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Abstract

Existing integrated sensing and communication (ISAC) beamforming design were mostly designed under perfect

instantaneous channel state information (CSI), limiting their use in practical dynamic environments. In this paper,

we study the beamforming design for multiple-input multiple-output (MIMO) ISAC systems based on statistical

CSI, with the weighted mutual information (MI) comprising sensing and communication perspectives adopted as the

performance metric. In particular, the operator-valued free probability theory is utilized to derive the closed-form

expression for the weighted MI under statistical CSI. Subsequently, an efficient projected gradient ascent (PGA)

algorithm is proposed to optimize the transmit beamforming matrix with the aim of maximizing the weighted MI.

Numerical results validate that the derived closed-form expression matches well with the Monte Carlo simulation

results and the proposed optimization algorithm is able to improve the weighted MI significantly. We also illustrate

the trade-off between sensing and communication MI.

Index Terms

Integrated sensing and communication, mutual information, beamforming design, statistical channel state infor-

mation, free probability theory.

I. INTRODUCTION

The sixth generation (6G) wireless network has stimulated numerous innovative applications, such as smart cities

and intelligent transportation. Toward this end, higher requirements of communication and sensing capabilities

are raised for numerous nodes within the network. Due to the capability of enabling the dual functionalities of

information transmission and target sensing with shared wireless resources, integrated sensing and communication

(ISAC) has been regarded as a key enabler for the realization of 6G network [1].

As a promising approach to enhance the performances of ISAC systems, beamforming design has been investigated

in numerous works adopting various communication and sensing performance metrics. In [2], the authors considered

transmit beampattern and signal-to-interference-plus-noise (SINR) as sensing and communication performance
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Fig. 1. Considered MIMO ISAC system.

metrics respectively. As a step further, due to its capability of characterizing the lower bound of parameter estimation,

the Cramér-Rao Bound (CRB) has also been adopted as a sensing performance metric in ISAC systems [3]. However,

in most existing works, the performance metrics for sensing and communications are diverse, resulting in difficulties

in evaluating the trade-offs between sensing and communication performance. To address this issue, some researches

have adopted mutual information (MI) as unified performance metric for ISAC systems [4], [5].

It should be noted that the aforementioned works require perfect channel state information (CSI). However, in

practical systems, accurate instantaneous CSI is hard to obtain due to the increasing signaling overhead, especially

in a highly dynamic scenario. By contrast, it is easy to obtain the long-term channel statistics, such as the spatial

correlation of the antenna array. In [6], [7], the authors have investigated the beamforming design in communication

systems. In [6], the authors leveraged the second-order channel statistics to design hybrid analog/digital precoding

in mm-wave systems with the aim of enhancing the rate performance. In [7], the authors studied the beamforming

design for RIS aided MIMO communication systems and maximized the ergodic rate of the system. However, the

ISAC beamforming design based on long-term channel statistics remains an open problem.

In this paper, we investigate the MI-oriented transmit beamforming design for a MIMO ISAC system, where an

ISAC base station (BS) serves a user equipment (UE) while simultaneously sensing an extended target. Based on the

statistical CSIs available at the BS, we formulate a transmit beamforming design problem with the aim of maximizing

the weighted MI. Applying the operator-valued free probability theory, we derive the closed-form expression of the

weighted MI and reformulate the beamforming design problem. Subsequently, based on the obtained closed-form

expression, we propose an efficient projected gradient ascent (PGA) algorithm to solve the problem. Numerical

results validate the accuracy of the derived expression, as well as the convergence and effectiveness of the proposed

algorithm. In addition, the trade-off between sensing and communication MI is also depicted.

II. SYSTEM MODEL

A. Signal Model

We consider an ISAC system as shown in Fig. 1, where a BS is equipped with Nt transmitting antennas and

Nr receiving antennas. The BS simultaneously serves a UE equipped with Nu receiving antennas and senses an

extended target with L scatters uniformly distributed in the proximity of the center. The transmit beamforming
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matrix of the BS is W ∈ CNt×M . The transmit data symbol is S ∈ CM×Ns , where Ns denotes the number of

signal samples and M denotes the number of data steams satisfying M ≤ Nt. It is assumed that the signal vectors

of S are statistically orthogonal to each other, i.e., E[SS†] = IM , with the notation (·)† denoting the conjugate

transpose operations.

The received signal at UE can be expressed as

Yc = HcWS+NC , (1)

where Hc is the channel between UE and BS, NC ∈ CNu×Ns is the additive white Gaussian noise (AWGN) at the

receiving antennas of UE and NC ∼ CN (0, σ2
cINs

). The received echoes at the BS, Ys ∈ CNr , can be expressed

as

Ys =

L∑
l=1

GlWS+NS , (2)

where Gl ∈ CNr×Nt is the round-trip channel matrix between the l−th scatter and BS, NS ∈ CNr×Ns is the

AWGN at the receiving antennas of the BS and NS ∼ CN (0, σ2
sINs

).

B. Channel Model

Due to the limitations of the Kronecker channel model in accurately representing the correlation between

transceivers when scattering clusters are uniformly distributed, we employ the Weichselberger MIMO channel

model [8], which captures the spatial correlation at both ends of the link and their mutual interdependence, for both

radar sensing channel and the communication channel. The channels in (1) and (2) can be expressed as

Hc = Hc + H̃c = Hc +U(M⊙P)V†, (3)

Gl = Gl + G̃l = Gl +Rl(Nl ⊙Ql)T
†
l , 1 ≤ l ≤ L, (4)

where Hc and Gl are deterministic matrices which denote the line-of-sight (LoS) component of Hc and Gl. U, V,

Rl and Tl are deterministic unitary matrices. M and N are deterministic nonnegative matrices which represent the

variance profiles of the random components H̃c and G̃l respectively. P ∈ CNu×Nt and Ql ∈ CNr×Nt are complex

Gaussian distributed with Pi,j ∼ CN (0, 1/T ) and [Ql]i,j ∼ CN (0, 1/T ).

C. Problem Formulation

From now on, for convenience of expression, we use Is(σ
2) and Ic(σ

2) to denote Is(σs
2) and Ic(σc

2), respectively.

According to [9], the sensing MI can be expressed as

Is(σ
2)= NrE

[
logdet

(
INs

+
1

σ2

L∑
l=1

(S†W†G†
lGlWS)

)]

= NrE
[
logdet

(
ILNr

+
1

σ2
(ĜSS†Ĝ†)

)]
, (5)
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where the expectation is taken over the random components G̃l in (4) and random data symbols S, and the matrix

Ĝ is defined as Ĝ = [(G1W)†, (G2W)†, ..., (GlW)†]†. Based on the received signal at UE, the communication

MI for the considered ISAC system can be expressed as [10]

Ic(σ
2) = E

[
logdet(INu

+
1

σ2
ĤĤ†)

]
, (6)

where Ĥ = HcW, and the expectation is taken over the random components H̃c in (3).

In order to achieve a balance between communication performance and sensing performance, we define a weighted

MI as the performance metric for the proposed ISAC system, which is expressed as

I(W) = ρIs(σ
2) + (1− ρ)Ic(σ

2), (7)

where ρ is a weighting factor that determines the weights of communication performance and sensing performance

in the ISAC system. Furthermore, the transmit beamforming problem can be formulated as:

(P1)max
W

I(W) (8a)

s.t. ∥W∥F
2 ≤ Pt, (8b)

where ∥·∥F2 denotes the Frobenius norm, (8b) is the transmit power constraint and Pt is the transmit power budget.

Due to the operation of taking expectation, there is no exact expression for the weighted MI I(W), resulting in

difficulties in solving Problem (P1) with conventional methods. To address this issue, we will derive the closed-form

expression for the weighted MI I(W) in Section III.

III. PROBLEM REFORMULATION AND PROPOSED ALGORITHM

In this section, we reformulate Problem (P1) and propose an efficient algorithm to solve the reformulated problem.

Specially, in Section III-A, we first utilize the free probability theory and the linearization trick to derive the closed-

form expression of the Cauchy transform. Based on this, we reformulate Problem (P1) by deriving the closed-form

expression for the weighted MI of the considered ISAC system. Finally, the PGA algorithm is proposed to solve

the reformulated problem in Section III-B.

A. Problem Reformulation

Utilizing the Shannon transform [10], Is(σ2) can be rewritten as

Is(σ
2)=LNr

2VB1
(σ2)=LNr

2

ˆ ∞

0

log(1+
1

σ2
λ)fB1

(λ)dλ, (9)

where B1 = ĜSS†Ĝ†, VB1
(σ2) is the Shannon transform of B1, and fB1(λ) is the probability density function

(PDF) of B1. Furthermore, the relationship between the Shannon transform and the Cauchy transform is applied

to obtain the specific form of the Shannon transform, which can be expressed as

dIs(σ
2)

dz
=LNr

2 dVB1
(z)

dz
=−LNr

2

z
−LNr

2GB1(−z), (10)
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where z=− 1
σ2, and the Cauchy transform of B1 is defined as

GB1
(z) =

ˆ ∞

0

1

z − λ
dfB1

(λ). (11)

Similarly, for the communication MI, we have

dIc(σ
2)

dz
= Nu

dVB2
(z)

dz
= −Nu

z
−NuGB2

(−z), (12)

GB2
(z) =

ˆ ∞

0

1

z − λ
dfB2

(λ), (13)

where B2 = ĤĤ†, fB2(λ) is the PDF of B2 and VB2
(σ2) is the Shannon transform of B2 and GB2

(z) is the

Cauchy transform of B2.

To obtain the closed-form expression of GBi(z), free probability theory serves as a powerful analytical tool

[12]. However, in the considered system, Ĝ and S are not free in the classic free probability aspect, resulting in

difficulties in directly obtaining the Cauchy Transform for the product of Ĝ, S, S† and Ĝ†. To address this issue,

the linearization trick will be adopted to embed the non-free matrices into a lager matrix, in which the deterministic

parts and random parts are proved to be asymptotically free. Then the desired Cauchy transform can be obtained

from the transformation of the operator-valued Cauchy transform for the embedded matrix. For the convenience of

expression, we define G = [(G1W)T , (G2W)T , ..., (GlW)T ]T and H = HcW. Note that since Ic and Is share

a similar form, we only provide the detailed derivation of GB1
(z).

To obtain the closed-form of GB1(z), we first apply the Anderson’s linearization trick [12] to construct a block

matrix of size (LNr +Ns + 2M)× (LNr +Ns + 2M) as

BL=


0LNr×LNr

0LNr×M 0LNr×Ns
Ĝ

0M×LNr
0M×M S −IM

0Ns×LNr
S† −INs

0Ns×M

Ĝ† −IM 0M×Ns 0M×M

 . (14)

The operator-valued Cauchy transform GD
BL

of BL [12] is given by

GD
BL

(Λ(z)) = ED

[
(Λ(z)−BL)

−1
]
, (15)

where ED [X] is defined as

ED [X]=


E [X1]

E [X2]

E [X3]

E [X4]

 , (16)

where X1 = {X}LNr
1 , X2 = {X}LNr+M

LNr+1 , X3 = {X}LNr+M+Ns

LNr+M+1 , X4 = {X}LNr+2M+Ns

LNr+M+Ns+1 ,with the notation

{A}ba denoting the submatrix of A containing the rows and columns with indices from a to b, i.e.,
[
{A}ba

]
i,j

=

[A]i+a−1,j+a−1 for 1 ≤ i, j ≤ b− a+ 1, where the notation [A]i,j is the element in the i-th row and j-th column
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of matrix A. The matrix function Λ(z) is defined as

Λ(z) =

 zILNr
0LNr×(Ns+2)

0(Ns+2)×LNr
0(Ns+2)×(Ns+2)

 . (17)

Then GB1
(z) is given by

GB1
(z) =

1

LNr
Tr
({

GD
BL

(Λ(z))
}(1,1))

, (18)

where {·}(1,1) represents the upper-left LNr ×LNr matrix block and the operator Tr(·) represents the trace of the

matrix. It can be observed that BL shares a similar structure with the matrix L proposed in [13, Prop. 2], which

inspires us to use the method in [13]. Specifically, the Cauchy transform GB1(z) can be obtained with the following

proposition.

Proposition 1. The Cauchy transform of B1, with z ∈ C+, is given by

GB1
(z) =

1

LNr
Tr
[
GC̃(z)

]
, (19)

where GC̃(z) satisfies the following equations

GC̃(z) =
(
Ψ̃(z)−GΠ−1G

†)−1

, (20)

Π = Ψ(z)− Φ̃(z)−1, (21)

where the matrices Ψ̃(z), Ψ(z), Φ̃(z), Φ(z) are respectively denoted as

Ψ̃(z) = zILNr − diag {η̃1(GC(z)), . . . , η̃L(GC(z)} , (22)

Ψ(z) = −
L∑

l=1

ηl(GC̃l
(z)), (23)

Φ̃(z) = −ζ̃(GD̃(z)), (24)

Φ(z) = INs
− ζ(GD(z)), (25)

where the notation diag(A, · · · ,B) represent the diagonal block matrix constructed by A, · · · ,B matrices and

ηl(C̃), η̃l(C), ζ(D), ζ̃(D̃) are the parameterized one-sided correlation matrices, which are shown as (46), (47),

(54) and (55) in Appendix A. The matrices GC(z), GD̃(z), GD(z), and GC̃l
(z) are defined as

GC(z)=
(
Ψ(z)−G

†
Ψ̃(z)−1G

† − Φ̃(z)−1
)−1

, (26)

GD̃(z) = Φ(z)−1, (27)

GD(z) =

(
Φ̃(z)−

(
Ψ(z)−G

†
Ψ̃(z)G

)−1
)−1

, (28)

GC̃l
(z) = {GC̃(z)}

lNr

1+(l−1)Nr
. (29)
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Proof. The proof of this Proposition 1 is similar to the method presented in [13, Prop. 2]. Therefore we provide a

brief outline of the proof. First, we prove that the deterministic and random components of the linearized matrix are

free. Then, by applying the subordination formula, we derive the equation for the operator-valued Cauchy transform.

Finally, using the matrix inversion formula, we decompose the operator-valued Cauchy transform, thereby obtaining

the above expressions.

Based on the closed-form expression of the Cauchy transformation GB1
(z) , we can derive the closed-form

expression of the Shannon transform VB1(z) in the following proposition.

Proposition 2. The Shannon transform VB1(z), with z ∈ C+, is given by (44), where Ψ̃(−z), Ψ(−z), Φ̃(−z),

GD̃(−z) , GD(−z), and GC̃ (−z) are given by (20)-(25) in Proposition 1.

Proof. The proof of Propsition 2 is given in Appendix B .

Similarly, the Cauchy transform GB2
(z) of B2 and the Shannon transform VB2

(z), with z ∈ C+, are given by

GB2
(z) =

1

Nu
Tr
[
GẼ(z)

]
, (30)

VB2
(z) =

1

Nu
log det

(
Ω̃ (−z)

−z

)
+

1

Nu
Tr
(
GẼ(−z)τ̃

)
− 1

Nu
log det (GE(−z)) , (31)

where ηl(C̃), η̃l(C), τ(E), τ̃(Ẽ) are the parameterized one-sided correlation matrices, which are shown as (46),

(47), (50) and (51) in A. The matrices GẼ(z), GE(z), Ω̃(z) and Ω(z) satisfy the following equations

GẼ(z) =
(
Ω̃(z)−HΩ(z)−1H

†)−1

, (32)

GE(z) =
(
Ω(z)−H

†
Ω̃(z)−1H

)−1

, (33)

Ω̃(z) = zINu
− τ̃(GE(z)), (34)

Ω(z) = 1− τ(GẼ(z)). (35)

Then the sensing MI , the communication MI and the weighted MI can be rewritten as

Is(z,W) = LN2
r VB1

(σ2), (36)

Ic(z,W) = NuVB2
(σ2), (37)

I(z,W) = ρIs(z,W) + (1− ρ)Ic(z,W). (38)

Consequently, we reformulate the problem (P1) as

(P2)max
W

I(z,W) (39a)

s.t. (8b). (39b)
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VB1(z) =
1

LNr
log det

(
Ψ̃ (−z)

−z

)
+

1

LNr
log det

(
Ψ(−z)−G

†
Ψ̃(−z)−1G

† − Φ̃(−z)−1
)
+

1

LNr
log det

(
Φ̃(−z)

)
+

1

LNr
Tr
(
GC̃(−z)

(
−zILNr − Ψ̃(−z)

))
+

1

LNr
Tr
(
GD̃(−z)ζ

)
+

1

LNr
log det (Φ(−z)) , (44)

[∇gW]i,j =ρNrTr

((
−Ψ+W†GΨ̃−1GW + Φ̃−1

)−1

E†
i,jG

†
Ψ̃−1GW

)
+ (ρ− 1)Tr

((
Ω−W†H

†
Ω̃−1HW

)−1

E†
i,jH

†
Ω̃−1HW

)
, (45)

B. Proposed PGA Algorithm

In order to solve the problem (P2) , we propose the PGA algorithm. Firstly, we calculate the gradient of the

weighted MI in (38). Then the updated beamforming matrix at the (i+ 1)-th iteration is updated as

W̃[i+1] = W[i] + λ∇gW

(
W[i]

)
, (40)

where W[i] denotes the beamforming matrix at the i-th iteration, λ denotes the step size, and the element of gradient

∇gW of I(z,W) is given by (45), where Ei,j is a matrix whose elements satisfy

[Ei,j ]s,t =

1, if s = i and t = j,

0, otherwise.
(41)

To satisfy the transmit power constraint (8b), the solution W̃[i+1] is then projected onto the feasible region. The

obtained solution at the (i+ 1)-th iteration is given by

W[i+1] = ProjW
(
W̃[i+1]

)
, (42)

where the projection operator is given as

ProjW =

W, if∥W∥F
2 ≤ Pt,

√
Pt

W
∥W∥F

, otherwise.
(43)

The detailed algorithm is presented in Algorithm 1.

Algorithm 1 PGA algorithm

initialize: Set the convergence criterion ε, i = 0, and randomly generate the beamforming matrix W[0]. Calculate
I [0] based on (38).
repeat

Update W[i+1] based on (42).
Calculate I [i+1] based on (38).
i = i+ 1.

until
∣∣I [i] − I [i−1]

∣∣ ≤ ε.
output Optimal beamforming matrix W.
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Fig. 2. (a) Communication MI and sensing MI versus SNR. (b) Weighted MI versus the number of iterations, where ρ = 0.5.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to verify the accuracy of the derived closed-form weighted MI

expression and the effectiveness of the proposed PGA algorithm. For the channel settings, the deterministic com-

ponents are modeled as the direct links between uniform planar arrays (UPA) equipped at both the transmitter

and the receiver. In addition, statistical characteristics parameters of the channel including the deterministic unitary

matrices U, V, Rl and Tl, as well as the variance matrices M and Nl, are generated randomly but fixed in each

Monte Carlo simulation. Unless otherwise stated, the number of scatters, data streams and signal samples are set

as L = 2, M = Nu, and Ns = M , respectively. In addition, the transmit power budget is set as Pt = Nt. It should

be noted that since the radar detection link distance is typically longer than the communication link distance to

UE, without loss of generality, we assume that the signal-noise-ratio (SNR) at UE is 20 dB higher than the SNR at

BS. Besides,the SNR mentioned in this section refers to the SNR at UE. Furthermore, the beamforming matrix is

set as W =
√

Pt/MIM without optimization. All simulation results are generated by averaging over 106 channel

realizations.

Subsequently, the convergence of the proposed PGA algorithm under different numbers of antennas is plotted in

Fig. 2(b). The weighting factor and the SNR are set as ρ = 0.5 and 10 dB respectively. It can be observed that the

weighted MI increases with the number of antennas. This is because a larger number of antennas provides higher

diversity gain and greater design DOFs. In addition, the weighted MI increases with the iterations and converges

within 3 iterations, demonstrating the fast convergence of the proposed PGA algorithm.

To demonstrate the effectiveness of the proposed optimization algorithm, we show the optimized weighted MI

with different numbers of antennas for the considered system in Fig. 3(a). The weighting factor is set as ρ = 0.4.

It can be observed that with the same SNR, the proposed PGA algorithm can improve the weighted MI.

To further depict the trade-off between sensing and communication MI, we show the optimized weighted MI

with weighting factors ρ ranging from 0 to 1 in Fig. 3(b). The number of antennas and the SNR are set as

Nt = Nr = Nu = 8 and 10 dB respectively. As the weighting factor increases, the ISAC system places greater

emphasis on sensing performance, and conversely, prioritizes communication performance when the weighting factor
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Fig. 3. (a) Weighted MI versus SNR with different schemes, where ρ = 0.4. (b) Sensing MI versus Communication MI.

decreases.

V. CONCLUSIONS

In this paper, we investigated the beamforming design for a practical MIMO ISAC system. To derive the closed-

form expression of the weighted MI for the considered system, we resorted to the operator-valued free probability.

Based on the closed-form expression, we proposed the PGA algorithm to design the transmit beamforming matrix

for maximizing the weighted MI. Simulation results verified the accuracy of the derived closed-form expression

and the effectiveness of the proposed algorithm.

APPENDIX A

PARAMETERIZED ONE-SIDED CORRELATION MATRICES

We define the parameterized one-sided correlation matrices of Gl as

ηl(C̃) = E[G̃†
l C̃G̃l] =

1

T
TlΠl(C̃)T†

l , 1 ≤ l ≤ L, (46)

η̃l(C) = E[G̃lCG̃†
l ] =

1

T
RlΠ̃l(C)R†

l , 1 ≤ l ≤ L, (47)

where C̃ ∈ CNt×Nt and Cl ∈ CNr×Nr are any Hermitian matrices, Πl(C̃) and Π̃l(C) are diagonal matrices with

the entries given by

[
Πl(C̃)

]
i,i
=

Nr∑
j=1

([Nl]j,i)
2
[
R†

l C̃Rl

]
j,j

, 1 ≤ i ≤ Nt, (48)

[
Π̃l(C)

]
i,i

=

Nt∑
j=1

([Nl]i,j)
2
[
T†

lCTl

]
j,j

, 1 ≤ i ≤ Nr. (49)

Similarly, the parameterized one-sided correlation matrices of Hc, are defined as

τ(E) = E[H̃†
cEH̃c] =

1

T
VΣ(E)V†, (50)

τ̃(Ẽ) = E[H̃cẼH̃†
c] =

1

T
UΣ̃(Ẽ)U†, (51)
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where Ẽ ∈ ENt×Nt and E ∈ CNu×Nu are arbitrary Hermitian matrices. Σ(E) and Σ̃(Ẽ) are diagonal matrices

with the entries given by

[Σ(E)]i,i =

Nu∑
j=1

([M]j,i)
2 [

U†DU
]
j,j

, (52)

[
Σ̃(Ẽ)

]
i,i

=

Nt∑
j=1

([M]i,j)
2
[
V†ẼV

]
j,j

. (53)

The parameterized one-sided correlation matrices of S are

ζ(D) = E[S†DS] =
1

Ns
Tr(D)INs

, (54)

ζ̃(D̃) = E[SD̃S†] =
1

Ns
Tr(D̃)IM , (55)

where D̃∈CNs×Ns and D∈CM×M are any Hermitian matrices.

APPENDIX B

PROOF OF PROPOSITION 1

To prove the Proposition 2, we need to prove that (10) holds with the VB1(z) given in (44). The partial derivative

of VB(z) with respect to z is given by

d

dz
VB1(z) =

1

LNr

d

dz
log det

(
Ψ̃

−z

)
+

1

LNr

d

dz
log det

(
Ψ−G

†
Ψ̃−1G

† − Φ̃−1
)
+

1

LNr

d

dz
log det

(
Φ̃
)
,

+
1

LNr

d

dz
Tr
(
GC̃

(
−zILNr − Ψ̃

))
+

1

LNr

d

dz
Tr
(
GD̃ζ

)
+

1

LNr

d

dz
log det (Φ) , (56)

where notation (−z) are omitted for convenience. For a matrix function K(z), the following equations hold:

d

dz
log detK(z) = Tr

(
K(z)−1 dK(z)

dz

)
, (57)

Tr

(
dK(z)−1

dz

)
= −Tr

(
K(z)−1 dK(z)

dz
K(z)−1

)
. (58)

According to [14, Lemma1], the following equations hold:

Tr(A1ηl(A2)) = Tr(A2η̃l(A1)), 1 ≤ l ≤ L, (59)

Tr(B1ζ(B2)) = Tr(B2ζ̃(B1)). (60)

Then we will simplify the terms on the right-hand side of equation (56) based on (57),(58),(59) and (60).

For the first term of (56), we can obtain

d

dz
log det

(
Ψ̃

−z

)
= Tr

( Ψ̃

−z

)−1 d
(

Ψ̃
−z

)
dz

 = Tr

(
−1

z
I+ Ψ̃−1 dΨ̃

dz

)
= −LNr

z
+Tr

(
Ψ̃−1 dΨ̃

dz

)
. (61)
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For the second term , the third term and the last term in (56), we can get

d

dz
log det

(
−Φ̃−1 +∆

)
= Tr

(−Φ̃−1 +∆
)−1 d

(
−Φ̃−1 +∆

)
dz

 , (62)

d

dz
log det

(
Φ̃
)
= Tr

(
Φ̃−1 dΦ̃

dz

)
, (63)

d

dz
log det (Φ) = Tr

(
Φ−1 dΦ

dz

)
, (64)

where ∆ is denoted as ∆ = Ψ−G
†
Ψ̃−1G

†
. Therefore GC and GD can be expressed as

GC=
(
∆− Φ̃−1

)−1

, (65)

GD =
(
Φ̃(z)−∆−1

)−1

. (66)

By applying (59), (60) and the Woodbury identity, the forth and the fifth term can be expressed as

d

dz
Tr
(
GC̃

(
−zILNr − Ψ̃

))
= Tr

GC̃

d
(
−zILNr − Ψ̃

)
dz

+Tr

(
diag{η̃1 (GC) , ..., η̃L (GC)}

dGC̃

dz

)

= Tr

GC̃

d
(
−zILNr − Ψ̃

)
dz

+Tr

GC

d

(
L∑

l=1

ηl

(
GC̃l

))
dz


= −Tr

(
GC̃

)
− Tr

(
GC̃

dΨ̃

dz

)
− Tr

(
GC

dΨ

dz

)

= −Tr
(
GC̃

)
− Tr

((
Ψ̃(z)−1 + Ψ̃(z)−1GGCG

†
Ψ̃(z)−1

) dΨ̃

dz

)
− Tr

(
GC

dΨ

dz

)

= −Tr
(
GC̃

)
− Tr

(
Ψ̃−1 dΨ̃

dz

)
+Tr

GC

d
(
G

†
Ψ̃G

)
dz

− Tr

(
GC

dΨ

dz

)
, (67)

dTr
(
GD̃ζ

)
dz

= Tr

(
GD̃

dζ

dz

)
+Tr

(
ζ
dGD̃

dz

)
= Tr

(
GD̃

d (I−Φ)

dz

)
+Tr

(
GD

dζ̃

dz

)

= −Tr

(
GD̃

dΦ

dz

)
− Tr

(
GD

dΦ̃

dz

)

= −Tr

(
Φ−1 dΦ

dz

)
− Tr

(
GD

dΦ̃

dz

)
. (68)
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Similarly, we can get the following equations

Tr
((

∆− Φ̃−1
)−1 d (−∆)

dz

)

= Tr

(∆− Φ̃−1
)−1 d

(
G

†
Ψ̃G−Ψ

)
dz


= Tr

GC

d
(
G

†
Ψ̃G

)
dz

− Tr
(
GC

dΨ

dz

)
− Tr

(
GD

dΦ̃

dz

)
+ Tr

((
Φ̃−∆−1

)−1 dΦ̃

dz

)
, (69)

Tr

((
Φ̃−∆−1

)−1 dΦ̃

dz

)

= Tr

(
Φ̃−1 dΦ̃

dz

)
− Tr

((
∆− Φ̃−1

)−1 dΦ̃−1

dz

)
. (70)

Then (62) can be expressed as

d

dz
log det

(
−Φ̃−1 +∆

)
= −Tr

((
∆− Φ̃−1

)−1 d (−∆)

dz

)
− Tr

((
∆− Φ̃−1

)−1 dΦ̃−1

dz

)
,

= −Tr

GC

(
G

†
Ψ̃G

)
dz

+ Tr
(
GC

dΨ

dz

)
+ Tr

(
GD

dΦ̃

dz

)
− Tr

(
Φ̃−1 dΦ̃

dz

)
. (71)

Combining (61),(63),(64),(67),(68),(71), we have

d

dz
VB1

(z) = −1

z
− 1

LNr
Tr
(
GC̃

)
= −1

z
− GB1

(−z), (72)

and the proof of Proposition 2 is completed.
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