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Abstract— This paper presents a robust moving horizon
estimation (MHE) approach with provable estimation error
bounds for solving the simultaneous localization and mapping
(SLAM) problem. We derive sufficient conditions to guarantee
robust stability in ego-state estimates and bounded errors in
landmark position estimates, even under limited landmark
visibility which directly affects overall system detectability.
This is achieved by decoupling the MHE updates for the ego-
state and landmark positions, enabling individual landmark
updates only when the required detectability conditions are met.
The decoupled MHE structure also allows for parallelization
of landmark updates, improving computational efficiency. We
discuss the key assumptions, including ego-state detectability
and Lipschitz continuity of the landmark measurement model,
with respect to typical SLAM sensor configurations, and intro-
duce a streamlined method for the range measurement model.
Simulation results validate the considered method, highlighting
its efficacy and robustness to noise.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) refers
to the fundamental task of enabling a robot to localize
itself while concurrently constructing a map of an unknown
environment using measurements of both robot and en-
vironment states. Traditionally, SLAM is approached via
filtering-based methods, as reviewed in, e.g., [1], [2], such
as extended Kalman filters (EKFs) and particle filters (PFs),
or optimization-based techniques. While EKFs are computa-
tionally efficient, they struggle with scalability and consis-
tency, particularly with an increasing number of landmarks
[3], [4]. Although PF-based methods are often more ac-
curate, they are computationally intensive [3]. In contrast,
optimization-based methods, also known as smoothing ap-
proaches, reframe SLAM as a maximum a posteriori (MAP)
estimation problem that can be solved as sparse inference
over factor graphs [5], rendering them computationally less
expensive.

Recent SLAM literature [6]–[9] underscores the superi-
ority of optimization-based methods and formulates SLAM
as a constrained nonlinear least squares problem [10]. This
problem can be solved using the measurements obtained
over the robot’s entire trajectory — an approach known in
the control and estimation community as full information
estimation (FIE). Alternatively, it can also be solved over
selected measurements only, by considering “key frames”
that are chosen as representative [6], or over a sliding window
of consecutive, most recent measurements [11]. The latter
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technique is known in the estimation literature as moving
horizon estimation (MHE).

MHE is commonly used for nonlinear estimation tasks
involving noise and system constraints, providing robust
stability guarantees when certain detectability conditions are
met [12]. In particular, choosing a sufficiently long horizon
can ensure uniform robust stability of MHE under the general
detectability condition known as incremental input/output-to-
state stability (i-IOSS), see, e.g., [13], [14]. A particularly
relevant direction in MHE research for SLAM applications
is joint state and parameter estimation, of which SLAM is
a special case, insofar as stationary landmarks are treated as
a special case of system parameters. This general estima-
tion problem is typically handled by augmenting the state
to include both the system’s original states and unknown
parameters [15]–[17]. However, uniform detectability of this
augmented state generally requires a persistent excitation
(PE) condition [18], [19], which is particularly challenging in
SLAM, due to the intermittent visibility of landmarks. Prac-
tical stability of MHE in the absence of PE has been recently
established in [20], while a switching mechanism depending
on the level of PE was proposed in [21]. However, these
approaches are computationally complex for large numbers
of features and verifying PE online is challenging in general.
Obtaining computationally efficient MHE approaches and
simple conditions to verify PE online in the context of SLAM
remains an open question, which we aim to address in this
work.

This paper analyzes the estimation error properties in the
context of MHE applied to SLAM, particularly with respect
to the crucial issue of time-varying system detectability
due to limited visibility of landmarks. This is achieved by
harnessing the theoretical guarantees regarding robustness
of MHE for joint state and parameter estimation, as estab-
lished in, e.g., [18], [20], and tailoring them specifically for
challenges arising from SLAM. Consequently, we consider a
decoupled MHE scheme for SLAM similar to [11] and show
robust stability of the ego-state estimates as well as robust
error bounds on the landmark estimates. To the best of our
knowledge, this is the first robust analysis for observers in
the SLAM problem. In Section II, we outline the theoretical
MHE foundations, followed by the general SLAM problem
formulation in Section III. The decoupled MHE-SLAM
scheme, detailed in Section IV, relies on a detectability
condition to ensure stable estimation of the ego-state at each
time step, while the feature estimates are only updated if
the available measurements are sufficiently informative. We
further contextualize these conditions for different SLAM
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configurations in Section V and present a simplified scheme
for the range measurement model, reducing the problem to
a recursive least squares formulation. Section VI provides
simulation results that validate the decoupled MHE formu-
lation.

Notation: The sets of all (nonnegative) real numbers are
denoted by (R≥0) R, the set of integers in the interval [a, b]
by I[a,b] and the set of integers greater or equal to a by
I≥a. The bold symbol u refers to a sequence of the vector-
valued variables ui ∈ Rm for i ∈ I≥0, u = {u0, u1, . . .}.
Euclidean norm of vector x ∈ Rn is denoted by ∥x∥ and
∥x∥2P = x⊤Px for a positive definite matrix P = P⊤.
The maximum generalized eigenvalue of positive definite
matrices P,Q is represented by λmax(P,Q), i.e., the largest
scalar λ satisfying det(P − λQ) = 0. The relation P ≻ 0
(P ⪰ 0) denotes a positive definite (positive semi-definite)
matrix. The floor of x ∈ R is denoted by ⌊x⌋.The identity
matrix is denoted as In ∈ Rn×n and the zero square matrix
as On ∈ Rn×n.

II. PRELIMINARIES

In this section, we review the MHE formulation and
the corresponding theoretical guarantees from [13]. For this
purpose, we consider a discrete-time system of the form

xk+1 = f(xk, uk, wk),

yk = h(xk, uk, wk),
(1)

where xk ∈ X, yk ∈ Y, wk ∈ W, uk ∈ U are system state,
measurements, process and measurement noise, and input
at time k, respectively. The sets X ⊆ Rn,Y ⊆ Rp,W ⊆
Rq,U ⊆ Rr are known closed sets that can arise from
the physical nature of the system or some prior knowledge
about the system trajectories. The functions f : X × U ×
W → X and h : X × U ×W → Y are known nonlinear
continuous functions that describe the system dynamics and
measurement functions, respectively. Furthermore, we define
Z := {(x, u, w) ∈ X× U×W : f(x, u, w) ∈ X}.

Given the sequence of system measurements up to time
k and an initial estimate of system state, x̂0, the objective
of an MHE scheme is to provide an estimate x̂k of the
current system state xk in a recursive manner, by only
optimizing over a fixed window of measurements. For the
underlying nonlinear estimation problem, we consider the
following definition of detectability, as it is a sufficient and
necessary condition for the existence of an observer with
desired stability properties, as described in Definition 2 [22].

Definition 1: (Definition 2.9 from [22]) A system de-
scribed by (1) is detectable if it admits an i-IOSS Lyapunov
function V : X × X → R≥0, that is, there exist U,U ≻ 0,
Q,R ⪰ 0 and η ∈ [0, 1) such that

∥x− x̃∥2U ≤ V (x, x̃) ≤ ∥x− x̃∥2
U

V (f(x, u, w), f(x̃, u, w̃)) ≤ ηV (x, x̃) + ∥w − w̃∥2Q
+ ∥h(x, u, w)− h(x̃, u, w̃)∥2R

for all (x, u, w), (x̃, u, w̃) ∈ Z.
An MHE scheme that estimates states of a detectable

system (1) (according to Definition 1) was proposed in, e.g.,

[13]. At time k, it considers past input and output data over
a window of length Mk = min{k,M}, with M ∈ I≥1.
It optimizes over the initial state at the start of the window
(i.e., x̂k−Mk|k) and the sequence of process and measurement
noise ŵ·|k by minimizing the following cost function

Jk
(
x̂k−Mk|k, ŵ·|k, ŷ·|k

)
= 2ηMk

∥∥x̂k−Mk|k − x̂k−Mk

∥∥2
U

+

Mk∑
j=1

ηj−1
(
2
∥∥ŵk−j|k

∥∥2
Q
+
∥∥ŷk−j|k − yk−j

∥∥2
R

)
,

where η, U,Q and R are such that the property from Defini-
tion 1 holds for some Lyapunov function, and notation x̂j|k
denotes the estimated state for time j computed at time k.
The estimated noise and outputs are denoted analogously by
ŵj|k and ŷj|k. A state estimate is then obtained by solving
the following nonlinear program (NLP) at each time step k

min
x̂k−Mk|k,ŵ·|k

Jk
(
x̂k−Mk|k, ŵ·|k, ŷ·|k

)
s.t. x̂j+1|k = f

(
x̂j|k, uj , ŵj|k

)
, j ∈ I[0,Mk−1],

ŷj|k = h
(
x̂j|k, uj , ŵj|k

)
, j ∈ I[0,Mk−1].

(2)

The minimizer to (2) is denoted as x̂∗
k−Mk|k and ŵ∗

·|k, while
the system state estimate at time step k is given by x̂k =
x̂∗
k|k. In the case that sets X and W are known and different

from Rn and Rq , additional constraints can be included in
(2). In the following definition, we introduce the notion of
robust global exponential stability, which serves to provide
a robust bound on the estimation error.

Definition 2: (Definition 2 from [13]) A state estimator for
system (1) is robustly globally exponentially stable (RGES)
if there exist constants λ1, λ2 ∈ [0, 1) and C1, C2 > 0 such
that the resulting state estimate x̂k at time k satisfies

∥xk − x̂k∥ ≤max

{
C1λ

k
1 ∥x0 − x̂0∥,

max
j∈I[0,k−1]

{
C2λ

k−j−1
2 ∥wj∥

}}
for all k ∈ I≥0, all initial conditions x0, x̂0 ∈ X, and every
trajectory (xk, uk, wk, yk)

∞
k=0 satisfying (1).

Therefore, RGES implies that the estimation error de-
creases exponentially with time, down to an error that
depends on the encountered process and measurement noise.
It has been shown in [13] that RGES of the MHE scheme
(2) for a detectable system can be established as follows.

Theorem 1: (Corollary 1 from [13]) Let system (1) be de-
tectable, i.e., admit an i-IOSS Lyapunov function according
to Definition 1. Then the MHE scheme (2) with horizon M
chosen such that 4ηMλmax(U,U) < 1 is RGES according
to Definition 2.

III. PROBLEM FORMULATION

In this work, we consider static environments, as is stan-
dard in most SLAM literature. We distinguish between the
ego-state xs ∈ Xs ⊆ Rns and the state of the environment
xe it operates in, where the environment is described by a
set of L landmarks and their positions xe,l ∈ Xe,l ⊆ Rne



for l ∈ I[1,L], i.e., xe = (xe,1⊤, xe,2⊤, . . . , xe,L⊤)⊤. A
distinction is made between measurements ye ∈ Rd, which
rely on the environment (such as lidar, camera, etc.) and ys,
which do not (GPS measurements, measurements of distance
from known anchor points, orientation measurements, etc.).
The resulting nonlinear discrete-time system formulation is
described by the following state space model

xs
k+1 = fs(xs

k, uk, v
s
k), (3a)

ysk = hs(xs
k, ξ

s
k), (3b)

yek = AkH
e(xs

k, x
e, ξek), (3c)

where Ak ∈ RdL×dL is a block diagonal matrix consisting
of L data association parameters ae,lk on its block diagonal,
with

ae,lk =

{
Id, if landmark l is visible at time k,

Od, otherwise.

Furthermore, the landmark measurement vector con-
sists of stacked measurements of individual landmark
positions: He(xs

k, x
e, ξek) = (he(xs

k, x
e,1, ξe,1k )⊤, · · · ,

he(xs
k, x

e,L, ξe,Lk )⊤)⊤, for environment measurement noise
ξek = (ξe,1⊤k , · · · , ξe,L⊤

k )⊤, where ξe,lk ∈ We,l ⊆ Rnme .
The measurement of a single landmark is therefore given
by ye,l = ae,lk he(xs

k, x
e,l, ξe,lk ) for l ∈ I[1,L]. The combined

process and measurement noise vector of the system (3a)-
(3b) is denoted as ws = (vs⊤, ξs⊤)⊤, and analogously,
the combined noise vector of the system (3) as w =
(vs⊤, ξs⊤, ξe⊤)⊤.

Note that we only consider the back-end of the SLAM
pipeline and assume that the front-end correctly assigns
measurements to the corresponding landmark. However, data
association errors can be integrated into estimation schemes
as shown in [10].

Given the sequence of system and environment measure-
ments up to time k ∈ I≥0, as well as initial guesses of
the ego-state x̂s

0 and landmark positions x̂e
0, the objective

of the SLAM problem is to estimate the robot’s trajectory
Xs = {xs

0, x
s
1, . . . , x

s
k} and landmark positions xe. This

problem can be addressed using FIE to optimize over a
pose graph, which is, however, not computationally tractable
for large task horizons. Therefore, we formulate the SLAM
inference problem within the MHE framework (2). We do so
by considering the augmented system state x = (xs⊤, xe⊤)⊤,
which allows us to bring the system (3) to the standard
form of system (1). As a result, (2) can be solved for
x̂k−Mk|k = (x̂s⊤

k−Mk|k, x̂
e⊤
k|k)

⊤ and ŵ·|k = (v̂s⊤·|k , ξ̂
s⊤
·|k , ξ̂

e⊤
·|k )

⊤.
The resulting MHE problem can be seen as a special

case of parametric estimation problems as considered in
[18], [20] since the landmark positions remain constant over
time. Specifically, in the SLAM case the landmarks do not
affect the system dynamics but rather provide additional
measurements of interest. As shown in [18], the detectability
of the augmented state is equivalent to detectability of the
system state (with respect to parameters and all measure-
ments) and parameter PE. Hence, although the MHE scheme

(2) provides a viable approach for addressing the SLAM
problem, the resulting estimation error is RGES only when
the trajectory of the robot is such that the landmarks are
persistently excited. An alternative, decoupled MHE-based
SLAM scheme was proposed in [11]. While its stability in
the presence of noise was not rigorously analyzed, it was
applied under the assumption that the trajectory of the system
ensures PE of landmarks, rendering the scheme stable. Since
this cannot be guaranteed in a general case as landmarks
intermittently enter and exit the robot’s field of view, we
analyze an MHE scheme inspired by [11], and derive an
upper bound on its error for a general trajectory that may
not always ensure PE of landmarks.

IV. DECOUPLED MHE FOR SLAM

In this section, we propose and analyze a decoupled MHE
scheme for SLAM, where the ego-state is estimated solely
based on system measurements, i.e., (3b), and the positions
of landmarks are estimated only based on environment mea-
surements from (3c) while keeping the ego-state fixed. The
latter estimate is only performed when a condition ensuring
sufficient informativeness of measurements is satisfied. We
show that the scheme results in RGES estimates of the ego-
state and bounded estimation error for landmark positions.
Additionally, we show that the landmark estimation error
bound decreases with the number of times the informative-
ness condition is satisfied. To ensure RGES of the MHE for
state estimation, we require the following assumption.

Assumption 1: System (3a)-(3b) admits an i-IOSS Lya-
punov function according to Definition 1.

Because the estimation of the landmark positions relies
on the ego-state estimates and is thus also influenced by the
state estimation error, we require the following assumption.

Assumption 2: For any landmark l with corresponding
coordinates xe,l, it holds that environment measurement
function he is Lipschitz continuous with respect to the ego-
state, i.e., it holds that∥∥he

(
xs, xe,l, ξe,l

)
− he

(
x̃s, xe,l, ξe,l

)∥∥ ≤ CL ∥xs − x̃s∥
for a constant CL ∈ R≥0 and any xs, x̃s ∈ Xs, xe,l ∈ Xe,l

and ξe,l ∈We,l.
We rewrite the landmark measurements as

ye,lk = ae,lk he
(
xs
k, x

e,l, ξe,lk

)
= ae,lk h

e
(
x̂s
k, x

e,l, ξ
e,l

k

)
, (4)

where ξ
e,l

k = (ξe,l⊤k , ês⊤k )⊤ ∈ We,l ⊆ Rns+nme . By
Lipschitz continuity of h with respect to xs and the properties
of vector norms, it holds that ∥ξe,lk ∥ ≤ C1∥ξe,lk ∥ + C2∥êsk∥
for some constants C1, C2 ∈ R≥0, with êsk := xs

k − x̂s
k.

In Section V, we verify this assumption for common sensor
configurations.

In order to ensure a robust bound on the landmark
estimation error, we update the landmark estimates only
when informative measurements are available. To formulate
this condition, we make use of the following definition for
landmark detectability over a horizon of length M , which is
obtained by applying the the exponential i-IOSS decrease



condition from Definition 1 M times to a static system
described by the position of a landmark and its measurement.

Definition 3: Landmark l is detectable from measure-
ments obtained over a horizon of length M starting at time
k − M ∈ I≥0, if for some ηe,l ∈ [0, 1), Ue,l, U

e,l ≻ 0,
Qe,l, Re,l ⪰ 0 and a given sequence of ego-state estimates
{x̂s

k−M , . . . , x̂s
k−1}, the following property holds

∥xe,l − x̃e,l∥2Ue,l ≤ ηMe,l∥xe,l − x̃e,l∥2
U

e,l

+

k−1∑
j=k−M

ηk−j−1
e,l

(∥∥∥∥ξe,lj − ξ̃
e,l

j

∥∥∥∥2
Qe,l

+ae,lk

∥∥∥∥he
(
x̂s
j , x

e,l, ξ
e,l

j

)
− h

e
(
x̂s
j , x̃

e,l, ξ̃
e,l

j

)∥∥∥∥2
Re,l

) (5)

for any xe,l, x̃e,l ∈ Xe,l and ξ
e,l

j , ξ̃
e,l

j ∈ We,l
. We refer to

such a horizon as informative for landmark l and denote it
with H l

k,M .
While evaluating the condition (5) is in general a challeng-

ing problem, we discuss in Section V how it can be evaluated
or ensured for specific SLAM setups.

Given Assumptions 1 and 2, we propose an MHE scheme
described in Algorithm 1, which decouples estimation of the
ego-state and landmark positions, allowing for parallelization
of the latter. Additionally, the scheme enables the use of
different time horizons for landmark and ego-state updates.

The cost which is minimized at every time step to obtain
the ego-state estimate is given by

Js
k

(
x̂s
k−Ns

k |k
, ŵs

·|k

)
= 2η

Ns
k

s

∥∥∥x̂s
k−Ns

k |k
− x̂s

k−Ns
k

∥∥∥2
U

s

+

Ns
k∑

j=1

ηj−1
s

(
2
∥∥∥ŵs

k−j|k

∥∥∥2
Qs

+
∥∥∥ŷsk−j|k − ysk−j

∥∥∥2
Rs

)
,

where ηs ∈ [0, 1), U
s
, Qs and Rs correspond to η ∈ [0, 1),

U,Q and R in Assumption 1. The window length is set

Algorithm 1 Decoupled SLAM MHE

1: Input: L, T, x̂e
0, x̂s

0, N
s, Ne,l, ηs, ηe,l, U

s
, Qs, Rs, U

e,l
,

2: Qe,l, Re,l, for l ∈ I[1,L].
3: Output: x̂e

T , x̂s
T

4: for k = 1, 2, . . . , T do
5: Obtain ysk and yek from sensors
6: Obtain Ak from SLAM front-end
7: Ns

k ← min{k,Ns}
8: x̂s

k ← Solve (6) with Ns
k , ηs, x̂

s
k−Ns

k

9: for l = 1, 2, . . . , L do ▷ done in parallel
10: if (5) holds for landmark l then
11: x̂e,l

k ← Solve (7) with Ne,l, ηe,l, x̂
s
k, x̂

e,l
k−Ns

k

12: else
13: x̂e,l

k ← x̂e,l
k−1

14: end if
15: end for
16: end for

to Ns
k = min{k,Ns}, where Ns is chosen such that

4ηN
s

s λmax

(
U

s
, Us

)
< 1. To obtain the ego-state estimate

at time j, computed at time k, denoted with x̂s
j|k, as well as

noise and output estimates ŵs
j|k and ŷsj|k, the following NLP

is solved at every time step

min
x̂s
k−Ns

k
|k,ŵ

s
·|k

Js
k

(
x̂s
k−Ns

k |k
, ŵs

·|k

)
s.t. x̂s

j+1|k = fs
(
x̂s
j|k, uj , ŵ

s
j|k

)
,j ∈ I[k−Ns

k ,k−1],

ŷsj|k = hs
(
x̂s
j|k, uj , ŵ

s
j|k

)
, j ∈ I[k−Ns

k ,k−1].

(6)

The optimal state and noise estimates of the given NLP are
denoted as x̂s∗

·|k and ŵs∗
·|k respectively. The ego-state estimate

at time k is defined as x̂s
k := x̂s∗

k|k.
To obtain the landmark position estimates computed at

time k, x̂e,l
k|k, and noise and output estimates at time j,

estimated at time k, ξ̂
e,l

j|k and ŷe,lj|k, the following cost is
minimized for each landmark l, possibly in parallel

Je,l
k

(
x̂e,l
k|k, ξ̂

e,l

·|k, ŷ
e,l
·|k

)
= 2ηMe,l

∥∥∥x̂e,l
k|k − x̂e,l

k−M

∥∥∥2
U

e,l

+

M∑
j=1

ηj−1
e,l

(
2
∥∥∥ξ̂k−j|k

∥∥∥2
Qe,l

+
∥∥∥ŷe,lk−j|k − ye,lk−j

∥∥∥2
Re,l

)
.

As described in Algorithm 1, and unlike (6), the land-
mark position is updated only over informative horizons
that satisfy (5) for fixed weight matrices and decay rate,
to avoid updating the landmark estimate with insufficiently
informative data. In the case that the landmark detectability
condition is not satisfied, the landmark estimate is kept equal
to the one from the previous step. The landmark estimate is
obtained by solving the following NLP

min
x̂e,l
k|k,

ˆ
ξ
e,l

·|k

Je,l
k

(
x̂e,l
k|k, ξ̂

e,l

·|k, ŷ
e,l
·|k

)

s.t. ŷe,lj|k = ae,lk h
e
(
x̂s
k, x̂

e,l
k|k, ξ̂

e,l

j|k

)
, j ∈ I[k−Ne,l

k ,k−1],

(7)

with horizon M chosen such that 4ηMe,lλmax

(
U

e,l
, Ue,l

)
< 1

for every l ∈ I[1,L]. The optimal landmark position and noise

of the given NLP are denoted as x̂e,l∗
k|k and ξ̂

e,l∗
·|k respectively.

The landmark estimate at time k is defined as x̂e,l
k := x̂e,l∗

k|k .
In the following, we show RGES of ego-state estimates

and bounded errors for landmark position estimates ob-
tained by the proposed scheme, where the error bound for
each landmark position directly depends on how often that
landmark was detectable in the sense of Definition 3. For
every landmark l ∈ I[1,L] and j ∈ I[1,ml

k−1], we denote
τ l,k1 = max{τ ≤ k | H l

τ,M is informative } and similarly,
τ l,kj+1 = max{τ ≤ τ l,kj −M | H l

τ,M is informative }, where
informativity index ml

k ∈ I≥0 is such that τ l,k
ml

k

is the end of
the earliset informative horizon for landmark l. As a result,
the ends of disjunct informative horizons for landmark l, up
to time k correspond to τ l,kj for j ∈ I[1,ml

k]
.



Proposition 1: If Assumptions 1 and 2 are satisfied, the
solution to the SLAM problem described by Algorithm 1
and NLPs (6) and (7) has the following properties:

1) the MHE approach (6) is RGES for system (3a)-(3b);
2) for each landmark l ∈ I[1,L], there exist constants

Cl
1, C

l
2, C

l
3, C

l
4 > 0 and λ1,l, λ2,l, λ3,l, λ4,l ∈ [0, 1)

such that landmark estimation error êe,lk := xe,l − x̂e,l
k

satisfies

∥∥∥êe,lk

∥∥∥ ≤ max

{
Cl

1λ
ml

kM
1,l

∥∥∥êe,l0

∥∥∥ ,ml
kC

l
2λ

ml
kM

2,l ∥ês0∥,

max
t∈I

[0,ml
k
M−1]

{
Cl

3λ
ml

kM−t−1
3,l

∥∥∥ξe,l
s(t)lk

∥∥∥} ,

max
t∈I

[0,ml
k
M−1]

,

q∈I
[0,s(t)l

k
−1]

{
Cl

4λ
ml

kM−t+q−1
4,l

∥∥∥ws
s(t)lk−q−1

∥∥∥}}
(8)

for all k ∈ I≥0 and t denoting a counter over the
time steps belonging to informative horizons H l

τk,l
j ,M

,
j ∈ I[1,ml

k]
. For some t, the corresponding time step is

denoted with s(t)lk = τk,l
ml

k−
⌊

t
M

⌋ −M + t−M
⌊

t
M

⌋
1.

Proof: For the ego-state estimate, the estimation error is
RGES due to Assumption 1 and Theorem 1 applied to system
(3a)-(3b). Starting from the landmark detectability condition
(5), we relate the landmark estimation error to the optimal
solution of the MHE cost in (10), similar to [13]. We then
establish the decrease of the error over each informative
horizon, while its value does not change when the horizon is
not informative due to keeping the estimate constant in Line
13 of Algorithm 1, resulting in (11). Due to Assumption
2 and ego-state estimate being RGES, we obtain the error
bound (8). Throughout this proof, we consider only a single
landmark l and hence drop l from ml

k, τ
k,l
j and all weight

matrices’ superscripts.
Since êe,lk = êe,l

τk
1

and the property (5) is satisfied for
the informative horizon H l

τk
1 ,M

, the following holds for
the solution of the MHE problem (7) at time step τk1 ,(
x̂e,l

τk
1
, {ξ̂

e,l∗
i|τk

1
, ŷe,l∗

i|τk
1
}τ

k
1 −1

i=τk
1 −M

)
and the evolution of the true

system state
(
xe,l, {ξe,li , ye,li }

τk
1

i=τk
1 −M

)
:

∥x̂e,l

τk
1
− xe,l∥2Ue ≤ ηMe,l∥x̂e,l

τk
1
− xe,l∥2

U
e

+

τk
1 −1∑

j=τk
1 −M

η
τk
1 −j−1

e,l

(∥∥∥∥ξ̂e,l∗j|τk
1
− ξ

e,l

j

∥∥∥∥2
Qe

+
∥∥∥ŷe,l∗

j|τk
1
− ye,lj

∥∥∥2
Re

)
.

Applying the Cauchy-Schwartz and Young’s inequality, we
obtain ∥∥∥∥ξ̂e,l∗j|τk

1
− ξ

e,l

j

∥∥∥∥2
Qe

≤ 2

∥∥∥∥ξ̂e,l∗j|τk
1

∥∥∥∥2
Qe

+ 2
∥∥∥ξe,lj

∥∥∥2
Qe

1That means that t = 0 corresponds to the first time step of the first
informative horizon, i.e., s(0)lk = τk

ml
k

− M , and that t = mkM −
1 corresponds to the last time step of the last informative horizon, i.e.,
s(mkM − 1)lk = τk1 − 1 .

and therefore it holds that:

∥x̂e,l

τk
1
− xe,l∥2Ue ≤ ηMe,l∥x̂e,l

τk
1
− xe,l∥2

U
e

+ 2

τk
1 −1∑

j=τk
1 −M

η
τk
1 −j−1

e,l

(∥∥∥∥ξ̂e,l∗j|τk
1

∥∥∥∥2
Qe

+
∥∥∥ξe,lj

∥∥∥2
Qe

)

+

τk
1 −1∑

j=τk
1 −M

η
τk
1 −j−1

e,l

∥∥∥ŷe,l∗
j|τk

1
− ye,lj

∥∥∥2
Re

.

(9)

Due to:

∥x̂e,l

τk
1
− xe,l∥2

U
e = ∥x̂e,l

τk
1
− x̂e,l

τk
1 −M

+ x̂e,l

τk
1 −M

− xe,l∥2
U

e

≤ 2∥x̂e,l

τk
1
− x̂e,l

τk
1 −M

∥2
U

e + 2∥x̂e,l

τk
1 −M

− xe,l∥2
U

e ,

expression (9) becomes (as x̂e,l
k = x̂e,l∗

k|k for any k ∈ I≥0)

∥x̂e,l

τk
1
− xe,l∥2Ue ≤ 2ηMe,l∥x̂e,l

τk
1 −M

− xe,l∥2
U

e

+2

τk
1 −1∑

j=τk
1 −M

η
τk
1 −j−1

e,l

∥∥∥ξe,lj

∥∥∥2
Qe

+Je,l

τk
1

(
x̂e,l∗
τk
1 |τk

1
, x̂s

τk
1
, ξ̂

e,l∗
·|τk

1
, ŷe,l∗·|τk

1

)
.

(10)
Because of the feasibility of the true system trajectory in the
MHE optimization problem, it holds that

Je,l

τk
1

(
x̂e,l∗
τk
1 |τk

1
, x̂s

τk
1
, ξ̂

e,l∗
·|τk

1
, ŷe,l∗·|τk

1

)
≤Je,l

τk
1

(
xe,l, x̂s

τk
1
, ξ

e,l

·|τk
1
, ye,l·|τk

1

)
which further implies (since êe,l

τk
1
= x̂e,l

τk
1
− xe,l):

∥êe,l
τk
1
∥2Ue ≤ 4ηMe,l∥êe,lτk

1 −M
∥2
U

e + 4

τk
1 −1∑

j=τk
1 −M

η
τk
1 −j−1

e,l

∥∥∥ξe,lj

∥∥∥2
Qe

≤ 4ληMe,l∥êe,lτk
1 −M

∥2Ue + 4

τk
1 −1∑

j=τk
1 −M

η
τk
1 −j−1

e,l

∥∥∥ξe,lj

∥∥∥2
Qe

,

where λ := λmax(U
e
, Ue). Due to the choice of horizon

length M in (7), ρl ∈ [0, 1) exists so that ρMl := 4ηMe,lλ < 1.
From here, we obtain the upper bound of the estimation error
as follows:

∥êe,l
τk
1
∥2Ue ≤ ρMl ∥êe,lτk

1 −M
∥2Ue + 4

τk
1 −1∑

j=τk
1 −M

η
τk
1 −j−1

e,l

∥∥∥ξe,lj

∥∥∥2
Qe

Similarly, since no update is performed at times that do not
correspond to τkj for j ∈ I[1,mk], the error remains constant
until τk2 , so we have êe,l

τk
1 −M

= êe,l
τk
2

. Therefore, we can repeat

the same process and obtain the bound on ∥êe,l
τk
1 −M

∥2Ue as

∥êe,l
τk
2
∥2Ue ≤ ρMl ∥êe,lτk

2 −M
∥2Ue + 4

τk
2 −1∑

j=τk
2 −M

η
τk
2 −j−1

e,l

∥∥∥ξe,lj

∥∥∥2
Qe

.
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Fig. 1: Planar robot and four landmarks. Coordinates of the robot
are denoted by xs = (p⊤x , p

⊤
y , θ

⊤)⊤, and the coordinates of each
landmark l with xe,l = (pe,l⊤x , pe,l⊤y )⊤. Measurement of landmark
l = 3 coming from a bearing-only sensor is a unit vector denoted
by ye,3

b , while the measurement obtained with a range sensor is
denoted as ye,3

r .

Therefore, since the first informative horizon started at
τmk
−M , it holds that êe,lτmk

−M = êe,l0 , leading to

∥êe,lk ∥2Ue ≤ ρmkM
l ∥êe,l0 ∥2Ue

+ 4

mk∑
j=1

ρjMl

τk
j −1∑

r=τk
j −M

η
τk
j −r−1

e,l

∥∥∥ξe,lr

∥∥∥2
Qe

.
(11)

From Assumption 2, ∥ξe,lk ∥2 ≤ C1∥ξe,lk ∥2 + C2∥êsk∥2,
where ∥êsk∥2 is upper bounded, due to MHE for state
estimation from (6) being RGES. After plugging this upper
bound into (11) and maximizing the sum similarly to the
proof of Corollary 1 in [13], we obtain (8), where the
decrease is given with respect to the informativity index mk,
as the error is constant if the landmark is not detectable.

It therefore holds that the landmark estimation error is
robustly stable, where the effect of initial ego-state and land-
mark estimation errors decreases exponentially with respect
to informativity index ml

k. The influence of past process and
measurement noise on the error bound is discounted at the
rate that also depends on the informativity index.

Remark 1: Suppose that, for each landmark l, there exists
a constant T (l) ∈ I≥1 such that for every time t ∈ I≥1,
there is a time t0 ∈ I[t,t+(T (l)−1)M ] for which H l

t0+M,M ,
is informative, i.e., each landmark is periodically detectable
over a horizon of length M . The informativity index is then
proportional to time k, i.e., ml

k =
⌊

k
T (l)

⌋
. Furthermore, if the

landmark is detectable over any horizon, then the landmark
estimate is also RGES.

V. DISCUSSION

In this section, we introduce two specific sensor config-
urations, discuss their compatibility with the MHE SLAM
scheme from Section IV, and propose a simplified scheme
applicable when range measurements of landmarks are avail-
able.

A. Common SLAM Configurations

Different types of SLAM setups exist depending on the
available sensors. For example, Visual-Inertial SLAM [6]
relies on visual and inertial data, while lidar-based SLAM
might use only range measurements [23] or combine them
with inertial data [24]. In the case of camera-based SLAM,
the type of camera introduces further distinctions: monocular
cameras provide bearing-only measurements, while stereo
cameras provide range measurements, similar to lidar. These
two types of measurements, i.e., bearing-only or range, repre-
sent the most frequently encountered landmark measurement
models, despite various possible sensor combinations. In the
following, we will briefly introduce these models, as well as
an example of a SLAM system as introduced in (3).

We consider a model of a planar robot from [11], shown
in Figure 1 and described by

px,k+1 = px,k + u1,k cos θk + v1,k,

py,k+1 = py,k + u1,k sin θk + v2,k,

θk+1 = θk + u2,k + vθ,k,

(12)

where xs
k = (p⊤x,k, p

⊤
y,k, θ

⊤
k )

⊤, uk = (u⊤
1,k, u

⊤
2,k)

⊤ and vk =

(v⊤1,k, v
⊤
2,k, v

⊤
θ,k)

⊤. The states px,k and py,k correspond to x
and y coordinates of the robot in the plane at time k, θk
represents its orientation, while u1,k and u2,k are linear and
angular velocities at time k.

Measurements of ego-state are given by

ysk = xs
k + ξsk, (13)

and as will be discussed later in this section, measurements
analogous to these are necessary to ensure observability of
the SLAM problem. While they may be obtained by external
sensors, they may also be a result of e.g., sensing that relies
on landmarks with known position.

For two popular landmark measurement models that en-
compass the most popular types of SLAM, i.e., monocular,
stereo and lidar-based, the measurement ye,lk of landmark l
is given by

ye,lk = ae,lk

(
R (−θk)

xe,l − pk
α(xe,l, pk)

+ ξe,lk

)
. (14)

The choice of α depends on the measurement model, R(θ)
is a rotation matrix for angle θ and pk := (p⊤x,k, p

⊤
y,k)

⊤.
For the bearing-only measurement, it holds that

α(xe,l, pk) =
∥∥xe,l − pk

∥∥. This measurement model
corresponds to a monocular camera, because due to the
lack of depth information from the image, it only provides
a ray along which the landmark is located. For the range
measurement, α(xe,l, pk) = 1. This measurement model
corresponds to a lidar or a stereo camera and is capable of
providing the distance to the measured landmark along a
ray.

B. Verification of Assumptions

A systematic method to compute an i-IOSS Lyapunov
function and thus to verify Assumption 1 is proposed in
[13], where Remark 1 comments on the choice of matrices



introduced in Definition 1. Since observability implies de-
tectability [25], the satisfaction of Assumption 1 is implied
whenever the problem is observable. In the context of SLAM,
observability has been studied extensively for the linearized
systems used in EKF updates [26]–[28], as well as from the
perspective of nonlinear observability [29]. From [26], we
have that, without “anchoring”, or an external sensor measur-
ing the position of the robot, even a linear system with linear
landmark measurements is not observable. Furthermore, in
[29] it was shown that the standard 2D planar SLAM
formulation relying on range measurements of landmarks
is inherently unobservable, and that the observability can
be achieved by ensuring the measurements of at least two
landmarks with known positions are available (similar to
“anchoring” from [26]). In this case, one would consider
the measurements corresponding to these anchor points as
part of the state measurement (3b), and Assumption 1 would
be satisfied. Therefore, one can rely on the results from the
literature to ensure observability and hence satisfaction of
Assumption 1. Furthermore, if any set of landmarks is always
persistently excited, the system state can be augmented with
the positions of these landmarks. Specifically, for our exam-
ple, due to linear system dynamics and linear measurement
model, it can be directly shown by checking the rank of
the observability matrix that the system is observable and
therefore also detectable.

Assuming the existence of the minimal and maximal
sensor range, where both are strictly positive, Assumption
2 is satisfied for both range and bearing-only measurement
models.

Sufficient conditions for satisfaction of condition (5) can
also be derived directly from observability results. For exam-
ple, if it is known that a landmark is observable when always
visible over a horizon of certain length, then condition (5)
is satisfied for every horizon of the same length over which
the visibility of the landmark is maintained. However, using
such sufficient conditions might result in overly conservative
update schemes. Therefore, a better understanding of neces-
sary and sufficient conditions for landmark detectability in
SLAM is an interesting future research problem.

C. Streamlined Method for the Range Measurement Model

In the case of the range measurement model, the landmark
measurements (14) are linear in landmark coordinates. As
a result, the landmark position update from (7) becomes an
unconstrained, linear optimization problem that can be solved
using a recursive least squares approach whenever ae,lk = Id.
This aligns with the setup in [30], where ϕ∗(t) = R(−θ̂t),
dϕ(t) = 0 and dy(t) = ξ

e,l

t from (4), and therefore yields
the same stability properties (i.e., RGES) of the landmark
estimation error with respect to ξ

e,l

j and modified time
index that corresponds to the number of time steps when
the landmark is visible. Consequently, since ξ

e,l

j is upper-
bounded by the state estimation error and measurement
noise, the recursive least squares approach results in a bound
similar to the one in (8). In this case, verifying landmark

detectability reduces to confirming the existence of an upper
and lower bound for ϕ∗(t)ϕ∗(t)⊤, which is always satisfied
when a landmark is visible due to the properties of a rotation
matrix. As a result, the same stability properties are achieved
as with an MHE scheme, while the computational load is
significantly reduced.

VI. SIMULATION RESULTS

In this section, we present simulations of a planar robot
with dynamics described in (12), state measurements as in
(13) and bearing-only measurement given by (14) in two
different environments similar to those introduced in [11].
Both environments are featured by L = 50 landmarks,
arranged in a circular or corridor-like manner, while the robot
moves on a circular or straight trajectory, as shown in Figure
2.

We simulate measurement and process noise with standard
deviation of 0.01, initialize all landmark coordinates to (0, 0)
and set the initial value of the robot ego-state to its true
value. Furthermore, we set U

s
= 0.001I3, Q

s = I6, R
s =

I3, U
e
= 0.01I2, Q

e,l = I2, R
e,l = 0.1I2, where l ∈ I[1,L].

We compare our method to the coupled update based on
MHE for the augmented state described in Section III, where
all corresponding weight matrices are the same. In all MHE
schemes, η = 0.99 and horizon length is 20. Furthermore,
the range of the sensor is set to 2 m for the circular scenario
and 3 m for the corridor scenario.

The resulting average landmark and ego-state estimation
errors are shown in Figure 3. The decoupled approach
results in better ego-state estimates compared to the coupled
approach in both scenarios, while landmark estimates remain
comparable. The effect is stronger in the corridor scenario,
as the lack of parameter excitation is more frequent, causing
the coupled MHE to use insufficient information for state and
landmark estimates. Furthermore, the proposed decoupled
approach results in significantly lower computation times:
in the corridor scenario, the coupled scheme update takes on
average 8.5 s to solve, while the decoupled scheme takes 9.8
ms for the ego-state update and 0.4 ms per landmark update.
This highlights that a decoupled approach is much better
suited for real-time applications, while still capable of pro-
viding bounded error guarantees whenever the assumptions
are satisfied.
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Fig. 2: Circular (left) and corridor (right) landmark placement
(indicated by stars) and corresponding system trajectories.
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|êe
,l
|

Decoupled MHE
Coupled MHE

0 1 2 3 4 5 6

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Decoupled MHE
Coupled MHE

0 1 2 3 4 5 6

time [s]

1.0

1.5

2.0

2.5

Decoupled MHE
Coupled MHE

Fig. 3: Ego-state (top) and average landmark error (bottom) for the
circular (left) and corridor (right) scenarios.

VII. CONCLUSION

This paper introduced an MHE scheme for SLAM, ana-
lyzed its robustness, and verified the necessary assumptions
in the context of realistic SLAM setups featuring specific
measurement models and presence of noise. The scheme
addresses loss of detectability, while at the same time also
allowing for parallelization of landmark updates. This is
achieved by decoupling the ego-state and landmark esti-
mates, where the latter are performed only if the landmark
is detectable over the most recent horizon. It is shown that
ego-state estimates are RGES, while the error bounds on
landmark estimates depend on how often each landmark is
detectable. Future work includes expanding the conducted
analysis further to establish stability properties of the coupled
estimation scheme and using the derived error bounds in an
active SLAM setting.
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[20] S. Muntwiler, J. Köhler, and M. N. Zeilinger, “Mhe under parametric
uncertainty–robust state estimation without informative data,” arXiv
preprint arXiv:2312.14049, 2023.

[21] J. D. Schiller and M. A. Müller, “Nonlinear moving horizon es-
timation for robust state and parameter estimation,” arXiv preprint
arXiv:2312.13175, 2023.

[22] D. A. Allan, J. Rawlings, and A. R. Teel, “Nonlinear detectability and
incremental input/output-to-state stability,” SIAM Journal on Control
and Optimization, vol. 59, no. 4, pp. 3017–3039, 2021.

[23] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “FastSLAM
2.0: An improved particle filtering algorithm for simultaneous local-
ization and mapping that provably converges,” in IJCAI, vol. 3, no.
2003. Citeseer, 2003, pp. 1151–1156.

[24] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2d lidar SLAM,” in Proceedings of the IEEE International Conference
on Robotics and Automation. IEEE, 2016, pp. 1271–1278.
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