
Draft version November 21, 2024
Typeset using LATEX twocolumn style in AASTeX631

Database Design for SpExoDisks: A Database & Web Portal for Spectra of Exoplanet-Forming Disks

Caleb H. Wheeler III,1 Natalie R. Hinkel,2 and Andrea Banzatti3

1LIGO Livingston Observatory, Livingston, LA 70754, USA
2Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Baton Rouge, LA 70803, USA

3Department of Physics, Texas State University, 749 N Comanche Street, San Marcos, TX 78666, USA

ABSTRACT

Data access – or the availability of new and archival data for use by the larger community – is key

for scientific advancement. How data is presented, searched, and formatted determines accessibility

and it can be difficult to find a solution that fits the needs of a given subdiscipline. We present a

generalized roadmap for developing a specialty astronomy database with web application based on

the development of the SpExoDisks (Spectra of Exoplanet forming Disks) database (spexodisks.com),

which provides infrared spectra of protoplanetary disks. Expertise in an astronomy subdiscipline can

provide two necessary components for creating a database: access to a large volume of specialized

data and knowledge of how that data should be presented to the community. However, there are

a variety of steps and decisions for database development that can fall outside astronomy expertise.

Here we offer generalized discussions on design and process that are accompanied by real-world ex-

amples from the SpExoDisks developer team and website. Starting from the database portal design

and data organization, we demonstrate on-demand data distribution and query using publicly acces-

sible database software. These systems support interactive visualizations such that users can explore

spectra directly from their browsers. We also offer details that show how the technical concepts in

SpExoDisks are implemented, particularly emphasizing sustainability and long-term management of

the codebase and processes. Finally, we illustrate the utility that a specialty website can offer to the

community by providing a specific example of how the combined spectra from SpExoDisks can enhance

our understanding of protoplanetary disks.

Keywords: Astronomy databases(83), Astronomy web services(1856), Protoplanetary disks(1300),

Computational astronomy(293), Computational methods(1965), Exoplanets(498)

1. INTRODUCTION

We present the Spectra for Exoplanet-Forming

Disks, or SpExoDisks, database portal, which hosts

spectra and purpose-built tools to serve the needs of a

specific science community interested in infrared spectra

of protoplanetary disks, especially those with exoplan-

ets (spexodisks.com). The SpExoDisks database1 portal

enables users to view and sort data in an online browser

application as well as download specific data. The code-

base that comprises SpExoDisks is designed to grow and

change in lockstep with the science it supports.

Corresponding author: Caleb H. Wheeler III

chw3k5@gmail.com

1 To disambiguate the uses of the word “database”, a qualifier,
such as portal, software, or table will always accompany it.

In general, the amount and complexity of science data

continues to increase. Libraries of existing data can be-

come less accessible or inaccessible over time as tech-

nologies become incompatible. Fortunately, there are a

few large, excellent science database portals (websites).

For example, SIMBAD (Wenger et al. 2000), Gaia (??),

TIC (Stassun et al. 2019), and HITRAN (Gordon et al.

2022) provide data and help drive discovery through big

science. In addition, these large database portals cre-

ate an ecosystem that allows SpExoDisks to be updated

dynamically: as we receive new spectra from scientific

observations, we query other databases portals to asso-

ciate new data with existing data and provide a context

for scientific qualification. Small database portals like

SpExoDisks enable astronomers to sort through the in-

creasing deluge of available data and provide a place for

the future generations of scientists to learn.

ar
X

iv
:2

41
1.

13
30

8v
1

 [
as

tr
o-

ph
.I

M
]

 2
0

N
ov

 2
02

4

http://orcid.org/0000-0001-5563-6987
http://orcid.org/0000-0003-0595-5132
http://orcid.org/0000-0003-4335-0900
spexodisks.com
spexodisks.com
mailto: chw3k5@gmail.com

2 Wheeler, Hinkel, & Banzatti

The processes used by SpExoDisks and discussed in

the present work are a direct evolution of the Hypa-

tia Catalog (hypatiacatalog.com), the largest astronomy

database of elemental abundances within stars near to

the Sun (or within 500pc, Hinkel et al. 2014). The two

databases have been developed in an alternating series

with one another: beginning with Hypatia, then ex-

panding and improving that framework to create SpEx-

oDisks, which fed back into new innovations for an up-

dated Hypatia Catalog. Like SpExoDisks, the Hypa-

tia Catalog is a database that unites different sources

to serve a specific community. Both are designed to

respond and change with audiences and communities,

even though the audiences for stellar chemical trends

and infrared spectra for stellar disks may be different.

The present work discusses the design and intent of the

SpExoDisks online data portal. While the examples are

specific to the SpExoDisks project, we present from the

perspective of experience and determining what is use-

ful for building database portals that solve the specific

needs of a given scientific community. SpExoDisks does

not try to solve all astronomy database problems; in-

stead, it focuses on delivering spectra to be searched and

viewed before being downloaded with data-extraction

tools and documentation. This limited scope allows

SpExoDisks to be maintained and upgraded for and with

the community it serves. Database portals scoped for a

specific community can be a sustainable tool to reduce

complexity and provide data access to wider communi-

ties while contributing to an astronomy data ecosystem.

In this paper, we explain the logic and decisions that

were necessary to consider when building a niche as-

tronomy database portal, SpExoDisks, using the expe-

rience and expertise of the developer team to outline

best practices and caveats. In §2, we consider the goals

of the database portal including the primary data and

secondary contextual data, in addition to how that data

must be organized, standardized, and verified. In §3, we
go over database software in terms of query efficiency for

the developers and users, as well as API access. In §4,
we consider how to visualize the primary and secondary

data while taking into account accessibility. We also fo-

cus on how to provide data either for direct download

or through programmatic code/scripts. In §5, we give

details as to the software that was used by the SpEx-

oDisks team to securely develop the infrastructure on

a variety of computer architectures, as well as the spe-

cific setup for the data science processing pipeline and

public server configuration (see the open-source code at

https://github.com/spexod/Portal). Finally, in §6, we
provide a science application that shows the utility and

breadth of the SpExoDisks database portal and the ways

that it will help strengthen and evolve the protoplane-

tary disk community.

2. BEGINNING A DATABASE PORTAL

Designing a database portal of any type requires mak-

ing hundreds of design choices. Designing or building

processes that may be useful in the future or are too

abstract can drastically limit progress. For this reason,

we recommend starting by defining your project’s goals

(§2.1). These goals will help determine the project’s

scope, establishing which tasks are relevant to the

project while also considering what the project can ac-

complish in one, three, or ten years. Core goals, or the

minimum requirements for success, can be prioritized

over reach goals, such as ancillary features and/or long-

term upgrades.

Next, the specific data needs to be designed to serve

the project’s defined goals. The data will include the

primary, core information within the database portal,

e.g. IR spectra for SpExoDisks or elemental abundances

for Hypatia Catalog, but it may also include secondary

data that provides context and supports the exploration

of the primary data (§2.2). For a given database soft-

ware (i.e. specialized software for data handling and

query), it’s important to design tables or other data-

viewing objects that support the project goals regarding

values, references, and other data types (§2.3). This can
also include the data relationships across tables with the

database software.

Once the project’s data structure is organized, the

next step is to consider what processes and calculations

will be needed to go from the raw input data’s format

to the structure required to support the project (§2.4).
We refer to it as a data processing pipeline and this

stage can be a substantial fraction of the project’s ef-

fort. However, if we can track pipeline processes to core

project goals, judicious trades can be made regarding

spending time and other resources for developing new

pipeline processes.

2.1. Database Portal Goals

A common goal when developing a database portal is

to create one that is easy to understand, fast, and avail-

able. However, accomplishing all three can be difficult

because scientific data is often incomplete and irregular.

For example, a star may have many or no values avail-

able for its effective temperature. Scientific database

portals must also do more than report mean values; for

each value, they must include references to literature,

observational source materials, and they additionally re-

quire reported units and errors.

How data will be accessed (or used) informs the

project’s data structure. That is why this is the first

hypatiacatalog.com
https://github.com/spexod/Portal

Dynamic Small Database Design for SpExoDisks 3

question that the SpExoDisks team had to address be-

fore developing a database portal. Our main goal is to

deliver per-observation spectra that could be viewed and

downloaded while also allowing the spectra to be nav-

igated using per-object data like multiple star names

or measured values. Our project’s primary data type,

observed spectra, is supported by context from other

secondary data types.

Let us consider the way that the SpExoDisks project

supports the main goal. Our portal’s primary data prod-

uct is spectra, each stored in the database software as

a table with wavelength, flux, and flux error columns.

Visual inspection of the spectra from an expert is funda-

mental to ensure the data is scientifically valid. There-

fore, the processing software that stores the spectra also

includes a plotting tool with molecular lines and other

significant context for association and debugging.

An example of how we support our secondary goals

can be seen in how we give our users the ability to ex-

plore trends. This forward-looking process considers the

database portal as a whole and not a collection of in-

dividual spectra. Some metadata is per spectra, like

science analysis that provides values of flux calculated

for specific spectral lines, the quantum states of molec-

ular lines, or simply the time of observation. Some data

is per star (each star can have one or many spectra in

SpExoDisks), such as the star’s distance, effective tem-

perature, or its right ascension and declination coordi-

nates. The secondary data is crucial to providing ad-

ditional resources that can help the users answer key

science questions quickly and efficiently.

2.2. Automated Data Contextualization

Hosting a collection of observations is relatively sim-

ple; in about a day, a website could be launched on a

cloud service to serve data files and their directories.

However, a database portal can be more than a collec-

tion of individual observations. It can also provide the

necessary and diverse contexts that allow users to search

and retrieve data and, perhaps more importantly, see

what is missing from an existing dataset. The context

requirements for data depend on the type of questions

users will choose; what questions does the database por-

tal hope to answer? Automatically creating data associ-

ations and acquiring additional context within the data

processing pipeline is paramount for the long-term via-

bility and continuity of a database portal.

In astronomy, we are fortunate to have many large

database portals that can help us give context to other

astronomy data. Three database portals are specifically

used for contextualizing spectra for the SpExoDisks

project: SIMBAD, Gaia, the Tess Input Catalog (TIC).

These database portals provide an Application Program

Interface (API) that allows users to automate data query

and retrieval. In particular, the SIMBAD database’s

API is a primary tool used to link two observations of

the same object that are identified by different names

(see the star name problem discussed in Appendix A).

The SIMBAD, Gaia, and TIC database portals also pro-

vide information like right ascension/declination, dis-

tance, and effective stellar temperature.

Automatic data contextualization is a major strength

of SpExoDisks; it allows us to take raw spectra and de-

liver them to our data portal in a fast process that lasts

less than 24 hours for users to view and download imme-

diately. The SpExoDisks data processing pipeline self-

contextualizes using only the star names and parameter

data provided in the original file from the observation.

The automatic data contextualization process is a facet

of our data curation; the data processing pipeline raises

exceptions where the process exits unsuccessfully when

minimum criteria are unmet. We found that raising er-

rors that must be fixed forces our team to address those

issues or remove the data from processing before it is up-

loaded to the public website. This is one of the ways our

data meets minimum curation standards for uniformity

(the curation process is discussed in §2.4).
In addition, the SpExoDisks data processing pipeline

saves data from other database portals locally, so the

local data is first checked before querying external

database portals. There are several reasons to take this

approach, but most importantly, it is about not overus-

ing the community’s database portal resources. Namely,

it is not necessary to use database portal resources to

ask the same questions for all stars in SpExoDisks hun-

dreds of times only to get the same answers. Another

practical reason to save data locally, is speed; even the

fastest databases, like Gaia, are still many times slower

than simply ready a locally available file or an exist-

ing table database software. Deleting all existing stellar

names and reference data in the data processing pipeline

automatically triggers the pipeline to remake new refer-

ence files. However, this process can take several hours

for SIMBAD.

However, the drawback to using local data is staleness.

Astronomical knowledge can undergo rapid changes;

stellar parameters are continually being updated as im-

proved pipelines and new measurements are available.

A named identifier given to what appeared to be a sin-

gle star may later be updated after being reclassified as

a multi-star system. To avoid staleness, the local data

used by the SpExoDisks database portal must be deleted

to trigger a fresh download of the latest information. For

SpExoDisks, this is done once a year in January.

4 Wheeler, Hinkel, & Banzatti

The tools that both SpExoDisks and Hypatia Cat-

alog (Hinkel et al. 2014) use for data discovery and

caching – specifically from the SIMBAD2, Gaia3, TIC4,

and the NASA Exoplanet Archive5 – are freely avail-

able for download and collaboration as the Python pack-

age autostar6 or installed via pypi.org: pip install

autostar. This repository lacks documentation and

tools to make it user-friendly. However, it does inte-

grate astropy (Astropy Collaboration et al. 2022) queries

with simple databases made of human-readable CSV

and PSV files. With more users/collaborators and/or

with grants from new databases, we are open to improv-

ing this code or adapting the idea to new applications.

2.3. Data Organization

The next step of database portal design is identifying

how to sort and contextualize your main, primary data

(as opposed to the secondary contextual data). Since

spectra are the primary data in SpExoDisks, we could

have started by simply sorting all the input file paths

in alphabetical order and giving them a unique iden-

tifier index (a counter assigned based on the filename

order). However, because of inconsistencies with the file

names across all spectra, we wanted a spectrum ID that

included the observed star’s name and other identify-

ing information so spectrum data could be understood

without opening the file. The fundamental unique key

of the SpExoDisks database portal is the spectrum ID,

but it depends first on another crucial key, the star ID,

a unique string that maps to a single stellar system.

Unfortunately, the same star can be known by many

names across catalogs of stellar names, datasets, and

surveys. Correctly linking names from major stellar cat-

alogs for the SpExoDisks dataset was a critical data sci-

ence problem since we have diverse input names formats

from eight instruments so far. When the SpExoDisks

data processing pipeline encounters a spectrum with an

unknown stellar name, a data collection process is trig-

gered to determine if this object has a known star name

within SpExoDisks or if a new star name entry is re-

quired (more on this process in §5.2). In the case of a

new name entry, additional data retrieval is triggered to

determine the available stellar names. Each new spec-

trum encountered by the data processing pipeline joins

or creates a parent single-star data object. We also chose

2 https://simbad.u-strasbg.fr/simbad/sim-fid
3 https://gea.esac.esa.int/archive/
4 https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.
html

5 https://exoplanetarchive.ipac.caltech.edu/
6 https://github.com/chw3k5/autostar

to make separate single-star objects for multi-star sys-

tems, compared to those designed for individual mea-

surements of the constituent stars. For a more lengthy

discussion of the star name problem, see Appendix A;

for now, we suppose spectrum and all metadata can be

associated with a unique name for a star or stellar sys-

tem, called a star ID. Within SpExoDisks, we require

each spectrum to have a star or stellar system name,

a scientific reference, and an observation date (see top

right of Fig. 1). Once all data is associated with a star

or spectrum, pipeline tools perform further processing

for all contextual data associated with a single star, all

data for a single spectra, and the whole of all available

data.

Each spectrum in SpExoDisks requires a unique iden-

tifier for the data processing pipeline. We chose

to make an identifier that would be helpful to read

and sort in a direct structure. We combined the

observing instrument name, the wavelength range

(in nanometers rounded to whole integers), and the

star’s name to create the spectrum ID, for example

“crires 2338nm 2396nm IRAS 10418minus5931”. How-

ever, this spectrum ID configuration does not guaran-

tee a unique name or a name that is persistent with

configuration changes in the processing pipeline. We

resolved the issue by creating a spectrum ID registra-

tion system within the persistent MySQL7 online stor-

age (see §5.3) where a given spectrum ID is registered

to an input filename and is never allowed to be asso-

ciated with any other file. A simpler process might

have included the observation time in the spectrum han-

dle or other information that enforced uniqueness with-

out requiring registrations. One visible application of

the spectrum ID is in the URL for a given spectrum

in the SpExoDisks data portal, per the same example

as before: spexodisks.com/ExploreData/crires 2338nm

2396nm IRAS 10418minus5931. Note that these han-

dles have star names that replace special characters to

meet the standards for URL patterns, as discussed in

the last paragraph of Appendix A.

2.4. Data Standardization and Verification

Most of §2.3 focused on assembling data from many

parts in preparation for data collation within the pro-

cessing pipeline. With all the raw data products gath-

ered and linked, we next need to standardize the data

and export it to the MySQL database software for use

by a larger audience (see Fig. 1). The database portal

7 MySQL (mysql.com) is an open-source database management
software that allows data to be filtered, organized, and accessed
across tables.

https://simbad.u-strasbg.fr/simbad/sim-fid
https://gea.esac.esa.int/archive/
https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
https://exoplanetarchive.ipac.caltech.edu/
https://github.com/chw3k5/autostar
spexodisks.com/ExploreData/crires_2338nm_2396nm_IRAS_10418minus5931
spexodisks.com/ExploreData/crires_2338nm_2396nm_IRAS_10418minus5931
mysql.com

Dynamic Small Database Design for SpExoDisks 5

 MySQL Database Tables

Data Import Tables
Input Spectra Data

Filename Text

Star Name Text

Observation Time Date

Input Star Data

Star Name Text

Data Type Text

Data Value Number

Data Error Number

Data Reference Text

Data Units Text

Data Type Long Name Text

Spectra

Key Spectrum ID Text

Stars Key Star ID Text

Observation Time Date

Curated Stars

Key Star ID Text

Data ID 1 Value Number

Data ID 1 Error Number

Data ID 1 Reference Text

Data ID 2 Value Number

Data ID 2 Error Number

Data ID 2 Reference Text

Data Types

Key Data ID Text

Units Text

Long Name Text

Many-to-Many

One-to-Many

Data Organization &
Validation

1. Find Star ID from Star Name

2. Verify Units

3. Verify Value Types

4. Verify Long Names

Figure 1. A schematic of the data organization and validation process for the SpExoDisks database portal. Before being
imported, stellar and spectral data are stored in tables (shown with white text on a red background), where the data’s column
name and type are listed. Before read-in, tables have no enforced rules or known relationships between them. Data validation (top
right, numbered steps) makes associations between data components by linking name data to standardized keys and enforcing
rules important for scientific validity. After validation, new tables are created in the MySQL database software (shown with
black text on a green background) with linking relationships via key values. The tables created in the MySQL database software
have known rules enforced. This provides consistent ordering and naming within each table and creates links between tables
with known one-to-many and many-to-many relationships, as illustrated with the crow’s feet notation arrows. The notation of
Key indicates that the column will contain unique key values to identify and link a given data record. In the “Spectra” table,
the Stars Key indicates that the Star ID column contains non-unique values that link to records in the “Curated Stars” table.

can be considered a subset of the available data in the

data processing pipeline. In contrast, the data process-

ing pipeline can contain more data types than what is

subsequently viewable from the online database portal.

A database portal can limit the data provided to the

user so that most data types and fields are complete.

Allowing many special data types (e.g., data provided

in erg vs Joule or µm vs nm vs Å) will increase code

complexity, making the database portal less manageable

since the effort needed to collect, compare, and update

the constituent data components will only increase over

time. These are very tempting pitfalls for scientists who

want to do the best job possible by delivering all pos-

sible data. Unfortunately, there is no way to provide

everything that all users will ever need. We recommend

a consistent method of delivering the data that will al-

low users to make the necessary modifications for their

science within their own processes.

A database portal can provide the main results

quickly, including measured values, units, errors, and

references (“Data Import Tables” in Fig. 1) that en-

able users to go directly to scientific papers to find ad-

6 Wheeler, Hinkel, & Banzatti

ditional results, special contexts, and caveats. In the

SpExoDisks database portal, all data has custom data

objects that contain this information (see Appendix B).

We have chosen to support different upper and lower er-

ror values for stellar parameters. To make the shape of

the public database uniform, we convert all stellar pa-

rameters with single plus/minus error values to upper

and lower values.

In the SpExoDisks database portal, we enforce strict

unit controls. Only one unit type is allowed for a given

data type. Data types and units are specified in a config-

urable file that is also used to determine 1) if data values

should be exported from the pipeline to the database

software, 2) the short name of the data type when dis-

played on the website, and 3) the long name of the data

that is shown within plots. Converting all data to have

the same units makes the database portal searchable and

comparable for parameter values (see §3.1). For exam-

ple, we can quickly sort data by any stellar parameter or

report spectra in order of minimum wavelength values

in a single step since all values for minimum wavelength

are first converted to micrometers.

While the dataset available to the data processing

pipeline is abstractly shaped (like a tree with many

different branches and leaves) in the same way as the

dataset accessible from the MySQL database software,

the pipeline does not contain repeated data values (only

repeated references to a single value), while the database

portal stores some repeated values. This is a purposeful

choice from the paradigm where data storage is cheap

while CPU and human-developer time are more expen-

sive. For example, we do not ask the public database

portal to do calculations to determine if the provided

error represents upper and lower values by checking

whether those values are reported separately. Instead,

we have one column for upper error and one column

for lower error. Stellar object data is stored in a table

with one star per row with a unique star ID, and spec-

tra metadata is stored in a table with one spectrum per

row with a unique spectrum ID. Spectra and stellar data

are stored separately so as not to make one very large

table with stellar data repeated for any number of as-

sociated spectra (e.g., multiple spectra observations of

the same star). To combine or join (a term borrowed

from the MySQL database software) these tables, we

associate the star ID for each spectrum with a row in

the stellar parameters table, as illustrated by the crow’s

feet notation arrows in the “MySQL Database Tables”

in Fig. 1. While it will be discussed in more detail in

§5, it should be noted that other database software ar-

chitectures do not require casting data into tables and

instead allows a more flexible structure like MongoDB’s

document-oriented model.8 In this model, documents

are any number of string fields paired with values. Val-

ues include single types like strings, numbers, and dates,

but additionally allow arrays of values and further levels

for field-value objects. This allows the single document

to directly contain the one-to-many relationships that

might require multiple or repetitive tables in SQL ta-

bles. Like the SQL model of a table where each row is

identifiable with a key, MongoDB’s document-oriented

model uses collections of documents where each has an

identification key. However, the documents can store

data in more flexible formats than the comparable SQL

rows.

Finally, the database portal should be conformal,

meaning there is a single mapping for any incarnation of

the raw data + data processing pipeline to the database

portal (“MySQL Database Tables” in Fig. 1). As an

example, consider the stellar parameter of distance to a

star. In the data processing pipeline, we often collect

many values for stellar distance (e.g., from Hipparcos,

Gaia DR1/DR2/DR3, TIC, SIMBAD, etc.) for every

star, creating an additional dimension of data to be cu-

rated. However, we simplify this wealth of data for the

database portal and only report a single value to make

the data easily searchable and streamline the user ex-

perience. To make the upload of data values conformal

for stellar distance, we select the reported values using

a ranked list of references in order of preference for a

given data type. For example, we prefer Gaia DR3 to

Gaia DR2 distance values. This is a critical curation

step that should be performed by the principal scientist

on a given project.

Another important step to making a database por-

tal conformal is to ensure the tables are presented in

an intentional and reproducible order. For example,

the spectrograph metadata table within the SpExoDisks

database portal provides summary information about

each spectrograph with at least one observed spectrum

in the database portal. The order of the entries within

this table sets the order of spectrograph summary data

on the SpExoDisks homepage as well as the order in

which instrument data columns are displayed on the

“Explore Data” page. Without conformal ordering,

these data components would move around each time

data was updated or require additional sorting and/or

control code in the web portal’s codebase. From the

beginning of the SpExoDisks project, it was determined

that all data processes and ordering should be controlled

8 www.mongodb.com/

www.mongodb.com/

Dynamic Small Database Design for SpExoDisks 7

from the data processing pipeline to reduce the scope of

knowledge needed to change the data.

Creating a database portal requires many decisions:

Where will the data come from? How will it be main-

tained and updated? How will multidimensional data

be reduced and a single value displayed? Because all of

these decisions must be in support of the project’s goals,

it is important that they be supported by scientific jus-

tification to ensure consistency within the database por-

tal as it continues to grow and develop. While this may

seem obvious for some decisions (e.g., to prefer Gaia

DR3 stellar distances to Gaia DR2 because they are the

most up-to-date), it may not be the case for all (e.g.,

which star names to display as default). It is also im-

perative that these decisions be made evident to the

user so that they understand the origin of the data they

are using and can make informed choices regarding their

science application.

3. DATABASE SOFTWARE

The previous section discussed the data pipeline pro-

cesses that deliver data and analysis in alignment with

the goals of the database portal. We will continue the

discussion as to what can be expected from the exist-

ing ecosystem of database software tools and techniques.

Our aim is to host our finished database software in a

system that is easy to understand, fast, and available

online. While flexible Python database software may be

ideal for research in a scientific group, we must also con-

sider how this data will be accessed on a website. For a

deployed database portal, we want something that can

run on a database server (not only on personal comput-

ers), has sufficient access controls, and has been designed

for remote deployment. In this case, a team might con-

sider many popular database software like MongoDB,

MySQL, PostgreSQL9, Oracle Live SQL10, or SQLite11.

For the SpExoDisks project, we chose MySQL: a pop-

ular database software with a large community, a re-

liable history, great documentation, integration with

Python, and a GUI application useful for navigating

data to and issuing rare commands. We have been

pleased with the way that MySQL hosts our primary

spectrum data as well as the metadata that gives it con-

text. Since we always return the full spectrum data,

never a subsection, we could do well with a system that

treats the spectrum as a file that is unpacked when re-

ceived by the web portal codebase. However, if instead

we were interested in retrieving a slice of the spectrum

9 www.postgresql.org/
10 www.oracle.com/database/technologies/oracle-live-sql/
11 www.sqlite.org/

in wavelength, MySQL has excellent tooling for doing

this efficiently. On the other hand, it seems there could

be a better choice for hosting spectra from the perspec-

tive of upload time. Each spectrum is represented as a

single table with three columns: wavelength, flux, and

flux error. However, having the spectra accessible in a

database software like MySQL allows us to do computa-

tionally efficient operations across many columns (i.e.,

of flux). Computationally intensive machine learning or

modeling applications could be optimized for column-

wise calculations directly in the database software, but

triggered from a request from a Python API (see 3.2).

3.1. Query Efficiency in Database Software

The organization of data within a given database soft-

ware must consider how the data will be accessed most

of the time. If a dataset is small and infrequently ac-

cessed, loading data directly from a CSV file in the final

product may not significantly affect speed or user ex-

perience (users only see a presentation of the data, not

the retrieval process). However, it is often worth con-

sidering how users will access data and then reduce the

computations needed to get their requested data. Large,

infrequently accessed database portals might decide to

optimize for compactness. Many database portals will

need substantial filtering to get users their requested

information; such database portals can consider an op-

timization that includes indexing data values for faster

comparison and data return. In addition, database por-

tals may be supported by teams that expect to view

and/or compose data in a specific format. In this case,

the most sustainable database software for a project may

be one optimized for understanding and readability.

Early in the development of the SpExoDisks database

portal, we used a relational database design to put the

data in the third normal form (3NF). In 3NF, each ta-

ble in the MySQL database software can uniquely iden-

tify each row with a key such that all data values for

that row depend only on the key. This technique de-

fines tree/branch relations when one table’s keys link

into another table’s column names/values. For exam-

ple, consider a database table that stores stellar param-

eter information. Suppose the first column is a unique

key, star id, while the second and third column stores

the values of specific parameter types (for example, ef-

fective temperature and distance, respectively) denoted

by the column name, param type1 and param type2,

respectively. A less compact table might have addi-

tional columns for the units of the parameters, e.g.,

units param type1 and units param type2, where each

value in the column is the same for all rows (i.e. list-

ing ‘K’ in reference to all values of stellar effective tem-

www.postgresql.org/
www.oracle.com/database/technologies/oracle-live-sql/
www.sqlite.org/

8 Wheeler, Hinkel, & Banzatti

perature and ‘pc’ to all values of distance). The 3NF

version of this data would be split into two tables: one

with columns of star id, param type1, and param type2 ;

the other table with columns of param type and units

where each parameter (e.g., effective temperature and

distance) in a row is a key linking to a single value in

the units column (such as ‘K’ and ‘pc’), as illustrated by

the crow’s feet notation arrows in the “MySQL Database

Tables” in Fig. 1. In this example, the second table only

has two rows, but more rows can be added for each ad-

ditional parameter column that is included in the table

with star id as the key. In this way, no information is

repeated, but there is enough information to link the ta-

bles together and recreate the original bulky, combined

table.

The SQL syntax has been constructed such that com-

bining data tables always occurs efficiently. On the other

hand, Python database software, such as pandas12,

takes a different approach by providing more flexibility

in ways to access data. For data operations, developers

must learn to select between tools for inefficient queries

(loops of many single queries to make an array) and

more effective tools for array-based operations. Con-

sequentially, the SpExoDisks team found that learning

the SQL approach helped clarify how to write efficient

pandas data pipeline processes.

The SpExoDisks database portal contains 3NF data

with per star data and per spectrum data separated

into different tables to be joined later, as discussed in

§2.4. SQL tables in the 3NF form are compact because

they only store data values in a single place, which can

be especially important for storing large datasets. We

compact SpExoDisks data to the 3NF at points in the

data processing pipeline even when we plan to provide

the data in a less compact form. This is because placing

data in the 3NF makes it simple to check for consistency,

minor typos, and other errors in star names and units

(§2.4).
However, 3NF tables are not optimal from the per-

spective of computation efficiency. Doing many re-

peated (possibly nested) table-combining operations to

construct a desired format can take a long time and

confuse database portal users and developers. When

database portals are not limited by data storage size,

developers should consider a data architecture that re-

quires less computation effort and will therefore return

results faster. When fulfilling a user query, developers

should also consider if filtering or reducing the returned

values can be performed before table-joining computa-

12 pandas.pydata.org/

tions to minimize the computations required. The SpEx-

oDisks project uses a mixed approach for query effi-

ciency and human readability. Some information that

is periodically repeated, like a reference for a value’s

origin (e.g., a reference to Gaia DR3 for a stellar dis-

tance value) is allowed to be repeated in a per star table.

However, some data in individual tables – for example,

separate tables tracking per parameter, per instrument,

and whole database statistics – significantly reduces re-

peated values in the more considerable per star and per

spectrum tables. As a result, the database portal’s API

can directly distribute all the data on the website since

the data has already been shaped for easy ingestion by

those website components, such as the navigation table

and spectrum plot in SpExoDisks.

The SpExoDisks database software only uses a single

way of arranging data values, what we call a single data

structure. However, some use cases may call for multiple

data structures, with each structure being an indepen-

dent representation of all the available data. This can be

useful for minimizing filtering computations to provide

faster access to specific views or cuts of the data. We can

imagine a hypothetical use of the SpExoDisks database

portal as an input for modeling the dusty disks of stars,

grouped by disk inclination angle. With the existing

SpExoDisks data portal, we can return the disk incli-

nation grouping using filtering computations for face-

on, edge-on, and other inclination angles. In this case,

we could also pre-filter the data into three similar data

structures during the data science pipeline where filter-

ing by disk inclination is done by pointing the API to

the correct tables, rather than comparing many values

in the database software. Any number of data struc-

tures can be uploaded from the same data processing

pipeline.

3.2. API Access to Database Software

The primary function of the SpExoDisks database

portal’s API is to provide direct, on-demand access to

SpExoDisks dataset. An API can be considered as a

processing step between user input and database soft-

ware. The database portal’s frontend (defined as what

a user sees and interacts with on their browser) does not

use hard-coded data: what is displayed is dynamically

determined from the data available on the API. The

frontend contrasts with the backend database portal ser-

vices, such as the API and database software, which are

not primarily designed for human interaction.

Some website-building frameworks allow data to be

transferred directly (and securely) to the frontend from

a credentialed (i.e., password protected) database soft-

ware. However, the SpExoDisks project splits the API

pandas.pydata.org/

Dynamic Small Database Design for SpExoDisks 9

into an independent service from the frontend, view-

able at spexodisks.com/api. This breakpoint provides

an opportunity to showcase available API data views

as specific URL links on a static page. As a result,

our frontend developers and users can visualize the live

database portal’s API from their browsers. The data

provided by the SpExoDisks database portal’s API is

viewable in a compact format (such that there are no

extra white spaces or new line characters) which can

be beneficial for automated access from other websites

and data pipelines. However, viewing the data across

multiple lines and varying intention levels is helpful for

human readers to see the data structure – which is why

the SpExoDisks API provides both data views.

The API can also process data from the frontend users

and send it to the database software. Take, for example,

the need to store usernames and encrypted passwords –

which is required for data download in SpExoDisks – in a

MySQL database table. The API receives data when the

frontend user submits a form and then processes that in-

put into a format suitable for storage in the SpExoDisks

MySQL database software. An overview of this process

is also discussed in §5.3 in the context of interactions

between the services of the database portal.

The SpExoDisks team believes that astronomy data

should be accessible to all. This means making our

data available and viewable from web browsers and giv-

ing data context so that it can be easy to understand

and interpret. While many programming language can

read the JSON13 data (often as key:value pairs, sim-

ilar to a Python dictionary) from our API, we also

provide a community tool for API access in Python

(https://github.com/spexod/spexod), installable with

Python’s pip function. Support for data science and

machine learning is part of our database portal’s API

design. In other words, the SpExoDisk server is inher-

ently set up to perform computationally inexpensive op-

erations that support machine learning questions (e.g.,

developers writing custom computations that occur di-

rectly in the MySQL database software). This design

allows on-demand queries from users to stream our data

directly from the API, making it easy to download the

entire database as needed (anonymous users may down-

load the entire database via API once a day). How-

ever, the fastest performance will always be when the

database is on the same network as the machine learning

process. Therefore, we recommend that users set up a

local copy of our database and API, allowing further cus-

tomization to their machine learning applications with-

13 www.json.org

out network latency and throttling. We look forward to

future partnerships where our data is downloaded auto-

matically for multi-wavelength analysis, machine learn-

ing, or to display our data on another website.

4. DATA INTERACTIVITY AND ACCESSIBILITY

Astronomy data can be expensive to obtain, and re-

peated observations can require extensive justifications.

As a result, the astronomy community believes observa-

tional and analysis data should (eventually) be posted to

support access by the astronomical community and gen-

eral public – where access means that the data is made

reachable or obtainable by the public. In §2 and 3, we

showed solutions for data access. And for the goals of

some database portals, it is be enough to provide access

via the API and/or to simply host files in a directory

system that are available for download.

While the SpExoDisks database portal provides data

access, our mission is also to provide an accessible

dataset to the community and public, where accessi-

ble data is simple to retrieve but is also easy for anyone

to understand. We wanted to create data visualizations

to allow our experts and novice users to interactively

examine spectra within the context of other astronomy

data without downloading, importing, and displaying

the data.

The “Explore Data” page’s spectrum plot (at the top

of Fig. 2) allows experts to immediately assess the qual-

ity of the spectrum and inspect for features, such as

molecular lines. The navigation table (the long dashed

box in Fig. 2) has a star name searching tool that

evaluates several SIMBAD star names per object, al-

lowing users to go directly to a spectrum of interest for

a given star and instrument. The row of star data shows

users what instruments and wavelength ranges are (and

are not) currently available in our dataset, provided as

columns. Each cell displays a number that indicates the

available observations and a selection menu that pro-

vides a list of those observations in order by minimum

wavelength value. Clicking on a spectrum link requests

data from the API and updates the interactive spec-

trum plot. Users can view contextualized data to bet-

ter understand what is available or what complimentary

observations might yet be needed for a specific science

case. For non-expert users on the “Explore Data” page,

we provide a help button in the window’s lower right

(see Fig. 2) and indicate that certain features of the

database portal may be interacted with by changing the

color and brightness of the text when hovered over.

Importantly, the SpExoDisks frontend developers con-

tinue to make updates for the large fraction of the world

who have visual impairments. For example, we provide

spexodisks.com/api
https://github.com/spexod/spexod
www.json.org

10 Wheeler, Hinkel, & Banzatti

Figure 2. The SpExoDisks database portal as viewed from spexodisks.com/ExploreData. Four regions have been denoted with
dashed and dotted highlights. The spectrum plot (shown in a dotted rectangular box) is an interactive plotting tool displaying
spectra and molecular lines. In the bottom half of the figure, a long-dashed box indicates the navigation table, which is used
for searching available stars and displaying associated spectra. The upper left corner has a long-dash-dotted circle showing the
toggle for the spectra download menu. In the lower right, a short-dashed circle shows the help button, which toggles a window
that explains the “Explore Data” page of the SpExoDisks database portal.

dynamic text sizing, which makes the website viewable

for mobile users, small screens, and anyone who wants

the website to display larger text sizes. Mouse-over text
is available for many visual elements within the interac-

tive plot, the navigation table, and menu buttons. We

try to provide multiple options for each action and mul-

tiple ways to display information.

Another common visual need is an accommodation for

color blindness. The SpExoDisks frontend development

team considered colors and color blindness from the be-

ginning of the project. Within the frontend’s codebase,

we defined a narrow color pallet of five colors (per the

Coolers14 application) to be used in the rest of the ap-

plication’s components. By using a limited number of

colors, we can easily ensure that each has a different hue

and brightness level, so that each color will contrast with

the others when used in any combination (tested using

14 https://coolors.co

the Sim Daltonism15 application using a monochromatic

filter and for a variety of color blindnesses). In addi-

tion, when viewing the graphed spectrum with molec-

ular lines, the molecular lines of different isotopologues

have not only varying colors, but we also changed the

line styles between isotopologues to increase communi-

cation and understandability.

With all of this in mind, we have plans for addi-

tional improvements, such as designing an efficient tab-

selection tool for the navigation table. Overall, we

are open to expanding accessibility by looking for part-

nerships and making upgrades that would improve the

SpExoDisks portal as an introductory teaching tool for

spectroscopy for the scientific community and the pub-

lic.

4.1. Data Visualization

15 https://michelf.ca/projects/sim-daltonism/

spexodisks.com/ExploreData
https://coolors.co
https://michelf.ca/projects/sim-daltonism/

Dynamic Small Database Design for SpExoDisks 11

Visualizations can be vital to understanding any data.

Visualizations for a database portal share many of the

same functionalities as figures within papers or pro-

posals: they must concisely show a specific aspect or

trend within a dataset. Science data visualization tools

must also be accurate, displayed in standard formats

and units, and referenced with literature sources. How-

ever, it was important for the goal of the SpExoDisks

project that the database portal’s spectrum plot (the

dotted box in Fig. 2) must also be dynamic such that

it will dynamically load data from the API and respond

to user interactions.

The SpExoDisks design process started by considering

different hypothetical users. When designing the “Ex-

plore Data” page’s spectrum plot for an expert user,

we wanted to present a dynamic version of a literature-

quality figure in a format that is immediately recogniz-

able and cites sources for the primary and context data.

Expert users can view and explore trends within a fa-

miliar context, allowing the data to be incorporated into

other publishable works. In addition, while sharing a

publishable visualization is enough for static data, a dy-

namic website can go further. Each spectrum in the

SpExoDisks database has an associated URL for users

to share their favorite spectra with other collaborators.

A fronted visualization system can dynamically display

different types of data or other views of a dataset, such

as zoom and panning options to show a spectrum’s de-

tails (the dotted region in Fig. 2). Toggleable molecu-

lar lines offer additional context and user customization,

viewable by clicking the “HITRAN Line Menu” button

(below the spectrum plot in Fig. 2). Users can then

export the plot via built-in tools or taking screenshots

to share the spectrum plot views. To facilitate citation

to the original data, we display a fixed literature cita-

tion visible as users zoom on different spectral regions

or when the plot is exported.

For novice users, we wanted to consider different but

compatible interactions with the “Explore Data” page.

Unlike the expert user, who may know how to get

quickly to a specific aspect of a spectrum, a novice user

may wish to have more support in learning how to ex-

plore and interpret the data. This means employing

techniques that users already expect from website appli-

cations (i.e., mouse-over text, instruction pages, tutorial

videos, help buttons, or friendly pop-up instructions) to

aid in the understanding of what the database portal

can display. However, too much information overwhelms

new users, so we strove to make our default visualiza-

tions as simple as possible. Upon seeing a graphed spec-

trum for the first time, we wanted a novice user to have

a less cluttered view of the presented data and provide

many resources to explain the information displayed.

We also tried to reduce the complexity of our interface

by decreasing the steps needed to perform any action

and by adding thoughtful defaults, such that users can

select more complex and bespoke graph visualizations as

they develop skills. In the SpExoDisks database portal,

we hide our menus by default (such as the data down-

load menu) to reduce the visual clutter and to direct

users to focus on the spectrum plot and the navigation

table (shown in Fig. 2). However, we show the down-

load menu when the page loads for the first ten seconds

to remind users we have a data download tool.

Given resources and community interest, it is pos-

sible to continue extending the SpExoDisks database

portal’s visualizations to become an online laboratory

for spectroscopy. The SpExoDisks team has considered

extending the spectrum plot to allow users to process

spectra by determining differential velocity shifts, tag-

ging molecular lines and species, and overlaying models

and other reference data. Another potential new fea-

ture could extend the plotting visualization system and

allow users to upload and inspect their spectra using our

existing tool set. And, after publication within the liter-

ature, perhaps authors and principal investigators could

upload, verify, and process spectra into our database

portal using the existing pipeline that uses the software

environment as the database portal’s API.

4.2. Displaying Contextual Data

As discussed in §2.2, data needs context – not only to

be scientifically valid but also to make the data more

useful. SpExoDisks enriches our spectral data with the

contextual information related to the observed star, such

as distance, effective temperature, or disk inclination

angle – which can be seen by adding columns to the

navigational table in the “Explore Data” page’s bottom

half in Fig. 2. This table can display and sort by all

object parameters, which is possible since we require

the parameter values to be displayed with a single unit,

e.g., K, pc, string, or no-units.

Additional contextual data that SpExoDisks provides

are molecular lines from the HITRAN database 2020

release (Gordon et al. 2022). A toolbar for toggling

lines from different isotopologues of CO and H2O al-

lows users to identify these lines quickly and easily. The

overlay of the molecular lines on the spectra conveys a

huge amount of information that is most easily under-

standable in a graphical setting. For expert users, this

may give a sense of the temperature of the gas emit-

ting the observed spectrum or explain why a part of the

spectrum is missing, in the case of H2O lines for ground-

based spectra. Because we have a rich dataset for each

12 Wheeler, Hinkel, & Banzatti

spectral line, we allow users to limit the lines displayed

based on the line’s upper and lower-level energy. All

CO and H2O lines between the spectrum’s minimum

and maximum wavelengths in the curated set are also

provided as a part of the per spectrum data download

(§4.3). We note that at this time the downloaded spec-

tral plots are 72 DPI and do not contain annotations

of the spectral lines. Future upgrades may incorporate

toggleable labeling for the molecular lines that include

flexible annotations, as well as higher resolution down-

loads (e.g., 300 DPI) suitable for publication.

Incredibly important for finding spectra from a spe-

cific object, SpExoDisks provides a comprehensive set of

star names, as discussed in §2.3 and Appendix A. The

navigation table’s name search box looks at a list of 30+

star-catalogs that are also available on SIMBAD, in-

cluding Gaia (DR1/2/3), 2MASS, Henry Draper (HD),

Tycho, Washington Double Star Catalog (WDS), and

many others. Additionally, we allow custom “common”

names (e.g., Teegarden’s Star) to be consistent with lit-

erature, popular culture, or the notation used for the

original observations. The 30+ star name catalogs also

provide a hint regarding other resources or data avail-

able for a given star. For example, Gaia DR3 names

signify available properties from that catalog’s massive

dataset, while a WDS name indicates that an observed

object has a companion or is a component of a multi-star

system.

When building the SpExoDisks database portal, we

imagined a future where our users wanted to look at

multiple spectra to make associations between multiple

objects. As a result, we have abstracted the process of

adding all our contextual data and are ready to partner

with other to add more contextual data. With the speed

at which users can stream our data, we are ready to

support future data science that want to use parts of

the SpExoDisks database portal as a sample for data

science, modeling, and/or machine learning.

4.3. Downloadable Content

It is a core goal of the SpExoDisks database portal to

provide downloadable content (e.g., spectra and contex-

tual data) to scientists. However, this was one of the

last major functionalities to be deployed as part of the

database portal. Even with the database software and

API in place, we found it more intuitive to design a par-

allel route in the data processing pipeline compared to

using the existing views. The new route created files

that can be found and downloaded based on API re-

quests. This provided more flexibility compared to the

alternative method to start from the existing API data

views to assemble data and prepare files for download.

The SpExoDisks database software only has one data

format (see §3) for each spectrum in the database por-

tal. However, we process and present our data in two

additional formats: human-readable UTF8 text files and

astronomy-standard FITs format. When a user selects

any number of spectra to download, both formats of files

are located and copied to a zip file for download. The

text and FITs formats are embedded with contextual

metadata, including many known names, stellar object

parameters, and literature references. The FITs files

also include the original FITs header, when available.

Two other files are also included with any download: 1)

a README.md file explaining the format of the FITs

files for those who are unaccustomed, and 2) a Python

file that allows you to open and parse the FITs files and

all the various types of contextual data. We included

multiple formats, instructions, and Python code to pro-

vide accessibility and empower our users to extract and

import our data.

The spectra download menu (shown in the upper left

corner of Fig. 2) in the SpExoDisks database portal

prompts users to log in and provide an email address.

This is not meant to limit data access, but rather to

provide a way for us to contact users about any major

corrections or updates to the data. We found this to be

necessary for the integrity of the data and to establish a

chain of custody for all of the data we display. While we

have yet to issue corrections to the data we provide, we

feel confident that we can alert the community we serve

to any errata or other issues, should the need arise.

4.4. Programmatic Access

Accessing our data via the terminal, within

code/scripts, or in any other kind of programmatic man-

ner is a form of accessibility. While frontend visual-

izations are helpful for understanding, assessing, and

sharing data, they are not easily automated into pro-

cessing pipelines. To be a resource for our user’s pro-

cessing pipelines and other astronomy database por-

tals, we allow full access to all available data via a

RESTful API, or REpresentational State Transfer API,

which uses standard internet protocols that simpli-

fies requests and responses. We deployed a Python

package, spexod, which is installable via pip, that

has an associated public GitHub (github.com/spexod/

spexod/) and a documentation website (spexod.github.

io/spexod/index.html) where users can see available

functions for retrieving data from the SpExoDisks API.

Users can interact with the SpExoDisks database por-

tal’s API directly from their browser at spexodisks.com/

api/, which displays the URLs to all data, including

spectra, per-object information, object name data, and

github.com/spexod/spexod/
github.com/spexod/spexod/
spexod.github.io/spexod/index.html
spexod.github.io/spexod/index.html
spexodisks.com/api/
spexodisks.com/api/

Dynamic Small Database Design for SpExoDisks 13

all the viewable data from the front-end. Adding the suf-

fix “?format=json” to any route switches the data view

from a human-readable HTML to a machine-readable

JSON; this is how all data is consumed from the fron-

tend browser application. And because the SpExoDisks

database portal supports the “GET” request method

that can be used for retrieving data from RESTful APIs,

many programs and programming languages have access

to our data. Small data objects (small enough not to

crash the browser) can also be copied and pasted from

the browser into a Python script as a dictionary object.

The SpExoDisks developers find these data views useful

as a starting point for frontend feature development as

well as another excellent break-point that allows human

inspection of the processed pipeline data.

5. TECHNICAL

One of the most significant challenges to launching the

SpExoDisks database portal was identifying the tech-

nologies and software environment scopes that were im-

portant to consider. We also researched and employed

new systems as we progressed from data science pipeline

to website development. After years of rewriting, re-

designing, and updating, we use a set of technologies

(software, programming languages, cloud hosting) and

methods (how developers interact with the project) that

are sustainable for our team. We present our technolo-

gies and methods to allow others to plan and compare

projects based on our optimization from 2020 through

2023 for a specific science application. Unavoidably,

the progress of software and process design will ren-

der this breakdown less relevant over time, but we hope

that it may still serve as a useful starting point. How-

ever, updates will be visible through our public reposi-

tory (https://github.com/spexod/Portal) which orches-

trates all services and houses the code and configura-

tions for NginX16, MySQL, API, and the data process-

ing pipeline.

Budget and time management are essential constraints

that should be considered in database portal design for

those who would like to provide public access to their

data or data within their subfield. To aid such individ-

ual considerations, we discuss the person-hours required

to develop and maintain a codebase and documenta-

tion required to support a database portal similar to

the SpExoDisks database portal:

• When hiring a developer for any new group, we recom-

mend budgeting two years of salary to cover the time of

a professional developer. This will give a research team

16 www.nginx.com/

time to organize their data and understand the product

they want to present. However, once a team under-

stands its database portal goals, data contextualization,

data organization, data standarization and verification,

and overall design (see §2), new projects can be deployed

to the maintenance phase within a single year.

• During the time of database portal development (e.g,

Year 1 for the SpExoDisks database portal), one hour of

developer time is spent for every two hours of student

time. This is because the leading developer spends a

lot of time writing documentation, conducting surveys,

and understanding research tools before developing new

projects for student projects. Without existing exam-

ples, students start with more abstract tasks, which re-

quire more training.

• Maintaining an existing website (e.g., not adding new

features or data) usually requires ∼80 hours/year of

critical developer time. This is to maintain the over-

all health of the website, since certain components may

be found to be vulnerable over time, important updates

need to be handled, security practices change and re-

quire adaptations, software loses support, cookie prefer-

ences change, etc..

• Maintaining student work (e.g., after Year 4 for

the SpExoDisks database portal), one hour of devel-

oper/manager time is typically needed for every five

hours of student effort. This time is often equally split

between refactoring the database portal to be consis-

tent with best practices and the existing codebase and

project management, since even the most talented stu-

dents need attention to provide a high-quality product.

5.1. Technology Used in SpExoDisks

Table 1 lists all the technologies recommended and

used in the SpExoDisks projects, along with links for

quick access. One of the most significant operational

challenges for the SpExoDisks team was getting the soft-

ware to work on every team member’s computer with a

variety of operating systems (OS) and architectures. In

the early days, we constantly rewrote our installation

documentation for three different OSs. However, this

didn’t solve all of the problems for the existing team and

there were significant new issues when setting up incom-

ing students every semester. Today, we have removed

most of the environmental differences across our team’s

computers using the popular container system Docker17

to deploy all our code within the specific, required en-

vironment. A container is a way to set up an isolated,

minimalist environment for software; containers do not

need an entire OS, so they use resources relatively ef-

17 www.docker.com

https://github.com/spexod/Portal
www.nginx.com/
www.docker.com

14 Wheeler, Hinkel, & Banzatti

ficiently on the host machine. Docker containers solve

two problems for our team: 1) We have a way to check

that the website can be deployed in a local test network

of Docker containers, then send those exact containers

to be deployed on the live website host; and 2) We have

divided the database portal processes into modular ser-

vices that can be independently updated and tested. In

addition, this second point has allowed us to continue

using local installations (not in a container) for debug-

ging and rapid development, with only minor differences

compared to the stricter container environment.

Using the MySQL database software has meant data

is always available quickly with built-in sorting and

organization. The SpExoDisks team understood that

this was a best practices approach, but we were sur-

prised by the way that learning MySQL changed how we

thought about data. Lessons from the SQL paradigm

improved the data science pipeline and the frontend’s

data hydration (i.e. data loading and distribution to

other components) because we would continually up-

date our data structures/tables to make processes ef-

ficient. Database abstraction tools – like the Python

packages SQLAlchemy18 and Django19 – allowed us to

do column-wise operations, summing, and other ba-

sic functions using the optimized code in MySQL (or

other database software) indirectly with Python. The

column-wise functionality enables complex calculations

on a relatively small virtual computer that hosts the

SpExoDisks database portal.

JavaScript, rather than Python, was used for fron-

tend website development, which significantly boosted

the group’s productivity. JavaScript required some new

learning and adaptation for our team, but we realized

it was simply the right tool for website development.

JavaScript runs directly in the browser, unlike Python

which requires JavaScript to handle dynamic and in-

teractive features. JavaScript has also had a commu-

nity concerned with web development for years and has

grown to cover a range of web development scopes and

use cases. As a result, finding junior developers or uni-

versity students familiar with JavaScript and/or one of

its many web development frameworks is much easier.

While Table 1 may be helpful to those wishing to learn

new software/systems or start a new project, the ac-

tual number of systems that a SpExoDisks team mem-

ber employs is much larger. It’s also important to note

that the SpExoDisks team has observed that devel-

oper experience and software quality benefit the most

18 www.sqlalchemy.org
19 www.djangoproject.com

when software has an active and growing community

of users. Continued development and security updates

have pushed us to continually and automatically update

all packages and other environment components when

deploying our software to the SpExoDisks database por-

tal. While it can require extra work to keep all aspects

of the project as up-to-date as possible during deploy-

ment, our team believes that it’s important to be open

to using new software and techniques. However, this

also means that deprecations and vulnerabilities have

to be addressed before each new deployment, such that

processes are retired, code deleted, and unused software

is removed. While different projects may require differ-

ent solutions, our work flow has allowed us to gradually

keep the project modern while accounting for necessary

padding time for our team to address significant changes.

5.2. Data Science Processing Pipeline

The data science processing pipeline for the SpEx-

oDisks database portal is a combination of two phases,

which roughly corresponded to the top and bottom half

of Fig. 3, respectively. First, an accumulation and con-

text system reads data products from various sources

and links them to custom Python records (discussed

more in Appendix B). This is followed by a public data

export system optimized for delivering data to the SpEx-

oDisks database software and API users.

The SpExoDisks database portal has transitioned

from primarily software development to a combination

of development and maintenance. Starting at the data

input icons in Fig. 3 (top row, also the middle right), the

accumulation and context system writes and accesses

many files for intermediate processing pipeline data stor-

age (e.g., SIMBAD, TIC, and Gaia); these files locally

store the data retrieved from other astronomy database

portals as plain text (e.g., CSV). With the benefit of

hindsight, we now understand that our data processing

pipeline would be faster and easier to maintain if we had

used the same MySQL database software to save and

access these intermediate processing results, instead of

writing several custom micro-database software systems

in Python. We have also made this pitfall in other ar-

eas, for example: by writing custom processes, we made

systems more difficult for new students to learn and for

our future selves to comprehend. In future data process-

ing pipelines, we have resolved to use tools maintained

by larger communities that continue to benefit from up-

dates and documentation, enabling future change and

maintenance.

All data objects in the SpExoDisks data processing

pipeline are associated with a star name, with the ex-

ception of the HITRAN data. Per the discussions in

www.sqlalchemy.org
www.djangoproject.com

Dynamic Small Database Design for SpExoDisks 15

Service Type Deployed on SpExoDisk.com Also Recommend

Data Science Pipeline Python, custom data classes Your favorite software

Database MySQL PostgreSQL, MongoDB

Application Program Interface Django framework (Python) Flask, Express, Rails.

Website NEXT.js-React (JavaScript) Astro, Angular, jQuery

Web Server NginX Apache

Could Hosting Amazon Web Services (AWS) Google Cloud, Azure

Container Management Docker compose (Docker) Kubernetes

Version control git

File and Docker repository GitHub Docker Hub, Docker only

Editor/IDE Webstorm & PyCharm VScode

Graph/Data Display plotly bokeh

Table 1. Technology systems used in the SpExoDisks project with respective hyperlinks. Compiled in 2024, things may have
changed.

§2.3 and Appendix A, data from any source must re-

quire a star name, triggering an association process (see

the dotted box at the top of Fig. 3). The first time a

new star name is encountered, the pipeline either acti-

vates an automatic data records retrieval from SIMBAD

or prompts the user to create a new custom name that

can be associated with a SIMBAD name or not. We

save this name and other results from SIMBAD locally

(§2.2).
While so much can be automated in the SpExoDisks

data science pipeline, some things still need human at-

tention. For example, receiving new spectra from any

source requires negotiating formats and observation-

specific conventions. This requires due diligence and

double-checking by experienced and invested scientists

(often the PI of the project). However, while new data

may come with quirks, we have made tools that can re-

port issues upon read-in. By strictly checking data at

import, we can use custom errors and warnings that im-

mediately point to relevant files, lines, and values found

to be in an unexpected format. Sometimes correcting

the data requires a direct change to the input file, while

other times, a workaround can be added as a catch in

the data processing pipeline. This step is taken for all

data sources shown in Fig. 3.

Once all the spectra are read-in and associated with

a star, we register them with the SpExoDisks MySQL

database software (see the last paragraph of §2.3). The
registration process allows us to upload only new spec-

tra, as opposed to spectra that the database portal has

already encountered. This cache is a crucial time-saving

option as new spectra are observed at increasing rates

(with improved spectral resolution), expanding our data

storage requirements.

Spectroscopic line data from HITRAN requires a very

different organizational structure (right side of Fig. 3).

Within the SpExoDisks database portal, the HITRAN

information is in tables that are organized by isotopo-

logue and indexed by wavelength. The pipeline asso-

ciates the molecular lines with a given spectrum as de-

termined by the spectrum’s wavelength range. This pro-

cessing step also allows us to deliver all spectral lines

available for each spectrum in the standard FITs file out-

put provided for download at the SpExoDisks database

portal’s “Explore Data” page, as mentioned in §4.2.
With all the data checked and assembled, data can be

exported in the format required for the MySQL database

software and API (bottom of Fig. 3). Metadata and

curated stellar parameters are relatively small uploads

(∼10 MB) compared to all spectra (∼10 GB), so meta-

data tables are updated each time and are allowed to

change often. Next, each spectrum is outputted as

downloadable files and uploaded to the MySQL database

software in a format for the spectrum plot (Fig. 2). The

only change in the plot format is the handling of null flux

values where the plot only uses one null value per data

gap (as opposed to one every wavelength interval), which

can reduce the storage for some spectra by ≥20%. We

note that the downloadable data provides the null-fluxes

as originally reported in the contributed spectrum, i.e.

we do not make any changes from the source. As a fi-

nal step, the relevant subsection of the HITRAN data

is uploaded and updated as needed. All data is now

staged for inspection and the data processing pipeline is

completed.

We test a local version of the database portal using

the staged data to examine how the updated data will

appear on the public database portal. In this way we

can do visual inspections using tools that are exactly

the same as those on the public-facing content. In addi-

tion to inspecting, we export the environments used to

view the test website as Docker images uploaded to the

https://www.python.org/
https://www.mysql.com/
https://www.postgresql.org/
https://www.mongodb.com/
https://www.djangoproject.com/
https://flask.palletsprojects.com/en/3.0.x/
https://expressjs.com/
https://rubyonrails.org/
https://nextjs.org/
https://react.dev/
https://www.javascript.com/
https://astro.build/
https://angular.io/
https://jquery.com/
https://www.nginx.com/
https://httpd.apache.org/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
https://docs.docker.com/compose/
https://www.docker.com/
https://kubernetes.io/
https://git-scm.com/
https://github.com/
https://hub.docker.com/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://plotly.com/
https://bokeh.org/

16 Wheeler, Hinkel, & Banzatti

KEY:

Input Spectra
Various Formats

Persistent
Metadata

From Queries

Per spectrum
read-in,

verification, and
standardization.

Find minimum
requirements,

convert to
standard data
format, verify

units and times,
collect all header
and non-required

data to be
included with the

spectrum.

Known
star?

In
SIMBAD?

Star name
understood?

Human Input

Has stellar
metadata?

In Gaia,
TIC?

Yes

Yes

Online
Databases

Per Spectrum Star Name Association and Database Queries with autostar
Python package for astronomy database queries

No

No

Query

No

Yes

Star name
associated
with record

New star
name record

New stellar
parameter

record

SIMBAD

Query

No
Yes

No

Available
parameter

data
associated

Yes

Per Molecule
HITRAN Data

Read-in.
Parse data from
from input .par

file with
molecule-

specific energy
levels.

Per molecule
energy level filter
is configurable.

Data is presorted
by isotopologue
and wavelength
for association
with spectra.

HITRAN.org
Downloaded Files

Relevant Stellar
Parameters

Curated by Our
Science Team.
On read-in of

some number of
files, verify that

each record is an
expected

parameter, has
the required unit,

and has a
reference. When
available, error is
also formatted.

Curated
Stellar Data

Assembly of
hierarchical

database, by
star and
spectrum

Unique input
filename and
spectrumID
registration

spexodisks.com
Database

Upload and Output
Per spectrum processing only for newly registered spectra

Upload all
database

metadata and
curated
stellar

parameters

Write per spectrum
downloadable as

FIT and UTF8

Plot format of
spectrum flux and

upload

Per molecule
HITRAN data

upload

GitHub
Container
Registry

Build test API
and website

(Docker)

Stage all to be
deployed on

spexodisks.com

spexodisks.com
Downloadable

Spectra

Decision

1. 2.

Data from 1
received by 2.

3. 4.

Data from 3
written on 4.

Process

Solid Arrow Dashed Arrow

Data sources and
destinations are given as

icons.

Processes with one
output and are in

rectangles

Decisions with two
outputs and are in

diamonds

Figure 3. An organizational chart of the SpExoDisks data science pipeline (see the key in the lower-left corner). The pipeline
starts at the top-left and processes clockwise, ending at center-left side of the diagram. The large dotted boxes denote pipeline
process clusters that are triggered for each observed spectrum, where data read-in starts from icons that contribute data in
the accumulation and context phase of the pipeline (top half to lower right). The second phase is public data export (bottom
dotted box), which uploads data to a MySQL database software for efficient storage and retrieval. A locally-built, test website
connected to the public server (“Build Test API and Website” process box) shows the newly staged data for inspection. The
inspection environment is then configured to be deployed to the public website and uploaded to GitHub, completing the staging
to update the SpExoDisks database portal.

GitHub Container Registry (GHCR). With the Docker

images exported and the downloadable files uploaded to

the server, we can update the live website at-will with

a script designed to have only 2-5 seconds of downtime

for the public-facing database portal. While the API

takes 30-45 seconds to restart fully, the frontend can

use cached API data (see §5.3) from the image-build

processes until the API service is available.

We use the latest release of Docker images from

Python and Node.js20 as the basis for the SpExoDisks

database portal’s API and frontend services, respec-

20 https://nodejs.org/

tively, to ensure we have the most current bug fixes

and security patches. Staying up-to-date is important

since updating the database portal will periodically fail

to build a new image because packages and functions

have become deprecated. While we try to address issues

as they occur, we can always download the last working

Docker image from the SpExoDisks GHCR account and

proceed from that image until the issues preventing a

stable, complete build can be adequately addressed.

5.3. Public Server Configuration

While the data science processing pipeline in §5.2
shows a changing progression, the public server configu-

ration – as shown in Fig. 4 – should be considered an un-

https://nodejs.org/

Dynamic Small Database Design for SpExoDisks 17

KEY:

Persistant
Storage

AWS Virtual Machine

Containers

spexodisks.com

Web
Server

MySQLSSH

Frontend

API

Database

Spectra
Download

Users

Developers

2.

Data sent from 1
received by 2.

One-way Arrow
1.

2.

Data sent
and received by
both 1 and 2.

Two-way Arrow
1.

Figure 4. An organizational chart of the SpExoDisks pub-
lic server configuration (see the key in the upper-left cor-
ner). Users (top-most icon) and developers (bottom-most
icon) access the AWS virtual machine instance (icons en-
closed in a dashed box) through specific network ports. De-
velopers can update downloadable spectra files (filing cabinet
icon) and the persistent storage for the MySQL database
container (document icon), while users access the website
from a browser. The Docker software allows four separate
containers (icons enclosed in a dotted box) running software
in specifically configured environments to be connected to
external ports and each other. From top to bottom, the
containers are a web server running NginX to route incom-
ing URL requests, the frontend running Node.js to deliver
cached API data with JavaScript and static files, and the
API runs Python to shape and programatically access data
from the fourth container running a MySQL database soft-
ware server.

changing collection of software environments that work

together to make the database portal. For SpExoDisks,

the software environments are the Docker containers (lo-

cated in the dotted box), where each container performs

a service specific to a single software environment. Ar-

rows show that data is transmitted between contain-

ers using standard network connections. The Amazon

Web Services (or AWS) virtual machine (icons enclosed

in the larger dashed box) hosts the Docker containers.

The AWS server is relatively low-powered compared to

most personal computers (with 4 GB Memory, 2 vCPUs,

80 GB SSD Disk with an IPV-4 address). The users

(top icon) access the AWS virtual machine through their

browser, while the SpExoDisks’ developers (the bottom

icon) manage the Docker containers, MySQL tables, and

downloadable spectrum through specific network con-

nections.

The four-container system is orchestrated to be all

on the same network using the software Docker Com-

pose21. The communication and ports are all configured

in a compose.yaml file, which can then populate vari-

ables and authentication methods (i.e., passwords) to be

shared with the containers to make secure run-time con-

nections. Starting from an AWS virtual machine run-

ning Ubuntu, Docker is the only required software to

install before being able to serve our website. As seen

in Fig. 4, database files for the MySQL container and

the downloadable spectra are located in directories ac-

cessible to both the local file system and the relevant

Docker containers. This creates persistent storage and

backup for the MySQL data files and manages storage

for updating the available downloadable files. Keeping

the data separate from the containers’ images helps to

minimize image size and makes software updates inde-

pendent of the data. Our images only provide the en-

vironment and our code. The authentication methods

and data are only available when images are used as a

basis to start a container instance.

Users interact with the SpExoDisks database portal

via an HTTPS port monitored by a Docker container

running an NginX web server. The web server does one

task very well: it takes URL requests and sends them to

the appropriate destination, which can either be static or

dynamically generated. The URL routing can be com-

plicated. For the SpExoDisks database portal, the URL

requests with a suffix of “/api/” are sent to the Docker

container labeled “API” in Fig. 4, while all other re-

quests go to the container labeled “Frontend.” Much of

the metadata for the navigation table and home page

21 docs.docker.com/compose/

docs.docker.com/compose/

18 Wheeler, Hinkel, & Banzatti

is delivered from the “Frontend” container at the same

time as the HTML and JavaScript files. However, spec-

trum requests, HITRAN lines, and downloadable files

are all accessed via API endpoints as users dynamically

interact with the database portal.

Consider a timeline of events when a user visits the

SpExoDisks database portal. Before the user navigates

to our site, the frontend refreshes and caches the main

data table, default spectrum, and other metadata from

the API container. When the user visits spexodisks.com,

they receive data from JavaScript, HTML, and other

supporting files that create a browser application on the

user’s computer or mobile device. Specific user actions,

like sorting the table, are implemented in JavaScript and

done in the browser. Other actions, like plotting molec-

ular lines and downloading spectra, require more data.

In these cases, the browser sends a URL request to the

API, which then handles and returns data in the formats

expected by the browser application.

Currently, the only user data saved in our database

software is login information. That process starts with

a form in the HTML and JavaScript browser applica-

tion, which submits a username and password to the

API from a URL request. The API checks to see if

this is possible and returns a status that the browser

application can interpret. If the status is “success,” a

new record will be created in a MySQL database table.

This record will be persistently available and will be in-

dependent of database portal updates (see “Persistent

Storage” in Fig. 4).

5.4. Database Software Access and Security

When choosing database software, it’s important to

consider how data will be updated and retrieved on the

database portal. Fully featured database software like

MySQL, PostgreSQL, MongoDB, etc. come with admin-

istrative tools for generating individually scoped creden-

tials (e.g., username and password) for remote access.

Directly reading HDF5 or CSV files, or using minimal-

istic tools on par with SQLite, will require teams to de-

sign remote data access/update processes for their files.

However, individually scoped credentials and login ca-

pabilities are more relevant when the database portal

is on cloud service, which often have limited computa-

tional resources compared to a server in an office or lab.

There is no “best method,” instead it is a decision for

individual teams to consider. The SpExoDisks database

portal access is designed to accomplish three goals: 1)

deliver read-access to all available SpExoDisks data for

anyone, 2) allow specific team members to use database

software to update the database portal, and 3) be able

to delete then rebuild all services and access with one

day of effort.

It could be unwise to publicly discuss the SpExoDisks

team’s policies for accessing and securing the database

software. However, we can speak generally about our

experiences working with fully featured database soft-

ware. MySQL, MongoDB, and PostgreSQL can each

be configured natively on a host system or in networked

Docker containers and, with some effort, they can be set

to require no password – which is not advised. We rec-

ommend setting a very strong 50+ character root pass-

word on initialization and then creating non-root users

for specific people and tasks. Current best practices

recommend setting up a Secure Sockets Layer (SSL), a

pair of keys that can encrypt data exchanged between

two points on a network. SSL authentication is the de-

fault in MySQL 8.4, the release used by the SpExoDisks

database portal at the time of writing. The first level

of organization in the database software (confusingly

called a database PostgreSQL and schema in MySQL

and MongoDB) can often be scoped to specific user ac-

counts. For example, while the API needs to access the

top-level database that contains tables of user-data (or

user-schema) for the website, a SpExoDisks team mem-

ber working to upload new spectra data does not need

access to the schema holding users login data. Narrow-

ing scopes for specific actions or users is a best practice.

We recommend saving credentials with limited access to

a hidden file that can accompany any software needing

a connection to the database portal.

If using Docker, it’s a good practice to save creden-

tials outside the image/container and pass them at run-

time as environment variables. Usernames and pass-

words should not be saved in Docker images and they

should be omitted from version control (e.g., git22). One

advantage of building database software and other ser-

vices in Docker is that your project can be developed

independent of the OS, as discussed in §5.1. The only

OS-dependent code in the SpExoDisks project is a script

that installs and configures Docker for Ubuntu on the

AWS virtual machine. This makes the project extremely

portable to other servers, both cloud and physical com-

puters, and makes us less vulnerable to mistakes or ran-

somware attacks. While this is not true for all Docker

base images (e.g., original or starting images on which

subsequent images can be built), the base images used

by SpExoDisks are available on several CPU architec-

tures: x64 for CPUs from Intel and AMD, the arm64

22 https://git-scm.com/

spexodisks.com
https://git-scm.com/

Dynamic Small Database Design for SpExoDisks 19

tested on both RaspberryPi-4, and latest generation of

Apple computers.

Another benefit of fully featured database software

is to provide data access to individuals outside the de-

velopment team. For example, the Gaia collaboration

allows uncredentialed users (e.g., public/anonymous

without authentication or login) to write and submit

database queries; as a result, this feature is used by

the SpExoDisks data processing pipeline to automat-

ically associate spectra with relevant Gaia stellar pa-

rameters. During development, the SpExoDisks team

experimented with direct access to our MySQL database

software that was both credentialed and uncredentialed

before we had a complete vision of what our API should

offer. We ultimately decided that only the API and

the data science pipeline tools should directly access the

MySQL database software (see Fig. 4). While this pro-

vides an extra layer of isolation for the database soft-

ware, the choice was primarily based on the API layer

allowing additional data-shaping configurations and ac-

cess to Python libraries. This is further simplified for our

team, because the API only writes to the database por-

tal in certain circumstances, such as adding and storing

encrypted user data or resetting the login credentials.

We note access to the SpExoDisks database portal

could change in a future upgrade to allow designated

users, such as PIs, to upload new spectra and data de-

scriptions on their own. While we are interested in de-

veloping this kind of portal, it would require additional

collaboration and support. Therefore, at this point we

recommend that those interested in providing spectra

contact us directly.

6. SCIENCE APPLICATION OF THE SPEXODISKS

DATA

The most unique and powerful scientific value of

SpExoDisks is the combination of spectra with different

resolving power and wavelengths (either or both), which

enables to reach goals that individual instruments and

datasets alone cannot provide. In this section, we de-

scribe a brief example in the context of the new spectra

of protoplanetary disks that are being observed with the

James Webb Space Telescope (JWST) and published at

the time of writing this paper (e.g. Grant et al. 2023;

Banzatti et al. 2023b; Ramı́rez-Tannus et al. 2023; Pon-

toppidan et al. 2024; Temmink et al. 2024).

Fig. 5 provides an overview of spectra currently in-

cluded in SpExoDisks, to illustrate their overlap or com-

plementarity in spectral coverage and resolving power

(R = λ/∆λ). The near-IR region is covered from the

ground at high resolving power with the following in-

struments: H band (∼1.3-2.0µm) and K band (∼2.0-

2.4µm) with IGRINS (R ≈ 45, 000, Mace et al. 2016),

L and M bands with CRIRES (R ≈ 80, 000 − 95, 000,

Kaeufl et al. 2004), NIRSPEC (R ≈ 25, 000, McLean

et al. 1998), and iSHELL (R ≈ 60, 000−90, 000, Rayner

et al. 2022). The mid-IR region is covered from the

ground with VISIR (R ≈ 30, 000 but only on 0.1 µm-

wide spectral settings, Lagage et al. 2004), and from

space with IRS before (R ≈ 700, Houck et al. 2004) and

now MIRI-MRS (R ≈ 1500 − 3700, Rieke et al. 2015;

Wright et al. 2023; Wells et al. 2015; Argyriou et al.

2023; Pontoppidan et al. 2024).

The global spectral coverage obtained by the combina-

tion of multiple instruments is extremely rich in tracers

of gas within the system (Fig. 5). For example, the

spectra show lines from the stellar surface (absorption

lines in the H and K bands on the left) to the accre-

tion region (HI lines from the Brackett series in the H

band all the way to the Pfund and Humphreys series;

see the α line of each series in Fig. 5). In addition,

the inner disk winds and outflows are observed through

the H2 and forbidden lines from Ne and Fe, while the

inner disk chemistry emits a dense forest of molecu-

lar lines from ro-vibrational and rotational bands from

CO,H2O,OH,HCN,C2H2, CO2 and some of their iso-

topologues.

The lower panel of Fig. 5, panel B, zooms-in on a re-

gion where space- and ground-based spectrographs over-

lap. The comparison of spectra between MIRI-MRS

on JWST and iSHELL on IRTF in this region demon-

strates the advantage of combining multiple instruments

that observe the same spectral region. For example,

the very high resolving power obtained from the ground

with iSHELL reveals the gas kinematics in high detail

by spectrally resolving the velocity profile of individual

emission lines. On the other hand, space observations

from MIRI-MRS lose the kinematic detail but gain sen-

sitivity and also fill in telluric gaps not accessible from

the ground (see labeled examples) to provide complete

spectral coverage. Panel C zooms-in even more to show

the velocity profile of an individual CO line. This illus-

trates two kinematic components (called broad or BC

and narrow or NC) that can be extracted from the spec-

tra which trace gas at different radial distances (i.e. a

different Doppler broadening from gas at a different Ke-

plerian velocity) from the star (e.g. Bast et al. 2011; Ban-

zatti & Pontoppidan 2015). These high-resolving-power

spectra also show the distinction between Keplerian disk

(which have the characteristic double-peak profile) and

disk+wind line profiles (which have a narrow single-peak

line center; for more examples of different line profiles

see Banzatti et al. 2022).

20 Wheeler, Hinkel, & Banzatti

iSHELL (R = 60,000-90,000)

CO H2O

iSHELL data (CO 𝜈=1-0)

BC

NC

Model BC:
T = 1420 K
N = 1e18 cm-2

Model NC:
T = 1180 K
N = 3e17 cm-2

MIRI data (CO 𝜈=1-0)

Line blending and
contamination

Model:
T = 2460 K
N = 7e15 cm-2

BC

NCCO
𝛎=1-0

H2O H2O

HI

H2O
H2O

H2O

CO
𝛎=2-1

CO
𝛎=3-2

- JWST-MIRI (R~100 km/s)
- IRTF-iSHELL (R~3-5 km/s)

H2O

CRIRES (R = 95,000)
NIRSPEC (R = 25,000) IRS (R = 700)

MIRI (R = 1500-3500)

IGRINS (R = 45,000)

HCNC2H2 CO2
OH

2 3 4 5 6 7 8 9 10 20 30

A

B C

Overtones

Stellar
accretion Stellar

Photosphere

Brackett series

Disk molecular gas

Telluric
gaps

Detector
gap

Pfund 𝛼 Humphreys 𝛼

Figure 5. A: Overview of spectra included in SpExoDisks, using examples and similar plotting tools to what is included on
spexodisks.com. Different instruments and their resolving power are labeled. Synthetic models of the main molecular species are
shown at the bottom for reference. Regions of astrophysical interest (e.g., stellar accretion and photosphere, disk molecular gas)
are indicated in gray. B: Zoomed-in portion near 5 µm, illustrating CO and H2O emission spectra of the protoplanetary disk in
FZ Tau as observed with iSHELL (Banzatti et al. 2022, 2023a) and MIRI-MRS (Pontoppidan et al. 2024); the lower resolution
of MIRI causes the blending of different transitions and species that are observed with iSHELL (labeled in different colors).
C: Zoomed-in visualization in velocity space of an individual CO ν = 1 − 0 line profile as decomposed into two kinematic
components, a broad component (BC) in red and a narrow component (NC) in blue. The broadening of these kinematic
components informs on temperature and density gradients in the inner disk surface and wind.

iSHELL (R = 60,000-90,000)

CO
H2O

iSHELL data (CO 𝜈=1-0)

BC

NC

Model BC:
T = 1420 K
N = 1e18 cm-2

Model NC:
T = 1180 K
N = 3e17 cm-2

MIRI data (CO 𝜈=1-0)

Line blending and
contamination

Model:
T = 2460 K
N = 7e15 cm-2

BC

NCCO
𝛎=1-0

H2O H2O

HI

H2O
H2O

H2O

CO
𝛎=2-1

CO
𝛎=3-2

- JWST-MIRI (R~100 km/s)
- IRTF-iSHELL (R~3-5 km/s)

H2O

CRIRES (R = 95,000)
NIRSPEC (R = 25,000)

IRS (R = 700)

MIRI (R = 1500-3500)

IGRINS (R = 45,000)

HCN
C2H2 CO2

OH

2 3 4 5 6 7 8 9 10 20 30

A

B C

Figure 6. Left: Different excitation of the two kinematic components shown in Fig. 5 (panel C) as visualized in the population
diagram using line fluxes extracted from the SpExoDisks spectra. Single-temperature models are overplotted for comparison,
with best-fit values shown in the figure. Right: The two components are blended at the lower resolution of MIRI (Fig. 5, panel
C), and only the higher J levels at > 4.9µm are covered in the spectrum (Fig. 5, panel A); as a consequence, the best-fit model
only finds a very high temperature as mimicked by the flat part of the rotation diagram.

Fig. 6 demonstrates the scientific outcome of combin-

ing CO spectra from different instruments illustrated

in Fig. 5, panel B. Here we use a population diagram

to illustrate the excitation of CO, a convenient diagram

widely used in astrophysics to study molecular gas emis-

sion (e.g. Goldsmith & Langer 1999). In this diagram,

a different temperature of the gas produces a different

slope. In addition, a variation in gas column density in-

creases the curvature of the distribution of observed line

fluxes as a function of their upper level energy, Eu. The

excitation of the two distinct components from Fig. 5,

Panel C, becomes very visible in Fig. 6, left, from their

different slope and curvature.

spexodisks.com

Dynamic Small Database Design for SpExoDisks 21

By fitting the observed line fluxes with a plane-parallel

“slab” model of gas in the disk, that includes temper-

ature (T) and column density (N) as free parameters

(Jellison et al. 2024), we can estimate these property

differences in the protoplanetary disk of FZ Tau – pro-

vided as example in Fig. 6. These fits show that the

two BC and NC components have a factor ∼3 differ-

ent column density and different rotational excitation,

where NC has T ∼ 1200 K and BC has T ∼ 1400 K

(the difference between the two components can be even

larger, as found in other disks in Banzatti et al. 2022).

These individual models show us the properties of a disk

surface where temperature and density decrease with ra-

dius, from a hotter denser inner region closer to the star

(≤ 0.1 AU) out to colder CO gas at larger radii (1–

10 AU), covering the entire planet-forming region where

exoplanet populations are observed today. The possibil-

ity to extract these properties as a function of disk radius

is fundamental to understand the physical and chemical

evolution of inner disk regions that are not accessible

with direct imaging (see recent overviews in Banzatti

et al. 2022, 2023a).

On the other hand, the lower resolution of MIRI-MRS

spectra blends different kinematic components together

(as we have seen in Fig. 5, panels B and C), and covers

only the high-J region of the ro-vibrational band of CO

(> 4.9µm), therefore missing the curvature produced

by high optical depth at lower J levels (Fig. 6, right).

The consequence is that a simple fit to the MIRI data

will be very degenerate between optically thin and thick

solutions (i.e. a low or high column density, respec-

tively), which will then overestimate the temperature of

the emission (due to the flattening in the curve from

line blending, as indicated in Fig. 6, right). All the

JWST disk programs in Cycle 1 and beyond will need

to use high-resolution ground-based CO spectra to sup-

port the analysis of space spectra and obtain gas emit-

ting regions from the resolved kinematics to distinguish

between fundamental scenarios in the interpretation of

MIRI spectra, for instance the presence of small inner

disk cavities that are beyond the reach even of ALMA

(e.g. Grant et al. 2023; Temmink et al. 2024).

ACKNOWLEDGMENTS

All authors would like to thank the entire develop-

ment team (spexodisks.com/DevTeam), but specifically

the students from Texas State University that brought

the excitement, talent, and knowledge needed to ex-

plore new technology methods. For the climbers, may

you never run out of mountains to climb. The research

shown here acknowledges use of the Hypatia Catalog

Database, an online compilation of stellar abundance

data as described in (Hinkel et al. 2014). NRH would

like to thank Tatertot and Lasagna for their help and

support. This research has made use of the SIMBAD

database, operated at CDS, Strasbourg, France 2000,

A&AS, 143, 9 (Wenger et al. 2000). This work has made

use of data from the European Space Agency (ESA)

mission Gaia (https://www.cosmos.esa.int/Gaia), pro-

cessed by the Gaia Data Processing and Analysis

Consortium (DPAC, https://www.cosmos.esa.int/web/

Gaia/dpac/consortium). Funding for the DPAC has

been provided by national institutions, in particular

the institutions participating in the Gaia Multilateral

Agreement. This work uses data from the TESS In-

put Catalog (TIC), Stassun et al. (2019) is a catalog of

stars observed by the TESS mission. This research has

made use of ESASky, developed by the ESAC Science

Data Centre (ESDC) team and maintained alongside

other ESA science mission’s archives at ESA’s European

Space Astronomy Centre (ESAC, Madrid, Spain), Gior-

dano et al. (2018) and Baines et al. (2016). SpExoDisk’s

uses HITRAN (high-resolution transmission molecular

absorption database) to display molecular line locations,

see Gordon et al. (2022). This work includes obser-

vations made with the NASA/ESA/CSA James Webb

Space Telescope. The data were obtained from the

Mikulski Archive for Space Telescopes at the Space Tele-
scope Science Institute, which is operated by the Asso-

ciation of Universities for Research in Astronomy, Inc.,

under NASA contract NAS 5-03127 for JWST. These

observations are associated with Cycle 1 GO program

1549.

REFERENCES

Argelander, F. W. A. 1903, Eds Marcus and Weber’s

Verlag, 0

Argyriou, I., Glasse, A., Law, D. R., et al. 2023, A&A, 675,

A111, doi: 10.1051/0004-6361/202346489

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,

et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74

Baines, D., Giordano, F., Racero, E., et al. 2016,

Publications of the Astronomical Society of the Pacific,

129, 028001, doi: 10.1088/1538-3873/129/972/028001

Banzatti, A., & Pontoppidan, K. M. 2015, ApJ, 809, 167,

doi: 10.1088/0004-637X/809/2/167

Banzatti, A., Abernathy, K. M., Brittain, S., et al. 2022,

AJ, 163, 174, doi: 10.3847/1538-3881/ac52f0

spexodisks.com/DevTeam
https://www.cosmos.esa.int/Gaia
https://www.cosmos.esa.int/web/Gaia/dpac/consortium
https://www.cosmos.esa.int/web/Gaia/dpac/consortium
http://doi.org/10.1051/0004-6361/202346489
http://doi.org/10.3847/1538-4357/ac7c74
http://doi.org/10.1088/1538-3873/129/972/028001
http://doi.org/10.1088/0004-637X/809/2/167
http://doi.org/10.3847/1538-3881/ac52f0

22 Wheeler, Hinkel, & Banzatti

Banzatti, A., Pontoppidan, K. M., Pére Chávez, J., et al.

2023a, AJ, 165, 72, doi: 10.3847/1538-3881/aca80b

Banzatti, A., Pontoppidan, K. M., Carr, J. S., et al. 2023b,

ApJL, 957, L22, doi: 10.3847/2041-8213/acf5ec

Bast, J. E., Brown, J. M., Herczeg, G. J., van Dishoeck,

E. F., & Pontoppidan, K. M. 2011, A&A, 527, A119,

doi: 10.1051/0004-6361/201015225

Giordano, F., Racero, E., Norman, H., et al. 2018,

Astronomy and Computing, 24, 97–103,

doi: 10.1016/j.ascom.2018.05.002

Goldsmith, P. F., & Langer, W. D. 1999, ApJ, 517, 209,

doi: 10.1086/307195

Gordon, I. E., Rothman, L. S., Hargreaves, R. J., et al.

2022, JQSRT, 277, 107949,

doi: 10.1016/j.jqsrt.2021.107949

Grant, S. L., van Dishoeck, E. F., Tabone, B., et al. 2023,

ApJL, 947, L6, doi: 10.3847/2041-8213/acc44b

Hinkel, N. R., Timmes, F. X., Young, P. A., Pagano, M. D.,

& Turnbull, M. C. 2014, AJ, 148, 54,

doi: 10.1088/0004-6256/148/3/54

Houck, J. R., Roellig, T. L., van Cleve, J., et al. 2004,

ApJS, 154, 18, doi: 10.1086/423134

Jellison, E., Johnson, M., Banzatti, A., & Bruderer, S.

2024, arXiv e-prints, arXiv:2402.04060,

doi: 10.48550/arXiv.2402.04060

Kaeufl, H.-U., Ballester, P., Biereichel, P., et al. 2004, in

Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 5492, Ground-based

Instrumentation for Astronomy, ed. A. F. M. Moorwood

& M. Iye, 1218–1227, doi: 10.1117/12.551480

Lagage, P. O., Pel, J. W., Authier, M., et al. 2004, The

Messenger, 117, 12

Mace, G., Kim, H., Jaffe, D. T., et al. 2016, in Society of

Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, Vol. 9908, Ground-based and Airborne

Instrumentation for Astronomy VI, ed. C. J. Evans,

L. Simard, & H. Takami, 99080C,

doi: 10.1117/12.2232780

Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass,

G. G., & Worley, C. E. 2001, AJ, 122, 3466,

doi: 10.1086/323920

McLean, I. S., Becklin, E. E., Bendiksen, O., et al. 1998, in

Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 3354, Infrared

Astronomical Instrumentation, ed. A. M. Fowler,

566–578, doi: 10.1117/12.317283

Pontoppidan, K. M., Salyk, C., Banzatti, A., et al. 2024,

ApJ, 963, 158, doi: 10.3847/1538-4357/ad20f0

Ramı́rez-Tannus, M. C., Bik, A., Cuijpers, L., et al. 2023,

ApJL, 958, L30, doi: 10.3847/2041-8213/ad03f8

Rayner, J., Tokunaga, A., Jaffe, D., et al. 2022, PASP, 134,

015002, doi: 10.1088/1538-3873/ac3cb4

Rieke, G. H., Wright, G. S., Böker, T., et al. 2015, PASP,

127, 584, doi: 10.1086/682252

Stassun, K. G., Oelkers, R. J., Paegert, M., et al. 2019, The

Astronomical Journal, 158, 138,

doi: 10.3847/1538-3881/ab3467

Temmink, M., van Dishoeck, E. F., Grant, S. L., et al. 2024,

A&A, 686, A117, doi: 10.1051/0004-6361/202348911

Wells, M., Pel, J. W., Glasse, A., et al. 2015, PASP, 127,

646, doi: 10.1086/682281

Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS,

143, 9, doi: 10.1051/aas:2000332

Wright, G. S., Rieke, G. H., Glasse, A., et al. 2023, PASP,

135, 048003, doi: 10.1088/1538-3873/acbe66

http://doi.org/10.3847/1538-3881/aca80b
http://doi.org/10.3847/2041-8213/acf5ec
http://doi.org/10.1051/0004-6361/201015225
http://doi.org/10.1016/j.ascom.2018.05.002
http://doi.org/10.1086/307195
http://doi.org/10.1016/j.jqsrt.2021.107949
http://doi.org/10.3847/2041-8213/acc44b
http://doi.org/10.1088/0004-6256/148/3/54
http://doi.org/10.1086/423134
http://doi.org/10.48550/arXiv.2402.04060
http://doi.org/10.1117/12.551480
http://doi.org/10.1117/12.2232780
http://doi.org/10.1086/323920
http://doi.org/10.1117/12.317283
http://doi.org/10.3847/1538-4357/ad20f0
http://doi.org/10.3847/2041-8213/ad03f8
http://doi.org/10.1088/1538-3873/ac3cb4
http://doi.org/10.1086/682252
http://doi.org/10.3847/1538-3881/ab3467
http://doi.org/10.1051/0004-6361/202348911
http://doi.org/10.1086/682281
http://doi.org/10.1051/aas:2000332
http://doi.org/10.1088/1538-3873/acbe66

Dynamic Small Database Design for SpExoDisks 23

APPENDIX

A. THE STAR NAME PROBLEM

Uniting an individual observation to all other data regarding the same star is essential for data contextualization

in astronomy. Unfortunately, stars have many names (sometimes >50!). The brightest stars can often pose the most

significant challenge as their names can be colloquial strings or Greek constellation references. These names often lend

themselves to observational shorthand, inconsistent capitalization, varying blank spaces, and other transformations

that are easy for a human to read and correct but are challenging to add to a database without human intervention.

This presents a barrier to introducing and sharing data across various sub-disciplines and generations of astronomers.

Consequentially, this barrier can be insurmountable for those outside of astronomy, who may not realize that stars

may be referred to via different names. For the stars in the SpExoDisks database portal, many hours of collective

effort have been saved using the object names provided by SIMBAD – which excels at identifying star names.

The SpExoDisks database portal places a high value on all spectra that have been generously contributed by

collaborators for display and download. We work hard to identify star names in any format and confirm they can link

to existing records. The core of our star name identification process is to find a name recognizable to SIMBAD and

then use SIMBAD’s API to return the additional star identifiers. These identifiers allow us to access and query data

from additional online databases and link objects identified by different star names. SIMBAD’s API also provides the

raw data that enables users of the SpExoDisks data portal to search for objects using many star names associated

with a single star (as discussed in §4.2).
For the SpExoDisks database portal, we approach the star name as something that can be determined by parsing

names within each imported stellar catalog. Even with excellent tools provided by SIMBAD, converting names into

unique identifiers for keys in a database table can be complicated by variations in notation. Consider a star identified

as BD+19 00706, using a reference to the Bonner Durchmusterung (BD) catalog (Argelander 1903). The first step

when parsing in SpExoDisks is always to make the string name lowercase to remove case-dependent matching. Next,

the stellar name catalog is identified with the “bd” prefix, which sends the remaining part of the string to a parser

specific to the “BD” names. The “BD” parser first looks for a “+” or “-” character; however, since many observers

often omit the “+” symbol as implicitly defined, we must interpret a lack of any symbol to indicate “+”. With this

accomplished, we must now parse two integer values. However, major issues are created when names are reported

without leading zero, for example BD+19 706, since the number of expected characters is variable. To solve this issue

for most cases, we convert both coordinate strings (before and after the blank space) to integer values. However, when

a blank space is not present (for example BD+12346), it’s unclear whether there should be a leading zero (BD+01

2346 – an F7 star) or a trailing zero (BD+12 3460 – a K5 star); in these cases, the star names need to be manually

cross-referenced with other verifiable properties (such as RA and Dec) to confirm the correct name. Finally, the parser

delivers a Python tuple (‘bd’, ‘+’, 19, 706), which is a unique projection of the name information that can be compared

to various input formats of Bonner Durchmusterung star names.

Carefully parsing star names helps create unique data record keys within the SpExoDisks data portal. However, for

many purposes, we also want the star name to be converted back into a string that is as close to a SIMBAD-friendly

name as possible. We use stellar catalog (e.g., BD, TYC, 2MASS, etc.) specific definitions to convert the parsed tuple

to a SIMBAD format that includes the capital letters, symbols, leading zeros, and blank space separators.

Even with substantial parsing and logic catered to individual stellar catalog name types, some notations for observed

stars can still fail to be correctly parsed by the autostar Python package. In cases such as this, where a name cannot

be parsed but may also not be incorrect, the star name parser can be supplemented with a lookup table converting

popular/colloquial names to those recognized by SIMBAD. The lookup table is a simple, two-column CSV file allowing

developers to add names manually. In addition, a built-in interface prompts users running the SpExoDisks data science

code to enter a SIMBAD-recognized name when unparseable names are encountered. This is one of the many ways

we have streamlined the new data induction process for the SpExoDisks project.

When selecting the default name for a given star on the database portal, or the database key, we established a

preferential list of star name types to determine which name should have priority. In this way, we can choose the

formatted name for an object with the highest available preference and provide a consistent database key for a given

object between runs within the SpExoDisks data science code. However, a star may be known by multiple names

24 Wheeler, Hinkel, & Banzatti

within the same SIMBAD stellar catalog, for example, ** Coo 271a is known by both HD109573 and HD109573A. In

these situations, we always pick the longer of the two names to represent the database key, since the longer name is

likely to contain more information (e.g., that this system is a binary) that could be useful for our developers or users.

For similar reasons, the WDS (Mason et al. 2001) catalog is the preferred naming system specifically for multi-star

systems, because it offers important information about a member object’s status in a hierarchical multi-object system.

If the names are the same length, we choose the name that comes first alphabetically.

A consistent, single, unique string that matches the SIMBAD star name is an excellent database table key for

identifying a star. However, these strings can contain special characters and blank spaces, making them non-optimal

for use as Python attributes, MySQL table names, or URL strings. Therefore, a final, reversible step is required

to convert special characters into a descriptive string of allowed characters, e.g., ‘*’ becomes ‘star’ and ‘[’ becomes

‘leftbracket’ within the star name.

We note that updates are often required to process new stellar catalog names, especially as exoplanets are discov-

ered and their names have not yet propagated to SIMBAD. An alternative method to simplifying star name search-

ing/comparison is to remove stellar catalog-specific parsing and allow any name strings with blank space removed.

This technique is tolerant to mistakes by expiring the data periodically, e.g., once a year, and then automatically

updating names by rechecking SIMBAD. While not currently part of the SpExoDisks data science processing pipeline,

this updated feature has been propagated through the Hypatia Catalog database portal and will eventually be included

in SpExoDisks, as part of their shared approaches and strategies.

B. CUSTOM DATA OBJECTS

Working with data in Python allows us to make custom data objects that suit specific needs. While data is often

expected to be in specific formats, there are usually a variety of caveats or circumstances that require special handling.

Let us consider a data table, a familiar and straightforward data object. We often see tables with a single header row

where each value in the header row indicates the type of values that will be found in that column, while additional

rows of data will represent single items. Especially in astronomy, the first column is expected to contain a unique

identifier that can name a row of data as a unique key. This simple example has a few rules and conventions. However,

sometimes there are multiple rows with the data for the same star (either intentionally or because different names

were used for that star), possibly with conflicting values of data within the columns. Perhaps the table was edited in a

text editor that left hidden characters (e.g., carriage returns) that breaks the parsing routine or changed the standard

conventions. The SpExoDisks project uses many tables as raw input for the data processing pipeline, and we have

experienced a lot of variation.

To check for various non-standard table possibilities, we can add a validation step in the key-value assignment stage

of a custom dictionary object to check data as it is assigned during read-in. This can help identify mistakes faster

and more directly while adding new data. Data validation can be accomplished by extending existing Python classes

to do the required checking, such as a dictionary that forces all keys to be lowercase strings or a complex check that

enforces units and references. When possible, such tools can solve problems; but for issues that cannot be resolved,

we raise errors are called ‘exceptions.’

Python makes it simple to subclass existing objects like lists, tuples, and dictionaries (practically, NameTuple

and UserDict are preferable to Tuple and Dict) and then add new custom methods that override methods in the

superclass. Shown in the example below (also posted at https://github.com/spexod/Portal/blob/main/backend/

examples/user dict.py) is a Python class with instances of data objects that do not allow duplicate keys. The TableDict

object only allows strings to be used as keys (comment # 1), and if it is not a string then a helpful error message

is raised. To reduce ambiguity, any strings are converted to lowercase versions (comment # 2). Finally, this custom

dictionary object does not allow overwriting of existing keys (comment # 3), which enforces that the data table must

have a unique key for each row of data.

from collections import UserDict

class TableDict(UserDict):

def __setitem__(self, key: str, value):

for setting key, value pairs as

a_table_dict[key] = value

if not isinstance(key, str):

1

https://github.com/spexod/Portal/blob/main/backend/examples/user_dict.py
https://github.com/spexod/Portal/blob/main/backend/examples/user_dict.py

Dynamic Small Database Design for SpExoDisks 25

raise ValueError(’TableDict ’ +

’only allows string keys, ’ +

f’got {key}, type {type(key)}’)

2

key = key.lower()

if self.__contains__(key):

3

raise KeyError(f’Key: {key}, ’ +

’already exists, repeated ’ +

’assignment is not allowed ’ +

’in TableDict’)

else:

self.data[key] = value

Building custom data objects that enforce certain rules or data topologies allows us to sustainably add data over long

periods of time. Data is often written and read for the first time by an expert developer with a total understanding of

the subject matter. However, subsequent updates are frequently made by student developers, outside collaborators, or

even the experts themselves who forgot the intended rules in the months/years since the data processing pipeline was

first written. These reasons exemplify why it’s vital to enforce the intended logic of all data added to any database

portal, so that critical error checking is provided to help developers find and resolve any conflicts.

	Introduction
	Beginning a Database Portal
	Database Portal Goals
	Automated Data Contextualization
	Data Organization
	Data Standardization and Verification

	Database Software
	Query Efficiency in Database Software
	API Access to Database Software

	Data Interactivity and Accessibility
	Data Visualization
	Displaying Contextual Data
	Downloadable Content
	Programmatic Access

	Technical
	Technology Used in SpExoDisks
	Data Science Processing Pipeline
	Public Server Configuration
	Database Software Access and Security

	Science Application of the SpExoDisks Data
	The Star Name Problem
	Custom Data Objects

