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Abstract

Electron cryomicroscopy (cryo-EM) is a technique in structural biology used to reconstruct accurate volumetric maps
of molecules. One step of the cryo-EM pipeline involves solving an inverse-problem. This inverse-problem, referred to
as ab-initio single-particle reconstruction, takes as input a collection of 2d-images – each a projection of a molecule
from an unknown viewing-angle – and attempts to reconstruct the 3d-volume representing the underlying molecular
density.

Most methods for solving this inverse-problem search for a solution which optimizes a posterior likelihood of gen-
erating the observed image-data, given the reconstructed volume. Within this framework, it is natural to study the
Hessian of the log-likelihood: the eigenvectors and eigenvalues of the Hessian determine how the likelihood changes
with respect to perturbations in the solution, and can give insight into the sensitivity of the solution to aspects of the
input.

In this paper we describe a simple strategy for estimating the smallest eigenvalues and eigenvectors (i.e., the ‘softest
modes’) of the Hessian of the log-likelihood for the ab-initio single-particle reconstruction problem. This strategy
involves rewriting the log-likelihood as a 3d-integral. This interpretation holds in the low-noise limit, as well as in many
practical scenarios which allow for noise-marginalization.

Once we have estimated the softest modes, we can use them to perform many kinds of sensitivity analysis. For
example, we can determine which parts of the reconstructed volume are trustworthy, and which are unreliable, and how
this unreliability might depend on the data-set and the imaging parameters. We believe that this kind of analysis can
be used alongside more traditional strategies for sensitivity analysis, as well as in other applications, such as free-energy
estimation.

1 Introduction

Electron cryomicroscopy (cryo-EM) is a popular technique in structural biology which is used to produce accurate volumet-
ric maps of the electron density of macromolecular structures and biomolecules, such as proteins [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
Certain stages of a cryo-EM analysis pipeline involve solving an inverse-problem: e.g., given a collection of picked-particle
images, the goal is to find the density map (i.e., volume) which produced them [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
In this paper we will focus on one such inverse-problem, so-called ‘ab-initio single-particle reconstruction’. We will describe
a simple strategy for analysing the robustness of solutions to this problem, and provide numerical methods for quantifying
the uncertainty in the solution.

To provide some background, a standard single-particle reconstruction pipeline typically involves several stages:

1. Freezing a suspension containing multiple copies of the molecule: As described in [23, 24], there are several techniques
for preparing a suspension of the molecule of interest, with details that depend on the properties of the molecule
and its surrounding buffer. The goal for this stage is to produce a thin frozen film which can be penetrated by the
transmission electron microscope, while also containing multiple well separated copies of the molecule.

2. Imaging the suspension to produce micrographs: The electron-beam interacts with the electron-density in the frozen
film, and elastically scattered electrons in the beam are subject to a density-dependent phase-shift [9]. This phase-
shift can be measured at each point in the image-plane, producing a ‘micrograph’. The values of the phase-shift
can be related to the electron density within the sample. The details of this transformation depends on imaging-
parameters such as the defocus level, which determines the contrast transfer function (CTF).
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3. Scanning the micrographs for ‘picked-particles’: Once the micrographs are recorded, individual molecules within the
micrograph must be ‘picked out’. There are several strategies for this ‘particle picking’ task [25, 26, 27, 28], and it
is common practice to cluster the picked-particles, filter and denoise them [29, 30, 26]. The goal for this stage is to
produce a collection of picked-particle images, each corresponding to a well-centered projection of a single molecule.

4. Analysis of the picked-particle images: At this stage, the viewing-direction (i.e., viewing-angle) of each picked-
particle projection is unknown. Determining these viewing angles is typically done alongside reconstructing the
molecular volume itself (see [16] but also [15, 17, 19]). Prior information regarding the molecule can often be used
to aid in the reconstruction of the viewing-angles and volume. However, when such prior information is absent or
deliberately ignored to avoid bias, the reconstruction process is referred to as ab-initio single-particle reconstruction
[31, 11, 32, 16, 33, 34]).

Generally speaking, if we were to know the density F (x) of a molecular volume, as well as a collection of image-specific
viewing-angles {τj}, we could use a forward model for the imaging process (involving the imaging-parameters and noise-
level) to estimate what each picked-particle image {Aj}might look like [31, 35]. The ab-initio single-particle reconstruction
mentioned in the final step 4 above involves the reverse: taking the picked-particle images {Aj} and attempting to infer
the volume F (x) and viewing-angles {τj}. Thus, ab-initio reconstruction is a type of inverse-problem.

In practice, most methods for solving this inverse-problem search for a solution which optimizes a posterior likelihood of
generating the observed picked-particle images, given the reconstructed volume (see [19, 14, 17, 1, 3, 2, 4, 13] and software
from [21, 16, 20, 18, 11, 12]). More specifically, the solution is typically a ‘model’ that optimizes the log-likelihood
logP (data | model). Because the solution lies at a critical-point of logP (data | model), any perturbations to the solution
will result in a shift to the overall likelihood which depends on the Hessian of logP .

While it is natural to consider the Hessian of logP , it is not immediately clear how to calculate the spectrum of
this object. For example, the posterior likelihood P (data | model) is usually defined using a standard noise-model (e.g.,
independent gaussian noise applied to each pixel in each picked-particle image) [31, 35]. In this scenario the likelihood
P (data |model) is typically written as a product of the individual image-likelihoods P (Aj |model), each of which involves
an accumulation of many exponential terms. Taking a second-derivative of the overall log-likelihood with respect to the
model-parameters can be difficult, especially because the model can involve many degrees of freedom (e.g., the number of
voxels in the volume F (x) and the number of viewing-angles in {τj} can both be large).

In this paper we make a simple observation. Namely, when the noise-level is sufficiently small, the log-likelihood
log (P (data |model)) can be written as a single three-dimensional integral. This simplification allows for efficient calculation
of the log-likelihood, as well as its gradient and Hessian. A similar simplification can often be made away from the small-
noise limit by marginalizing over the noise-level.

Using this simple observation, we can approximate the spectrum of the Hessian of the log-likelhood. In particular, we
can estimate the extremal eigenvalues and eigenvectors of the Hessian. The eigenvectors corresponding to the smallest
eigenvalues are sometimes called the ‘softest modes’ in the molecular-dynamics literature [36]. The softest-mode indicates
the volumetric- and viewing-angle-perturbations which are most easily confused for the current solution. The softest
eigenvalue is a measure of the fisher-information restricted to the direction of this particular perturbation.

Calculation of the softest-modes allows for various kinds of sensitivity analysis. For example, we can use the soft
subspace to determine which parts of the reconstructed volume are trustworthy, and which are unreliable. We can also
use this approach to determine the benefit of adding more images to the image-pool; often the information gained will
depend on how those new images are aligned to the volume, as well as other image properties such as the defocus-level.
Additionally, when using cryo-EM data to estimate free-energy landscapes, we can use the spectrum of the hessian to
help guide our choice of collective-variables. We believe that this kind of analysis can be used alongside more traditional
strategies for sensitivity analysis, such as bootstrapping and crossvalidation. For example, we believe the structure of the
soft subspace is a useful complement to the fourier-shell-correlation, which is often used to characterize the robustness of
an ab-initio reconstruction [37, 38, 39, 40].

This paper is structured as follows. We first briefly review the mathematical details underlying our approach. We
then provide several examples illustrating different applications of this kind of analyis. We conclude by discussing some
extensions of this work. Many of the technical details are explained in the Appendix.

2 Methods Summary

In this section we briefly summarize our methodology, with the details deferred to the Appendix.
As described above, our methodology predominantly applies to the single-volume reconstruction problem. To set the

stage, let’s assume that we are given a collection of J picked-particle images {Aj}. To ease the presentation for now, we’ll
ignore the image-specific displacements {δj} and contrast-transfer-functions {CTFj}.

For any particular image A and volume F , we can define the likelihood: P (A | F, P (τ);σ), which is the probability of
observing the image A, given that the true signal is produced by the volume F with image-noise σ. In this expression the
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term P (τ) is the prior-distribution of viewing-angles τ ∈ SO3 associated with the data.
The setting we consider assumes that a single-particle reconstruction algorithm has already been run, and has produced

a volume F which optimizes the posterior likelihood of observing the collection of images {Aj}:

P
(
{Aj}

∣∣ F, P (τ);σ) = J∏
j=1

P
(
Aj
∣∣ F, P (τ);σ) . (1)

For our purposes we’ll perform most of our calculations in fourier-space, referring to Âj and F̂ as the 2d- and 3d-fourier-
transforms of Aj and F , respectively, and using σ̂ to denote the image-noise in fourier-space.

When the image-noise is relatively small, we can approximate the likelihood in Eq. 1 with the so-called ‘low-
temperature’ limit:

P
(
{Âj}

∣∣ F̂ , {τ opt

j }, σ̂
)
∝ exp

(
− 1

σ̂2
· L
(
{Âj}

∣∣ F̂ , {τ opt

j }
))

,

where the negative-log-likelihood L takes the form of a sum of 2-dimensional integrals:

L
(
{Âj}

∣∣ F̂ , {τ opt

j }
)
∼ 1

2σ̂2

J∑
j=1

∫∫
R2

∣∣∣Âj(k)− Ŝ (k; τ opt

j ; F̂
)∣∣∣2 dk. (2)

In this last expression we use Ŝ(k; τ ; F̂ ) to denote the fourier-transform of a 2-dimensional projection of any given volume

F̂ along viewing-angle τ , and denote by τ opt

j the ‘optimum’ viewing-angle for image-j. As we’ll discuss below, the viewing-

angle τ opt

j implicitly depends on F̂ , and is often referred to as the ‘optimal-alignment’ of Âj to F̂ .
The expression in Eq. 2 can be rewritten as a single 3-dimensional integral:

L
(
{Âj}

∣∣ F̂ , {τ opt

j }
)
∼ 1

2

∫∫∫
R3

(
M20(κ)

∣∣∣F̂ (κ)∣∣∣2 − 2ℜ
(
M†

11(κ)F̂ (κ)
)
+M02(κ)

)
dκ

|κ|
, (3)

whereM20,M11,M02 are each 3-dimensional functions corresponding to the various moments of the data, and the integral
is performed over frequency-space κ ∈ R3.

Considering the image-pool {Âj} to be fixed, we can consider the negative-log-likelihood L to be a function of the

volume F̂ and optimal-alignments {τ opt

j }. By using both Eq. 2 and 3, we can take various derivatives of this log-likelihood.

For our purposes we will assume that, with the image-pool fixed, the volume and the optimal-alignments [F̂ , {τj}]
⊺
are

situated at a local minimum of L
(
{Âj}

∣∣ F̂ , {τ opt

j }
)
. Consequently, we expect that perturbations to these quantities will

produce second-order perturbations to L of the form:

L
(
{Âj}

∣∣ F̂ +∆F̂ , {τ opt

j +∆τj}
)
= L

(
{Âj}

∣∣ F̂ , {τ opt

j }
)
+

1

2
·
[

∆F̂
{∆τj}

]†
·
[
HFF HFτ

HτF Hττ

]
·
[

∆F̂
{∆τj}

]
. (4)

In this formula we use ‘†’ to denote the adjoint (i.e., conjugate-transpose). We also use the terms HFF , HFτ , HτF and Hττ

to refer to blocks of the second-derivative (i.e., Hessian) of L. The diagonal-blocks HFF and Hττ are trivial to calculate:
the former is diagonal in fourier-space while the latter decomposes into small block-diagonal elements for each image.
The off-diagonal-blocks HFτ and HτF require slightly more care. In our calculation we use the volumetric-representation
in Eq. 3 to calculate HFτ for any particular choice of {∆τj}, and we use the 2-dimensional representation in Eq. 2 to

calculate HτF for any particular choice of ∆F̂ .
In most practical scenarios of interest the volume F̂ and optimal-alignments {τ opt

j } are implicitly related: the optimal-

alignment τ opt

j for any particular image Âj is the viewing-angle for which that image aligns best to F̂ . Thus, we can

consider the τ opt

j each to be functions of F̂ , and correspondingly interpret L as a function of F̂ alone.
With this perspective the negative-log-likelihood takes the form:

L
(
{Âj}

∣∣ F̂ +∆F̂
)
= L

(
{Âj}

∣∣ F̂)+ 1

2
·∆F̂ † · [H] ·∆F̂ , (5)

with [H] representing the Hessian of L
(
{Âj}

∣∣ F̂) with respect to volumetric-perturbations of F̂ .

With this formalism in place, we can immediately see that the influence of any perturbation ∆F̂ on the likelihood is
determined by the rayleigh-quotient. That is to say, the log-likelihood-ratio

∆L := L
(
{Âj}

∣∣ F̂ +∆F̂
)
− L

(
{Âj}

∣∣ F̂) =
1

2
·∆F̂ † · [H] ·∆F̂ , (6)
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contrasting the original volume F̂ with the perturbed volume F̂ +∆F̂ is given by the rayleigh-quotient ∆F̂ †[H]∆F̂ . Thus,

given any volumetric-perturbation ∆F̂ , the rayleigh-quotient associated with that ∆F̂ can be thought of as a measure of
‘information’ in that direction.

More generally, the critical-points of the rayleigh-quotient correspond to the eigenvectors of [H]. Eigenvectors corre-

sponding to the largest eigenvalues correspond to volumetric-perturbations ∆F̂ for which the nearby volumes F̂ ±∆F̂ are
most easily distinguishable from the original volume F̂ . I.e., these ‘stiff modes’ correspond to volumetric-perturbations
which produce a significant mismatch between the projections of the perturbed volume and the image-pool. On the other
hand, the eigenvectors corresponding to the smallest eigenvalues indicate volumetric-perturbations for which the nearby
volumes are least distinguishable from the original F̂ . I.e., these ‘soft modes’ correspond to volumetric-perturbations
which produce only subtle shifts to the relevant projections of the perturbed volume; shifts that might still allow for
plausible alignment to the images.

With this in mind, we are motivated to estimate the spectrum of H from Eq. 5, specifically the lower-tail of the
spectrum, comprising the smallest eigenvalues as well as their corresponding eigenvectors (i.e., the softest-modes). In
terms of computational details, the Hessian H involves an accumulation of terms combining the various blocks HFF , HFτ ,
HτF and Hττ from Eq. 4 with the volumetric-perturbations ∆F̂ and the (implicitly-determined) alignment-perturbations
{∆τj}. As a result, the H from Eq. 5 is not quite as easy to diagonalize as the HFF from Eq. 4. However, we can

still compute quantities such as H ·∆F̂ relatively easily, allowing us to use iterative strategies such as lanczos-iteration
to estimate the extreme eigenvalues and eigenvectors of H. During this calculation we make sure to focus only on true
deformations, projecting away any combinations of volumetric- and alignment-perturbations [∆F̂ , {∆τj}] which correspond
to trivial rigid rotations.

As mentioned above, the details of this calculation are provided in the Appendix. Importantly, for our calculation,
the soft modes (as well as the rest of the spectrum of the Hessian) depend on the volume F̂ and the image-pool {Âj}, as
well as on the optimal-alignments for the images (which are determined implicitly). More generally, the soft modes also
depend on the image-specific CTF-functions {CTFj} (see applications below) as well as other image-parameters, such as
the image-specific displacements {δj} (mentioned in the discussion).

3 Applications

As a straightforward application, one can simply inspect the softest modes of a given single-particle reconstruction. The
softest modes can then be used to directly estimate how robust that reconstruction might be. More specifically, the
magnitude of the ‘softest eigenvalue’ associated with the softest mode determines the size of the largest volumetric-
perturbation which can be ‘confused’ with the original reconstruction. That is to say, the largest volumetric-perturbation
that can’t easily be rejected in favor of the original reconstruction (under a standard hypothesis test). The softest
modes can also be used to identify (i) which regions of the original reconstruction are least trustworthy, and (ii) which
images-alignments are least trustworthy.

3.1 case-study: trpv1

As a first case-study we’ll analyze the single-particle reconstruction of the trpv1 molecule described by the volume EMD-5778
[41]. This single-particle reconstruction was originally performed using the image-pool from EMPIAR-10005. This image-
pool is of very high quallity and, as we’ll show later, the single-particle reconstructions formed using this image-pool are
incredibly robust.

Thus, to illustrate our methodology, we’ll first construct a hypothetical scenario where we use an image-pool that is
not as good as the full image-pool from EMPIAR-10005. To do this, we’ll consider the scenario shown in Fig 1 where
the number of images J is not too large (say, several hundred to a thousand), and the image viewing-angles are not well
distributed. This hypothetical scenario might be similar to situations involving ab-initio low-resolution reconstruction,
where the picked-particle images are limited in number and type (e.g., drawn from only a few similar class averages).

On the left of Fig 1 we illustrate our hypothetical viewing-angle distribution, which is technically nonzero everywhere,
but heavily concentrated towards the poles. We’ll imagine drawing a collection of J synthetic-images (i.e., noisy projec-

tions) of the true molecule from these viewing-angles. We’ll further assume that these synthetic-images {Âsyn

j } are each
perfectly centered, and that there is no attenuation from a CTF. With these assumptions, we’ll imagine that we have
performed an ab-initio low-resolution single-particle reconstruction (e.g., using [42]).

In practice, a single-particle reconstruction can easily produce any one of a number of low-quality volumes that lie
at various local minima of the likelihood function. Thus, to ensure that our example is reproducible, we’ll assume that
the single-particle reconstruction was indeed of high-quality, producing the volume shown on the right of Fig 1. We have
chosen this volume to agree with the true volume up to the resolution of the reconstruction. Thus, for this particular
case-study, we know that this volume is a ‘global optimum’ of the likelihood in Eq. 2.
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Figure 1: On the left we show an idealized viewing-angle-distribution µ(τ) which is concentrated around the poles. On
the right we show a low-res (2πK = 48) reconstruction F of the TRPV1 molecule obtained by appropriately aligning
many synthetic-images (i.e., noisy projections) taken from these equatorial viewing-angles. This low-res reconstruction F
agrees with the reconstruction EMD-5778 referenced in EMPIAR-10005.

Given this scenario, we can use (i) the reconstructed volume F̂ and (ii) the synthetic-image-stack {Âsyn

j } to calculate

the softest mode of the Hessian [H] from Eq. 5. This softest mode, denoted by [∆F̂ , {∆τj}] is illustrated in Fig 2.

On the right side of Fig 2 we show the volumetric-perturbation ∆F̂ , and on the left we show the (implicitly determined)
alignment-perturbations associated with each original viewing-angle. We illustrate another view of the same alignment-
perturbations in Fig 3. Note that, while the calculation of this softest mode did not explicitly include the viewing-angle
distribution shown in Fig 1, this distribution determines the distribution of the synthetic-images in the image-pool, and
thus influences the Hessian [H], playing a strong role in the calculation.

Indeed, one can readily see that the softest mode ∆F is structured so that polar-projections of ∆F have very little
variation. This in turn implies that any polar-projection of a perturbed volume F +∆F would look almost exactly like
the corresponding polar-projection of the original volume F . Put another way, if we consider a particular synthetic-image
Âsyn constructed using a polar viewing-angle τ , then the likelihood P (Âsyn | F̂ , τ) of observing Âsyn given F̂ and τ will

be very close to the likelihood P (Âsyn | F̂ ± ∆F̂ , τ ± ∆τ(τ)) of observing the same synthetic-image given the perturbed

volume F̂ ± ∆F̂ and the perturbed viewing-angle τ ± ∆τ(τ). A similar story holds across the pool of synthetic-images
(drawn with viewing-angles concentrated near the poles, as shown in Fig 1). Accumulating these calculations across the
image-pool produces an overall shift in likelihood characterized by the rayleigh-quotion in Eq. 6, which ∆F is specifically
constructed to minimize.
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Figure 2: In this figure we show a collection of τ -specific alignment-perturbations {∆τ(τ)} (left) along with a corre-
sponding volumetric-perturbation δF (right). The arrows on the left indicate the direction of the alignment-perturbations
for each (β, α), with ∆γ(τ) = 0. Larger/darker arrows indicate larger values of ∆τ(τ), with the arrow-area proportional
to |∆τ | (and dark purple arrows corresponding to the largest values of |∆τ |). Locations with individual perturbations
smaller than 10−4 in relative magnitude are left blank. On the right we show an isosurface of |∆F |, colored by the sign
of ∆F (with blue and pink corresponding to negative and positive, respectively). The projections of ∆F are shown along
each axis (background and bottom). Note that projections of this softest mode from the equator (background and sides)
have large variations and are easily visible. By contrast, projections of this softest mode from the poles (bottom) have es-
sentially no variation are are difficult to detect. The softest mode has this structure precisely because the synthetic-image
pool included images corresponding predominantly to polar viewing-angles.

Figure 3: This figure is similar to Fig 2. In this figure we show a collection of τ -specific alignment-perturbations {∆τ(τ)}
(left) along with a corresponding volumetric-perturbation δF (right). The arrows on the left indicate the direction of
the alignment-perturbations for each (β, α), with ∆γ(τ) = 0. Note that, unlike Fig 2, we display ∆τ(τ) from the poles,
rather than from the equator. On the right we show an isosurface of |∆F |, colored by the sign of ∆F (with blue and
pink corresponding to negative and positive, respectively). As in most of our figures, the values of ∆τ(τ) are implicitly
linked the the volumetric-perturbation ∆F . These perturbations have been selected to align with the ‘softest’ observed
eigenvector of the Hessian H associated with the single-particle-reconstruction problem associated with Fig 1. For this
calculation we use synthetic-images (i.e., noisy-projections of the original volume F ).

The panels in Figs 2-3 illustrate the structure of the softest mode, but not its interpretation with regards to the
sensitivity of the reconstruction (which depends on the magnitude of the associated softest eigenvalue). Such an illustration
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is provided in Fig 4. This shows ‘nearby’ volumes of the form F ±∆F , with ∆F oriented along the softest mode. The
magnitude of these perturbations is chosen so that the log-likelihood-ratio from Eq. 6 is equal to log(20), implying that
the perturbed-volume is only 20 times less likely than the original (optimal) volume F . Thus, the perturbed-volumes
represent the ‘most extreme’ volumetric perturbations that would not be rejected in favor of the true volume under a
standard hypothesis test. In this way, the mode’s structure can be used to quantify the magnitude of the deformations
associated with the volumetric uncertainty, and also identify which (implicitly linked) alignment-perturbations are largest.
In terms of technical details, for this calculation we have assumed J = 1024 images and used a signal-to-noise ratio
estimated from the image-stack in EMPIAR-10005.

Another illustration of the same perturbations is shown in Fig 5. This time the isosurface of each perturbed-volume
is colored to indicate the magnitude of the perturbation with respect to the original isosurface. One can immediately see
that volumetric-fluctuations along this particular mode induce variations along certain portions of the isosurface, but not
others.

Figure 4: This figure illustrates level surfaces of F ± ∆F , with ∆F chosen to be the softest-mode taken from Fig 3.
These level-surfaces are colored in accordance with the sign and magnitude of ∆F as it intersects the level-surface of
F ±∆F . The magnitude of the perturbation is chosen so that the likelihood-ratio between these perturbed volumes and
the original volume (from Fig 1) is 1/20. In this case the magnitude of the perturbation has an l2-norm which is ∼ 10%
of the l2-norm of the original volume. For this calculation we have assumed J = 1024 images and used a signal-to-noise
ratio estimated from the image-stack in EMPIAR-10005.
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Figure 5: This figure is similar to Fig 4. This time the level-surfaces of F ± ∆F are colored in accordance with the
distance between each level-surface shown and the corresponding level-surface of the undeformed volume F . The color
ranges from white (no perturbation) to dark-purple (1/400 of the viewing-window diameter).

For this particular scenario the second-softest mode also has a small eigenvalue, and is illustrated in Figs 6-7. Note
that, by considering the ‘soft eigenspace’ comprising these two softest modes, one can see that the lower region of the
reconstruction is less trustworthy than the upper region. We remark that this uncertainty is not directly due to the
underlying biology (e.g., the flexibility of the ankyrin domains), but rather to the inherent sensitivity of the single-particle
reconstruction problem for this particular volume and image-pool. That is to say, the softest modes reveal how well posed
the single-particle reconstruction problem is.

Figure 6: This figure is similar to Fig 3, except that we show the second softest observed eigenvector of H. That is to
say, the ∆F shown in this figure is orthogonal to the ∆F shown in Fig 3.
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Figure 7: This figure is similar to Fig 5, except this time we choose ∆F to be the second-softest mode taken from Fig
6. In this case the magnitude of the perturbation has an l2-norm which is ∼ 8% of the l2-norm of the original volume.
Note that, again, the volumetric-perturbations indicate uncertainty regarding the level-surface towards the bottom of the
molecule. Note also that the upper part of the molecule is relatively stable (c.f. Figs 5 and 7).

3.2 case-study: trpv1 (empirical viewing-angle distribution)

As an illustration of this fact, we repeat the same same calculation, but this time using the empirical distribution of
viewing-angles taken from the first J = 1024 images of EMPIAR-10005, as shown in Fig 8. We perform this calculation
using the empirically determined displacements and CTF-functions for these images. The softest mode is shown in Fig 9.

What is not immediately apparent from Fig 9 is that, even though a handful of images admit large alignment-
perturbations, the softest eigenvalue is actually much larger for this example than for the original example shown in Fig
2. This larger eigenvalue implies that the likelihood penalty for a volumetric-deformation is much larger, implying in turn
much less uncertainty, as illustrated in Fig 10. While the lower region of the molecule is still the most uncertain, the
overall level of uncertainty is very small; the difference between the original level surface and the deformed surfaces in Fig
10 is barely noticeable.

We remark that the increased reliability of this second reconstruction (c.f. Figs 10 and 5) is due almost entirely to the
difference in viewing-angles (c.f. the viewing-angle distributions in Figs 8 and 1). Put simply, the broader distribution of
viewing-angles in the second reconstruction renders the result much more robust. This observation by itself aligns with
intuition, and is not surprising. Nevertheless, we believe that calculations of this kind can be useful for identifying which
regions of the molecule are less reliable than others, and quantifying just how unreliable those regions might be.
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Figure 8: This figure is similar to Fig 1, except this time we illustrate the empirical viewing-angle distribution for the
picked-particles within EMPIAR-10005.

Figure 9: This figure is similar to Fig 2. In this figure we show a collection of τ -specific alignment-perturbations {∆τ(τ)}
(left) along with a corresponding volumetric-perturbation δF (right). The arrows on the left indicate the direction of the
alignment-perturbations for each (β, α), with ∆γ(τ) = 0. On the right we show an isosurface of |∆F |, colored by the
sign of ∆F (with blue and pink corresponding to negative and positive, respectively). These perturbations have been
selected to align with the ‘softest’ observed eigenvector of the Hessian H associated with the single-particle-reconstruction
problem associated with Fig 1. For this calculation we use the first J = 1024 images from EMPIAR-10005, along with their
CTF-functions and their most-likely displacements. Note that, while most of the alignments are relatively robust, there
are a few images for which the viewing-angles can be significantly deformed (see dark-purple arrows on the left).
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Figure 10: This figure is similar to Figs 5 and 7, except this time we choose ∆F to be the softest mode taken from Fig 9.
In this case the magnitude of the perturbation has an l2-norm which is only ∼ 2% of the l2-norm of the original volume.
Note that, this time, the level-surfaces do not change very much (i.e., the entire level-surface is relatively stable).

3.3 case-study: the effect of viewing-angle distribution

The examples above involved the same reconstruction of trpv1, subject to different distributions of viewing-angles. While
the polar-distribution in Fig 1 was less robust than the empirical distribution in Fig 8, both had softest modes which
indicated that the lower region of the molecule was the most uncertain.

This is not always the case, and in some scenarios shifts in the viewing-angle distribution can dramatically change
the structure of the softest modes. One example of this is shown in Figs 11 and 12. In this example we use J = 1024
synthetic-images to explore the spectrum of H for the ISWINCP molecule at emd 9718.map. The first scenario in Fig 11
assumes a uniform distribution of viewing-angles, while the second scenario in Fig 12 assumes a collection of viewing-angles
that is concentrated towards the equator. Note that the regions of the molecule which are most uncertain depend on the
viewing-angle distribution.

11



Figure 11: This figure is similar to Fig 10. Here we show the softest mode associated with the ISWINCP molecule at
emd 9718.map. For this calculation we use synthetic-images with a resolution of 2πK = 48, assuming uniform viewing-
angles.

Figure 12: This figure is similar to Fig 10. Here we show the softest mode associated with the ISWINCP molecule
at emd 9718.map. For this calculation we use synthetic-images with a resolution of 2πK = 48, assuming viewing-angles
concentrated in a band around the equator (±15 degrees).

Another example of this is shown in Figs 13-15 In this example we use J = 1024 synthetic-images to explore the
sensitivity of the MlaFEDB molecule at emd 9718.map. The first scenario in Fig 13 assumes a viewing-angle distribution
concentrated around the poles. The second scenario in Fig 14 assumes a viewing-angle distribution that is uniform.
The third scenario in Fig 15 assumes a viewing-angle distribution concentrated around the equator. Note that, for this
molecule, the regions which are most uncertain depend strongly on the viewing-angle distribution.
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Figure 13: This figure is similar to Fig 10. Here we show the softest mode associated with the MlaFEDB molecule
at emd 9718.map. For this calculation we use synthetic-images with a resolution of 2πK = 48, assuming viewing-angles
concentrated in a band around the poles (±30 degrees).

Figure 14: This figure is similar to Fig 10. Here we show the softest mode associated with the MlaFEDB molecule at
emd 9718.map. For this calculation we use synthetic-images with a resolution of 2πK = 48, assuming uniform viewing-
angles.
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Figure 15: This figure is similar to Fig 10. Here we show the softest mode associated with the MlaFEDB molecule
at emd 9718.map. For this calculation we use synthetic-images with a resolution of 2πK = 48, assuming viewing-angles
concentrated in a band around the equator (±15 degrees).

3.4 case-study: the effect of defocus

In the previous section we used the softest modes to illustrate how changes in the viewing-angle distribution might impact
the sensitivity of single-particle-reconstruction. A similar phenomenon also applies to changes in defocus. To illustrate
this, we turn back to the trpv1 molecule used above.

We consider three scenarios, corresponding to three different distributions of defocus (see Fig 16). Now, for each of
these defocus-values, we can estimate the lower-tail of the Hessian for the optimal single-particle-reconstruction. For these
calculations we use synthetic-images drawn from the empirical-distribution of viewing-angles. These results are shown in
Fig 17. Note that, as the defocus increases, the softest eigenvalues of the Hessian increase, corresponding to the increase in
information shown in the CTFs in Fig 16. The softest modes for each scenario are shown in Figs 18-20. The corresponding
volumetric-deformation for the largest defocus-value is shown in Fig 21.
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Figure 16: In this figure we illustrate three different collections of CTF-functions, corresponding to defocus-values of
∼ 10k, 17k and 23k, respectively. Note that, for this calculation, 2πK was limited to 32. As a result, the larger defocus-
values carry more information.

Figure 17: Here we show the rayleigh-quotients associated with the softest 7 modes for each defocus-value. Note that,
for this calculation, 2πK was limited to 32. Note also that the effective dimension of the ‘soft subspace’ shrinks as the
defocus-value increases.
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Figure 18: This figure is similar to Fig 9. In this case we show the perturbation associated with the softest mode the
defocus of ∼ 10k. Note that, for this calculation, 2πK was limited to 32. Note also that in this figure (and the following
figures) we use the same area for each arrowhead on the left; the magnitude of ∆τ(τ) is represented only by the color.

Figure 19: This figure is similar to Fig 18. In this case we show the perturbation associated with the softest mode the
defocus of ∼ 17k. Note that the structure of the perturbation changes (as a result of the change in defocus).

Figure 20: This figure is similar to Fig 18. In this case we show the perturbation associated with the softest mode the
defocus of ∼ 23k. Note that the structure of the perturbation changes (as a result of the change in defocus).
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Figure 21: This figure is similar to Fig 10. In this case we show the perturbation associated with the softest mode at a
defocus of ∼ 23k. The level-surfaces change most towards the bottom of the molecule. A very similar structure manifests
for the other defocus-values (not shown).

3.5 case-study: paths in volume-space

As demonstrated above, the structure of the softest subspace depends on the viewing-angle distribution, as well as on
imaging parameters such as the defocus. The softest subspace also obviously depends on the particular volume which
is provided as a solution to the single-particle-reconstruction problem. This dependence can be of interest in certain
scenarios, such as free-energy estimation [43].

To illustrate this phenomenon, we consider a one-dimensional family of conformations for an RNA-molecule, shown in
Fig 22. This family of conformations corresponds to a particular path of interest in volume-space, and can be parametrized
by a ‘collective variable’ s. As described in [43], it is in principle possible to use cryo-EM data to estimate the free-energy
density G(s) along this path. This kind of free-energy estimate involves calculating, for each volume F (x; s) along the
path, the likelihood that the image-pool might produce that particular volume. Those values of s for which F (x; s) is
more likely will correspond to lower values of G(s).

When performing this calculation, it is important to consider the interplay between the path-tangent ∂sF (x; s) (i.e., the
direction in volume-space corresponding to perturbations in the path-variable s) and the softest modes of the Hessian H(s)
of the likelihood at each location along the path. Locations s where the path-tangent ∂sF (x; s) lies along a stiff-mode of
the Hessian H(s) correspond, locally, to locations along the path that are highly discriminable from their neighbors (given
the image-pool). In other words, these are locations where projections of F (x; s) are not easily confused for projections
of nearby volumes F (x; s ± ∆s). Conversely, locations where the path-tangent ∂sF (x; s) lies parallel to a soft-mode of
the Hessian H(s) correspond, locally, to locations along the path that are easily confused with their neighbors. In other
words, these are locations where projections of F (x; s) are quite similar to projections of nearby volumes F (x; s±∆s).

Thus, the reliability of any free-energy estimate G(s) will be influenced by the rayleigh-quotient:

R(s) := [∂sF̂ (·; s)]†[H(s)][∂sF̂ (·; s)].

Locations along the path for which R(s) is small will correspond to locations where the estimate of G(s) is inherently
unreliable, simply due to the poor conditioning of the likelihood function. Estimates of R(s) are shown in Fig 22. This
calculation was performed in the low-temperature limit, for which the likelihood can be approximated by Eq. 1. Similar
calculations can be performed away from the low-temperature limit by marginalizing over the noise-parameter (see [44]
and section 23 in the Appendix).

For the collective-variable shown in Fig 22, the values of R(s) are smallest when the RNA-molecule is ‘closed’; i.e.,
there are many projections along which neighboring closed configurations seem quite similar to one another. By contrast,
the values of R(s) are largest when the RNA-molecule is ‘open’; i.e., there are comparatively fewer projections along
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which neighboring open configurations seem similar. These differences in R(s) can be important when interpreting free-
energy estimates. Moreover, it may be worth considering R(s) when designing a collective variable. By ensuring that the
path-tangent travels along stiff-modes of the Hessian of the likelihood-function for each point in volume-space, it may be
possible to mitigate one source of uncertainty in the final free-energy estimate.

Figure 22: In this figure we illustrate the rayleigh-quotient R := [∂sF̂ (·; s)]†[H(s)][∂sF̂ (·; s)] (top) along the conforma-
tional path corresponding to the sequence of volumes shown on the bottom. The path shown here connects an ‘open’
RNA molecular conformation (left) to a ‘closed’ configuration (right). Portions of the path for which R is low correspond
to zones where locally resolving the free-energy will be difficult, due simply to the fact that other nearby conformations
produce similar projections. Conversely, portions of the path for which R is high correspond to zones where locally
resolving the free-energy will be be more robust, with less opportunity for confusion. In the calculation of R we assume
that (i) the values of ∆τ(τ) are determinined implicitly, with (ii) ∥∂sF (x, s)∥ ≡ 1 at each point along the path. For
demonstration, we have also assumed that the viewing-angle-distribution is uniform (for each conformation), and that the
CTF is identically 1 (although these assumptions can easily be relaxed). This calculation was performed at relatively low
resolution, with 2πK = 32.

4 Discussion

In cryo-EM, single-particle reconstruction algorithms typically search for volumes which maximize a likelihood func-
tion. Consequently, the effect of any local perturbation depends on the Hessian of the log-likelihood. In the context of
ab-initio reconstruction, this log-likelihood can often be approximated with either a low-temperature limit or a noise-
marginalization, yielding the simple accumulation of 2d-integrals shown in Eq. 1. This simple structure allows the
log-likelihood to be represented as a volumetric integral akin to Eq. 3. Together, these 2d- and 3d-representations of the
log-likelihood allow us to recover the extremal eigenvalues and eigenvectors of the Hessian, opening the door to several
kinds of sensitivity analyses. We believe that these analyses can complement more traditional strategies for sensitivity
analysis, such as bootstrapping and crossvalidation (e.g., measuring the fourier-shell-correlation between reconstructions
built using disjoint subsets of the image-pool) [37, 38, 39, 40].

In the applications described above, we have illustrated how the ‘softest modes’ of the hessian can be used to quantify
how robust a particular single-particle reconstruction might be. For example, one can examine the softest subspace to
identify which regions of the molecule are most uncertain. The same can be said for the image-alignments, and the softest
modes can quantify which (implicitly determined) image-alignments are most uncertain. The softest subspace of the
Hessian can also be used to probe how the uncertainty depends on properties of the image-pool, such as the viewing-angle
distrubution and range of defocus-values.

We expect this kind of analysis to be useful in scenarios where the viewing-angle distribution is naturally nonuniform,
and where experimentalists have a range of defocus values to choose from. One such example might be the reconstruction
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of membrane proteins from picked-particle images of cellular lammelae [45, 46]. There are scenarios where the picked-
particles can be biased towards regions where the cell membrane intersects the micrograph transversely. In such scenarios,
the membrane-proteins in any picked-particle images would typically be viewed from a ‘side’ (i.e., a direction tangent
to the membrane) rather than from the ‘top’ (i.e., the direction orthogonal to the membrane). As illustrated above,
nonuniformity in the viewing-angle distribution can result in large uncertainties for particular regions of the molecule.
This can be particularly problematic when these large uncertainties occur in regions of interest (e.g., the pores of a
membrane channel). By analyzing how the softest modes of the Hessian depend on the viewing-angle distribution and the
imaging parameters, one can determine which additional viewing-angles (and choice of defocus-values) would help reduce
this uncertainty the most.

While most of our examples involve single-particle reconstruction, the structure of the Hessian can provide important
information in other applications as well. For example, when using cryo-EM data to estimate free-energy landscapes
one often considers paths in conformation-space. Each location along a conformational-path can be associated with a
conformation-specific Hessian, which in turn produces conformation-specific soft modes. In such a scenario, the relative
orientation between the conformational-tangent-space and the softest subspace of the conformation-specific Hessian plays
a role in determining the local sensitivity of any free-energy estimate.

The analysis of the Hessian can also shed light on some of the difficulties associated with multi-particle reconstruction.
As described in section 24 of the Appendix, multi-particle reconstruction can be ill-posed and/or yield spurious hetero-
geneity even in situations where the analogous single-particle reconstruction problem is well-posed. While we do not have
a generic solution to this ill-posedness, we suggest applying the analysis above – namely calculating and inspecting the
softest modes – for each of the volumes produced in a multi-particle reconstruction. These softest modes can reveal regions
of high sensitivity which could indicate ill-posedness.

Finally, while our presentation above largely ignored image-specific translations {δj}, one can easily incorporate these
translations into the definitions of the likelihood and the corresponding Hessian (see section 12 in the Appendix). In
future work we will expand our computational strategy to account for such translations, and plan to use strategies from
[47] to accelerate this computation.

Part II

Appendix
In this part we introduce the notation used in the main text and describe the objects we are dealing with in the context
of cryo-EM. We first discuss images, and then turn to volumes in section 9. Many of the conventions we establish for the
former will carry over to the latter. When possible, we will use notation similar to [47, 48, 42].

5 Image notation

We use x,k ∈ R2 to represent spatial position and frequency, respectively. In polar coordinates these vectors are repre-
sented as:

x = (x cos θ, x sin θ) (7)

k = (k cosψ, k sinψ). (8)

The Fourier transform of a 2-dimensional function A ∈ L2(R2) is defined as

Â(k) :=

∫∫
R2

A(x)e−ik·x dx . (9)

We recover A from Â using the inverse Fourier transform:

A(x) =
1

(2π)2

∫∫
R2

Â(k)e+ik·x dk . (10)

The inner product between two functions A,B ∈ L2(R2) is written as

⟨A,B⟩ =
∫∫

R2

A(x)†B(x) dx , (11)

where z† is the complex conjugate of z ∈ C. We will also use Plancherel’s theorem [49],

⟨A,B⟩ = 1

(2π)2
⟨Â, B̂⟩ , ∀A,B ∈ L2(R2) , (12)
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ignoring the prefactors of 2π associated with the Fourier transform when they are not relevant.
We represent any given image as a function A ∈ L2(R2), with values corresponding to the image intensity at each

location. Any inner product between A and B can be calculated equally well in either real or frequency space. Because
of recent image alignment tools developed in the context of cryo-EM molecular reconstruction [50, 47], we will typically

refer to images in frequency space (i.e., Â, rather than A).

Abusing notation, we’ll refer to A(k) and Â(k) in polar coordinates as:

A(x, θ) := A(x) = A(x cos θ, x sin θ) (13)

Â(k, ψ) := Â(k) = Â(k cosψ, k sinψ). (14)

With this notation, each Â(k, ψ) for fixed k and ψ ∈ [0, 2π) corresponds to a ‘ring’ in frequency space with radius k.

6 Rotating images: the Fourier–Bessel basis

Using the notation above, a rotation Rγ by angle γ can be represented as:

RγA(x, θ) := A(x, θ − γ). (15)

Since rotation commutes with the Fourier transform, we have:

R̂γA(k, ψ) = Rγ ◦ Â(k, ψ) = Â(k, ψ − γ). (16)

In this manner, a rotation of any image by +γ can be represented as an angular shift of each image ring by ψ → ψ − γ.
The effect of a particular rotation can also be applied in a different basis: the Fourier–Bessel basis. To define the

Fourier–Bessel coefficients of an image we recall that, for each fixed k, the image ring Â(k, ψ) is a 2π-periodic function of

ψ. Thus, we can represent each image ring Â(k, ψ) as a Fourier series in ψ, obtaining

Â(k, ψ) =

+∞∑
q=−∞

Ǎ(k, q)e+iqψ, (17)

for q ∈ Z. The Fourier–Bessel coefficients Ǎ(k, q) of the image ring Â(k, ψ) are given by

Ǎ(k, q) =
1

2π

∫ 2π

0

Â(k, ψ)e−iqψ dψ . (18)

These coefficients can be represented in a more traditional fashion by recalling that the Bessel function Jq(kx) can be
written as:

Jq(kx) =
1

2π

∫ 2π

0

eikx sin(ψ)−iqψ dψ (19)

=
1

2π

∫ 2π

0

e−ikx cos(ψ+π/2)−iqψ dψ , (20)

which, when combined with the definition of the Fourier transform, immediately implies that:

Ǎ(k, q) =

∫∫
A(x, θ)

1

2π

∫ 2π

0

e−ikx cos(ψ−θ)−iqψ dψ xdx dθ (21)

=

∫∫
A(x, θ)e−iq(θ+π/2) 1

2π

∫ 2π

0

e−ikx cos(ψ+π/2)−iqψ dψ xdx dθ (22)

=

∫∫
A(x, θ)e−iq(θ+π/2)Jq(kx)xdx dθ , (23)

which is the inner product between the original image (in real space) and a ‘Fourier–Bessel’ function.
The rotation Rγ can now be represented as:

RγÂ(k, ψ) = Â(k, ψ − γ) (24)

=

+∞∑
q=−∞

Ǎ(k, q)e+iq(ψ−γ) (25)

=

+∞∑
q=−∞

Ǎ(k, q) · e−iqγe+iqψ, (26)
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such that the Fourier–Bessel coefficients of the rotated image ring Rγ ◦ Â(k, ·) are given by the original Fourier–Bessel
coefficients Ǎ(k, q), each multiplied by the phase factor e−iqγ . Note that (26) naturally allows for rotation by any γ, even
values of γ that may not lie on the polar grid used to discretize the images.

In a typical discretization scheme (see below) the images Â and B̂ each require the storage of O(N2) values, as do the

Fourier–Bessel representations Ǎ and B̌. The calculation of the array X̂ (q) involves O(N2) operations and O(N) storage.

Once X̂ is calculated, the inner products X (γ) can be recovered on a uniform grid of O(N) angles γ ∈ [0, 2π) with an
additional O(N log(N)) operations using the FFT. More details are given in [50, 47, 42].

7 Image noise model

We assume that the images considered can be modeled as the sum of a ‘signal’ plus a ‘noise’. We assume that the signal
corresponds to a 2-dimensional projection of a (smooth) molecular electron density function, while the noise corresponds
to detector noise [31, 32, 35, 18]. We do not consider more complicated sources of noise, such as structural noise associated
with image preparation (see [51]).

Based on these simple assumptions, we’ll model the noise in real space as independent and identically distributed (iid),
with a variance of σ2 on a unit scale in 2-dimensional real space. Thus, the image A evaluated at pixel (n1, n2) has a
value modeled by:

An1,n2
= A(xn1,n2

) = Asignal

n1,n2
+Anoise

n1,n2
, (27)

where the signal and noise are represented by the arrays Asignal
n1,n2

and Anoise
n1,n2

, respectively. Because each entry in Anoise
n1,n2

corresponds to an average over the area element ∆x2 associated with a single pixel, we expect the variance of each Anoise
n1,n2

to scale inversely with ∆x2. That is to say, we’ll assume that each element of the noise array Anoise
n1,n2

is drawn from the

standard normal distribution N
(
0, σ2

∆x2

)
, with a mean of 0 and a variance of σ2/∆x2.

Given the assumptions above, we expect that Â will be modeled by:

Â(k) = Â(k) = Âsignal(k) + Ânoise(k), (28)

where Ânoise is now complex and iid. Because the noise term Anoise is real, the noise term Ânoise will be complex, with the
conjugacy constraint that Ânoise(+k) = Ânoise(−k)†.

If we were to sample k on the uniform N ×N cartesian grid associated with the standard 2-dimensional fast Fourier
transform, then kn1,n2

will correspond to the frequency ∆k · (n1, n2), with frequency spacing ∆k = π and indices (n1, n2)

considered periodically in the range [−N/2, . . . ,+N/2−1]. In this case the transformation between An1,n2 and Ân1,n2 will
be unitary. When (n1, n2) corresponds to an index pair that is periodically reflected onto itself (i.e., the four index pairs

(0, 0), (N/2, 0), (0, N/2) and (N/2, N/2)) then Ânoise
n1,n2

will be real and drawn from N (0, σ2

∆x2 ). When (n1, n2) corresponds

to an index pair that is not periodically reflected onto itself, the real and imaginary components of Ânoise(kn1,n2) will each

be drawn iid from N (0, σ2

2∆x2 ) subject to the conjugacy constraint above.

Motivated by this observation, we define σ̂2 = π2σ2

∆x2 as the variance on a unit scale in 2-dimensional frequency space.

We expect that the noise term Ânoise(k) integrated over any area element ∆k2 in frequency space will have a variance of
σ̂2

∆k2
.

8 Image-image similarity: likelihood

Given one ‘noisy’ image Â = Âsignal+Ânoise and another ‘noiseless’ image B̂ = B̂signal, we can derive the standard likelihood
of observing any value of Â, given that the signals Âsignal and B̂signal are the same:

P (Âsignal = B̂
∣∣ Â) · P (Â) = P (Â

∣∣ Âsignal = B̂) · P (Âsignal = B̂), (29)

which can be rearranged into:

P (Âsignal = B̂
∣∣ Â) = P (Â

∣∣ Âsignal = B̂) · P (Âsignal = B̂)

P (Â)
. (30)

Assuming a uniform prior P (Âsignal = B̂), the posterior probability P (Âsignal = B̂|Â) is proportional to the likelihood

P (Â
∣∣ Âsignal = B̂).

P (Â(k)
∣∣ B̂(k)) := P (Â(k)

∣∣ Âsignal(k) = B̂(k)) =
1

(
√
2π σ̂)dof

exp

(
− 1

2σ̂2

∫∫
k∈ΩK

|Â(k)− B̂(k)|2dk
)
, (31)
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where dof refers to the number of independent degrees of freedom in the image (e.g., dof could be the number of pixels in

the image A(x), or the number of quadrature-nodes used to discretize Â(k, ψ)).

When dealing with two noisy images Â = Âsignal + Ânoise and B̂ = B̂signal + B̂noise, as long as Ânoise is independent from
B̂noise the same general argument applies. The only difference in this scenario is that the effective variance involves both
the variance of Ânoise and B̂noise.

9 Volume notation

We use χ,κ ∈ R3 to represent spatial position and frequency, respectively. in spherical coordinates the vector κ is
represented as:

κ = k · κ̂, with κ̂ = (cosϕ sin θ, sinϕ sin θ, cos θ), (32)

with polar angle θ and azimuthal angle ϕ representing the unit vector κ̂ on the surface of the sphere S2.
Using a right handed basis, a rotation about the third axis by angle α is represented as:

Rzα =

 +cosα − sinα 0
+ sinα +cosα 0

0 0 1

 , (33)

and a rotation about the second axis by angle β is represented as:

Ryβ =

 +cosβ 0 + sinβ
0 1 0

− sinβ 0 + cosβ

 . (34)

A rotation Rτ of a vector κ ∈ R3 can be represented by the vector of Euler angles τ = (γ, β, α):

Rτ · κ = Rzα ◦ R
y
β ◦ R

z
γ · κ. (35)

We represent any given volume as a function F ∈ L2(R3), with values corresponding to the volume intensity at each

location χ ∈ Ω1. We’ll refer to F̂ (κ) in spherical coordinates as F̂ (k, κ̂). With this notation, each F̂ (k, ·) corresponds to a

‘shell’ in frequency space with radius k. The rotation of any volume Rτ F̂ (k, κ̂) corresponds to the function F̂ (k,R−1
τ κ̂).

10 Rotation in the spherical-harmonic basis

Using the notation above, we can represent a volume F̂ (k, κ̂) as:

F̂ (k, κ̂) =

+∞∑
l=0

m=+l∑
m=−l

F̂ml (k)Y ml (κ̂), (36)

where Y ml (κ̂) represents the spherical-harmonic of degree l and order m:

Y ml (θ, ϕ) = Zml e+imϕPml (cos θ), (37)

with Pml representing the (unnormalized) associated Legendre polynomial, and Zml the normalization constant:

Zml =

√
2l + 1

4π
× (l − |m|)!

(l + |m|)!
. (38)

The coefficients F̂ml (k) define the spherical-harmonic expansion of the k-shell F̂ (k, ·).
Using this spherical-harmonic basis allows us to efficiently apply rotations. For example, given a rotation by τ =

(γ, β, α), we can represent the rotated volume Ĝ := Rτ F̂ as:

Ĝm1

l =

m2=+l∑
m2=−l

e−im1αdlm1,m2
(β)e−im2γF̂m2

l , (39)

where dlm1,m2
(β) represents the degree l Wigner d-matrix associated with the interior Euler angle β.
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11 Volume projection in the spherical-harmonic basis

We denote the projection of a volume F (χ) (with χ ∈ R3) along a particular viewing-angle τ by the function S(x; τ ;F )
(with x ∈ R2). We’ll refer to this projection S(x; τ ;F ) as the ‘template’ associated with F (χ) and viewing-angle τ .

By the Fourier-slice theorem we can decribe the Fourier-transformed template Ŝ(k; τ, F̂ ) via:

Ŝ(k; τ ; F̂ ) =
[
Ŝl ◦ R(τ) ◦ F̂

]
(k), (40)

where Ŝl denotes taking the equatorial slice in the Fourier domain.
In terms of computation, the Ŝl operator can be described by restricting the unit-vector κ̂ in Eq. 32 to the equatorial-

plane, corresponding to setting β ≡ 0 and associating α =: ψ.[
Ŝl ◦ F̂

]
(k, ψ) :=

+∞∑
l=0

m=+l∑
m=−l

F̂ml (k)Zml e+imψPml (0). (41)

If we consider the effect of a contrast-transfer-function CTF (k), then the template associated with F (χ) and a viewing-
angle τ can be written as:

Ŝ(k; τ ;CTF ; F̂ ) = CTF (k)⊙
[
Ŝl ◦ R(τ) ◦ F̂

]
(k). (42)

If we were also to consider the effect of an image-dependent displacement δ, then the template associated with F (χ)
and a viewing-angle τ can be written as:

Ŝ(k; τ ; δ;CTF ; F̂ ) = CTF (k)⊙ T̂ (δ;k)⊙
[
Ŝl ◦ R(τ) ◦ F̂

]
(k), (43)

where T̂ (δ;k) is the fourier-signature corresponding to a 2-dimensional translation by δ:

T̂ (δ;k) := exp (−iδ · k) . (44)

12 Image-volume similarity: likelihood

12.1 single-particle:

Referring back to section 8 and Eq. 31, we can express the likelihood that a particular volume F̂ (k) might produce a

particular image Â(k) with CTF-function CTF (k) via projection along viewing-angle τ and translation by a displacement-
vector δ:

P
(
Â
∣∣ τ ; δ; F̂) = P

(
Â
∣∣ Ŝ(k; τ ; δ;CTF ; F̂ )) . (45)

The likelihood P
(
Â
∣∣ τ ; δ; F̂) can be marginalized across τ and δ to calculate the likelihood that F̂ might produce the

image Â(k):

P
(
Â
∣∣ F̂) =

∫
δ∈R2

∫
τ∈SO3

P
(
Â
∣∣ τ ; δ; F̂) · P (τ ; δ ∣∣ F̂) dτdδ (46)

=

∫
δ∈R2

∫
τ∈SO3

P
(
Â
∣∣ τ ; δ; F̂) · P (δ ∣∣ τ ; F̂) · P (τ ∣∣ F̂) dτdδ, (47)

where P
(
τ
∣∣ F̂) is prior distribution attributed to the viewing-angle τ , P

(
δ
∣∣ τ ; F̂) is the prior distribution attributed to

δ for a particular value of τ , and P
(
τ ; δ

∣∣ F̂) is the joint-prior over the alignments τ and δ. To emphasize the dependence

of P (Â | F̂ ) on the prior distributions and noise-level, we will sometimes write:

P
(
Â
∣∣ F̂) =: P

(
Â
∣∣ F̂ ; P (τ ; δ | F̂ ) ; σ̂

)
.

In this manuscript we will typically assume that δ ≡ 0. This corresponds to taking the limit σδ → 0, resulting in

P
(
δ
∣∣ τ ; F̂) becoming sharply peaked at the origin. Under this limit we’ll suppress the notation for δ. More generally,

we can consider P
(
δ
∣∣ τ ; F̂) to be an isotropic gaussian centered at the origin:

P
(
δ
∣∣ τ ; F̂) = P (δ) =

1

2πσ2
δ

exp

(
−|δ|

2

2σ2
δ

)
,
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where σδ is a fixed small distance (e.g., one tenth the diameter of each picture).

Given a pool of J images {Âj} and their associated CTF-functions {CTFj} (both indexed by j ∈ 1, . . . J), we can

accumulate terms from Eq. 47 to calculate the likelihood that F̂i might produce this collection of images:

P
(
{Âj}

∣∣ F̂) = P
(
{Âj}

∣∣ F̂ ; P (τ ; δ | F̂ ) ; σ̂
)
=

J∏
j=1

P
(
Âj
∣∣ F̂ ; P (τ ; δ | F̂ ) ; σ̂

)
. (48)

12.2 multi-particle:

In the context of multi-particle reconstruction, we might consider I different volumes {F̂i} (indexed by i ∈ 1, . . . I), each

with their own prior distributions. In this context we can calculate the likelihood that the collection {F̂i} might produce

the image Â(k):

P
(
Â
∣∣ {F̂i}) =

I∑
i=1

P
(
Â
∣∣ F̂i) · P (F̂i) (49)

=

∫
δ∈R2

∫
τ∈SO3

I∑
i=1

P
(
Â
∣∣ τ ; δ; F̂i) · P (τ ; δ ∣∣ F̂i) · P (F̂i) dτdδ (50)

=

∫
δ∈R2

∫
τ∈SO3

I∑
i=1

P
(
Â
∣∣ τ ; δ; F̂i) · P (τ, δ, i ∣∣ {F̂i}) dτdδ,. (51)

where P
(
F̂i

)
is the prior probability that the image Â was drawn from the volume F̂i, and P

(
τ, δ, i | {F̂i}

)
is the prior

probability that the image Â was drawn from the volume F̂i with viewing-angle τ and displacement δ. Once again, to
emphasize the dependence of P (Â | {F̂i}) on the prior distributions and noise-level, we will sometimes write:

P
(
Â
∣∣ {F̂i}) =: P

(
Â
∣∣ {F̂i} ; P (τ, δ, i | {F̂i}) ; σ̂

)
.

Just as in Eq. 48, we can accumulate terms from Eq. 51 to calculate the likelihood that {F̂i} might produce a collection
of images:

P
(
{Âj}

∣∣ {F̂i}) = P
(
{Âj}

∣∣ {F̂i} ; P (τ, δ, i | {F̂i}) ; σ̂
)
=

J∏
j=1

P
(
Âj
∣∣ {F̂i} ; P (τ, δ, i | {F̂i}) ; σ̂

)
. (52)

13 Image-volume similarity in the low-temperature limit

13.1 single-particle:

The likelihood in Eq. 48 depends via Eqs. 47, 45 and 31 on the estimated noise-level σ̂2, which is related to the signal-to-
noise ratio, or ‘snr’, and is sometimes referred to as the estimated ‘temperature’ used in the bayesian framework. In the
low-temperature limit that σ̂2 → 0, the integral in Eq. 47 becomes dominated by the contribution associated with the
‘maximum-likelihood’ alignment-angle for the image Â. This maximum-likelihood alignment occurs for the viewing-angle,
displacement and volume which maximize the summand P (Â | τ ; δ; F̂ ) · P (τ, δ | F̂ ) in the integrand of Eq. 47. More

specifically, given a particular volume F̂ , the maximum-likelihood alignment {τ opt, δopt} for an image Â occurs at:

{ τ opt , δopt } := argmax
{τ,δ}

P
(
Â
∣∣ τ ; δ; F̂) , (53)

where τ opt and δopt are restricted to lie in the support of P
(
τ ; δ

∣∣ F̂). With this notation, each of the {τ opt, δopt, iopt} can

be thought of as functions of the image Â, the volume F̂ and the prior distribution P (τ, δ | F̂ ).
In the context of single-particle reconstruction, the negative-log-likelihood in the low-temperature limit is dominated

by the following leading-order expansion:

− log
(
P
(
{Âj}

∣∣ F̂)) ∼ 1

2σ̂2

J∑
j=1

∫∫
k∈ΩK

∣∣∣Âj(k)− Ŝ (k; τ opt

j ; δopt

j ;CTFj ; F̂
)∣∣∣2 dk. (54)

This ‘template-wise’ expression represents the likelihood in terms of a collection of 2-dimensional integrals. Later on below
we’ll constrast this with an equivalent ‘volumetric’ expression which represents the likelihood in terms of a collection of
3-dimensional integrals.
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13.2 multi-particle:

In the context of multi-particle reconstruction, the likelihood in Eq. 52 depends on Eq. 51. In the low-temperature
limit that σ̂2 → 0, the maximum-likelihood alignment occurs for the viewing-angle, displacement and volume-label which
maximize the summand P (Â | τ ; δ; F̂i) · P (τ, δ, i | {F̂i}) in the integrand of Eq. 51.

Given a collection of volumes {F̂i}, the maximum-likelihood alignment {τ opt, δopt} and volume-label iopt for an image

Â occurs at:

{ τ opt , δopt , iopt } := argmax
{τ,δ,i}

P
(
Â
∣∣ τ ; δ; F̂i) , (55)

where τ opt, δopt and iopt are restricted to lie in the support of P
(
τ, δ, i | {F̂i}

)
. With this notation, each of the

{τ opt, δopt, iopt} can be thought of as functions of the image Â, the volume-set {F̂i} and the prior distribution P
(
τ, δ, i | {F̂i}

)
.

Thus, within the context of multi-particle reconstruction, the negative-log-likelihood in the low-temperature limit takes
a form very similar to Eq. 54:

− log
(
P
(
{Âj}

∣∣ {F̂i})) ∼ 1

2σ̂2

J∑
j=1

∫∫
k∈ΩK

∣∣∣Âj(k)− Ŝ (k; τ opt

j ; δopt

j ;CTFj ; F̂ioptj

)∣∣∣2 dk. (56)

14 Volume reconstruction in the low-temperature limit via least-squares

In the low-temperature limit each image Aj is assigned to a particular viewing-angle τj , displacement δj and volume-
label i via Eq. 55. Given these maximum-likelihood assignments, each volume can be reconstructed independently. For
example, in the context of single-particle-reconstruction, the single volume F̂ can be reconstructed by solving the following
linear-system in a least-squares sense:

CTF1 ⊙ T̂ (+δ1)⊙
{
Ŝl ◦ R(τ1)◦

}
...

CTFJ ⊙ T̂ (+δJ)⊙
{
Ŝl ◦ R(τJ)◦

}
 · F̂ lsq ≈

 Â1

...

ÂJ

 . (57)

In this expression, the J viewing angles τj and displacements δj are assumed to be given as input, as are the image-

or micrograph-specific CTF functions CTFj and images Âj . The unknown (to be determined) is the volume F̂ lsq. By

a least-squares solution to Eq. 57 we specifically mean the volume F̂ lsq for which the residual is proportional to the
negative-log-likelihood described in Eq. 54.

If it is more convenient, we can center the images on the right-hand-side and rewrite Eq. 57 as:
CTF1 ⊙

{
Ŝl ◦ R(τ1)◦

}
...

CTFJ ⊙
{
Ŝl ◦ R(τJ)◦

}
 · F̂ lsq ≈

 T̂ (−δ1)⊙ Â1

...

T̂ (−δJ)⊙ ÂJ

 . (58)

In the context of multi-particle reconstruction the pool of images can be sorted by volume-label, and then the same
strategy can be applied for each volume independently.

15 Volume reconstruction in the low-temperature limit via back-propagation

When the number of images J becomes large, the solution to Eq. 58 can be well approximated via a form of back-
propagation [42]. To motivate this strategy one can rewrite the likelihood as a volumetric-integral (see section 17).
Alternatively, one may observe that, if there were no noise and no CTF-attenuation, then the volume and images would
solve:  Ŝl ◦ R(τ1)◦

...

Ŝl ◦ R(τJ)◦

 · F̂ =

 T̂ (−δ1,k)⊙ Â1

...

T̂ (−δJ ,k)⊙ ÂJ


with each template Ŝl ◦ R(τj) ◦ F̂ corresponding to a cross-section of the volume F̂ (κ), with κ ∈ R3. Each of these

cross-sections can be viewed as a sample of the overall volume F̂ (κ), with values given by the appropriate entry on the
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right-hand-side of the equation above. With sufficiently many cross-sectional samples, a functional representation of the
volume F̂ (κ) for any point κ ∈ R3 can be reconstructed simply by collecting and averaging the images that correspond
to that point. That is, for each κ ∈ R3 we have the formula:

F̂ bp(κ) :=
1

|J (κ)|
∑

j′∈J (κ)

T̂ (−δj′ ,k) · Âj′ (k) , where: k := k(κ; j′) = R(τj′) ◦ κ. (59)

In this formula the set J (κ) includes only those image-indices j′ for which Âj′ contributes to the point κ. That is to say,

for each Âj′ there must exist a point k ∈ R2 corresponding to a location in the equatorial-plane in R3 onto which the
point κ ∈ R3 is rotated by R(τj′). This point k ∈ R2 will implicitly depend on κ as well as the chosen image-index j′.

The normalizing factor 1/|J (κ)| ensures that F̂ bp(κ) equals the average of all the image-values associated with κ.
The above formula can easily be generalized to deal with image-specific CTF-values. Indeed, by interpreting each

image-value Âj′(k) as a noisy sample of F̂ bp(κ), we can think of Eq. 59 as a local maximum-likelihood estimate of

F̂ bp(κ). More specifically, one can imagine sampling the image-values aj associated with a particular κ ∈ R3 from the
corresponding volume-value f :

aj = f + ϵj , with each ϵj drawn independently from N (0, σ̂2).

Given a collection of J such observations, the local-maximum-likelihood estimate for f is:

f opt =
1

J

J∑
j=1

aj .

If each image-value aj is weighted by an image-specific CTF-value cj , then we can adjust our model and local maximum-
likelihood estimate accordingly:

aj = f · cj + ϵj =⇒ f opt =

∑J
j=1 cjaj∑J
j=1 c

2
j

.

Applying this logic to Eq. 59 yields:

J̃(κ) :=
∑

j′∈J (κ)

|CTFj′ (k)|2 , and (60)

F̂ bp(κ) :=
1

J̃(κ)

∑
j′∈J (κ)

CTFj′ (k) · T̂ (−δj′ ,k) · Âj′ (k) , (61)

where once again the k ∈ R2 is implicitly related to κ and j′. This strategy coincides with the CTF-weighting of Bayesian
inference described in [16, 33].

The term J̃(κ) can be interpreted as the accumulated evidence at each point κ in frequency-space. Similarly, the term

J̃(κ) · F̂ bp(κ) can be thought of as the accumulated image-data at κ. The quotient of these two terms (i.e., F̂ bp(κ)) can
be thought of as a first-moment. Later on below we’ll see a similarly constructed second-moment within the likelihood.

16 Numerical details for back-propagation

Our algorithm attempts to solve the back-propagation problem exactly up to a given spherical-harmonic degree L (which
is itself related to the maximum frequency K determining the resolution).

To describe our approach in more detail, let’s consider the following summation Σ(M), originally represented as a
2-dimensional ‘template-wise’ integral:

Σ(M) =
∑
j

∫
k∈Ω(K)⊂R2

M†
j (k) ·

[
Ŝl ◦ R(τj) ◦ F̂

]
(k)dk, (62)

for some collection of data {Mj(k)}.
Let’s first consider the case where J = 1, and we have only a single nonzero data-value of M = 1 associated with the

viewing-angle τ at a point k for which κ = R−1(τ)◦k is positioned at the north-pole κ0 = [0, 0, 1]
⊺
. Instead of calculating

the sum Σ(M) by integrating M† against the template Ŝl ◦ R(τ) ◦ F̂ in 2-dimensions, we can instead just integrate a

delta-function ‘monopole impulse’ concentrated at the north-pole against the original volume F̂ in 3-dimensions. Put
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another way, our single nonzero data-value can be associated with the back-propagated volume δ(κ−κ0), again referring
to a delta-function impulse concentrated at the north-pole κ0.

When restricted to the spherical-shell of radius 1 and projected onto the spherical-harmonics of degree l ≤ L, the ideal
impulse δ(κ− κ0) (itself fully concentrated at κ0) produces a band-limited impulse which is a spherical-sinc that is now
centered around (but no longer fully concentrated at) its source at the north-pole:

δ̃(κ̂) =

L∑
l=0

√
4π ·
√
1 + 2l · Pl(cos(β)) =

L∑
l=0

4π · Y 0
l (κ̂),

where Pl is a legendre-polynomial of degree l and, by construction, the spherical-harmonic coefficients δ̃ml are given by 4π
when m = 0.

Similarly, a single data-value of M = 1 positioned at the equatorial-point κ1 = [cos(ψ), sin(ψ), 0]
⊺
will (given our

conventions) produce the back-propagated impulse
[
R([0, π/2, ψ]) ◦ δ̃

]
(κ̂) (i.e., a spherical-sinc with a source positioned

at the appropriate point on the equator).
Due to linearity, we can associate the more general data-pool {Mj(k)} with the back-propagated shell (for any radius

k):

M̃(κ) =
∑
j

∫
ψ∈[0,2π]

Mj(k) ·
[
R−1(τj) ◦ R([0, π/2, ψ]) ◦ δ̃

]
(κ̂)dψ, (63)

which specifies M̃(κ) at magnitude k. In this expression we implicitly relate κ ∈ Ω(K) ⊂ R3 to the amplitude and
unit-vector (k, κ̂). Similarly, we relate k ∈ Ω(K) ⊂ R2 to the amplitude and angle (k, ψ). Finally, we relate k = R(τj)◦κ.
In words, this simply amounts to walking through each piece of data Mj and, for each point k ∈ R2, placing an impulse
of the appropriate magnitude on the associated point κ = R−1(τj) ◦ k in 3-dimensional space.

With this reorganization we can now represent the sum Σ(M) as a 3-dimensional ‘volumetric’ integral:

Σ(M) =

∫
κ∈Ω(K)⊂R3

M̃†(κ) · F̂ (κ) · dκ
|κ|

. (64)

To compute M̃(κ) efficiently, we employ the following strategy:

1. First, we apply a linear-transformation D̃ to mollify the impulse δ̃ and ensure that the support of D̃ ◦ δ̃(κ̂) is not
too large on the surface of the shell.

2. Alongside D̃, we construct a quadrature-mesh on the surface of the shell which can both (i) resolve the mollified
impulse D̃ ◦ δ̃ and (ii) accurately integrate the spherical-harmonics Y ml up to degree L.

3. Now, for each j and q, the image-value Âj(k, ψq) is associated with the compactly-supported mollified impulse

Âj(k, ψq)·R−1(τj)◦R([0, π/2, ψq])◦δ̃(κ̂), which is simply a spherical-sinc with a source atR−1(τj)◦[cos(ψ), sin(ψ), 0]⊺
which we sample on the quadrature-mesh.

4. After accumulating all such values for all j and q on the quadrature-mesh, we use quadrature to recover the spherical-
harmonic coefficients of D̃M̃ .

5. Finally, we ‘undo’ the effect of D̃ and calculate M̃ := [D̃]−1 ◦ [D̃M̃ ].

This recipe provides a template to calculate J̃ and J̃ · F̂ bp:

J̃(κ) =
∑
j

∫
ψ∈[0,2π]

|CTFj(k)|2 ·
[
R−1(τj) ◦ R([0, π/2, ψ]) ◦ δ̃

]
(κ̂), (65)

[
J̃ · F̂ bp

]
(κ) =

∑
j

∫
ψ∈[0,2π]

CTFj(k) · T̂ (−δj ,k) · Âj(k) ·
[
R−1(τj) ◦ R([0, π/2, ψ]) ◦ δ̃

]
(κ̂), (66)

where once again κ = (k, κ̂), k = (k, ψ) and k = R(τj) ◦ κ.

16.1 designing D̃:

In this recipe we have the luxury of designing the mollifier D̃. We choose D̃ so that:

1. D̃ is diagonalized by the spherical-harmonic basis. That is to say: the spherical-harmonic coefficients [D̃ ◦ δ̃]l
are given by D̃l · δ̃l, for a collection of coefficients D̃l. This allows for D̃ and D̃−1 to be quickly applied in the
spherical-harmonic basis.
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2. The majority of the amplitude of D̃ ◦ δ̃ is close to the north- and south-pole. Put another way, we would like:

I2(βnorth, βsouth; D̃) :=

∫
β∈[βnorth,βsouth]

∫
α∈[0,2π]

∣∣∣D̃ ◦ δ̃(β, α)∣∣∣2 dα sin(β)dβ ≤ ϵ2pole,

for parameters including cutoff polar-cap angles βnorth and βsouth and an error-tolerance of ϵ2pole, where βnorth and βsouth

are as close to 0 and π as possible, while ϵ2pole is as small as possible. This constraint allows D̃ ◦ δ̃ to be compactly
supported on each spherical shell.

3. The coefficients D̃l are not too small for l ≤ L. That is, we would like:

min(D̃l) ≥ D̃min > 0,

for some lower-bound D̃min. This constraint bounds the operator-norm of D̃−1, allowing for both D̃ and D̃−1 to be
well-conditioned.

Note that the latter two criteria for D̃ are in conflict with one another: compressing the support of the mollified impulse
D̃ ◦ δ̃ can only be done if some of the D̃l are small. Thus, while in principle we could use a standard surface-diffusion (i.e.,
D̃l ∼ exp(l(l + 1)t) for some fixed diffusion-time t), we find that more efficient mollifiers can be constructed by solving a
quadratic program which balances the constraints placed on D̃.

For example, given a set of coefficients D̃l, we can write I2(βnorth, βsouth; D̃) as the quadratic-form:

I2(βnorth, βsouth; D̃) =

L∑
l=0

L∑
l′=0

D̃l · H̃(l, l′;βnorth, βsouth) · D̃l′ ,

with a kernel:

H̃(l, l′;βnorth, βsouth) = 8π2

∫
β∈[βnorth,βsouth]

√
(1 + 2l)(1 + 2l′)Pl(cos(β))Pl′(cos(β)) sin(β)dβ.

By fixing βnorth, βsouth and D̃min and running a quadratic-program with a constraint D̃l ≥ D̃min, we can quickly find the
optimal values of D̃l and the associated error ϵ2pole. This procedure can be run as a precomputation, scanning through

values of βnorth, βsouth and D̃min to find a mollifier which best satisfies the sparsity and error-tolerance constraints provided
by the user.

Note that the quadratic-program described above only controls the amplitude of the mollified sinc away from the poles,
but does not control the amplitude of the first- or second-derivatives of the mollified sinc. Controlling these derivatives

can be easily accomplished by adding to H̃(l, l′;βnorth, βsouth) additional kernels that integrate higher-order derivatives of
the Pl(cos(β)).

Note also that, in the discussion above, we have restricted ourselves to mollifiers D̃ that were diagonal in the spherical-
harmonic basis. This is certainly not necessary, as our main design constraint involved being able to apply D̃ ‘quickly’ in
the spherical-harmonic basis. This constraint implies that D̃ could be block-diagonal (e.g., like the wigner-d matrix), or
more generally sparse, or even factorizable. With these extra degrees of freedom available to D̃ one can design mollifiers
that accurately capture δ̃ and its derivatives, all while having sparse support.

16.2 accommodating derivatives:

We can extend the notion of back-propagation to deal with certain differential quantities. To illustrate this idea, let’s
consider the following template-wise summation Σι(M):

Σι(M) =
∑
j

∫
k∈Ω(K)⊂R2

M†
j (k) · ∂τj,ι

[
Ŝl ◦ R(τj) ◦ F̂

]
(k)dk, (67)

where ∂τj,ι refers to the ι-component of τj (i.e., one of {γj , βj , αj}).
Again, due to linearity, we can associate the data-pool {Mj(k)} with the back-propagated shell:

M̃ι(κ) =
∑
j

∫
ψ∈[0,2π]

Mj(k) ·
[
∂τj,ιR−1(τj) ◦ R([0, π/2, ψ]) ◦ δ̃

]
(κ̂)dψ, (68)

=
∑
j

∫
ψ∈[0,2π]

Mj(k) ·
[
R−1(τj) ◦ δ̃dipole

j,ι,ψ

]
(κ̂)dψ, (69)
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where the dipole-impulse function δ̃dipole

j,ι,ψ is given by:

δ̃dipole

j,ι,ψ = R(τj) ◦ ∂τj,ιR−1(τj) ◦ R([0, π/2, ψ]) ◦ δ̃. (70)

This dipole-impulse corresponds to placing two monopole impulses of opposite signs infinitesimally close to one another
near the position κ = R−1(τj) ◦ k, with the dipole oriented in a direction (along the surface of the sphere) determined by
τj , ψ and ι.

With this reorganization we can once again represent the sum Σ(M) as a volumetric integral:

Σι(M) =

∫
κ∈Ω(K)⊂R3

M̃ι
†
(κ) · F̂ (κ) · dκ

|κ|
. (71)

17 Volumetric representation of the likelihood in the low-temperature
limit

The single-particle negative-log-likelihood shown in Eq. 54 can be written as a volumetric-integral. To see this more
clearly, let’s write:

− log
(
P
(
{Âj}

∣∣ F̂)) ∼ 1

2σ̂2

J∑
j=1

∫∫
k∈ΩK⊂R2

∣∣∣Âj(k)− CTFj(k)⊙ T̂ (δ;k)⊙ [Ŝl ◦ R(τj) ◦ F̂] (k)∣∣∣2 dk. (72)

By interchanging the integral and the sum, we can write:

− log
(
P
(
{Âj}

∣∣ F̂)) ∼ 1

2σ̂2

∫∫∫
κ∈ΩK⊂R3

J̃(κ)

{∣∣∣F̂ (κ)− F̂ bp(κ)
∣∣∣2 + F̂ var(κ)

}
dκ

|κ|
, (73)

with J̃ and F̂ bp given by Eq. 60 and 61, and the second-moment F̂ var given by:

F̂ var(κ) +
∣∣∣F̂ bp(κ)

∣∣∣2 =
1

J̃(κ)

∑
j′∈J (κ)

∣∣∣T̂ (δ;k)⊙ Âj′(k)∣∣∣2 =
1

J̃(κ)

∑
j′∈J (κ)

∣∣∣Âj′(k)∣∣∣2 with: k = R(τj′) ◦ κ. (74)

This ‘volumetric’ expression represents the likelihood as a collection of 3-dimensional integrals; this can be compared
with the template-wise expression from Eq. 54. Note also that, as mentioned earlier, in the low-temperature-limit the
likelihood is maximized when F̂ matches the first-moment F̂ bp. This first-moment F̂ bp itself depends on the maximum-
likelihood-alignments {τ opt

j }, {δ
opt

j }, the {CTFj} and the images {Âj}.
Using a very similar strategy, we can rewrite the likelihood in Eq. 48 as:

P
(
{Âj}

∣∣ F̂) =

∫
· · ·
∫

{τj},{δj}

× 1

(
√
2π σ̂)dof·J

exp

(
− 1

2σ̂2

∫∫∫
κ∈ΩK⊂R3

J̃(κ)

{∣∣∣F̂ (κ)− F̂ bp(κ)
∣∣∣2 + F̂ var(κ)

}
dκ

|κ|

)
× P

(
{τj}, {δj} | F̂

)
× d{τj}d{δj}, (75)

where the outer integral is over all possible sets of image-alignments {τj}, {δj}. The terms J̃ , F̂ bp and F̂ var within the
integrand are each functions of the alignments {τj}, {δj}. The probability in the integrand is:

P
(
{τj}, {δj} | F̂

)
=
∏
j

P
(
τj , δj | F̂

)
, (76)

which can be interpreted as the prior-probability of observing a collection of alignments, given the particle F̂ .
To make further manipulation easier, we’ll rewrite Eq. 73 as:

L
(
{Âj}

∣∣ F̂ ; {τ opt

j }; {δ
opt

j }
)
∼ 1

2

∫∫∫
κ

(
M20(κ)

∣∣∣F̂ (κ)∣∣∣2 − 2ℜ
(
M†

11(κ)F̂ (κ)
)
+M02(κ)

)
dκ

|κ|
, (77)
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where L is σ̂2 times the negative-log-likelihood, and M20, M11 and M02 represent accumulations of the CTF- and image-
data:

L
(
{Âj}

∣∣ F̂ ; {τ opt

j }; {δ
opt

j }
)

:= −σ̂2 log
(
P
(
{Âj}

∣∣ F̂)) , (78)

M20

(
κ; {τ opt

j }; {δ
opt

j }; {CTFj}]
)

:=
∑

j′∈J (κ)

|CTFj′ (k)|2 , (79)

M11

(
κ; {τ opt

j }; {δ
opt

j }; {CTFj}; {Âj}]
)

:=
∑

j′∈J (κ)

CTFj′ (k) · T̂ (−δj′ ,k) · Âj′ (k) , (80)

M02

(
κ; {Âj}]

)
:=

∑
j′∈J (κ)

∣∣∣Âj′ (k)∣∣∣2 . (81)

18 Synthetic-images

18.1 single-particle:

Given a volume F̂ , we can create a distribution of synthetic-images by adding the appropriate amount of noise to the
templates associated with F̂ . To construct this distribution we must choose the prior joint-distribution of alignments and

CTFs, denoted by P
(
τ, δ, CTF

∣∣ F̂), as well as the temperature σ̂. Given these ingredients, we can create a synthetic-

image Âsyn(k) by randomly drawing {τ, δ, CTF} from P
(
τ, δ, CTF

∣∣ F̂), then producing the template Ŝ(k; τ ; δ;CTF ; F̂ ),

and then finally adding noise in a manner consistent with Eq. 28. In the low-temperature limit we do the same, except
in this case the synthetic-images are simply the templates Ŝ(k; τ ; δ;CTF ; F̂ ) with no additional noise added. With this

construction, each synthetic-image Âsyn

j (k) is associated with a particular viewing-angle τj , displacement δj and CTFj ,

and we can express this dependence by writing Âsyn

j

(
k; τj ; δj ;CTFj ; F̂

)
.

18.2 consistency between the likelihood and the synthetic-image distribution:

Note that the likelihood in Eq. 48 is consistent with the synthetic-images described above. To step through the details,
let’s start by considering the simpler case where we ignore displacements and CTFs (i.e., we assume each δj ≡ 0 and each

CTFj ≡ 1). In this simple case the volume F̂ is associated with the family of templates {Ŝ(k; τ ; F̂ )}, indexed by the

viewing-angle τ . Given a specific distribution of viewing-angles P (τ | F̂ ), the family of templates {Ŝ(k; τ ; F̂ )} produces
a distribution P (Ŝ | F̂ ) of templates in image-space (here Ŝ is a dummy-variable indicating the template’s location in
image-space).

Assuming isotropic noise with variance σ̂2, the distribution of synthetic-images P (Âsyn | F̂ ) associated with P (Ŝ | F̂ ) is
simply the convolution of P (Ŝ | F̂ ) with a gaussian:

P (Âsyn | F̂ ) = P (Ŝ | F̂ ) ⋆N (0, σ̂2).

In this formula Âsyn is a dummy variable indicating location in image-space, and N (0, σ̂) represents the gaussian in
image-space associated with the isotropic variance of σ̂2 per unit-area in k-space.

With this perspective, the likelihood P
(
{Aj}

∣∣ F̂) in Eq. 48 is equal to the probability of drawing the image-set

{Âj} from the distribution of synthetic-images P (Âsyn | F̂ ), provided that the likelihood is calculated using the same prior

distribution P (τ | F̂ ) and temperature σ̂ used to generate the distribution of synthetic-images.

18.3 consistency between F̂ and the synthetic-images:

Following directly from the construction of the synthetic-image distribution P (Âsyn |F̂ ) above, we can see that the function

F̂ along with the prior distribution P (τ | F̂ ) are a global maximum of the likelihood:{
F̂ , P (τ | F̂ )

}
= argmax

{Ĝ,P (τ | Ĝ)}
lim
J→∞

P
(
{Asyn

j }
∣∣ Ĝ ; P (τ | Ĝ) ; σ̂

)
, (82)

where we have emphasized the dependence of the likelihood P
(
{Asyn

j }
∣∣ Ĝ) on the prior distribution and temperature.

Note that in Eq. 82 we have assumed (via J →∞) that {Asyn

j } is a pool of synthetic-images which is sufficiently large to

sample P (Âsyn | F̂ ).
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To see why Eq. 82 might be true, we can consider any other candidate template-distribution P ′(Ŝ). Given any

temperature σ̂′, the associated distribution of synthetic-images P ′(Âsyn) is:

P ′(Âsyn) = P ′(Ŝ) ⋆N (0, [σ̂′]2).

Now, given an infinite number of synthetic-images {Âsyn

j } sampled from P (Âsyn | F̂ ), we can ask the following questions:

(i) what is the probability of drawing this image-set from P (Âsyn | F̂ ), and (ii) what is the probability of drawing this

same image-set from P ′(Âsyn). The logarithm of the ratio of the probabilities from (i) and (ii) is proportional to the
Kullback-Leibler divergence:

KL(P ||P ′) :=

∫
Âsyn

P (Âsyn | F̂ ) log

(
P (Âsyn | F̂ )
P ′(Âsyn)

)
dÂsyn,

where the integral is carried out over image-space.
The KL-divergence is always nonnegative, and is only equal to 0 when P ′ ≡ P . This directly implies that the log-

probability-ratio is highest when P (Âsyn | F̂ ) ≡ P ′(Âsyn). Put more simply: given any distribution P , no other distribution
P ′ can possibly produce a collection of samples that better represents P . Consequently, assuming the approximate
temperature σ̂′ matches the true temperature σ̂ used to generate the synthetic-images, no template-distribution P ′(Ŝ)

can produce a higher likelihood than the template-distribution P (Ŝ | F̂ ). Thus, no other pair {Ĝ, P (τ | Ĝ)} can generate

a higher likelihood than the true {F̂ , P (τ | F̂ )}.
Note that it is still possible for other volumes to produce the same likelihood as the true volume F̂ (i.e., F̂ is not

guaranteed to be the only global maximum of Eq. 82). Specifically, another volume Ĝ might look different from F̂ , but

produce a family of templates {Ŝ(k; τ ; Ĝ)} that overlaps (in image-space) the family of templates {Ŝ(k; τ ; F̂ )} produced
by F̂ . In this scenario there exist viewing-angle distributions P (τ | Ĝ) and P (τ | F̂ ) such that the induced distribution

P ′(Ŝ) := P (Ŝ | Ĝ) is the same as P (Ŝ | F̂ ). Examples along these lines are discussed below.

18.4 multi-particle:

We can also use a similar strategy to create a pool of synthetic-images associated with multiple volumes {F̂i}. In this case

we draw alignments, CTFs and volume-labels from the prior joint-distribution P
(
τ, δ, CTF, i

∣∣ {F̂i}).
In this multi-volume scenario a statement similar to Eq. 82 holds. Suppressing the notation for δ and the CTF

momentarily, we can write:{
{F̂i} , P (τ, i | {F̂i})

}
= argmax

{{Ĝi},P (τ,i | {Ĝi})}
lim
J→∞

P
(
{Asyn

j }
∣∣ {Ĝi} ; P (τ, i | {Ĝi}) ; σ̂) , (83)

where again we have emphasized the dependence of the likelihood P
(
{Asyn

j }
∣∣ {Ĝi}) on the prior distribution and tem-

perature.
Once again, is is possible for other volume-collections to produce the same likelihood as the true volume-collection

{F̂i}. This phenomenon is much more pronounced in the multi-volume setting than in the single-volume setting, and it is

rather straightforward to construct alternative volume-sets {Ĝi}, each with their own viewing-angle distribution P (τ | Ĝi),
which collectively produce the same distribution of synthetic-images as P (Âsyn | {F̂i}). Examples along these lines are
discussed below.

19 Local well-posedness of single-particle reconstruction

For a fixed data-set {Âj}, the likelihood P ({Âj}
∣∣ F̂ ; P (τ ; δ | F̂ ) ; σ̂) from Eq. 48 is usually a nonconvex function of F̂ ,

P (τ ; δ | F̂ ) and σ̂. Even if we assume that the alignment-distribution P (τ ; δ | F̂ ) and temperature σ̂ are known, finding the

‘optimal’ F̂ opt which maximizes the likelihood is often not easy [31, 32, 35, 16]. In general, the iterative strategies used to

search for F̂ opt produce an approximate F̂ loc which has a local (but not global) maximum of the likelihood P ({Âj}
∣∣ F̂ loc),

which we’ll denote by P loc.
One standard strategy for measuring the quality of any particular configuration {F̂ loc ; P (τ ; δ | F̂ loc)} is to search

for nearby configurations that might have a similar likelihood. More specifically, we can consider nontrivial infinitesimal
perturbations of the form:{

F̂ loc ; P (τ ; δ | F̂ loc)
}
→
{
F̂ loc + ϵ∆F̂ ; P (τ ; δ | F̂ loc) + ϵ∆P (τ ; δ)

}
. (84)
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In Eq. 84 the function ∆F̂ (κ) is the Fourier-transform of a function ∆F (χ) ∈ L2(R3) representing a perturbation of

the volume F loc(χ). Similarly, the function ∆P (τ ; δ) represents a perturbation of the prior distribution P (τ ; δ | F̂ loc).

We’ll assume that both ∆F̂ (κ) and ∆P (τ ; δ) have unit norm, and that ϵ ∈ R is small. When considering ‘nontrival’
perturbations, we’ll restrict our attention only to infinitesimal deformations of the solution, and implicitly exclude those
perturbations that correspond to infinitesimal rigid rotations or translations of the original volume F̂ and prior-distribution
P (τ ; δ | F̂ ).

Assuming that the configuration {F̂ loc ; P (τ ; δ | F̂ loc)} is indeed a local maximum of the likelihood, then the perturbed

negative-log-likelihood should be approximately quadratic to leading-order in ϵ for a typical choice of ∆F̂ and ∆P :

− log
(
P
(
{Âj}

∣∣ F̂ loc + ϵ∆F̂ (κ) ; P (τ ; δ | F̂ loc) + ϵ∆P (τ ; δ) ; σ̂
))

= − log(P loc) +
1

2
σH(∆F̂ ,∆P )ϵ2 +O(ϵ3). (85)

In the expression above, σH(∆F̂ ,∆P ) is the concavity of the negative-log-likelihood in the direction of {∆F̂ ,∆P}. The
second-order term in Eq. 85 is equivalent to a rayleigh-quotient of the quadratic kernel H:

σH(∆F̂ ,∆P ) =

∫
· · ·
∫

∆P (τ ; δ) ∆F̂ (κ)† ·H(κ, τ, δ,κ′, τ ′, δ′) ·∆F̂ (κ′) ∆P (τ ′, δ′) dκ′dτ ′dδ′dκdτdδ, (86)

where H is the hessian of the negative-log-likelihood with respect to perturbations of F̂ loc and P (τ ; δ | F̂ loc):

H(κ, τ, δ,κ′, τ ′, δ′) = ∂{F̂ (κ);P (τ,δ | F̂ )}∂{F̂ (κ′);P (τ ′,δ′ | F̂ )}

{
− log

(
P
(
{Âj}

∣∣ F̂ loc ; P (τ, δ | F̂ loc) ; σ̂
))}

, (87)

which is directly related to a kind of Fisher information.
If the magnitude σH(∆F̂ ,∆P ) is large for every nontrivial {∆F̂ ,∆P}, then P loc indicates a sharp minimum of the

negative-log-likelihood-function. In this scenario we can say that the single-particle reconstruction problem is well-posed
within a local neighborhood of {F̂ loc;P (τ ; δ | F̂ loc)}. Conversely, if there exist nontrivial directions {∆F̂ ,∆P} for which

σH(∆F̂ ,∆P ) is small, then these directions correspond to nontrivial perturbations (i.e., deformations) along which the
likelihood diminishes only gradually. Put another way, there will be ‘nearby’ configurations that will have likelihoods
similar to the original P loc. Thus, in this latter scenario the single-particle reconstruction problem is poorly-posed near
{F̂ loc;P (τ ; δ | F̂ loc)}.

One could in principle use Eq. 86 to characterize the well-posedness of the reconstruction near any given {F̂ loc;P (τ ; δ|F̂ loc)}
by finding the nontrivial direction {∆F̂ crit,∆P crit} which minimizes σH(∆F̂ ,∆P ):{

∆F̂ crit,∆P crit

}
= argmin

{∆F̂ ,∆P}
σH(∆F̂ ,∆P ) with σcrit

H = σH(∆F̂ crit,∆P crit). (88)

Note that σcrit

H is the smallest eigenvalue of H, and {∆F̂ crit,∆P crit} is the associated eigenvector.

We are not aware of an efficient general strategy for calculating σcrit

H and {∆F̂ crit,∆P crit}. The main impasse is that
we do not know how to apply the hessian H (or its inverse) in a computationally efficient manner. However, any given

nontrival direction {∆F̂ ,∆P} can be used to give an upper-bound for σcrit

H . Because volume-space is high-dimensional,
we use the low-temperature limit (described in the next section) to guide our search.

20 Estimating the hessian in the low-temperature limit

As mentioned in the previous section, we are not aware of any efficient strategies for calculating the smallest eigenvalue of
the hessian of the negative-log-likelihood from Eq. 87. However, there are strategies that are useful in the low-temperature
limit.

To ease the notation, let’s ignore the displacements for now, and let’s assume for the moment that the viewing-angles
{τj} for each image are given. Let’s use ⟨·, ·⟩ to represent the standard inner product over k ∈ ΩK ⊂ R2, and

∫
k
to

represent the integral over κ ∈ ΩK ⊂ R3 with respect to the weight dκ/|κ|.
With this notation we can use a 2-dimensional representation and define L to be the negative-log-likelihood scaled by

σ̂2 from Eq. 54

L
(
{Âj}

∣∣ F̂ ; {τj}) := −σ̂2 log
(
P
(
{Âj}

∣∣ F̂ ; {τj})) , (89)

:=
1

2

J∑
j=1

∫∫
k

∣∣∣Ŝ (k; τj ;CTFj ; F̂)− Âj(k)∣∣∣2 dk, (90)

=
1

2

J∑
j=1

⟨Ŝ
(
τj ;CTFj ; F̂

)
− Âj , Ŝ

(
τj ;CTFj ; F̂

)
− Âj⟩, (91)
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where we have suppressed reference to k in the integrand, and emphazised the dependence on τj and F̂ .
Equivalently, we can use a 3-dimensional representation and write L from Eq. 77 as:

L
(
{Âj}

∣∣ F̂ ; {τj}) =

1

2

∫
κ

(
M20 ({τj}; {CTFj}) ·

∣∣∣F̂ ∣∣∣2 − 2ℜ
(
M†

11

(
{τj}; {CTFj}; {Âj}

)
· F̂
)
+M02

(
{Âj}

))
, (92)

where again we have suppressed reference to κ in the integrand, and emphazised the dependence on τj and F̂ .
The 2-dimensional representation Eq. 91 makes apparent the following relationships:

∂F̂L
(
{Âj}

∣∣ F̂ ; {τj}) ·∆F̂ =
∑
j

ℜ⟨Ŝ
(
τj ;CTFj ; ∆F̂

)
, Ŝ
(
τj ;CTFj ; F̂

)
− Âj⟩, (93)

∂τj′L
(
{Âj}

∣∣ F̂ ; {τj}) = ℜ⟨∂τj′ Ŝ
(
τj′ ;CTFj′ ; F̂

)
, Ŝ
(
τj′ ;CTFj′ ; F̂

)
− Âj′⟩, (94)

∂τj′∂F̂L
(
{Âj}

∣∣ F̂ ; {τj}) ·∆F̂ =

ℜ⟨∂τj′ Ŝ
(
τj′ ;CTFj′ ; ∆F̂

)
, Ŝ
(
τj′ ;CTFj′ ; F̂

)
− Âj′⟩+ ℜ⟨Ŝ

(
τj′ ;CTFj′ ; ∆F̂

)
, ∂τj′ Ŝ

(
τj′ ;CTFj′ ; F̂

)
⟩, (95)

∂τj′∂τj′L
(
{Âj}

∣∣ F̂ ; {τj}) =

ℜ⟨∂τj′∂τj′ Ŝ
(
τj′ ;CTFj′ ; F̂

)
, Ŝ
(
τj′ ;CTFj′ ; F̂

)
− Âj′⟩+ ℜ⟨∂τj′ Ŝ

(
τj′ ;CTFj′ ; F̂

)
, ∂τj′ Ŝ

(
τj′ ;CTFj′ ; F̂

)
⟩. (96)

In these expressions τj′ involves the three euler-angles τj′ = [γj′ , βj′ , αj′ ]
⊺
, and so ∂τj′L and ∂τj′∂F̂L each have three

components, while ∂τj′∂τj′L is a 3 × 3 tensor. Note that Eq. 93 provides an expression for the directional-derivative of

L, given a particular volumetric-perturbation ∆F̂ , while Eq. 94 provides a general expression for the gradient of L with
respect to arbitrary perturbations in τj . Similarly, Eq. 95 provides an expression for the hessian applied to a particular

volumetric-perturbation ∆F̂ , while Eq. 96 gives a general expression for the hessian of L with respect to arbitrary
perturbations in τj .

The 3-dimensional representation Eq. 92 demonstrates:

∂F̂ (κ′)L
(
{Âj}

∣∣ F̂ ; {τj}) =

ℜ
(
M20 (κ

′; {τj}; {CTFj}) · F̂ (κ′)
)
−ℜ

(
M†

11

(
κ′; {τj}; {CTFj}; {Âj}

))
, (97)

∂τj′L
(
{Âj}

∣∣ F̂ ; {τj}) ·∆τj′ =

1

2

∫
κ

(
∂τj′M20 ({τj}; {CTFj}) ·

∣∣∣F̂ ∣∣∣2 − 2ℜ
(
∂τj′M

†
11

(
{τj}; {CTFj}; {Âj}

)
· F̂
))
·∆τj′ , (98)

∂F̂ (κ′)∂F̂ (κ′)L
(
{Âj}

∣∣ F̂ ; {τj}) = M20 ((κ
′); {τj}; {CTFj}) , (99)

∂F̂ (κ′)∂τj′L
(
{Âj}

∣∣ F̂ ; {τj}) ·∆τj′ =(
ℜ
(
∂τj′M20 (κ

′; {τj}; {CTFj}) · F̂ (κ′)
)
−ℜ

(
∂τj′M

†
11

(
κ′; {τj}; {CTFj}; {Âj}

)))
·∆τj′ . (100)

In these expressions ∆τj′ also involves three euler-angles ∆τj′ = [∆γj′ ,∆βj′ ,∆αj′ ]
⊺
, and so ∂τj′L·∆τj′ and ∂F̂∂τj′L·∆τj′

each involve a sum over three components. Note that Eq. 97 provides a general expression for the gradient of L with
respect to any perturbation in F̂ , while Eq. 98 provides an expression for the directional-derivative of L with respect to
a particular perturbation in τj . Similarly, Eq. 99 provides a general expression for the hessian with respect to arbitrary

perturbations in F̂ , while Eq. 100 gives an expression for the hessian applied to a particular viewing-angle perturbation
∆τj .

Note that we can leverage both the 2- and 3-dimensional representations to write the general gradient:

G ·∆ :=
[
GF Gτ

]
·
[

∆F̂
{∆τj}

]
=
[
∂F̂L ·∆F̂ +

∑
j′ ∂τj′L ·∆τj′

]
. (101)

Specifically, Eq. 97 yields the volumetric-component, while Eq. 94 yields the alignment-component.
Similarly, given a particular perturbation {∆F̂ , {∆τj}}, we can apply the hessian. To describe this in more detail, let’s

refer to the perturbation ∆ := [∆F̂ , {∆τj}]
⊺
as a block-vector. The first block of ∆ stores the volumetric-perturbation
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∆F̂ , while the second block stores the alignment-perturbations {∆τj} for each image in sequence. With this organization
the hessian is also divided into blocks:

H ·∆ :=

[
HFF HFτ

HτF Hττ

]
·
[

∆F̂
{∆τj}

]
=

[
∂F̂∂F̂L ·∆F̂ +

∑
j′ ∂F̂∂τj′L ·∆τj′

∂τ∂F̂L ·∆F̂ +
∑
j′ ∂τ∂τj′L ·∆τj′

]
. (102)

The first block HFF refers to the volumetric-component, which is diagonalized in k-space as shown in Eq. 99. The second
term HFτ refers to the volumetric-perturbation induced by any given alignment-perturbation, as shown in Eq. 100. The
third term HτF refers to the alignment-perturbation induced by any given volumetric-perturbation, as shown in Eq. 95.
Finally, the block Hττ refers to the alignment-component, which is diagonalized in template-space as shown in Eq. 96.

20.1 Finding eigenvalues and eigenvectors of H:

Given the ability to apply H to any perturbation ∆ := {∆F̂ , {∆τj}}, we can use lanczos-iteration to estimate the
extremal eigenvalues and eigenvectors of H. One technical detail that comes into play is that we want to avoid the
‘trival’ eigenvectors of H that correspond to perturbations ∆ which are infinitesimal rigid-rotations of {F̂ , {τj}}. Thus,
when applying lanczos-iteration we project away the 3-dimensional space associated with these trivial rigid-rotations.
The remaining subspace will include those perturbations which correspond to infinitesimal deformations. An example
illustrating the convergence of lanczos-iteration is shown in Fig 23.

Figure 23: In this figure we illustrate the properties of the hessianH, as well as its lanczos-iterates. For this example we use
the TRPV1 molecule at ultra-low resolution: 2πK = 8. This ultra-low resolution allows us to take L = 2πK = 8, implying
only (1 + L)2 = 81 degrees of freedom per frequency-shell. We also project onto the dominant 3 volumetric-principal-
modes (capturing over 99.9% of the alignment-information, as described in [48]) and determine the alignment-perturbations
implicitly (using the first-order scheme described in section 21). Thus, the total number of degrees-of-freedom for this
simple case-study is 3 × 81 = 243. The first subplot shows the lanczos-iterates along the vertical, with the iteration-
number plotted along the horizontal. The color ranges from cyan (early iterates) to magenta (final iterates). Note that
the outliers in the spectrum are captured quite early on. The second subplot shows the cumulative-distribution function
for the lanczos-iterates, with the different colors corresponding to different iterations (using the same color-scale shown in
the top-left). The third subplot shows the estimated probability-density-function for the lanczos-iterates, while the fourth
subplot shows the cumulative-distribution function for the log of the lanczos-iterates. Note that the log of the determinant
of the hessian log det(H) is the average of the log of the eigenvalues of H, which is proportional to the area under the
CDF shown in the bottom-right subplot. Note also that, once the outliers in the spectrum are well approximated, the
log det(H) is also reasonably well approximated. For this example we have ∼ 25% relative-error for log det(H) by iteration
16, and ∼ 10% relative-error by iteration 64.

Note that, while lanczos-iteration does a good job of focusing on the extremal eigenvalues, it does a poor job of
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estimating the bulk of the spectrum. Consequently, while we can expect to use the lanczos-iterates to estimate log(det(H))
in the low-temperature limit, we don’t necessarily expect such an estimate to hold for moderate temperature. Neverthless,
the same strategies used above can still be applied when the temperature is not small after marginalization (see section
23).

21 Dealing with implicitly defined τj

In the construction above we have assumed that the {τj} are given as input. Thus, the gradient in Eq. 101 and the
hessian in Eq. 102 both assume that the overall perturbation ∆ is given as an (independent) combination of a volumetric-

perturbation ∆F̂ and an alignment-perturbation {∆τj}. However, in many scenarios it is more appropriate to assume
that the volumetric- and alignment-perturbations are implicitly related to preserve the maximum-likelihood alignment
(see Eq. 53). In this section we’ll describe how we account for this implicit constraint.

To ease notation, we’ll start by considering a single image-index j, setting Â := Âj and τ := τj , and suppressing the

notation for the CTF . Furthermore, we’ll assume that τ = τ opt is determined implicitly by the volume F̂ . This implicit
constraint minimizes the negative-log-likelihood ℓ for that image:

ℓ(Â
∣∣ F̂ , τ) = 1

2
⟨Ŝ(F̂ , τ)− Â, Ŝ(F̂ , τ)− Â⟩, (103)

where Ŝ(F̂ , τ) is shorthand for the template Ŝ(k; τ ;CTF ; F̂ ). Thus, τ should be a critical-point of ℓ, implying that:

∂τιℓ =
1

2
⟨∂τι Ŝ(F̂ , τ), Ŝ(F̂ , τ)− Â⟩+

1

2
⟨Ŝ(F̂ , τ)− Â, ∂τι Ŝ(F̂ , τ)⟩ = ℜ⟨Ŝ(F̂ , τ)− Â, ∂τι Ŝ(F̂ , τ)⟩ = 0, (104)

where τι runs over each of the three components [γ, β, α]
⊺
of τ , and each of the 3 components of the gradient ∂τ ℓ are set

0. We expand Ŝ(F̂ , τ) as follows:

Ŝ(F̂ +∆F̂ , τ +∆τ) = Ŝ + ∂F Ŝ ·∆F̂ + ∂τ Ŝ ·∆τ (105)

+
1

2
[∆F̂ ]† · [∂FF Ŝ] · [∆F̂ ] +

1

2
[∆F̂ ]† · [∂Fτ Ŝ] · [∆τ ] +

1

2
[∆τ ]

⊺ · [∂τF Ŝ] · [∆F̂ ] +
1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ], (106)

where each term is evaluated at (F̂ , τ) unless otherwise specified. Noting that Ŝ is linear in F̂ , we can ignore second-order

contributions of ∆F̂ 2 to write:

Ŝ(F̂ +∆F̂ , τ +∆τ) = Ŝ + ∂τ Ŝ ·∆τ +
1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ] (107)

+∆Ŝ + ∂τ∆Ŝ ·∆τ +
1

2
[∆τ ]

⊺ · [∂ττ∆Ŝ] · [∆τ ], (108)

where ∆Ŝ := Ŝ(k; τ ;CTF ; ∆F̂ ) is simply the original template-operator applied to ∆F̂ rather than F̂ .

Now we can write ⟨Ŝ − Â, ∂τι Ŝ⟩ as:

⟨Ŝ − Â, ∂τι Ŝ⟩ =〈
Ŝ − Â+ ∂τ Ŝ ·∆τ +

1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ] + ∆Ŝ + ∂τ∆Ŝ ·∆τ +
1

2
[∆τ ]

⊺ · [∂ττ∆Ŝ] · [∆τ ]

, ∂τι

[
Ŝ + ∂τ Ŝ ·∆τ +

1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ] + ∆Ŝ + ∂τ∆Ŝ ·∆τ +
1

2
[∆τ ]

⊺ · [∂ττ∆Ŝ] · [∆τ ]
]〉 (109)

Removing the lowest-order term and keeping terms up to second-order we have:

⟨Ŝ − Â, ∂τι Ŝ⟩ =〈
+∂τ Ŝ ·∆τ +

1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ] + ∆Ŝ + ∂τ∆Ŝ ·∆τ +
1

2
[∆τ ]

⊺ · [∂ττ∆Ŝ] · [∆τ ]

, ∂τι

[
Ŝ + ∂τ Ŝ ·∆τ +

1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ] + ∆Ŝ + ∂τ∆Ŝ ·∆τ +
1

2
[∆τ ]

⊺ · [∂ττ∆Ŝ] · [∆τ ]
]〉

+
〈
Ŝ − Â, ∂τι

[
+∂τ Ŝ ·∆τ +

1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ] + ∆Ŝ + ∂τ∆Ŝ ·∆τ +
1

2
[∆τ ]

⊺ · [∂ττ∆Ŝ] · [∆τ ]
]〉

(110)
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or when expanded:

⟨Ŝ − Â, ∂τι Ŝ⟩ =

+ ⟨∂τ Ŝ ·∆τ, ∂τι Ŝ + ∂τι∂τ Ŝ ·∆τ + ∂τι∆Ŝ⟩+ ⟨
1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ], ∂τι Ŝ⟩

+ ⟨∆Ŝ, ∂τι Ŝ + ∂τι∂τ Ŝ ·∆τ + ∂τι∆Ŝ⟩+ ⟨∂τ∆Ŝ ·∆τ, ∂τι Ŝ⟩

+ ⟨Ŝ − Â,+∂τι∂τ Ŝ ·∆τ + ∂τι
1

2
[∆τ ]

⊺ · [∂ττ Ŝ] · [∆τ ] + ∂τι∆Ŝ + ∂τι∂τ∆Ŝ ·∆τ⟩

(111)

which contains the following four first-order terms:

+⟨∂τ Ŝ ·∆τ, ∂τι Ŝ⟩+ ⟨∆Ŝ, ∂τι Ŝ⟩+ ⟨Ŝ − Â, ∂τι∂τ Ŝ ·∆τ⟩+ ⟨Ŝ − Â, ∂τι∆Ŝ⟩. (112)

as well as the following eight second-order terms:

+⟨∂τ Ŝ ·∆τ, ∂τι∂τ Ŝ ·∆τ⟩+ ⟨∂τ Ŝ ·∆τ, ∂τι∆Ŝ⟩+ ⟨
1

2
∆τ⊺ · ∂ττ Ŝ ·∆τ, ∂τι Ŝ⟩+ ⟨∆Ŝ, ∂τι∂τ Ŝ ·∆τ⟩ (113)

+⟨∆Ŝ, ∂τι∆Ŝ⟩+ ⟨∂τ∆Ŝ ·∆τ, ∂τι Ŝ⟩+ ⟨Ŝ − Â, ∂τι
1

2
∆τ⊺ · ∂ττ Ŝ ·∆τ⟩+ ⟨Ŝ − Â, ∂τι∂τ∆Ŝ ·∆τ⟩. (114)

By retaining only first-order terms we see:∑
ι′

[X0]ι,ι′ ·∆τι′ + [X1]ι = O
(
∆F̂ 2

)
, where: (115)

[X0]ι,ι′ = ℜ
{
⟨∂τι Ŝ, ∂τι′ Ŝ⟩+ ⟨Ŝ − Â, ∂τιτι′ Ŝ⟩

}
, (116)

[X1]ι = ℜ
{
⟨∂τι Ŝ,∆Ŝ⟩+ ⟨∂τι∆Ŝ, Ŝ − Â⟩

}
, (117)

where [X0] is O(1) and [X1] is O
(
∆F̂

)
, as expected. This first-order expression implies that:

∆τ = −[X0]−1 · [X1] +O
(
∆F̂ 2

)
. (118)

The first-order approximation to ∆τ can be improved by using the second-order terms. Let’s first group the second-
order terms by their tensor-rank:

[Y0]ι,ι′′,ι′ = ℜ
{
⟨∂τι′′ Ŝ, ∂τι∂τι′ Ŝ⟩+ ⟨

1

2
∂τι′′∂τι′ Ŝ, ∂τι Ŝ⟩+ ⟨Ŝ − Â,

1

2
∂τι∂τι′′∂τι′ Ŝ⟩

}
, (119)

[Y1]ι,ι′ = ℜ
{
⟨∂τι′ Ŝ, ∂τι∆Ŝ⟩+ ⟨∂τι′∆Ŝ, ∂τι Ŝ⟩+ ⟨∆Ŝ, ∂τι∂τι′ Ŝ⟩+ ⟨Ŝ − Â, ∂τι∂τι′∆Ŝ⟩

}
, (120)

[Y2]ι = ℜ
{
⟨∆Ŝ, ∂τι∆Ŝ⟩

}
, (121)

noting that [Y0] is O(1), [Y1] is O
(
∆F̂

)
, and [Y2] is O

(
∆F̂ 2

)
, as expected.

Now, retaining both first- and second-order terms we see:∑
ι′

[X0]ι,ι′ ·∆τι′ + [X1]ι +
∑
ι′,ι′′

∆τι′′ [Y0]ι,ι′′,ι′∆τι′ +
∑
ι′

[Y1]ι,ι′∆τι′ + [Y2]ι = O
(
∆F̂ 3

)
∀ τι ∈ {γ, β, α}, (122)

which, in matrix-vector notation can be written as:

[X0]ι,: ·∆τ: + [X1] + ∆τ⊺ · [Y0]ι,:,: ·∆τ + [Y1]ι,: ·∆τ + [Y2]ι = O
(
∆F̂ 3

)
∀ τι ∈ {γ, β, α}, (123)

where [X0]ι,: and [Y1]ι,: are column-vectors produced by slicing [X0] and [Y1] respectively, while [Y0]ι,:,: is a matrix produced
by slicing [Y0]. This allows us to solve for ∆τ up to second-order:

∆τι = −[X0]−1
ι,: · [X1]− [X0]

−1
ι:

{
[X1]

⊺ · [X0]−† · [Y0]ι,:,: · [X0]−1 · [X1]− [Y1]ι,: · [X0]−1 · [X1] + [Y2]ι

}
+O

(
∆F̂ 3

)
. (124)

Note that, in this expression, we can pick out the first-order solution:

[∆Z1]ι := −[X0]−1
ι,: · [X1] = O(∆F̂ ),
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as well as the second-order correction:

[∆2Z2]ι := −[X0]−1
ι:

{
[X1]

⊺ · [X0]−† · [Y0]ι,:,: · [X0]−1 · [X1]− [Y1]ι,: · [X0]−1 · [X1] + [Y2]ι

}
= O(∆F̂ 2).

Let’s refer to the three components of the first- and second-order terms as the vectors [∆Z1] and [∆2Z2], respectively.
Furthermore, let’s re-introduce the image-index j, so that:

∆τj = [∆Z1]j + [∆2Z2]j +O
(
∆F̂ 3

)
,

where now we associate ∆τj to the alignment of image-j, and note that each term in this expression has three components
(corresponding to the index ι, which is no longer written).

With this notation we can now use our expression for the gradient in Eq. 101 and Eq. 102 to write:

L
(
{Âj}

∣∣ F̂ +∆F̂ ; {τj +∆τj}
)
= L+G ·∆+∆† ·H ·∆

= L+ ∂F̂L ·∆F̂ +
∑
j

∂τjL ·∆τj

+∆F̂
†
· ∂F̂∂F̂L ·∆F̂ +

∑
j

∆F̂
†
∂F̂∂τjL ·∆τj

+
∑
j

∆τj
⊺ · ∂τj∂F̂L ·∆F̂ +

∑
j

∂τj∂τjL ·∆τj

= L+ ∂F̂L ·∆F̂ +
∑
j

∂τjL · [∆Z1]j

+
∑
j

∂τjL · [∆2Z2]j +∆F̂
†
· ∂F̂∂F̂L ·∆F̂ +

∑
j

∆F̂
†
∂F̂∂τjL · [∆Z1]j

+
∑
j

[∆Z1]j
⊺ · ∂τj∂F̂L ·∆F̂ +

∑
j

∂τj∂τjL · [∆Z1]j .

(125)

From this expression we can recover the corrections to the gradient and hessian resulting from the implicit relationship
between F̂ and the {∆τj}.

As an example of the kinds of manipulations that are required for these corrections, we’ll discuss the simplest term:∑
j ∂τjL · [∆Z1]j , which serves as an addition to the original volumetric term ∂F̂L ·∆F̂ from the gradient (see Eq. 97).
When unpacked, this additional term can be represented as:∑

j

∂τjL · [∆Z1]j =
∑
j

∑
ι,ι′

ℜ⟨∂τj,ι Ŝ(F̂ , τj), Ŝ(F̂ , τj)− Âj⟩
[
−X0−1

]
ι,ι′
ℜ⟨∂τj,ι′ Ŝ(F̂ , τj), Ŝl ◦ R(τj) ◦∆F̂ ⟩ (126)

+
∑
j

∑
ι,ι′

ℜ⟨∂τj,ι Ŝ(F̂ , τj), Ŝ(F̂ , τj)− Âj⟩
[
−X0−1

]
ι,ι′
ℜ⟨Ŝ(F̂ , τj)− Âj , ∂τj,ι′ Ŝl ◦ R(τj) ◦∆F̂ ⟩. (127)

In this expression the values of
[
−X0−1

]
ι,ι′

are each just scalars that depend on j, ι and ι′. The same holds for other

prefactors such as ℜ⟨∂τj,ι Ŝ(F̂ , τj), Ŝ(F̂ , τj)− Âj⟩. Thus, the first term on the right-hand-side (Eq. 126) can turned into a
volumetric integral using monopole-impulses via Eq. 63 and 64. On the other hand, the second term in Eq. 127 involves
a derivative, and can be turned into a volumetric integral using dipole-impulses via Eq. 69 and 71. Further correction
terms for the hessian involve interactions between dipoles, quadrupoles, etc., producing a multipole expansion.

22 Probing the spectrum of the hessian: case studies

In this section we’ll describe one approach that allows us to crudely bound σcrit

H (see Eq. 88) by appealing to the low-
temperature limit of the likelihood. Specifically, we’ll assume that the noise σ̂ is sufficiently small that Eq. 54 is a
good approximation to Eq. 48. We’ll then try and find perturbations {∆F̂ zero,∆P zero} for which the leading-order term

σzero

H (∆F̂ zero,∆P zero) is small (in this low-temperature limit). These perturbations {∆F̂ zero,∆P zero} will then serve as

candidates for {∆F̂ crit,∆P crit}, from which we can bound σcrit

H

By using this approach, we’ll be able to investigate certain relationships between the viewing-angle distribution and
the stability/robustness of single-particle reconstruction. By examining a few case-studies we’ll see that, even if the data is
sufficient for a single-particle reconstruction, non-uniformity in the viewing-angle distribution can compromise robustness.
Ultimately, we’ll recapitulate a well-known phenomenon: images from a variety of viewing-angles are required for a robust
reconstruction.

To simplify the discussion, we’ll first make several additional assumptions which can be relaxed later on:
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Assume a large pool of synthetic-images: We’ll assume that the pool of images is well modeled by the distribution of
synthetic-images described in section 18. Furthermore, we’ll neglect finite-size effects associated with the synthetic-
image pool, and assume that J is sufficiently large that the distribution of synthetic-images is well-sampled.

Ignore translations and CTF: We’ll assume that each synthetic-image is drawn with a displacement δ identically
equal to 0 (i.e., σδ = 0) and a CTF identically equal to 1.

We’ll also suppress the notation for the coordinate k, noting that the synthetic-images are simply

Âsyn

j = Ŝ(τj ; F̂ ).

Let’s now assume that we have a putative (local) minimum {F̂ opt, P (τ | F̂ opt)} of the negative-log-likelihood from Eq.
54, which we’ll denote by − log(P opt). This means that, for any particular image-index j, the corresponding synthetic-

image Âsyn

j = Ŝ(τ opt

j ; F̂ opt) is associated with the maximum-likelihood alignment τ opt

j via Eq. 53. Furthermore, we expect

that the volume F̂ opt is consistent with these alignments in the sense that F̂ opt can be reconstructed from the synthetic-
images using Eq. 73. Without loss of generality we can assume that the viewing-angles are described such that each
γj ≡ 0, and hence each τj = (0, βj , αj). With this notation the density of viewing-angles at a particular (β, α) is given by

P ((0, β, α) | F̂ opt), or just P (τ) for short.
Note that the assumptions above imply that the maximum-likelihood alignments {τ opt

j } are actually implicit functions

of the {Âsyn

j } as well as F̂ opt; if the images or volume were to change, so too would the optimal alignments. The alignments

also technically depend on the prior distribution P (τ | F̂ opt), but only in the sense that each τ opt

j must lie in the support

of P (τ | F̂ opt). Thus, assuming the image-set is fixed and the prior distribution is allowed to be nonzero for all viewing-
angles, any particular volumetric-perturbation will give rise to a perturbation in the maximum-likelihood alignments, and
vice-versa. We’ll take advantage of this implicit relationship in a moment: instead of directly searching for infinitesimal
volumetric-perturbations which best preserve the likelihood, we can instead search for infinitesimal perturbations in the
maximum-likelihood alignments which best preserve the image-template similarities shown in Eq. 45.

To be more specific, we’ll denote by {τ [0]j } the ‘old’ maximum-likelihood viewing-angles {τ opt

j } associated with F̂ [0] :=

F̂ opt, and define ‘temporary’ perturbed viewing-angles via:

F̂ [0] := F̂ opt, (128)

τ
[0]
j := τ opt

j , (129)

τ
[1]
j := τ

[0]
j + ϵΨ

(
τ
[0]
j

)
, (130)

where ϵ ∈ R is small, and Ψ : SO3→ so3 is a flow-field on SO3. Using the {τ [1]j }, we then consider a new back-propagation

problem given by Eq. 73 to form a new volume F̂ [1]. To describe F̂ [1](κ) for any point κ = [κ1, κ2, 0]
⊺
, we can define

⊥ (κ) to be the set of viewing-angles that correspond to rotations for which κ is stationary:

⊥ (κ) = {τ
∣∣Rτ ◦ κ = κ}, (131)

and then, noting that τ [0] − ϵΨ(τ [0]) is the preimage of τ [0] under the action of Ψ (to lowest order), we can write:

F̂ [1](κ) =
1

Z(κ)

∫
τ∈⊥(κ)

Ŝ
(
k; F̂ [0], τ − ϵΨ(τ)

)
P (τ − ϵΨ(τ)) dτ where: k = R(τ) ◦ κ = [κ1, κ2]

⊺
, (132)

=
1

Z(κ)

∫
τ∈⊥(κ)

[
Ŝl ◦ R (τ − ϵΨ(τ)) ◦ F̂ [0]

]
(k)P (τ − ϵΨ(τ)) dτ with: (133)

Z(κ) =

∫
τ∈⊥(κ)

P (τ − ϵΨ(τ)) dτ . (134)

An analogous equation holds (with a rotated frame of reference) for any general κ. In words: F̂ [1](κ) at any point κ can

be estimated by simply averaging over all the values of F̂ [0] which are mapped onto κ by the viewing-angle perturbations.
In the case studies below, we’ll choose Ψ to be simple enough that we can estimate the back-propagated F̂ [1] ‘by hand’.

Obviously the volumetric-perturbation producing F̂ [1] then induces an alignment-perturbation {τ [2]j }:

τ
[2]
j = argmax

τ
P
(
Âsyn

j

∣∣ τ ; F̂ [1]
)

(135)

= argmax
τ

P
(
Ŝ(τ

[0]
j ; F̂ [0])

∣∣ τ ; F̂ [1]
)
. (136)

38



when then induce another volumetric-perturbation F̂ [2], and so forth. This sequence (or iteration) may eventually converge,

but we’ll curtail it after the first few steps, typically using F̂ [1] and {τ [1]j } as an estimate for the perturbed volume and

alignments. We’ll define ∆F̂ := F̂ [1] − F̂ [0] and ∆τj := τ
[1]
j − τ

[0]
j . Finally, we’ll use these candidate ∆F̂ and {∆τj} to

measure the rayleigh-product σzero

H (∆F̂ , {∆τj}).
The relevant (low-temperature) likelihood is:

− log
(
P ({Âj}

∣∣ F̂ [1], {τ [1]j }
)
∼ 1

2σ̂2

J∑
j=1

∫∫
k∈ΩK∈R2

∣∣∣Âj(k)− Ŝ (k; τ [1]j ; F̂ [1]
)∣∣∣2 dk (137)

=
1

2σ̂2

J∑
j=1

∫∫
k∈ΩK∈R2

∣∣∣Ŝ (k; τ [0]j ; F̂ [0]
)
− Ŝ

(
k; τ

[1]
j ; F̂ [1]

)∣∣∣2 dk. (138)

22.1 Rotation Blur:

One of the most straightforward perturbations to analyze is when Ψ(τ) corresponds to a rotation-blur. To describe this

scenario, let’s first assume that P (τ) is uniform. Now let’s consider a particular τ [0], for which the template Ŝ(k; τ0) has
a pole κ0 := R−1τ [0] ◦ [0, 0, 1]⊺. Now let’s define N (τ [0], ϵ2) to be an isotropic gaussian-distribution on the surface of
the sphere with a mean at τ [0] and a variance of ϵ2. Finally, let’s define Ψ(τ [0]) so that τ [1] := τ [0] + ϵΨ(τ [0]) is drawn
independently from the distribution N (τ [0], ϵ2).

In this setting the back-propagated solution F̂ [1] on any k-shell can be constructed by simply convolving the values of
F̂ [0] on that shell with N (0, ϵ2). That is to say, the volume F̂ [1] can be constructed by ‘rotationally blurring’ the volume

F̂ [0]: i.e.:

F̂ [1](k, κ̂) =

∫
κ̂′
F̂ [0](k, κ̂′)N (κ̂− κ̂′, ϵ2)dκ̂′. (139)

This rotational-blur corresponds directly to an isotropic surface-diffusion of the volume F̂ [0]:[
F̂ [1]

]m
l

= exp(−l(l + 1)ϵ2/2) ·
[
F̂ [0]

]m
l
. (140)

22.2 Latitudinal perturbation:

Another relatively simple perturbation involves a fully latitudinal perturbation: Ψ(τ) = (0,Θ(β) , 0) = (0, sin (2β) , 0). If
ϵ > 0, this perturbation pushes each τ in the northern-hemisphere south (towards the equator), while pushing each τ in
the southern-hemisphere north (again towards the equator).

If P (τ) is uniform, then in the limit as ϵ→ 0 each value of F̂ [1](k, κ̂) is determined by averaging the values of F̂ [0](k, κ̂′)
on a small ‘circle’ (on the surface of the sphere). This circle can be described in terms of the polar-angle a associated with
κ̂. the circle is centered at a polar-angle of ac(a) with a radius (extending on the surface of the sphere of radius-1) of r(a).

ac(a) = a+ 0.5ϵΘ(a) and: r(a) = 0.5ϵΘ(a). (141)

Note that the radius of this circle vanishes as κ approaches either the poles or the equator, and is largest in the temperate
zones.

As a result of Eq. 141 the values of F̂ [1] can each be obtained by integrating the nearby values of F̂ [0] against a small
local gaussian:

F̂ [1](k, κ̂) =

∫
κ̂′
F̂ [0](k, κ̂′)N (κ̂− κ̂′, ϵ2σ2(κ̂))dκ̂′ with: σ2(κ̂) =

1

4
· 1
2
Θ(a)2. (142)

By looking at this case-study we see that a latitudinal alignment-perturbation Θ(β) results in a volumetric-perturbation

∆F̂ which is well approximated by a a-dependent local-diffusion about each point κ. This local diffusion-coefficient drops
to 0 at the poles and equator (i.e., a = 0, π/2 and π). Furthermore, the latitudinal alignment-perturbation also shifts each

value of F̂ [0] in the latitudinal-direction, allowing the templates values to be unchanged to first-order if the viewing-angle
is also perturbed latitudinally. Thus, the template-perturbation

∆Ŝ(k; τ) = Ŝ
(
k; F̂ [1]; τ + 0.5ϵΘ(β)

)
− Ŝ

(
k; F̂ [0]; τ

)
will vanish as τ approaches the poles. Consequently, any image with an initial viewing-angle near the poles will align
almost as well to F̂ [1] (at the latitudinally-perturbed τ [1]) as it did to F̂ [0] (at its inital τ [0]).
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Taking these considerations into account, we see that a latitudinal alignment-perturbation like Θ(β) will introduce a
likelihood-penalty to images that are oriented far from the poles, but will not introduce a likelihood-penalty to images that
are oriented close to the poles. As a result, any volume constructed from a distribution of viewing-angles concentrated
near the poles will be especially susceptible to latitudinal-perturbations of this form. To illustrate this phenomenon we can
consider a non-uniform P (τ) which is concentrated around the polar-caps. As P (τ) becomes more and more concentrated

around the polar-caps, the likelihood of {F̂ [1], {τ [1]j }} becomes more and more similar to {F̂ [0], {τ [0]j }}, even though F̂ [1]

may not be similar to F̂ [0]. Equivalently, the average fisher-information per image with-respect to the perturbation
{∆F̂ , {∆τj}} vanishes as P (τ) becomes more concentrated near the poles.

Put another way, if the image-pool doesn’t have many images that are oriented away from the poles, no amount
of near-polar images will help improve the robustness of the reconstructed volume. As mentioned above, this intuitive
result aligns with many current methodologies: many images from a variety of viewing-angles are required for a robust
reconstruction.

Figure 24: In this figure we illustrate some properties of a latitudinal-perturbation Θ(β) = sin (2β). On the right we
illustrate the local diffusion-coefficient D(a) (vertical) as a function of the polar-angle a (horizontal) when the viewing-
angle distribution is uniform. Note that the local diffusion-coefficient D(a) drops to 0 when a lies on either the equator or
the poles. This means that templates of the original volume F which correspond to slices near the equatorial-zone (i.e.,
with viewing-angles close to the poles) will align almost as well to the perturbed volume F +∆F as they did to the original
volume F (after latitudinally adjusting each template’s viewing-angle τ by ∆τ(τ)). On the left we illustrate the same
local-diffusion-coefficient D(a;σβ) as a function of the polar-angle a (vertical) as the viewing-angle distribution becomes
more concentrated around the poles (as parametrized by σβ). The viewing-angle distribution considered for this figure

is of the form ρ(β) ∝ exp
(
− sin(β)2/(2σ2

β)
)
, with σβ shown along the horizontal. The value of the diffusion-coefficient

D(a;σβ) is shown as a color in this array, ranging from cyan (zero) to pink (the maximum shown on the left). Note that, as
σβ shrinks the viewing-angle distribution ρ(β) becomes more and more concentrated towards the poles. Such a ‘polar-cap’
distribution introduces essentially no local-diffusion for values of a in a large band around the equator. This means that,
as the viewing-angle distribution becomes concentrated near the poles, the range of templates of the original volume F
which can be well-aligned to the perturbed-volume F +∆F increases to include templates with original-viewing-angles in
the tropical- and temperate-zones.

22.3 Longitudinal perturbation:

A slightly more elaborate perturbation involves Ψ(τ) := Φ(α) = sin(2α). If ϵ > 0, this perturbation pushes each τ either
east- or west-ward away from the great-circle corresponding to the prime-meridian.

If P (τ) is uniform, then in the limit as ϵ→ 0 each value of F̂ [1](k, κ̂) is determined by averaging the values of F̂ [0](k, κ̂′)
on a small ‘collapsed circle’ (on the surface of the sphere) projected onto (i.e., extending only in) the azimuthal-direction.
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This collapsed circle can be described in terms of the polar-angle and azimuthal-angle (a, b) associated with the point κ̂.
The collapsed circle is centered at an azimuthal-angle of bc(a, b) and has an azimuthal-radius of r(a).

bc(a, b) = b+ ϵu(a)Φ(b) and: r2(a) = ϵ2 [1 + u(a)] , (143)

u(a) =
1− | cos(a)|
1 + | cos(a)|

and: Φ(b) = sin(2b). (144)

Note that the azimuthal-radius of this collapsed-circle vanishes as κ approaches the equator, and is largest near the poles.
As a result of Eq. 144 the values of F̂ [1] can each be obtained by integrating the nearby values of F̂ [0] against a small

local gaussian extending in the azimuthal-direction:

F̂ [1](k, κ̂) =

∫
b

F̂ [0](k, κ̂′)N (b− b′, ϵ2σ2(a))dκ̂′ with: σ2(a) =
1

2
r2(a). (145)

By looking at this case-study we see that a longitudinal alignment-perturbation Φ(α) results in a volumetric-perturbation

∆F̂ which is well approximated by a b-dependent local azimuthal-diffusion about each point κ. This local azimuthal-
diffusion-coefficient drops to 0 at the equator (i.e., a = π/2). However, the longitudinal-perturbation induces an azimuthal-

shift in each value of F̂ [0] that is both a- and b-dependent. Thus, the original synthetic-images (i.e., templates from F̂ [0])

won’t typically align well to the volume F̂ [1]. Taking these considerations into account, we see that a longitudinal
alignment-perturbation like Φ(α) will introduce likelihood-penalties for all the images.

However, the results above are strongly dependent on the (near) uniformity of the viewing-angle distrubution P (τ).
If P (τ) were to be concentrated near the equatorial-belt, then the results change substantially. In fact, as P (τ) becomes
more concentrated around the equatorial-belt there are two major changes:

1. The azimuthal-displacement bc(a, b) becomes dependent mainly on the azimuthal-angle b of κ (becoming proportional
to Φ(b)) and becomes more and more independent of the polar-angle a.

2. the azimuthal-variance r2(a)/2 drops to zero away from the poles.

In this scenario (i.e., an equatorially-concentrated P (τ)), the situation is quite similar to the poorly-posed scenario
involving only equatorial viewing-angles. That is to say, any volume constructed from a distribution of viewing-angles
concentrated near the equator will be especially susceptible to longitudinal-perturbations.

To illustrate this phenomenon we can consider a non-uniform P (τ) which is concentrated around the equator. Sim-
ilar to the latitudinal-perturbation described above, as P (τ) becomes more and more concentrated around the equator,

the likelihood of {F̂ [1], {τ [1]j }} becomes more and more similar to {F̂ [0], {τ [0]j }}, and the average fisher-information per

image with-respect to the perturbation {∆F̂ , {∆τj}} vanishes. Put another way, if the image-pool only has images that
have viewing-angles near the equator, their relative orientation cannot be pinned down. Once again, this result echoes
conventional-wisdom: many images from a variety of viewing-angles are required for a robust reconstruction.
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Figure 25: In this figure we illustrate some properties of a longitudinal-perturbation Φ(α) = sin (2α). In this figure we
show multiple subplots. Within each subplot (indexed by σβ) we show a heatmap of the local-azimuthal-diffusion E(a, b;σβ)
as a function of the polar- and azimuthal angles (a, b), corresponding to the vertical- and horizontal-axes respectively.
Within each subplot the value of E(a, b;σβ) ranges from cyan (zero) to pink (maximum). The different subplots correspond
to different viewing-angle distributions (parametrized by σβ). The viewing-angle distribution considered for this figure is

of the form ρ(β) ∝ exp
(
− cos(β)2/(2σ2

β)
)
, with σβ shown in the title of each subplot. In this case, when σβ is large the

viewing-angle distribution is essentially uniform (lower-right subplot). On the other hand, when σβ becomes small the
viewing-angle distribution concentrates around the equator (upper-left subplot). Note that, as σβ shrinks and the viewing-
angle distribution concentrates around the equator, the azimuthal-diffusion E(a, b;σβ) drops close to zero for large regions
on the sphere. Thus, for these equatorially-concentrated viewing-angle-distributions, templates of the original volume
F will align almost as well to the perturbed volume F + ∆F as they did to the original volume F after longitudinally
adjusting each template’s viewing-angle τ by ∆τ(τ).

22.4 Relating the laplacian to a local average:

In the above calculations we’ve used the following fact. Given a twice-differentiable function u(x) : R2 → C, we can use
the laplacian ∆u to approximate the average of that function along the perimeter ∂Br of a small disk Br of radius r.

I(r) =
1

|∂Br|

∫
Br

u(x)dΓ.

∂rI(r) =
1

|∂Br|

∫
Br

∂2x1
u(x) + ∂2x2

u(x)dx =
1

|∂Br|

∫
Br

∆u(x)dx.

∂rI(r) ≈
1

|∂Br|
πr2∆u(0) ≈ 1

2
r ∆u(0).

I(r) = I(0) +

∫ r

0

∂rI(s)ds ≈ u(0) +
1

4
r2 ∆u(0).

We can also describe a similar relationship: if we were to define Dr to be the projection of Br onto the x1 axis, then:

I(r) =
1

|∂Dr|

∫
Dr

u(x1)dΓ ≈ u(0) +
1

4
r2 ∂2x1

u(0),

which is what one would expect if u did not vary (or only varied linearly) orthogonal to the x1 direction (and hence
∂2x2

u ≡ 0).
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22.5 Notes for the longitudinal-perturbation:

For the longitudinal-perturbation we set Θ(α) = 2 sin(2α).
Let’s pick a particular point on the sphere, and describe it via the polar- and azimuthal-angles (a, b). The value of the

third euler-angle c can be used to parametrize the poles associated with that point. Now all the pole-locations for (a, b)
are given by the same formula used to determine the templates:

(x, y, z) = [cos(b) cos(a) cos(c)− sin(b) sin(c), sin(b) cos(a) cos(c) + cos(b) sin(c),− sin(a) cos(c)] (146)

The norm (x2 + y2) = w2 is given by:

w2 = ((cos(b) cos(a) cos(c)− sin(b) sin(c))2 + (sin(b) cos(a) cos(c) + cos(b) sin(c))2) (147)

= (cos(b) cos(a) cos(c))2 + (sin(b) sin(c))2 − 2(cos(b) cos(a) cos(c) sin(b) sin(c)) (148)

+(sin(b) cos(a) cos(c))2 + (cos(b) sin(c))2 + 2(sin(b) cos(a) cos(c) cos(b) sin(c)) (149)

= ((cos(b) cos(a) cos(c))2 + (sin(b) sin(c))2 + (sin(b) cos(a) cos(c))2 + (cos(b) sin(c))2) (150)

= (cos(a) cos(c))2 + (sin(c))2. (151)

The polar-angle at (x, y, z) is:

arctan(y/x) = arctan

(
sin(b) cos(a) cos(c) + cos(b) sin(c)

cos(b) cos(a) cos(c)− sin(b) sin(c)

)
=: ϕ(a, b, c). (152)

Note that, obviously, as any particular pole is perturbed azimuthally, the associated point on the sphere (associated with
that pole) is perturbed azimuthally by the same amount. Thus, for any pole ϕ, the preimage ϕold = ϕold − ϵΘ(ϕold), or,
more simply: ϕnew − ϕold = −ϵ sin(2ϕold), which is the azimuthal change in the point induced by the azimuthal change in
the pole.

Now we can estimate the average shift ∆b for any point on the sphere by averaging over c (parametrizing the poles
associated with that point).∫ 2π

0

−ϵ sin(2ϕ)dc = −ϵ
∫ 2π

0

2 sin(ϕ) cos(ϕ)dc = −ϵ
∫ 2π

0

2
xy

w2
dc (153)

= −ϵ
∫ 2π

0

2
(sin(b) cos(a) cos(c) + cos(b) sin(c))(cos(b) cos(a) cos(c)− sin(b) sin(c))

(cos(a) cos(c))2 + (sin(c))2
dc. (154)

Now seeking a separable solution we fix the b at, say, π/4 to get:

= −2ϵ
∫ 2π

0

(
√
0.5 cos(a) cos(c) +

√
0.5 sin(c))(

√
0.5 cos(a) cos(c)−

√
0.5 sin(c))

(cos(a) cos(c))2 + (sin(c))2
dc (155)

= −ϵ
∫ 2π

0

(cos(a) cos(c))2 − (sin(c))2

(cos(a) cos(c))2 + (sin(c))2
dc (156)

= −ϵ
∫ 2π

0

(cos(a))2(cos(c))2 − (sin(c))2

(cos(a))2(cos(c))2 + (sin(c))2
dc. (157)

Now using Gradshteyn & Ryzhik: 3.647 (p402) BI (47)(20) we see: ;∫ π/2

0

cos(x)p cos(px)

a2 sin(x)2 + b2 cos(x)2
dx =

π

2b

ap−1

(a+ b)p

1

2π

∫ 2π

0

cos(x)2

sin(x)2 + b2 cos(x)2
dx =

1

b(1 + b)

+

∫ 2π

0

α2 cos(c)2

α2 cos(c)2 + sin(c)2
dc =

α2

α(1 + α)
= − α

1 + α

+

∫ 2π

0

sin(c)2

α2 cos(c)2 + sin(c)2
dc = +

1

α(1 + α)
− 1

α

+

∫ 2π

0

α2 cos(c)2 − sin(c)2

α2 cos(c)2 + sin(c)2
dc = +

α

1 + α
+

1

α(1 + α)
− 1

α
(158)

=
α2 − α
α2 + α

=
α− 1

α+ 1
. (159)
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Note that, the equations above hold for α > 0. Thus, in practice we’ll need absolute-values in the equations above: i.e.,
(|α| − 1)/(|α|+ 1).

Aside: as we perturb the point-polar-angle a, the pole-azimuthal-angle ϕ changes as ∂aϕ. ; Note that:

∂ arctan(y/x) =
1

1 + y2

x2

·
(
y′

x
− yx′

x2

)
=

x2

x2 + y2
· y

′x− yx
x2

=
y′x− yx′

x2 + y2
.

Thus,

∂aϕ =
(− sin(b) sin(a) cos(c))(∂b cos(a) cos(c)− sin(b) sin(c))− (sin(b) cos(a) cos(c) + cos(b) sin(c))(− cos(b) sin(a) cos(c))

(cos(a) cos(c))2 + (sin(c))2
(160)

=
(cos(c))2(− sin(b) sin(a) cos(b) cos(a)) + (sin(b))2(sin(a) cos(c) sin(c))

(cos(a) cos(c))2 + (sin(c))2
(161)

+
(cos(c))2(+(cos(c))2(+ sin(b) cos(a) cos(b) sin(a)) + (cos(b))2(sin(a) cos(c) sin(c))

(cos(a) cos(c))2 + (sin(c))2
(162)

=
sin(a) cos(c) sin(c)

(cos(a) cos(c))2 + (sin(c))2
. (163)

23 The Noise-marginalized limit

In section 13 we discussed the low-temperature limit σ̂ → 0, for which the likelihood in Eq. 48 can be greatly simplified,
producing Eq. 54. We leverage this simplified expression to produce Eq. 73, which affords certain computational and
conceptual advantages.

A similar simplification can occur when the likelihood is marginalized over the noise σ̂. To demonstrate this, we can
return to Eq. 31 and rewrite the likelihood of observing an image Â, given a particular template Ŝ and noise-level σ̂:

P (Â
∣∣ Ŝ, σ̂) :=

1

(
√
2π σ̂)dof

exp

(
− 1

σ̂2
ℓ(Â | Ŝ)

)
, (164)

where ℓ(Â | Ŝ) takes the form:

ℓ(Â | Ŝ) :=
1

2

∫∫
k∈ΩK

|Â(k)− Ŝ(k)|2dk, (165)

and dof refers to the number of independent degrees of freedom in the image.
Now we can use Gradshteyn and Ryzhik 3.326.2:∫ +∞

0

1

λN
exp

(
− ℓ

λ2

)
dλ =

1

2
Γ

(
N − 1

2

)
1

ℓ(N−1)/2
=

1

2
Γ

(
N − 1

2

)
· exp

(
−N − 1

2
log ℓ

)
,

and marginalize over the noise σ̂ to produce:

P
(
Â
∣∣ Ŝ, σ̂) =

∫ +∞

0

P
(
Â
∣∣ Ŝ, σ̂) dσ̂ (166)

=
1

(2π)dof/2
· 1
2
Γ
(
dof′

)
· exp

(
−dof′ log ℓ(Â | Ŝ)

)
, (167)

where we have denoted σ̂-marginalization via the strikethrough σ̂, and set dof′ = (dof− 1)/2.
Note that dof′ is often quite large in practice, and thus this marginalized likelihood is typically very well approximated

using standard asymptotics (e.g., laplace’s approximation). In this regime we can marginalize Eq. 47 over σ̂ and write:

P
(
Â
∣∣ F̂ , σ̂) =

∫
δ∈R2

∫
τ∈SO3

P
(
Â
∣∣ τ ; δ; F̂ ; σ̂) · P (δ ∣∣ τ ; F̂) · P (τ ∣∣ F̂) dτdδ, (168)

where P
(
Â
∣∣ τ ; δ; F̂ ; σ̂) now represents a marginalized likelihood similar to Eq. 167. In the large-dof limit we now have

a statement very similar to Eq. 53. Namely, as dof→∞, the integral in Eq. 168 becomes dominated by the contribution
associated with the ‘maximum-likelihood’ alignment-angle for the image Â. Just as before, this maximum-likelihood
alignment occurs for the viewing-angle, displacement and volume which maximize the summand P (Â|τ ; δ; F̂ ; σ̂)·P (τ, δ |F̂ )
in the integrand of Eq. 168.
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In the context of single-particle reconstruction, the negative-log-likelihood for a collection of images in the large-dof
limit is now dominated by the following leading-order expansion:

− log
(
P
(
{Âj}

∣∣ F̂ , σ̂)) ∼ +dof′ ·
J∑
j=1

log
(
ℓ
(
Âj | Ŝopt

j

))
, (169)

with:
Ŝopt

j (k) := Ŝ
(
k; τ opt

j ; δopt

j ;CTFj ; F̂
)
.

23.1 marginalizing with respect to offset µ:

In practice it is often convenient to take into consideration an image-specific real-space offset µ:

P (Â
∣∣ Ŝ, σ̂, µ) :=

1

(
√
2π σ̂)dof

exp

(
− 1

σ̂2
ℓ(Â | Ŝ, µ)

)
, (170)

where ℓ(Â | Ŝ, µ) takes the form:

ℓ(Â | Ŝ, µ) :=
1

2

∫∫
x∈ΩX

|A(x) + µ− S(x)|2dx. (171)

To marginalize this likelihood with respect to the image-offset µ we can use Gradshteyn and Ryzhik 2.33:∫ +∞

−∞
exp

(
−ax

2 ± 2bx+ c

λ

)
dx =

√
λπ

a
exp

(
−ac− b

2

λa

)
,

which holds for any normalizing factor λ.
Using this relationship, we can write:

P
(
Â
∣∣ Ŝ, σ̂, µ) =

∫ +∞

−∞
P
(
Â
∣∣ Ŝ, σ̂, µ) dµ (172)

=
1

(2π)dof/2
· 1

σ̂dof
· (2πσ̂2) · exp

(
− 1

σ̂2
ℓ
(
Â
∣∣ Ŝ, µ)) , (173)

with: ℓ
(
Â
∣∣ Ŝ, µ) :=

1

2

∫∫
x∈ΩX

∣∣(A(x)− Ā)− (S(x)− S̄)∣∣2 dx, (174)

where we have used Ā and S̄ to denote the average image- and template-value.

Given the structure of ℓ
(
Â
∣∣ Ŝ, µ), we can assume without loss of generality that the images are all ‘centered’ (i.e.,

with mean 0). Similarly, we can assume that the volume F is also mean 0, and hence every template S is centered as well.
After performing this offset-marginalization we can once again marginalize over the noise to obtain the negative-log-

likelihood:

− log
(
P
(
{Âj}

∣∣ F̂ , σ̂, µ)) ∼ +dof′ ·
J∑
j=1

log
(
ℓ
(
Âj | Ŝopt

j , µ
))

. (175)

In many practical scenarios the values of ℓ(Âj | Ŝopt

j , µ) are rather tightly distributed across the image-pool j, and it
is not unreasonable to approximate the function log(ℓ) as an affine function log(ℓ) ≈ aℓ + b for some fixed a and b (i.e.,
constants across the image-pool). One such example is shown in Fig 26.

45



Figure 26: In this figure we illustrate values of ℓ(Âj | Ŝopt

j , µ) taken from micrographs of FIB-milled yeast lamellae as
described in [46] (see Fig 1 and Fig 15 of [46]). These micrographs have been scanned for picked particle images that
resemble mature 60S ribosomes. For each of these picked particle images Aj , we measure the optimal pose-parameters for

the 60S ribosome, and calculate the corresponding projection Ŝopt

j , as well as the function ℓj := ℓ(Âj | Ŝopt

j , µ). On the far
left we show the cumulative-distribution function of {ℓj} for the original set of picked-particles (bright red). We also show
the corresponding cumulative-distribution-functions for the particles that were detected after adding various amounts of
gaussian-noise to the original micrograph. The noise added to the original micrograph is quantified by the additional
variance per-pixel (relative to the original noise-level), which ranges across the values {0.0, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5}
(ranging from red to yellow, respectively). In the middle we show the histogram of values for {ℓj} accumulated across
all 16014 picked-particles. On the right we show a scatterplot of ℓj along the horizontal, and log(ℓj) along the vertical.
The color indicates the amount of added noise, and uses the same scale as the right subplot. The affine-fit is shown in
grey in the background. Note that, for this experimental data, the values of log(ℓj) can be very well approximated by an
affine function log(ℓ) ≈ aℓ+ b for values of a ≈ 0.537 and b ≈ −0.378 that are fixed and independent of the image-index
j. Indeed, for this data-set the average relative error between the the values of log(ℓj) and the linear-fit is ≈ 6× 10−4.

When this approximation can be made, the negative-log-likelihood can be approximated by:

− log
(
P
(
{Âj}

∣∣ F̂ , σ̂, µ)) ≈ +dof′ · b · J + dof′ · a ·
J∑
j=1

ℓ
(
Âj | Ŝopt

j , µ
)
, (176)

Which is once again amenable to a volumetric-representation very similar to Eq. 73.

24 Ill-posedness: Case studies

24.1 Equatorially-distributed viewing-angles

As described in section 22.3, the single-particle reconstruction problem is generically poorly posed when the viewing angles
are concentrated around the equator. More specifically, assume we are given a volume F̂ and a collection of templates taken
from a viewing-angle-distribution µ(τ) supported on the equator. Now any equatorial-perturbation ∆τ(τ) of these viewing-
angles can be applied to the original viewing-angles. These perturbed viewing-angles can then be used to reconstruct a
volume Ĝ.

As long as the map τ ← τ +∆τ(τ) is one-to-one, the reconstructed Ĝ will then produce a collection of templates that

perfectly match those templates used to reconstruct it. In other words, the collection of templates of Ĝ will include the
original collection of templates from F̂ .

This issue is a result of the fact that, when µ(τ) is restricted to the equator, different templates only overlap at
the poles. Any invertible equatorial-perturbation simply reorganizes the azimuthal-angle associated with each template,
without disturbing this polar overlap. Examples of this phenomenon are shown in Figs 27-34.
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Figure 27: On the left we show an idealized viewing-angle-distribution µ(τ) which is uniformly distributed along the
equator. On the right we show a low-res (2πK = 48) reconstruction F of the TRPV1 molecule obtained by appropriately
aligning many synthetic-images (i.e., noisy projections) taken from these equatorial viewing-angles. This low-res recon-
struction F agrees with the reconstruction referenced in EMPIAR-10005.

Figure 28: In this figure we show a collection of τ -specific alignment-perturbations {∆τ(τ)} (left) along with a corre-
sponding volumetric-perturbation δF (right). The arrows on the left indicate the direction of the alignment-perturbations
for each (β, α), with ∆γ(τ) = 0. Larger/darker arrows indicate larger values of ∆τ(τ), with the arrow-area proportional
to |∆τ | (and dark purple arrows corresponding to the largest values of |∆τ |. On the right we show an isosurface of |∆F |,
colored by the sign of ∆F (with blue and pink corresponding to negative and positive, respectively). The projections of
∆F are shown along each axis (background and bottom). These perturbations have been selected so that, when applied
to the reconstruction F shown in Fig 27, the likelihood remains the same. Put another way, each equatorial-template
of the original F at angle τ corresponds to a template of the perturbed volume F + ∆F at angle τ + ∆τ(τ). Indeed,
when inspecting the right-hand subplot, one can see that the equatorial projections of ∆F shown along the background
are identically 0. Only the polar-projection shown on the bottom is nonzero (however, for this example there are no
viewing-angles that have a polar-component).
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Figure 29: In this figure we show one of the perturbed volumes F − ∆F of the TRPV1 molecule (at 2πK = 48). On
the left subplot we show an isosurface (center), along with projections along each axis (background and bottom). On the
right subplot we show the same isosurface, re-colored to indicating the value of the volumetric-deformation ∆F at each
point. The color on the right ranges from blue (negative) to pink (positive).

Figure 30: This figure has the same format as Fig 29, except that we illustrate F +∆F .
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Figure 31: This figure illustrates an even more extreme volumetric perturbation that, again, has the same collection of
equatorial-templates as the original F .

Figure 32: This figure illustrates an even more extreme volumetric perturbation that, again, has the same collection of
equatorial-templates as the original F .
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Figure 33: This figure illustrates an even more extreme volumetric perturbation that, again, has the same collection of
equatorial-templates as the original F .

Figure 34: This figure illustrates an even more extreme volumetric perturbation that, again, has the same collection
of equatorial-templates as the original F . To summarize, because the viewing-angle distribution is supported along the
equator, any one-to-one equatorial perturbation of the viewing-angles gives rise to a reconstructed volume with the same
collection of equatorial-projections (i.e., templates). In other words, the single-particle reconstruction problem is ill-posed
for this example.

24.2 Uniformly-distributed viewing-angles

In the section above we discussed a somewhat degenerate scenario: one where the viewing-angles τj for each observed
image were all drawn from the equator. In a more general scenario we would expect the distribution µ(τ) of viewing-angles
to be more uniformly distributed. In this more general situation we typically don’t find the same kinds of degeneracies.
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Indeed, in the zero-noise limit it is typically the case that there will be a unique volume that satisfies the single-particle
reconstruction problem [52, 53].

Figure 35: In this figure we illustrate the frequency-shells F̂A(k, k̂), F̂B(k, k̂) and F̂C(k, k̂). The real- and imaginary-
parts of these frequency-shells are shown from both a three-quarters view and a polar view. Each frequency shell adopts
the background values of b and b† in the northern- an southern-hemispheres, respectively. in the regions surrounding the
north- and south-poles, these frequency-shells adopt the values of d and d†, respectively. Note that any great-circle cutting
through F̂A(k, k̂) will correspond to at least one great-circle cutting through F̂B(k, k̂) and at least one great-circle cutting

through F̂C(k, k̂).

Figure 36: In this figure we illustrate level-sets of the volumes produced by convolving the frequency-shells shown in Fig
35 with a radial-kernel. Note that, by construction, each projection of the volume FA will correspond to some projection
of FB and also to some projection of FC . In other words, given the full collection of templates produced by FA, the
single-particle reconstruction problem is poorly posed.

Nevertheless, even though they are not generic, degeneracies can still exist. One of many such examples is shown
in Figs 35 and 36. To explain this example, let’s first consider a single frequency-shell F̂A(k, k̂) (with fixed frequency-
amplitude k). On this frequency-shell let’s imagine that there is a baseline value of b in the northern-hemisphere and –
due to the conjugacy constraint – the corresponding value of b† in the southern-hemisphere. Let’s also assume there exists
a localized feature, in this case a circular disc ‘D’ around the north-pole where the value of F̂A(k, k̂) is elevated from the

baseline value of ‘b’ to some different value ’d’. Because of the conjugacy-constraint applied to F̂A, the presence of D
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mandates an antipodal region D′ on which F̂A takes the value d†. On this frequency-shell each projection corresponds to
a great-circle. Most such great-circles do not intersect D or D′, and thus correspond to projections Ŝ which cut through
the background-values of b and b† (i.e., for which Ŝ(ψ) ≡ b or b† for all ψ). However, great-circles that intersect D and

D′ will produce projections Ŝ that have intervals of ψ for which Ŝ(ψ) = d and Ŝ(ψ + π) = d†.

Now consider another frequency-shell F̂B(k, k̂) which is similar to F̂A(k, k̂), except that the localized feature now lies
on an elliptical zone ‘E’. The zone E has a major-axis that matches that of D, but a minor-axis which is smaller. Let’s
assume that F̂B takes on the values b on most of the sphere, and the values d and d† on the elliptical-regions E and E′

(where E′ is antipodal to E).

Now each great-circle from F̂A(k, k̂) corresponds to at least one great-circle from F̂B(k, k̂), and vice-versa. A collection

of templates corresponding to a uniform distribution of viewing-angles from F̂A can now be associated with a collection
of templates corresponding to a non-uniform distribution of viewing-angles from F̂B . Of course the same story holds
if we reduce the minor-axis of the elliptical-region E to produce a shell F̂C(k, k̂). Thus, in this case the single-particle
reconstruction problem is poorly posed. Give only the collection of templates from FA, but without knowledge of the
viewing-angles nor of the viewing-angle-distribution µ(τ), one cannot determine if the true underlying volume is FA, FB
or any other admissible function (e.g., FC).

The scenario described above is just one example of the kinds of degeneracies that can occur. Figs 37 and 38 illustrate
another similar degenerate scenario. In this case each projection of the volume FA corresponds to at least one projection
of FB or of FC . Thus, given only an image-pool comprising the collection of projections from FA, one cannot determine
if the image-pool was produced by the single volume FA, or a combination of other volumes (e.g., FB and FC).

Figure 37: This figure is similar to Fig 35. This time the frequency-shells adopt more than one value in the polar-regions.
Note that any great-circle cutting through F̂A(k, k̂) will correspond to at least one great-circle cutting through either

F̂B(k, k̂) and/or F̂C(k, k̂).
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Figure 38: In this figure we illustrate level-sets of the volumes produced by convolving the frequency-shells shown in Fig
37 with a radial-kernel. Note that, by construction, each projection of the volume FA will correspond to some projection
of FB and/or to some projection of FC . In other words, given the full collection of templates produced by FA, the multi-
particle reconstruction problem is poorly posed.

24.3 Noisy images

The previous section discussed degenerate scenarios exhibiting spurious heterogeneity: a collection of projections from one
volume can be indistinguishable from a subset of projections collected from a pair of other volumes.

A similar scenario can manifest in real data, particularly when the number of images J is relatively small and the
viewing-angle distribution µemp

τ of the data is non-uniform. As an example, consider the trpv1-molecule and empirical
viewing-angle distribution shown in Fig 8.

Now let’s consider the multi-particle reconstruction problem, given only the first J = 1024 images from the image-stack
at EMPIAR 10005. For simplicity, let’s ignore translations for now (assuming that each image is appropriately centered).
As described in section 13.2, one might approximately solve this problem by constructing a collection of volumes {Fi}
and, for each image Aj , determining the maximum-likelihood alignments {τ opt

j } and associated volume-label ioptj .
There is a trivial (and useless) solution to this problem involving a number of volumes equal to the number of images,

where volume j is fit to image Aj . Clearly, this trivial solution is overfit to the data, and one might hope to prevent such
overfitting by restricting the total number of volumes. However, as we’ll see in a moment, such a strategy is not guaranteed
to succeed, and in this scenario we still observe spurious heterogeneity even if the number of volumes is restricted to only
2.

Spurious heterogeneity with synthetic images: To see why this might be the case, recall that the empirical viewing-
angle distribution from EMPIAR 10005 is partially concentrated around the equator, with the remainder concentrated near
the poles. Let’s now consider performing ‘surgery’ on µemp

τ , and dividing this into two disjoint distributions, one µequa
τ

supported in a band around the equator, and the second µpole
τ supported on a pair of antipodal polar caps.

As discussed in section 22.3, the equatorial viewing-angles in µequa
τ can, by themselves, give rise to a single-particle

reconstruction which is not very robust. That is to say, there are volumes that are not close to the true volume, but
which can produce a collection of equatorial-templates which are a very close match to the equatorial-templates of the
true volume. Generally speaking, the quality of this match, as measured by the likelihood in Eq. 54 will increase as the
viewing-angle distribution µequa

τ becomes concentrated around the equator (see Fig 25).
Similarly, as discussed in section 22.2, the polar viewing-angles in µpole

τ can, by themselves, also produce a reconstruction
which is not very robust. Once again, there are volumes that are not close to the true volume, but which can produce nearly
identical polar-templates. Generally speaking, the quality of this match will increase as the viewing-angle distribution
µpole
τ becomes concentrated around the poles (see Fig 24).
For this particular case-study we’ll simply chop µemp

τ into two parts, as indicated in Fig 39. Note that, while the data
from µequa

τ technically covers the surface of the sphere, the data from µpole
τ does not. As show on the right of Fig 39, there

is a ‘blind spot’ at each pole where the data from µpole
τ does not constrain the values of F̂ near the poles.

We’ll return to these blind-spots in a moment, but for now we’ll illustrate in Figs 40-43 two volumes FB and FC .
These two volumes correspond to reconstructions using the distributions µpole

τ and µequa
τ , respectively. These volumes are

illustrated alongside the original volume FA, which corresponds to the true volume EMD-5778.
The volume FB has been crafted so that, for each template S(·; τA, FA) with a τA drawn from µpole

τ , there exists a
template S(·; τB , FB) which is very close to S(·; τA, FA). Similarly, the volume FC has been crafted so that, for each
template S(·; τA, FA) with a τA drawn from µequa

τ , there exists a template S(·; τC , FC) which is very close to S(·; τC , FC).
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To be more explicit, consider taking a sample of J synthetic-images {Âsyn

j }, each produced using the true volume

F̂A and a viewing-angle τAj drawn from µemp
τ . If we were to align Âsyn

j to F̂A, then the optimal viewing-angle would be

τ opt,A
j ≡ τAj , by construction. This collection of synthetic-images forms our ‘sythetic-image-pool’, and is the data we will
use immediately below.

Let’s first align each Âsyn

j to F̂B , producing an optimal viewing-angle τ opt,B
j . This optimal viewing-angle will only

correspond to a close match if Âsyn

j corresponds to an polar-template (i.e., if τAj lies in the support of µpole
τ ). To indicate

this, let’s define τ opt,B+C
j := τ opt,B

j and set the volume-assignment iopt,B+C
j to be ‘B’ for these images.

In a similar fashion, we can align each Âsyn

j to F̂C , producing an optimal viewing-angle τ opt,C
j . This optimal viewing-

angle will only correspond to a close match if Âsyn

j corresponds to a equatorial-template (i.e., if τAj lies in the support of

µequa
τ ). To indicate this, let’s define define τ opt,B+C

j := τ opt,C
j and set the volume-assignment iopt,B+C

j to be ‘C’ for these
images.

Now we can use the optimal-alignments {τ opt,A
j } to calculate the log-likelihood LA := log

(
P
(
{Âsyn

j }
∣∣ F̂A)), as

described in Eq. 54. Similarly, we can can use the optimal-alignments {τ opt,B+C
j } and optimal-assignments {iopt,B+C

j } to
calculate the log-likelihood LB+C := log

(
P
(
{Âj}

∣∣ {F̂B , F̂C})) as described in Eq. 56.

Now we can compare two different hypothesis. The first hypothesis, denoted by ‘HypA’, is that the synthetic-image-pool

was generated by the single volume xFA and the alignments {τ opt,A
j }. The second hypothesis, denoted by ‘HypB+C ’ is

that the synthetic-image-pool was generated by the pair of volumes {FB , FC} along with the alignments {τ opt,B+C
j } and

the volume-assignments {iopt,B+C
j }. Because we are using synthetic-images, we are guaranteed that the ‘true’ hypothesis

HypA is more likely than the ‘spurious’ hypothesis HypB+C (see section 18). However, for this case-study we have prepared
the volumes FB and FC so that, given the empirical noise-level (estimated from EMPIAR 10005), the log-likelihood ratio
LA − LB+C is actually slightly less than log(20). This means that, under standard-practice, the spurious hypothesis
HypB+C would not be rejected in favor of the true hypothesis HypA.

Spurious heterogeneity with experimental-images: Above we considered a somewhat ideal setting where the
image-pool was constructed using only sythetic images drawn from the true volume FA. If the size J of the image-pool is not
too large and the empirical viewing-angle distribution µemp

τ is nonuniform, then we can encounter spurious heterogeneity.
Notably, if we revisit the same setting and use actual experimental-images, we see that spurious heterogeneity can be even
more pernicious.

Recall that the distribution µpole
τ was quite concentrated near the poles, yielding a ‘blind-spot’ near each pole shown

in Fig 39. That is to say, the data from the synthetic-images drawn from µpole
τ do not constrain the values of F̂B in

these blind-spots. Thus, these blind-spots represents a collection of degrees-of-freedom that are unconstrained by the true
projections of the volume.

Above, to produce the polar-aligned volume FB shown in Figs 40-43, we merely set the values of F̂B to be constant in
each blind-spot (subject to the conjugacy conditions). However, in practice these blind-spots are not likely to be treated
so simply.

One such example is shown on the right of Fig 44. This shows a volume FB′ which has the same polar-templates as
FB from Fig 41, but has different data in its blind spot, corresponding to ‘overfitting’ to noise.

To explain this scenario more carefully, first recall the original pool of J = 1024 synthetic-images described above. As
described above, these J synthetic-images were constructed using projections of the true molecule FA. When aligning
these synthetic-images to the spurious-volumes FB and FC , those synthetic-images corresponding to polar-templates fit
best to FB , while those corresponding to equatorial-templates fit best to FC .

Now let’s add 32 additional noisy experimental-images to the image-pool. These additional noisy images have viewing-
angles that are not too far from the poles, and naturally align best to FB . However, due to the noise, their optimal
alignment-angle τ opt,B

j is somewhat far from the poles, so that the images themselves correspond to values of k̂ that pass
through the polar ‘blind-spots’ associated with µpole

τ .
Now, by using these optimally-aligned noisy images (along with the optimally-aligned sythetic-images corresponding

to polar-templates), we can reconstruct FB′ . Unlike the volume FB shown in the middle of Fig 44, the volume FB′ shown
on the right of Fig 44 has its polar-data fit to the additional noisy experimental-images. This additional polar-information
distorts the volume FB′ , but does not appreciably change the polar-projections. Thus while the volumes FB and FB′

provides equally good matches to the polar-templates, the volume FB′ provides a better match than the ‘cleaner’ volume
FB to the noisy experimental-images.

This results in a classical instance of ‘overfitting’: When considering the expanded image-pool comprising both the
idealized synthetic-images and the additional 32 noisy experimental-images, the hypothesis HypB′+C is actually more likely
than HypA. A similar scenario is shown in Fig 45, using a different collection of 64 noisy experimental-images.

Finally, we remark that spurious heterogeneity of this kind can be difficult to correct for a-posteriori. In many cases
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it might not be clear which images are ‘good’ images of particles, and which are too strongly polluted by noise. It also
might be unclear which features of the reconstructed volume (or volumes) are a result of overfitting to noise, or if such a
distinction can even be made. Moreover, some commonly used techniques for validation, such as aligning the images to
an ‘averaged’ volume of the form 0.5× (FB + FC), could erroneously provide support for the spurious hypothesis.

In these situations we would recommend calculating the softest modes of the Hessian associated with each reconstructed
volume, as described in the main text. While such a calculation won’t immediately identify a heterogeneous reconstruction
as spurious, it can certainly provide a warning. For example, in the case-studies shown above the spurious volume FB is
susceptible to latitudinal perturbations, while the spurious volume FC is susceptible to longitudinal perturbations. Both
of these spurious volumes are less robust to perturbations than the volume FA produced via single-particle reconstruction.
This kind of analysis can help indicate possible errors associated with a heterogeneous reconstruction.

Figure 39: In this figure we illustrate the viewing-angles corresponding to µequa
τ (cyan dots, left) and µpole

τ (cyan dots,
middle and right). Each viewing-angle is indicated by a cyan dot hovering above the surface of the sphere. The fourier-
slice corresponding to each viewing-angle is supported on a great-circle orthogonal to the viewing-angle itself. This data
(accumulated across all viewing-angles) is illustrated by pink dots covering the surface of the sphere. Note that, while the
data from µequa

τ technically covers the surface of the sphere, the data from µpole
τ does not. As show on the right, there is a

‘blind spot’ near each pole where the data does not constrain the values of F̂ near the poles.

Figure 40: In this figure we illustrate three level-sets of volumes FA, FB and FC . The volume FA on the left is the
reconstruction EMD-5778 of trpv1 referenced in EMPIAR-10005. The empirical-distribution of viewing-angles µemp

τ for this
volume in the data-set EMPIAR-10005 is concentrated around the equator and the poles (see Fig 8). Templates of FA with
viewing-angles τ ∼ µpole

τ are very likely to have a close match to one of the templates of FB . Similarly, templates of FA
with viewing-angles τ ∼ µequa

τ are very likely to have a close match to one of the templates of FC . Thus, by construction,
each projection of the volume FA will correspond to some projection of FB and/or to some projection of FC . In other
words, given a collection of synthetic-images produced by FA, the multi-particle reconstruction problem can be poorly
posed.
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Figure 41: This is similar to Fig 40, except for a different level-surface.

Figure 42: This is similar to Fig 40, except for a different level-surface.

Figure 43: This is similar to Fig 40, except for a different level-surface.
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Figure 44: This is similar to Fig 41. We show the original FA on the left, and the polar-matched volume FB in the middle.
On the far right we now show an alternative volume FB′ . This alternative volume again matches the polar-templates from
FA, but has its ‘blind-spots’ fit to a small subset of 32 noisy images.

Figure 45: This is similar to Fig 44. This time the alternative volume on the right is fit to a different subset of 64 noisy
images.
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