1 ∈ {0, 1}, or else Y O

2 = 0 and Y O
1 = 1. What probabilities should the AO give to these

two possibilities?
We model this using the framework of Section 2, with ΩA = {0, 1}. As usual we write

Yj, X for the extensions of Y O
j and XO to Ω. We assume that (PN) and (PEI) hold, and

write PA for the anthropic probability. Using (PN) we have PA(S = 1) = 1. Then

PA(Y2 = 1) = PA(Y2 = 1|S = 1) = P(Y2 = 1|Y1 + Y2 ≥ 1)

=
p2

p1 + p2(1− p1)
≃ p2/p1.

This is the same as the probability the CO would assign to this event if it sees that the
cell is occupied.

We now turn to the interpretation of this in terms of fine tuning. One should note that
in this application, as well as in the remaining examples in this Section, the real universe
differs from the GSB model in possibly significant ways. The GSB model supposes a CO,
and that the AO, whether human or a shabti, knows the precise rules of the experiment.
These conditions are used to justify Principles such as (PI) and (PEI). These conditions
do not hold in the real world, and so we are less secure in using these principles than in
the tightly constrained GSB model.

Having noted this point, in terms of fine tuning the event {Y2 = 1} corresponds to a
single universe just happening to have the parameters suitable for complex chemistry (and
so observers), while {Y1 = 1} corresponds to another explanation, such as the Multiverse
or a Creator. Not surprisingly much more has been said on this question – see [18] for an
introduction.

7.6 The Doomsday argument

The essence of this argument is that anthropic principles imply that we should be more
pessimistic about the future of the human race than is suggested by objective probability
estimates. An early published version is in [30]; see also [19, 31], and p. 89-90 of [8] for a
brief history of the argument. A footnote on p. 89 of [8] lists a number of distinguished
philosophers and physicists who accept some version of this argument. (The list does not
mention any probabilists or statisticians.)

There are several versions of the argument, and one simple version, based on [30], is as
follows. Suppose there are two possible futures of the human race: F1 it becomes extinct
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around 2100, and F2 it survives its current challenges, lasts for several million years,
and colonizes the galaxy. Assume that initially we regard these two as equally probable.
Let Ni be the total number of human beings which ever exist under future Fi, and take
N1 = 1012 and N2 = 1024. The Doomsday Argument (DA) notes that under F1 my birth
order (among all the humans who will ever live) is fairly typical, while under F2 I will be
in the first 10−12 of humans. It then infers that as the second event is very unlikely, we
should revise our estimates, and assign F2 a much lower probability, in fact of the order
of 10−12.

There is an extensive literature on the Doomsday argument. It is well known that if
one adopts a Halfer or SSA type of analysis, then the argument does have force, while
using a Thirder or SIA analysis it does not – see for example [5].

The discussion below, which owes much to [13], exhibits these points using the frame-
work of this paper. We consider a ‘toy’ DA based on the GSB model of Section 2. Let
(q1, . . . , qM) be a probability distribution on {1, . . . ,M}, and look at the serial distinct
shabti version of the problem, which takes place over M days. We use the same notation
as in Section 2: in particular (Ω,F ,FW ,P) is the probability space constructed there, and
X : Ω → {1, . . . ,M} is the total number of shabti. Let PA be an anthropic probability;
we assume it satisfies (PN) and (PI). Let λ ∈ (0, 1), and let kn = ⌊λn⌋. By (PI)

PA(S ≤ λX|X = n) =
kn
n

≤ λ.

Summing over n it follows that

PA(X > λ−1S) ≤ λ. (7.12)

The equation (7.12) appears to give the AO information about the future, and this is the
basis for the DA.

As we know, roughly, our birth position in the human race, we actually need to consider
PA(X > λ−1S|S = j). If PA satisfies in addition (PEI), so that PA = PE , then we have

PE(X > λ−1S|S = j) = P(X > λ−1j|X ≥ j) = Q−1
j P(X > λ−1j). (7.13)

Thus, on learning its cell number, the AO loses the apparent future information promised
by (7.12) and reverts to the common sense view of the future.

If instead we use the measure PL then PL(X = n) = qn and PL(S = j|X = n) = 1/n
if j ∈ {1, . . . , n}. So

PL(S = j) =
M∑

n=j

qn
n
,

and we find

PL(X = n|S = j) =
n−1qn∑M
k=j k

−1qk
. (7.14)

So under PL and standard conditioning the anthropic law undergoes a reverse size biasing
effect, and in the context of the Doomsday argument favours pessimistic outcomes. If
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however one uses PL and Double Halfer conditioning then by Proposition 4.5 we find
PL(X > λ−1S||S = j) = PE(X > λ−1S||S = j), so that Double Halfers should join
Thirders in rejecting the Doomsday argument.

For the simple example given at the start of this section we take 1 ≪ N1 ≪ N2, and
set qN1

= qN2
= 1

2
. If j ≤ N1 then (7.13) and (7.14) give

PE(X = N2|S = j) = 1
2
, PL(X = N2|S = j) =

N−1
2

N−1
1 +N−1

2

≃
N1

N2
.

7.7 The Presumptuous Philosopher

We have seen some strong arguments for (PEI). (PN) appears innocuous, and (PI) also
appears very plausible. Given all this, it may seem surprising that there are objections
to the measure PE . One reason is the following example, described in [8, p. 124].

Suppose there are two theories T1 and T2 for the size of the universe, a priori equally
likely. According to T1 the universe contains N1 = 1024 galaxies, while according to T2
it contains N2 = 1010

24

galaxies. Which theory is correct depends on the mass m of some
fundamental particle. Let us also suppose that the probability that a galaxy contains
intelligent life is p ≥ 1000N−1

1 (independently of all other galaxies.) An experiment is
proposed to measure m, which will give the correct result with probability greater than
99.9%, but as the final grant application is being prepared a Presumptuous Philosopher
wanders into the Chief Scientist’s office and explains that the experiment is not necessary:
using PI and PEI we can be almost certain that T2 is correct.

Writing X for the number of intelligent civilizations, under the objective probability
P we have P(X ≃ pNj) ≃

1
2
for j = 1, 2. But PE selects the size biased distribution, so

since E(X) ≃ 1
2
pN2, we deduce that PE(X ≃ pN1) ≃ N1/N2. So it is overwhelmingly

likely that T2 is correct. In fact the probability that T1 is correct is so small that, even
if the experiment did end up finding for T1, it would be very likely that this was due to
experimental error. If one also accepts that it is legitimate to look at the limit as N2 → ∞,
then it follows that one should accept that the universe is infinite with probability one.

Bostrom’s SIA (see [8, p. 66]) also gives the same conclusion, and this leads Bostrom
to reject SIA. But as we have seen the alternatives to PE also encounter difficulties, which
appear to me to be more immediate and more fundamental than the example of the
Presumptuous Philosopher. This example might also be interpreted as showing that one
needs to be cautious in applying the GSB model or Bayesian analysis to some real world
situations.

It is worth noting that HTM conditioning also leads to a similar difficulty. We consider
the same situation as above, but now assume that the Chief Scientist and Presumptuous
Philosopher are both Double Halfers. The Presumptuous Philosopher points out that to
distinguish T1 and T2 all we need to do is to make an observation which has a probability
much less than 10−24. Looking out of the window he sees a plot of grass 10m by 10m
with about 1000 daises on it, and suggests paying some graduate students to record the
position of each daisy to within 1cm. Writing n = 106 and m = 103, the number of
ways of arranging m daisies in n 1cm square plots is M =

(
n

m

)
, which is around 103000.

If all possibilities were equally likely then the probability of any one combination is of
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the order of 1/M . Even taking into account clustering effects any arrangement should
have probability p much less than 10−24. Example 4.8 then shows that the probability of
T1 given this observation is pN1 ≪ 1. (Since this probability does not converge to 0 as
N2 → ∞, the example does take a less severe form than arises for Thirders.)

8 Conclusions

The purpose of this paper has been to provide a rigorous framework, based on Kol-
mogorov’s axioms, in which to study the Sleeping Beauty problem, as well as related
ones. A key feature of the model is that we have a probability space (Ω,F) with two
probabilities – an objective probability P which is defined on a subset FW of F , and a
second probability PA on F which takes account if the location of the Anthropic Observer.

As PA cannot be derived directly from the objective space (Ω,FW ,P) one needs addi-
tional principles in order to calculate it. Suppose first that we assume the mild (PN). and
also the Principle of Indifference (PI). Then we have two main alternative possibilities.
The first is to adopt Lewis’ Principal Principle, and this suggests that the AO should use
the Halfer/SSA probability PL defined by (2.3). The second is to choose the Principle
of Equivalent Information (PEI), which if one also assumes (PI) leads to the Thirder
probability PE given in Theorem 2.4.

The paper gives several strong arguments for (PEI). As well as its intuitive reasonable-
ness, it allows model restriction (Proposition 3.3), and is supported by betting arguments
(Section 5). Finally, the strongest argument of all, PEI implies that PE gives the same
probability to future events as P – see Theorem 2.19. The measure PL fails all these, at
least if one the calculates conditional probabilities in the usual way.

The third main view, that of the Double (or Triple) Halfers uses PL, but requires a new
way of conditioning. We have reviewed one proposal, HTM conditioning, in Section 4 and
seen that it has significant defects: it is sensitive to apparently irrelevant information, and
fails to satisfy the law of total probability. Finally, one of the main arguments against
(PEI) and PE is the example of the Presumptuous Philosopher, but we have seen that
Double Halfers encounter a similar difficulty.

A Appendices

A.1 The set model when (K,E) is not connected

In this case (K,E) can be partitioned into a finite number of non-empty connected com-
ponents H1, . . . , Hk. To avoid minor difficulties we assume that P(X = ∅) = 0, and that
P(X ⊂ Hj) > 0 for each j. The same analysis as in the proof of Theorem 3.1 gives that
if PA satisfies (SPN), (SPI) and (SPEI) then there exist λj so that

PA(S = x) = λjQx, PA(X = B) = λj|B|qB whenever x ∈ H1, B ⊂ H1. (A.1)

Let
pj = P(X ⊂ Hj), rj = PA(X ⊂ Hj), ej = E(|X | |X ⊂ Hj).

38



Summing (A.1) over B ⊂ Hj we obtain rj = λjejpj, and thus (λj) must satisfy

k∑

j=1

λjejpj = 1. (A.2)

However, neither (SPI) nor (SPEI) give any further constraint on the λj .
There appear to be two natural choices for (λj). The first to to take λ−1

j = ej , so that
PA(X ⊂ Hj) = P(X ⊂ Hj). In this case there is no size biasing effect when we look at
the PA-probability that X lies in some component. The second is to take λj = λ for all
j, so that λ satisfies

λ−1 =

k∑

j=1

ejpj = E(|X |).

We consider the following extensions of (SPN) and (SPEI).

Two point Principle of Equivalent Information. (SPEI2). If F ∈ FW , and x, y are
in different connected components of (K,E) with sx > 0, sy > 0 then

PA(F |S ∈ {x, y}) = P(F |{x, y} ∩ X 6= ∅). (A.3)

SPN2. Let H be a connected component of (K,E). If P(X ⊂ H) > 0 then PA(X ⊂
H) > 0.

Proposition A.1. Suppose that P(X = ∅) = 0 and (K,E) has connected components
H1, . . . , Hk, with k ≥ 2 and P(X ⊂ Hj) > 0 for each j. Assume that PE satisfies (SPN),
(SPI), (SPEI), (SPEI2) and (SPN2). Then PE(S = x) = λQx, PE(X = B) = λ|B|qB for
all x ∈ K, B ⊂ K, where λ = 1/E(|X |).

Proof. Let j ∈ {2, . . .M}, and x ∈ H1, y ∈ Hj with Qx > 0, Qy > 0. Let (sx), tB be
given by (3.8). Using (PI) and (PEI) we have sx = λ1Qx and sy = λjQy. By (PN2) we
have that λ1 and λj are strictly positive, and so sx and sy are also strictly positive. Since
P(x, y ∈ X ) = 0, we have P({x, y} ∩ X 6= ∅) = Qx +Qy. Set F = {X ⊂ H1}. Then since
P(X 6⊂ H1, x ∈ X ) = 0,

P(F |{x, y} ∩ X 6= ∅) =
P(X ⊂ H1, x ∈ X )

Qx +Qy

=
Qx

Qx +Qy

.

Also, since (up to null sets) S = y implies X ∩H1 = ∅, and S = x implies X ⊂ H1,

PE(F |S ∈ {x, y}) =
PE(X ⊂ H1, x ∈ X )

sx + sy
=

sx
sx + sy

.

Using (SPEI2) we obtain sy/sx = Qy/Qx, and therefore λ1 = λj . �
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A.2 Two undesirable properties of HTM convergence

Example A.2. HTM conditioning and convergence. Given two probability measures P
and Q, the total variation norm is defined by

||P −Q||TV = sup
F

|P (F )−Q(F )|.

It is easy to verify that conditional probability is stable under convergence in this norm:
if P (F ) > 0 and ||Pn − P ||TV → 0 then limn Pn(G|F ) = P (G|F ).

HTM conditioning is not stable in this way. Consider the GSB problem with q2 =
q3 = 1

2
, on the space Ω = ΩO × ΩA = {2, 3} × {1, 2, 3}. Let n ≥ 3 and Pn be given by

Pn((2, 1) =
1
2
− n−1, Pn((2, 2)) = n−1, Pn(2, 3)) = 0, and Pn(3, j)) =

1
6
for j = 1, 2, 3. We

define X(i, j) = i, S(i, j) = j. Let P∞ be the pointwise limit of the Pn. It is clear that Pn

converge to P∞ in || · ||TV . However as S({S = 2}, Pn) = {2, 3} and S({S = 2}, P∞) = {3}
we have by Lemma 4.4(a) that

Pn(X = 2||S = 2) = Pn(X = 2) = 1
2
, (A.4)

P∞(X = 2||S = 2) = P∞(X = 2|X = 3) = 0, (A.5)

and thus Pn(X = 2||S = 2) fails to converge to P∞(X = 2||S = 2).

Let X,S be integer valued random variables on a probability space (Ω,F , P ), with

P (X = i, S = j) = pij for i, j ∈ N.

Then the conditional probability P (X = j|S = i) can be calculated purely in terms
of the numbers pij , and it follows that if X ′ and S ′ are random variables on another
probability space (Ω′,F ′, P ′), with P ′(X ′ = i, S ′ = j) = P (X = i, S = j) for all (i, j),
then P ′(X ′ = j|S ′ = i) = P (X = j|S = i) for all (i, j).

Example A.3. HTM conditioning and probability spaces. We can adapt Example A.2 to
show that in general HTM conditioning does not satisfy the property above. Consider the
space Ω′ = {1, 2, 3}×{1, 2}, setX ′(1, j) = X ′(2, j) = 2 andX ′(3, j) = 2 for j = 1, 2, 3, and
set S ′(i, j) = j. Fix n ≥ 3, and set Pn(1, 2) = n−1, P ′

n(2, 2) =
1
2
− n−1, and P ′

n(3, j) =
1
6

for j = 1, 2, 3, with the remaining values of P ′
n(i, j) being 0. Then it is easy to check that

with X,S as in Example A.2

P ′
n(X

′ = i, S ′ = j) = Pn(X = i, S = j) for 1 ≤ i, j ≤ 3.

However since S({S ′ = 2}, P ′
n) = {1, 3}, we have

P ′
n(X = 2||S = 2) = P ′

n(X = 2|{1, 3} × ΩA) =
1

n
, (A.6)

which is different from the value in (A.4).

In mathematical physics random variables such as S, X are called observables. In
standard applications of probability, to make predictions one needs to know the joint
probability law of the observables, but further knowledge is unnecessary. This example
shows that in general to calculate the HTM conditional probability one needs not just the
joint law of the observables, but a much more intimate knowledge of the whole probability
space: one needs in effect access to ‘hidden variables’.
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A.3 Centered and uncentered worlds

As mentioned in the introduction, Elga’s main reason for introducing the SB problem was
to explore how probabilities are updated by a centered observer. Let us first recall the
classical situation.

We have a probability space (ΩO,FO,PO). Let T = {1, . . . ,M} and suppose that the
information available to a (classical) observer at time t ∈ T is given by the σ-field FO

t .
We can assume that there is a stochastic process Z = (Zt, t ∈ T ) with values in a space Z
such that FO

t = σ(Z1, . . . , Zt). As the CO forgets nothing, FO
s ⊂ FO

t if s ≤ t. If F ∈ FO

and
Mt = EO(1F |F

O
t ) (A.7)

then (Mt) is a martingale and Mt gives the CO’s probability that F occurs, given the
information available to it at time t.

A “centered event” is an event such as “Z will be in the set D tomorrow”. It is clear
that in general these events are not in FO, and that their probabilities may update in a
different way from that of events in FO.

We can handle centered events and observers using the formalism of this paper, by
taking XO to be deterministic with PO(X

O = M) = 1, and assuming that the AO on day
t knows its location. So we set ΩA = T = {1, . . . ,M}, and define the probability space
(Ω,F ,FW ,P) and the random variable S exactly as in Section 2. Using (2.2) we can write
any event F ∈ F in the form

F =
M⋃

k=1

{S = k} ∩ Fk, (A.8)

where Fk ∈ FW for each k.
As in Section 2 we need to choose a probability PA on (Ω,F). We still assume (PN),

but as the AO knows its location (PI) is no longer relevant. The reasons for accepting
(PEI) remain as strong as before, and as X = M it implies that for F ∈ FW

PA(F |S = t) = P(F ) whenever PA(S = t) > 0. (A.9)

Writing µ({t}) = PA(S = t) it follows that if F is given by (A.8) then

PA(F ) =
M∑

t=1

µ({t})PA(Ft). (A.10)

As T is finite it is natural to take µ({t}) = 1/M , in which case PA = PL = PE . However, in
this setting we are only interested in the measures PA(·|S = t), so that the only condition
we need impose on µ is that µ({t}) > 0 for all t.

We assume that at time t the AO has available the information in FO
t , and as it also

knows that {S = t}, its information is described by the σ-field

Gt =
{
(G1 ∩ {S = t}) ∪ (G2 ∩ {S 6= t}), G1, G2 ∈ FO

t

}
.

Write Pt(·) = PE(·|S = t), and Et for expectation with respect to Pt.
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Lemma A.4. Suppose that F is given by (A.8). Then

Et(1F |Gt) = E(1Ft
|FO

t ), Pt – a.s.. (A.11)

Proof. Write Nt = E(1Ft
|FO

t ). To prove (A.11) it is sufficient to show that

Et(1F1G) = Et(1GNt) for all G ∈ Gt. (A.12)

Let G ∈ Gt and writeG = (G1∩{S = t})∪(G2∩{S 6= t}). Then 1F1G1(S=t) = 1Ft
1G1

1(S=t),
and thus

Et(1F1G) = µ({t})−1EE(1Ft
1G1

1(S=t)) = E(1Ft
1G1

) = E(Nt1G1
).

Similarly Et(1GNt) = E(Nt1G1
), proving (A.12). �

Remark A.5. (a) The general form of a Gt measurable random variable is given by
Y1+Y21(S 6=t), but as conditional expectation is only defined up to sets of probability zero,
and Pt(S 6= t) = 0, we can omit the Y2 term.
(b) The Lemma shows that in general updating of the conditional probability of a centered
event by a centered observer involves updating not only the conditioning σ-field FO

t but
also the conditioned event Ft. If however F ∈ FW is an objective event then we can take
Fk = F for all k in (A.8) and then Et(1F |Gt) is given by the martingale M defined by
(A.7).
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